1
|
Woodward TJ, Dimen D, Sizemore EF, Stockman S, Kazi F, Luquet S, Mackie K, Katona I, Hohmann AG. Genetic deletion of NAPE-PLD induces context-dependent dysregulation of anxiety-like behaviors, stress responsiveness, and HPA-axis functionality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612324. [PMID: 39314440 PMCID: PMC11419048 DOI: 10.1101/2024.09.10.612324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N -acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N -acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress. Significance Statement The endocannabinoid anandamide (AEA) regulates stress responsiveness and activity of the hypothalamic-pituitary-adrenal (HPA) axis. Currently, little is known about how an enzyme (i.e. N -acylphosphatidylethanolamine phospholipase-D (NAPE-PLD)) involved in the synthesis of AEA affects behavior. We hypothesized that genetic deletion of NAPE-PLD would dysregulate responsiveness to stress at a behavioral and neuronal level. Our studies provide insight into potential vulnerabilities to stress and anxiety that may result from dysregulation of the enzyme NAPE-PLD in people.
Collapse
|
2
|
Girella A, Di Bartolomeo M, Dainese E, Buzzelli V, Trezza V, D'Addario C. Fatty Acid Amide Hydrolase and Cannabinoid Receptor Type 1 Genes Regulation is Modulated by Social Isolation in Rats. Neurochem Res 2024; 49:1278-1290. [PMID: 38368587 DOI: 10.1007/s11064-024-04117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.
Collapse
Affiliation(s)
- Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | | | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Perini I, Mayo LM, Capusan AJ, Paul ER, Yngve A, Kampe R, Gauffin E, Mazurka R, Ghafouri B, Stensson N, Asratian A, Hamilton JP, Kastbom Å, Gustafsson PA, Heilig M. Resilience to substance use disorder following childhood maltreatment: association with peripheral biomarkers of endocannabinoid function and neural indices of emotion regulation. Mol Psychiatry 2023; 28:2563-2571. [PMID: 37041416 PMCID: PMC10611562 DOI: 10.1038/s41380-023-02033-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Childhood maltreatment (CM) is a risk factor for substance use disorders (SUD) in adulthood. Understanding the mechanisms by which people are susceptible or resilient to developing SUD after exposure to CM is important for improving intervention. This case-control study investigated the impact of prospectively assessed CM on biomarkers of endocannabinoid function and emotion regulation in relation to the susceptibility or resilience to developing SUD. Four groups were defined across the dimensions of CM and lifetime SUD (N = 101 in total). After screening, participants completed two experimental sessions on separate days, aimed at assessing the behavioral, physiological, and neural mechanisms involved in emotion regulation. In the first session, participants engaged in tasks assessing biochemical (i.e., cortisol, endocannabinoids), behavioral, and psychophysiological indices of stress and affective reactivity. During the second session, the behavioral and brain mechanisms associated with emotion regulation and negative affect were investigated using magnetic resonance imaging. CM-exposed adults who did not develop SUD, operationally defined as resilient to developing SUD, had higher peripheral levels of the endocannabinoid anandamide at baseline and during stress exposure, compared to controls. Similarly, this group had increased activity in salience and emotion regulation regions in task-based measures of emotion regulation compared to controls, and CM-exposed adults with lifetime SUD. At rest, the resilient group also showed significantly greater negative connectivity between ventromedial prefrontal cortex and anterior insula compared to controls and CM-exposed adults with lifetime SUD. Collectively, these peripheral and central findings point to mechanisms of potential resilience to developing SUD after documented CM exposure.
Collapse
Affiliation(s)
- Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden.
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden.
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Adam Yngve
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Robin Kampe
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Raegan Mazurka
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Niclas Stensson
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - J Paul Hamilton
- Department of Biological and Medical Psychology University of Bergen, Bergen, Norway
| | - Åsa Kastbom
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per A Gustafsson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
4
|
Schiavi S, Manduca A, Carbone E, Buzzelli V, Rava A, Feo A, Ascone F, Morena M, Campolongo P, Hill MN, Trezza V. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology 2023; 48:897-907. [PMID: 36114286 PMCID: PMC10156791 DOI: 10.1038/s41386-022-01454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Roma Tre University, Rome, Italy
| | - Antonia Manduca
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy.
| |
Collapse
|
5
|
Any behavioral change may have physiological significance: Benign neglect in tier I neurotoxicity testing. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci 2021; 11:1298. [PMID: 34679364 PMCID: PMC8533829 DOI: 10.3390/brainsci11101298] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.
Collapse
Affiliation(s)
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland; (J.M.); (G.J.); (M.H.)
| | | |
Collapse
|
7
|
Zhang X, Xun Y, Wang L, Zhang J, Hou W, Ma H, Cai W, Li L, Guo Q, Li Y, Lv Z, Jia R, Tai F, He Z. Involvement of the dopamine system in the effect of chronic social isolation during adolescence on social behaviors in male C57 mice. Brain Res 2021; 1765:147497. [PMID: 33894223 DOI: 10.1016/j.brainres.2021.147497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
In the early stage of life, experiencing social isolation can generate long-lasting deleterious effects on behaviors and brain development. However, the effects of chronic social isolation during adolescence on social behaviors and its underlying neurobiological mechanisms remain unclear. The present study found that four weeks of social isolation during adolescence impaired social recognition ability in the three-chamber test and five-trial social recognition test, and increased aggressive-like behaviors, but reduced environmental exploration, as showed in the social interaction test. Chronic social isolation decreased levels of dopamine D2 receptor in the shell of the nucleus accumbens (NAcc) and medial prefrontal cortex. It also reduced TH in the NAcc. Using in vivo fiber photometry, it was also found that isolated mice displayed a reduction in NAcc shell activity upon exploring unfamiliar social stimuli. An injection of a 100 ng dose of the D2R agonist quinpirole into the shell of the NAcc reversed behavioral abnormalities induced by chronic social isolation. These data suggest that the dopamine system is involved in alterations in social behaviors induced by chronic social isolation. This finding sheds light on the mechanism underlying abnormalities in social behavior induced by adolescent chronic social isolation and provides a promising target to treat mental diseases relevant to social isolation.
Collapse
Affiliation(s)
- Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yufeng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
8
|
Bendersky CJ, Milian AA, Andrus MD, De La Torre U, Walker DM. Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Front Psychiatry 2021; 12:745406. [PMID: 34616326 PMCID: PMC8488119 DOI: 10.3389/fpsyt.2021.745406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Adolescence is a period of incredible change, especially within the brain's reward circuitry. Stress, including social isolation, during this time has profound effects on behaviors associated with reward and other neuropsychiatric disorders. Because the Nucleus Accumbens (NAc), is crucial to the integration of rewarding stimuli, the NAc is especially sensitive to disruptions by adolescent social isolation stress. This review highlights the long-term behavioral consequences of adolescent social isolation rearing on the NAc. It will discuss the cellular and molecular changes within the NAc that might underlie the long-term effects on behavior. When available sex-specific effects are discussed. Finally by mining publicly available data we identify, for the first time, key transcriptional profiles induced by adolescence social isolation in genes associated with dopamine receptor 1 and 2 medium spiny neurons and genes associated with cocaine self-administration. Together, this review provides a comprehensive discussion of the wide-ranging long-term impacts of adolescent social isolation on the dopaminergic system from molecules through behavior.
Collapse
Affiliation(s)
- Cari J Bendersky
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Allison A Milian
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Mason D Andrus
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Ubaldo De La Torre
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| |
Collapse
|
9
|
Walker DM, Cunningham AM, Gregory JK, Nestler EJ. Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Front Behav Neurosci 2019; 13:66. [PMID: 31031604 PMCID: PMC6470390 DOI: 10.3389/fnbeh.2019.00066] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a developmental period associated with vast neural and behavioral changes which are accompanied by altered sensitivity to stimuli, both stressful and rewarding. Perturbations, especially stressful stimuli, during this period have been shown to alter behavior in adulthood. Social isolation rearing is one such perturbation. This review highlights the long-term behavioral consequences of adolescent social isolation rearing in rodents with a specific focus on anxiety- and addiction-related behaviors. Sex-specific effects are discussed where data are available. We then consider changes in monoaminergic neurotransmission as one possible mechanism for the behavioral effects described. This research on both normative and perturbed adolescent development is crucial to understanding and treating the increased vulnerability to psychiatric disorders seen in humans during this life stage.
Collapse
Affiliation(s)
- Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashley M Cunningham
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jill K Gregory
- Academic IT: Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Zhang J, He ZX, Wang LM, Yuan W, Li LF, Hou WJ, Yang Y, Guo QQ, Zhang XN, Cai WQ, An SC, Tai FD. Voluntary Wheel Running Reverses Deficits in Social Behavior Induced by Chronic Social Defeat Stress in Mice: Involvement of the Dopamine System. Front Neurosci 2019; 13:256. [PMID: 31019446 PMCID: PMC6458241 DOI: 10.3389/fnins.2019.00256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
Voluntary exercise has been reported to have a therapeutic effect on many psychiatric disorders and social stress is known to impair social interaction. However, whether voluntary exercise could reverse deficits in social behaviors induced by chronic social defeat stress (CSDS) and the underlying mechanism remain unclear. The present study shows CSDS impaired social preference and induced social interaction deficiency in susceptible mice. Voluntary wheel running (VWR) reversed these effects. In addition, CSDS decreased the levels of tyrosine hydroxylase in the ventral tegmental area and the D2 receptor (D2R) in the nucleus accumbens (NAc) shell. These changes can be recovered by VWR. Furthermore, the recovery effect of VWR on deficits in social behaviors in CSDS mice was blocked by the microinjection of D2R antagonist raclopride into the NAc shell. Thus, these results suggest that the mechanism underlying CSDS-induced social interaction disorder might be caused by an alteration of the dopamine system. VWR may be a novel means to treat CSDS-induced deficits in social behaviors via modifying the dopamine system.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Min Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lai-Fu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian-Qian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xue-Ni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Qi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shu-Cheng An
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Scherma M, Masia P, Deidda M, Fratta W, Tanda G, Fadda P. New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E107. [PMID: 30279403 PMCID: PMC6313625 DOI: 10.3390/medicines5040107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
Abstract
Following the discovery of the endocannabinoid system and its potential as a therapeutic target for various pathological conditions, growing interest led researchers to investigate the role of cannabis and its derivatives for medical purposes. The compounds Δ9-tetrahydrocannabinol and cannabidiol are the most abundant phytocannabinoids found in cannabis extracts, as well as the most studied. The present review aims to provide an overview of the current evidence for their beneficial effects in treating psychiatric disorders, including schizophrenia, anxiety, and depression. Nevertheless, further investigations are required to clarify many pending issues, especially those relative to the assessment of benefits and risks when using cannabis for therapeutic purposes, thereby also helping national and federal jurisdictions to remain updated.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Paolo Masia
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Matteo Deidda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Gianluigi Tanda
- Medication Development program, NIDA-IRP, NIH/DHHS, NIDA suite 3301, Baltimore, MD 21224, USA.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, 09042 Monserrato, Italy.
- CNR Institute of Neuroscience ⁻ Cagliari, National Research Council, 09042 Monserrato, Italy.
- National Institute of Neuroscience (INN), University of Cagliari, 09042 Monserrato, Italy.
| |
Collapse
|
12
|
Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother 2018; 105:1205-1222. [PMID: 30021357 DOI: 10.1016/j.biopha.2018.05.086] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/09/2022] Open
Abstract
The brain is a vital organ, susceptible to alterations under genetic influences and environmental experiences. Social isolation (SI) acts as a stressor which results in alterations in reactivity to stress, social behavior, function of neurochemical and neuroendocrine system, physiological, anatomical and behavioral changes in both animal and humans. During early stages of life, acute or chronic SIS has been proposed to show signs and symptoms of psychiatric and neurological disorders such as anxiety, depression, schizophrenia, epilepsy and memory loss. Exposure to social isolation stress induces a variety of endocrinological changes including the activation of hypothalamic-pituitary-adrenal (HPA) axis, culminating in the release of glucocorticoids (GCs), release of catecholamines, activation of the sympatho-adrenomedullary system, release of Oxytocin and vasopressin. In several regions of the central nervous system (CNS), SIS alters the level of neurotransmitter such as dopamine, serotonin, gamma aminobutyric acid (GABA), glutamate, nitrergic system and adrenaline as well as leads to alteration in receptor sensitivity of N-methyl-D-aspartate (NMDA) and opioid system. A change in the function of oxidative and nitrosative stress (O&NS) mediated mitochondrial dysfunction, inflammatory factors, neurotrophins and neurotrophicfactors (NTFs), early growth response transcription factor genes (Egr) and C-Fos expression are also involved as a pathophysiological consequences of SIS which induce neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan; Drug Detoxification Health Welfare Research Center, Bannu, KPK, Pakistan
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Di Ciano P, Cormick PM, Stefan C, Wong E, Kim A, Remington G, Le Foll B. The effects of buspirone on occupancy of dopamine receptors and the rat gambling task. Psychopharmacology (Berl) 2017; 234:3309-3320. [PMID: 28825117 DOI: 10.1007/s00213-017-4715-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The dopamine D3 receptor (DRD3) has been proposed as a target for drug development for the treatment of addictive disorders. Recently, the anxiolytic buspirone has been shown to have affinity for DRD3 and DRD4, and interest in repurposing it for addictive disorders has grown. METHODS Binding of [3H]-(+)-PHNO in the rat cerebellum and striatum was used to measure occupancy by buspirone of DRD3 or DRD2, respectively. Effects of buspirone in the rat gambling task (rGT) and the five-choice serial reaction time task (5-CSRTT) were examined. RESULTS Buspirone occupied both the DRD2 and DRD3 at high doses and the DRD3, but not the DRD2, in the narrow dose range of 3 mg/kg. At 10 mg/kg, a disruption of performance on rGT was observed. All measures of performance on the rGT, except for perseverations, were affected at 3 mg/kg. On the 5-CSRTT, omissions were increased. Impairments in the rGT were not mimicked by the effects induced by satiation. Further, buspirone did not impair food-maintained responding under a progressive ratio schedule of reinforcement at any dose, suggesting that the effects of buspirone on the rGT cannot be explained by non-selective actions. CONCLUSIONS Although buspirone had effects on the rGT at the dose that selectively occupied the DRD3, the effects found do not parallel those found in previous studies of the effects of selective DRD3 antagonists on the rGT. Thus, buspirone may impair performance on the rGT through actions at multiple receptor sites.
Collapse
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), University of Toronto, 33 Russell Street, Toronto, M5S 2S1, Canada
| | | | - Cristiana Stefan
- Clinical Laboratory and Diagnostic Services, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ernest Wong
- Clinical Laboratory and Diagnostic Services, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Aaron Kim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), University of Toronto, 33 Russell Street, Toronto, M5S 2S1, Canada
| | - Gary Remington
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), University of Toronto, 33 Russell Street, Toronto, M5S 2S1, Canada
- Addiction Medicine Service, Acute Care Program, CAMH, Toronto, ON, Canada
- CAMH, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), University of Toronto, 33 Russell Street, Toronto, M5S 2S1, Canada.
- Addiction Medicine Service, Acute Care Program, CAMH, Toronto, ON, Canada.
- CAMH, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Delis F, Rosko L, Shroff A, Leonard KE, Thanos PK. Oral haloperidol or olanzapine intake produces distinct and region-specific increase in cannabinoid receptor levels that is prevented by high fat diet. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:268-280. [PMID: 28619471 DOI: 10.1016/j.pnpbp.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Clinical studies show higher levels of cannabinoid CB1 receptors (CB1R) in the brain of schizophrenic patients while preclinical studies report a significant functional interaction between dopamine D2 receptors and CB1Rs as well as an upregulation of CB1Rs after antipsychotic treatment. These findings prompted us to study the effects of chronic oral intake of a first and a second generation antipsychotic, haloperidol and olanzapine, on the levels and distribution of CB1Rs in the rat brain. Rats consumed either regular chow or high-fat food and drank water, haloperidol drinking solution (1.5mg/kg), or olanzapine drinking solution (10mg/kg) for four weeks. Motor and cognitive functions were tested at the end of treatment week 3 and upon drug discontinuation. Two days after drug discontinuation, rats were euthanized and brains were processed for in vitro receptor autoradiography. In chow-fed animals, haloperidol and olanzapine increased CB1R levels in the basal ganglia and the hippocampus, in a similar, but not identical pattern. In addition, olanzapine had unique effects in CB1R upregulation in higher order cognitive areas, in the secondary somatosensory cortex, in the visual and auditory cortices and the geniculate nuclei, as well as in the hypothalamus. High fat food consumption prevented antipsychotic-induced increase in CB1R levels in all regions examined, with one exception, the globus pallidus, in which they were higher in haloperidol-treated rats. The results point towards the hypothesis that increased CB1R levels could be a confounding effect of antipsychotic medication in schizophrenia that is circumveneted by high fat feeding.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| | - Lauren Rosko
- Georgetown University Medical Center, Georgetown University, Washington, DC, 20007, USA
| | - Aditya Shroff
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kenneth E Leonard
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
15
|
Schneider P, Bindila L, Schmahl C, Bohus M, Meyer-Lindenberg A, Lutz B, Spanagel R, Schneider M. Adverse Social Experiences in Adolescent Rats Result in Enduring Effects on Social Competence, Pain Sensitivity and Endocannabinoid Signaling. Front Behav Neurosci 2016; 10:203. [PMID: 27812328 PMCID: PMC5071316 DOI: 10.3389/fnbeh.2016.00203] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
Social affiliation is essential for many species and gains significant importance during adolescence. Disturbances in social affiliation, in particular social rejection experiences during adolescence, affect an individual’s well-being and are involved in the emergence of psychiatric disorders. The underlying mechanisms are still unknown, partly because of a lack of valid animal models. By using a novel animal model for social peer-rejection, which compromises adolescent rats in their ability to appropriately engage in playful activities, here we report on persistent impairments in social behavior and dysregulations in the endocannabinoid (eCB) system. From postnatal day (pd) 21 to pd 50 adolescent female Wistar rats were either reared with same-strain partners (control) or within a group of Fischer 344 rats (inadequate social rearing, ISR), previously shown to serve as inadequate play partners for the Wistar strain. Adult ISR animals showed pronounced deficits in social interaction, social memory, processing of socially transmitted information, and decreased pain sensitivity. Molecular analysis revealed increased CB1 receptor (CB1R) protein levels and CP55, 940 stimulated [35S]GTPγS binding activity specifically in the amygdala and thalamus in previously peer-rejected rats. Along with these changes, increased levels of the eCB anandamide (AEA) and a corresponding decrease of its degrading enzyme fatty acid amide hydrolase (FAAH) were seen in the amygdala. Our data indicate lasting consequences in social behavior and pain sensitivity following peer-rejection in adolescent female rats. These behavioral impairments are accompanied by persistent alterations in CB1R signaling. Finally, we provide a novel translational approach to characterize neurobiological processes underlying social peer-rejection in adolescence.
Collapse
Affiliation(s)
- Peggy Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Martin Bohus
- Institute for Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany; Faculty of Health, University of AntwerpAntwerp, Belgium
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Miriam Schneider
- Research Group Developmental Neuropsychopharmacology, Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
16
|
Szűcs E, Dvorácskó S, Tömböly C, Büki A, Kékesi G, Horváth G, Benyhe S. Decreased CB receptor binding and cannabinoid signaling in three brain regions of a rat model of schizophrenia. Neurosci Lett 2016; 633:87-93. [PMID: 27639959 DOI: 10.1016/j.neulet.2016.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a serious mental health disorder characterized by several behavioral and biochemicel abnormalities. In a previous study we have shown that mu-opioid (MOP) receptor signaling is impaired in specific brain regions of our three-hit animal model of schizophrenia. Since the cannabinoid system is significantly influenced in schizophrenic patients, in the present work we investigated cannabinoid (CB) receptor binding and G-protein activation in cortical, subcortical and cerebellar regions of control and 'schizophrenic' rats. Cannabinoid agonist (WIN-55,212-2 mesylate) mediated G-protein activation was consistently decreased in all areas tested, and the difference was extremely significant in membranes prepared from the cerebellum. Interestingly, the cerebellar activity of WIN-55,212-2 stimulated G-proteins was substantially higher than those of cerebral cortex and subcortical region in control animals, indicating a primordial role of the cannabinoid system in the cerebellum. At the level of radioligand binding, the affinities of the CB receptors were also markedly decreased in the model animals. Capacity of the [3H]WIN-55,212-2 binding was only higher in the cerebellum of 'schizophrenic' model rats. Taken together, in all three brain areas of model rats both cannabinoid receptor binding and cannabinoid agonist-mediated G-protein activation were regularly decreased. Our results revealed that besides the opioids, the endocannabinoid - cannabis receptor system also shows impairment in our rat model, increasing its face validity and translational utility.
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1)
| | - Szabolcs Dvorácskó
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1)
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1)
| | - Alexandra Büki
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary(1).
| |
Collapse
|
17
|
Huang GB, Zhao T, Gao XL, Zhang HX, Xu YM, Li H, Lv LX. Effect of chronic social defeat stress on behaviors and dopamine receptor in adult mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:73-79. [PMID: 26655446 DOI: 10.1016/j.pnpbp.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Victims of bullying often undergo depression, low self-esteem, high anxiety and post-traumatic stress disorder symptoms. The social defeat model has become widely accepted for studying experimental animal behavior changes associated with bullying; however, differences in the effects in susceptible and unsusceptible individuals have not been well studied. The present study investigated the effects of social defeat stress on behavior and the expression of dopamine receptors D1 and D2 in the brains of adult mice. Adult mice were divided into susceptible and unsusceptible groups after 10days of social defeat stress. Behavioral tests were conducted, and protein levels in the brains were assessed by Western blotting. The results indicate that all mice undergo decreased locomotion and increased anxiety behavior. However, decreased social interaction and impaired memory performance were only observed in susceptible mice. A significantly decreased expression of D1 was observed in the prefrontal cortex and amygdala of susceptible mice only. No significant differences in D2 expression were shown between control and defeated mice in any area studied. These data indicate that depression-like behavior and cognition impairment caused by social defeat stress in susceptible mice may be related to changes in the dopamine receptor D1.
Collapse
Affiliation(s)
- Guang-Biao Huang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China.
| | - Tong Zhao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Xiao-Lei Gao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hong-Xing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hao Li
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lu-Xian Lv
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China.
| |
Collapse
|
18
|
Fakhoury M. Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia. Mol Neurobiol 2016; 54:768-778. [DOI: 10.1007/s12035-016-9697-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
|
19
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Shoup TM, Bonab AA, Wilson AA, Vasdev N. Synthesis and preclinical evaluation of [¹⁸F]FCHC for neuroimaging of fatty acid amide hydrolase. Mol Imaging Biol 2015; 17:257-63. [PMID: 25273322 DOI: 10.1007/s11307-014-0789-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Fatty acid amide hydrolase (FAAH), a catabolic enzyme which regulates lipid transmitters in the endocannabinoid system, is an avidly sought therapeutic and positron emission tomography (PET) imaging target for studies involving addiction and neurological disorders. We report the synthesis of a new fluorine-18-labeled FAAH inhibitor, trans-3-(4, 5-dihydrooxazol-2-yl)phenyl-4-[(18)F]fluorocyclohexylcarbamate ([(18)F]FCHC), and its evaluation in rat brain. PROCEDURES The synthesis of [(18)F]FCHC was conducted via a 3-step, 1-pot reaction, resulting in uncorrected radiochemical yields between 10 and 20% (n = 5) relative to [(18)F]fluoride, with specific activities of >5 Ci/μmol at the end of the synthesis. The radiosynthesis was seamlessly automated using a commercial radiofluorination apparatus. Ex vivo biodistribution and preliminary PET imaging studies were carried out in male Sprague-Dawley rats. RESULTS Rat brain biodistribution at 2 min post-injection showed a standard uptake value of 4.6 ± 0.1 in the cortex, which increased to 7.8 ± 0.1 at 40 min. Pretreatment with the selective FAAH inhibitor URB597 reduced uptake of radioactivity in all brain regions by >90%, with 98 % blockade in the FAAH-rich cortex. PET imaging was consistent with biodistribution studies. CONCLUSIONS [(18)F]FCHC appears to be a highly sensitive (18)F-labeled radiotracer for imaging FAAH in the central nervous system, and these results warrant further imaging in nonhuman primates.
Collapse
Affiliation(s)
- Timothy M Shoup
- Division of Nuclear Medicine and Molecular Imaging, Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
21
|
Carey CE, Agrawal A, Zhang B, Conley ED, Degenhardt L, Heath AC, Li D, Lynskey MT, Martin NG, Montgomery GW, Wang T, Bierut LJ, Hariri AR, Nelson EC, Bogdan R. Monoacylglycerol lipase (MGLL) polymorphism rs604300 interacts with childhood adversity to predict cannabis dependence symptoms and amygdala habituation: Evidence from an endocannabinoid system-level analysis. JOURNAL OF ABNORMAL PSYCHOLOGY 2015; 124:860-77. [PMID: 26595473 PMCID: PMC4700831 DOI: 10.1037/abn0000079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite evidence for heritable variation in cannabis involvement and the discovery of cannabinoid receptors and their endogenous ligands, no consistent patterns have emerged from candidate endocannabinoid (eCB) genetic association studies of cannabis involvement. Given interactions between eCB and stress systems and associations between childhood stress and cannabis involvement, it may be important to consider childhood adversity in the context of eCB-related genetic variation. We employed a system-level gene-based analysis of data from the Comorbidity and Trauma Study (N = 1,558) to examine whether genetic variation in six eCB genes (anabolism: DAGLA, DAGLB, NAPEPLD; catabolism: MGLL, FAAH; binding: CNR1; SNPs N = 65) and childhood sexual abuse (CSA) predict cannabis dependence symptoms. Significant interactions with CSA emerged for MGLL at the gene level (p = .009), and for rs604300 within MGLL (ΔR2 = .007, p < .001), the latter of which survived SNP-level Bonferroni correction and was significant in an additional sample with similar directional effects (N = 859; ΔR2 = .005, p = .026). Furthermore, in a third sample (N = 312), there was evidence that rs604300 genotype interacts with early life adversity to predict threat-related basolateral amygdala habituation, a neural phenotype linked to the eCB system and addiction (ΔR2 = .013, p = .047). Rs604300 may be related to epigenetic modulation of MGLL expression. These results are consistent with rodent models implicating 2-arachidonoylglycerol (2-AG), an endogenous cannabinoid metabolized by the enzyme encoded by MGLL, in the etiology of stress adaptation related to cannabis dependence, but require further replication.
Collapse
Affiliation(s)
- Caitlin E Carey
- Department of Psychology, Washington University in St. Louis
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis
| | - Bo Zhang
- Department of Genetics, Washington University in St. Louis
| | | | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis
| | - Daofeng Li
- Department of Genetics, Washington University in St. Louis
| | | | | | | | - Ting Wang
- Department of Genetics, Washington University in St. Louis
| | - Laura J Bierut
- Department of Psychiatry, Washington University in St. Louis
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in St. Louis
| | - Ryan Bogdan
- Department of Psychology, Washington University in St. Louis
| |
Collapse
|
22
|
Möller M, Swanepoel T, Harvey BH. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chem Neurosci 2015; 6:987-1016. [PMID: 25794269 DOI: 10.1021/cn5003368] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a life altering disease with a complex etiology and pathophysiology, and although antipsychotics are valuable in treating the disorder, certain symptoms and/or sufferers remain resistant to treatment. Our poor understanding of the underlying neuropathological mechanisms of schizophrenia hinders the discovery and development of improved pharmacological treatment, so that filling these gaps is of utmost importance for an improved outcome. A vast amount of clinical data has strongly implicated the role of inflammation and oxidative insults in the pathophysiology of schizophrenia. Preclinical studies using animal models are fundamental in our understanding of disease development and pathology as well as the discovery and development of novel treatment options. In particular, social isolation rearing (SIR) and pre- or postnatal inflammation (PPNI) have shown great promise in mimicking the biobehavioral manifestations of schizophrenia. Furthermore, the "dual-hit" hypothesis of schizophrenia states that a first adverse event such as genetic predisposition or a prenatal insult renders an individual susceptible to develop the disease, while a second insult (e.g., postnatal inflammation, environmental adversity, or drug abuse) may be necessary to precipitate the full-blown syndrome. Animal models that emphasize the "dual-hit" hypothesis therefore provide valuable insight into understanding disease progression. In this Review, we will discuss SIR, PPNI, as well as possible "dual-hit" animal models within the context of the redox-immune-inflammatory hypothesis of schizophrenia, correlating such changes with the recognized monoamine and behavioral alterations of schizophrenia. Finally, based on these models, we will review new therapeutic options, especially those targeting immune-inflammatory and redox pathways.
Collapse
Affiliation(s)
- M. Möller
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - T. Swanepoel
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - B. H. Harvey
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
23
|
Jin HM, Shrestha Muna S, Bagalkot TR, Cui Y, Yadav BK, Chung YC. The effects of social defeat on behavior and dopaminergic markers in mice. Neuroscience 2015; 288:167-77. [PMID: 25575945 DOI: 10.1016/j.neuroscience.2014.12.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/10/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022]
Abstract
The present study investigated the effects of chronic social defeat stress on several behavioral parameters, and the expression of dopaminergic markers, i.e., dopamine D1 receptors (D1Rs), dopamine D2 receptors (D2Rs), and dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein-32 (DARPP-32), in the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HIP) of mouse brains. After 10days of social defeat stress, the defeated mice were divided into two groups: one group underwent a series of behavioral tests. The other group was sacrificed on the 11th day and tissue samples were collected for Western blotting. The behavioral tests comprised tests of locomotion, light/dark preference, social interaction, as well as the novel object recognition test (NORT), Morris water maze, and forced swimming test (FST). We measured the expression of D1Rs, D2Rs, total DARPP-32, phospho-Thr34 or Thr75-DARPP-32 using Western blotting. The defeated mice showed increased anxiety- and depression-like behaviors, and impaired cognition. No significant differences in D1Rs and D2Rs expression were shown between defeated and control mice in any area studied. A significantly increased expression in total DARPP-32, and phospho-DARPP-32 was observed in the PFC or AMY of defeated mice. These data suggest that alterations in dopaminergic markers may be involved in anxiety- and depression-like behaviors, and cognitive impairment induced by social defeat stress.
Collapse
Affiliation(s)
- H-M Jin
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| | - S Shrestha Muna
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| | - T R Bagalkot
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| | - Y Cui
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| | - B K Yadav
- Department of Neurology, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| | - Y-C Chung
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
24
|
Brand SJ, Moller M, Harvey BH. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr Neuropharmacol 2015; 13:324-68. [PMID: 26411964 PMCID: PMC4812797 DOI: 10.2174/1570159x13666150307004545] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Despite significant research efforts aimed at understanding the neurobiological underpinnings of mood (depression, bipolar disorder) and psychotic disorders, the diagnosis and evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms as well as psychometric evaluations. Therefore, biological markers aimed at improving the current classification of psychotic and mood-related disorders, and that will enable patients to be stratified on a biological basis into more homogeneous clinically distinct subgroups, are urgently needed. The attainment of this goal can be facilitated by identifying biomarkers that accurately reflect pathophysiologic processes in these disorders. This review postulates that the field of psychotic and mood disorder research has advanced sufficiently to develop biochemical hypotheses of the etiopathology of the particular illness and to target the same for more effective disease modifying therapy. This implies that a "one-size fits all" paradigm in the treatment of psychotic and mood disorders is not a viable approach, but that a customized regime based on individual biological abnormalities would pave the way forward to more effective treatment. In reviewing the clinical and preclinical literature, this paper discusses the most highly regarded pathophysiologic processes in mood and psychotic disorders, thereby providing a scaffold for the selection of suitable biomarkers for future studies in this field, to develope biomarker panels, as well as to improve diagnosis and to customize treatment regimens for better therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
25
|
Uban KA, Comeau WL, Ellis LA, Galea LAM, Weinberg J. Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 2013; 38:1953-66. [PMID: 23579081 PMCID: PMC3758462 DOI: 10.1016/j.psyneuen.2013.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Effects of prenatal alcohol exposure (PAE) on central nervous system function include an increased prevalence of mental health problems, including substance use disorders (SUD). The hypothalamic-pituitary-adrenal (HPA) and dopamine (DA) systems have overlapping neurocircuitries and are both implicated in SUD. PAE alters both HPA and dopaminergic activity and regulation, resulting in increased HPA tone and an overall reduction in tonic DA activity. However, effects of PAE on the interaction between HPA and DA systems have not been investigated. The present study examined PAE effects on basal regulation of central stress and DA systems in key brain regions where these systems intersect. Adult Sprague-Dawley male and female offspring from prenatal alcohol-exposed (PAE), pairfed (PF), and ad libitum-fed control (C) groups were subjected to chronic variable stress (CVS) or remained as a no stress (non-CVS) control group. Corticotropin releasing hormone (CRH) mRNA, as well as glucocorticoid and DA receptor (DA-R) expression were measured under basal conditions 24h following the end of CVS. We show, for the first time, that regulation of basal HPA and DA systems, and likely, HPA-DA interactions, are altered differentially in males and females by PAE and CVS. PAE augmented the typical attenuation in weight gain during CVS in males and caused increased weight loss in females. Increased basal corticosterone levels in control, but not PAE, females suggest that PAE alters the profile of basal hormone secretion throughout CVS. CVS downregulated basal CRH mRNA in the prefrontal cortex and throughout the bed nucleus of the stria terminalis (BNST) in PAE females but only in the posterior BNST of control females. PAE males and females exposed to CVS exhibited more widespread upregulation of basal mineralocorticoid receptor mRNA throughout the hippocampus, and an attenuated decrease in DA-R expression throughout the nucleus accumbens and striatum compared to CVS-exposed control males and females. Overall, these findings enhance our understanding of PAE effects on the cross-talk between HPA and DA systems, and provide insight into possible mechanisms underlying mental health problems that are related to stress and DA signaling, including SUD, which have a high prevalence among individuals with FASD.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
26
|
Mathur BN, Tanahira C, Tamamaki N, Lovinger DM. Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 2013; 16:1275-83. [PMID: 23892554 PMCID: PMC3758434 DOI: 10.1038/nn.3478] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/20/2013] [Indexed: 11/09/2022]
Abstract
The dorsolateral striatum and cannabinoid type 1 receptor (CB1) signaling mediate habitual action learning, which is thought to require a balance of activity in the direct and indirect striatal output pathways. However, very little is known about how the high CB1-expressing striatal inhibitory microcircuitry might contribute to long-term plasticity capable of sculpting direct/indirect pathway output. Using optogenetic and molecular interrogation of striatal GABAergic microcircuits, we describe novel mechanisms of voltage-dependent long-term depression of inhibitory synapses (iLTD) onto mouse and rat medium spiny projection neurons (MSNs). This iLTD involves recruitment of different endocannabinoid types and shows both presynaptic and postsynaptic selectivity for MSN subtypes, ultimately resulting in a powerful disinhibition of direct pathway MSNs. These results indicate a new role for voltage states in gating circuit-specific forms of synaptic plasticity and illuminate possible circuit dynamics underlying action control.
Collapse
Affiliation(s)
- Brian N Mathur
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
27
|
Costa M, Squassina A, Congiu D, Chillotti C, Niola P, Galderisi S, Pistis M, Del Zompo M. Investigation of endocannabinoid system genes suggests association between peroxisome proliferator activator receptor-α gene (PPARA) and schizophrenia. Eur Neuropsychopharmacol 2013; 23:749-59. [PMID: 22920733 DOI: 10.1016/j.euroneuro.2012.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/18/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder with a large genetic burden and an estimated hereditability of 80%. A large number of neuroanatomical and psychopharmacological studies suggest a central role of the endocannabinoid (eCB) system in the susceptibility of the disease. To further investigate this hypothesis, we performed an association study with genes codifying for key elements of the eCB system in a sample of 170 schizophrenic patients and 350 healthy controls of Italian ancestry. A total of 57 Tag SNPs (tSNPs) were selected using HapMap CEU population SNP database spanning the following genes: cannabinoid receptor 1 (CNR1), peroxisome proliferator activator receptor-α (PPARA), fatty acid amide hydrolase (FAAH) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Seven out of the 32 tSNPs within PPARA (rs4253765, rs4263776, rs6007662, rs1800206, rs4253763, rs6008197 and rs4253655) and 3 out of 12 tSNPs within CNR1 (rs1049353, rs7766029 and rs806366) were nominally associated with SZ (uncorrected p<0.05). The same pattern of association was observed in the genotype analysis, with rs4253765 showing the highest level of significance (uncorrected p=2×10(-3)). None of these associations survived after permutation test. Our findings suggest a potential role for PPARA in the susceptibility to SZ, but further studies on larger independent samples are warranted in order to clarify the involvement of this gene in the pathophysiology of SZ.
Collapse
Affiliation(s)
- Marta Costa
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The effects of rearing environment and chronic methylphenidate administration on behavior and dopamine receptors in adolescent rats. Brain Res 2013; 1527:67-78. [PMID: 23806775 DOI: 10.1016/j.brainres.2013.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
Rearing young rodents in socially isolated or environmentally enriched conditions has been shown to affect numerous components of the dopamine system as well as behavior. Methylphenidate (MPH), a commonly used dopaminergic agent, may affect animals differently based on rearing environment. Here we examined the interaction between environment and chronic MPH treatment at clinically relevant doses, administered via osmotic minipump. Young Sprague Dawley rats (PND 21) were assigned to environmentally enriched, pair-housed, or socially isolated rearing conditions, and treated with either 0, 2, 4, or 8 mg/kg/day MPH for 3 weeks. At the end of the treatment period, animals were tested for locomotor activity and anxiety-like behavior. The densities of D1-like and D2-like receptors were measured in the striatum using in vitro receptor autoradiography. Locomotor activity and anxiety-like behavior were increased in isolated animals compared to pair-housed and enriched animals. The density of D1-like receptors was greater in isolated animals, but there were no differences between groups in D2-like receptor density. Finally, there were no effects of MPH administration on any reported measure. This study provides evidence for an effect of early rearing environment on the dopamine system and behavior, and also suggests that MPH administration may not have long-term consequences.
Collapse
|
29
|
Zamberletti E, Piscitelli F, Cadeddu F, Rubino T, Fratta W, Fadda P, Di Marzo V, Parolaro D. Chronic blockade of CB(1) receptors reverses startle gating deficits and associated neurochemical alterations in rats reared in isolation. Br J Pharmacol 2013; 167:1652-64. [PMID: 22762735 DOI: 10.1111/j.1476-5381.2012.02095.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological interventions aimed at restoring the endocannabinoid system functionality have been proposed as potential tools in the treatment of schizophrenia. Based on our previous results suggesting a potential antipsychotic-like profile of the CB(1) receptor inverse agonist/antagonist, AM251, here we further investigated the effect of chronic AM251 administration on the alteration of the sensorimotor gating functions and endocannabinoid levels induced by isolation rearing in rats. EXPERIMENTAL APPROACH Using the post-weaning social isolation rearing model, we studied its influence on sensorimotor gating functions through the PPI paradigm. The presence of alterations in the endocannabinoid levels as well as in dopamine and glutamate receptor densities was explored in specific brain regions following isolation rearing. The effect of chronic AM251 administration on PPI response and the associated biochemical alterations was assessed. KEY RESULTS The disrupted PPI response in isolation-reared rats was paralleled by significant alterations in 2-AG content and dopamine and glutamate receptor densities in specific brain regions. Chronic AM251 completely restored normal PPI response in isolated rats. This behavioural recovery was paralleled by the normalization of 2-AG levels in all the brain areas analysed. Furthermore, AM251 partially antagonized isolation-induced changes in dopamine and glutamate receptors. CONCLUSIONS AND IMPLICATIONS These results demonstrate the efficacy of chronic AM251 treatment in the recovery of isolation-induced disruption of PPI. Moreover, AM251 counteracted the imbalances in the endocannabinoid content, specifically 2-AG levels, and partially reversed the alterations in dopamine and glutamate systems associated with the disrupted behaviour. Together, these findings support the potential antipsychotic-like activity of CB(1) receptor blockade. LINKED ARTICLES This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.
Collapse
Affiliation(s)
- E Zamberletti
- Department of Theoretical and Applied Sciences, Biomedical Division and Center of Neuroscience, University of Insubria, Busto Arsizio (VA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeeb FD, Wong AC, Winstanley CA. Differential effects of environmental enrichment, social-housing, and isolation-rearing on a rat gambling task: dissociations between impulsive action and risky decision-making. Psychopharmacology (Berl) 2013; 225:381-95. [PMID: 22864967 DOI: 10.1007/s00213-012-2822-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/19/2012] [Indexed: 01/22/2023]
Abstract
RATIONALE Decision-making deficits, measured using the Iowa Gambling Task (IGT), are observed in many psychiatric populations. Additionally, evidence suggests that the environment also influences the development of these same disorders. OBJECTIVE To determine the direct influence of the environment on decision-making by utilizing the rat gambling task (rGT), a risky decision-making test modeled after the IGT. METHODS Male rats reared in isolation, in pairs, or in an enriched environment were trained on the rGT as adults. During the rGT, animals chose from four different options. The optimal strategy on the rGT and IGT is the same: to favor options associated with smaller immediate rewards and less punishment/loss. Impulsive action is also measured during rGT performance by recording the number of premature responses made, similar to the five-choice serial reaction time task. RESULTS Compared to pair-housed rats, isolated and environmentally enriched rats were slower at learning the optimal strategy. However, following training, only isolation-reared rats chose the disadvantageous options more often. Amphetamine altered decision-making on the rGT in socially housed animals, yet isolates were unaffected. Conversely, amphetamine increased premature responding similarly in all groups. This increase was attenuated by prior administration of a dopamine D(1) or D(2) antagonist; however, the ability of amphetamine to alter decision-making was not blocked by either drug. CONCLUSIONS Housing environment affects animals' ability to learn and perform a decision-making task. Additionally, amphetamine's effect on impulsive action appears to be mediated by the dopaminergic system, whereas its effect on risky decision-making may be mediated by other neurotransmitters.
Collapse
Affiliation(s)
- Fiona D Zeeb
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
31
|
Zhang W, Rosenkranz JA. Repeated restraint stress increases basolateral amygdala neuronal activity in an age-dependent manner. Neuroscience 2012; 226:459-74. [PMID: 22986163 PMCID: PMC3506707 DOI: 10.1016/j.neuroscience.2012.08.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 12/20/2022]
Abstract
Chronic stress is a precipitating factor for affective disorders such as depression and anxiety. This is associated with the effects of chronic stress on the amygdala. Adolescents may be more vulnerable to the effects of chronic stress, which may be related to its impact on amygdala function. However, the stress-induced changes in amygdala neuronal activity, and the age-dependent impact of chronic stress on amygdala neuronal activity have not been studied in depth. In this study, we investigated how repeated restraint impacts basolateral amygdala (BLA) projection neuron activity in both adolescent and adult rats. Using in vivo extracellular recordings from anesthetized rats, we found that repeated restraint increased the number of spontaneously firing neurons in the BLA of adolescent rats, but did not significantly increase the firing rate. In contrast, repeated restraint increased the firing rate of BLA neurons in adult rats, but did not change the number of spontaneously firing neurons. This is the first direct evidence of how stress differently impacts amygdala physiology in adolescent and adult rats. These findings may shed light on the mechanism by which chronic stress may age-dependently precipitate psychiatric disorders.
Collapse
Affiliation(s)
- W Zhang
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | | |
Collapse
|
32
|
Long-lasting recovery of psychotic-like symptoms in isolation-reared rats after chronic but not acute treatment with the cannabinoid antagonist AM251. Int J Neuropsychopharmacol 2012; 15:267-80. [PMID: 20923599 DOI: 10.1017/s1461145710001185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this work we investigated the ability of AM251 to reverse schizophrenia-like symptoms produced by a neurodevelopmental animal model based on a social isolation procedure. First, we assessed the validity of our isolation-rearing protocol and, as expected, isolation-reared rats showed hyperlocomotion in a novel environment, cognitive impairment in the novel object recognition (NOR) test and a significant increase in the number of aggressive behaviours in the social interaction test compared to group-housed controls. This behavioural picture was associated with a reduction in CB₁ receptor/G protein coupling in specific brain areas as well as reduced c-Fos immunoreactivity in the prefrontal cortex and caudate putamen. In this model, chronic but not acute treatment with the CB₁ receptor antagonist AM251 counteracted isolation-induced cognitive impairment in the NOR test and aggressive behaviours in the social interaction test. This behavioural recovery was accompanied by the rescue of CB₁ receptor functionality and c-Fos levels in all brain regions altered in isolation-reared rats. Moreover, chronic AM251 also increased c-Fos immunoreactivity in the nucleus accumbens, as previously demonstrated for antipsychotic drugs. Interestingly, the behavioural recovery due to chronic AM251 administration persisted until 10 d after discontinuing the treatment, indicating a long-lasting effect of the cannabinoid antagonist on psychotic-like symptoms.
Collapse
|
33
|
Marco EM, Laviola G. The endocannabinoid system in the regulation of emotions throughout lifespan: a discussion on therapeutic perspectives. J Psychopharmacol 2012; 26:150-63. [PMID: 21693551 DOI: 10.1177/0269881111408459] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alterations in emotion regulation processes may form the basis of psychopathologies. The endocannabinoid (eCB) system, composed of endogenous ligands, the enzymatic machinery in charge of their metabolism and the specific metabotropic receptors, has emerged as a major neuromodulatory system critically involved in the control of emotional homeostasis and stress responsiveness. Data from animal models indicate that the eCB system plays a key role in brain development, and is probably involved in the control of emotional states from early developmental stages. The present review summarizes the latest information on the role of the eCB system in emotionality and anxiety-related disorders throughout the lifespan. Putative therapeutic strategies based on the pharmacological modulation of this system will be discussed. Given the fact that the pharmacological modulation of the eCB system has recently arisen as a promising strategy in the management of anxiety and mood disorders, the potential efficacy of this pharmacological approach (i.e. blockers of the catabolic pathway) will be discussed, as well as pharmacological alternatives such as modulators of cannabinoid receptors other than the classical CB1 receptor, or administration of other plant-derived compounds (e.g. cannabidiol).
Collapse
Affiliation(s)
- Eva M Marco
- Department of Animal Physiology (Animal Physiology II), Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| | | |
Collapse
|
34
|
Marco EM, García-Gutiérrez MS, Bermúdez-Silva FJ, Moreira FA, Guimarães F, Manzanares J, Viveros MP. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects. Front Behav Neurosci 2011; 5:63. [PMID: 22007164 PMCID: PMC3186912 DOI: 10.3389/fnbeh.2011.00063] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/09/2011] [Indexed: 01/19/2023] Open
Abstract
Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.
Collapse
Affiliation(s)
- Eva M. Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense de MadridMadrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San CarlosMadrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández – CSICSan Juan de Alicante, Spain
| | - Francisco-Javier Bermúdez-Silva
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya de Malaga, Fundacion IMABISMalaga, Spain
- Neurocentre Magendie, INSERM, Université Bordeaux 2Bordeaux, France
| | - Fabricio A. Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas GeraisBelo Horizonte, MG, Brazil
| | - Francisco Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, SP, Brazil
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández – CSICSan Juan de Alicante, Spain
| | - María-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Ciencias Biológicas, Universidad Complutense de MadridMadrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San CarlosMadrid, Spain
| |
Collapse
|
35
|
Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol 2011; 164:1162-94. [PMID: 21449915 PMCID: PMC3229756 DOI: 10.1111/j.1476-5381.2011.01386.x] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/12/2011] [Indexed: 12/27/2022] Open
Abstract
Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed.
Collapse
Affiliation(s)
- C A Jones
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
36
|
The schizophrenia susceptibility gene neuregulin 1 modulates tolerance to the effects of cannabinoids. Int J Neuropsychopharmacol 2011; 14:631-43. [PMID: 20701826 DOI: 10.1017/s146114571000091x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cannabis increases the risk of schizophrenia in genetically vulnerable individuals. In this study we aim to show that the schizophrenia susceptibility gene neuregulin 1 (Nrg1) modulates the development of tolerance to cannabinoids in mice. Nrg1 heterozygous (HET) and wild-type (WT) mice were treated daily for 15 d with the synthetic analogue of Δ9-tetrahydrocannabinol, CP55,940 (0.4 mg/kg). We measured the impact of this exposure on locomotor activity, anxiety, prepulse inhibition (PPI), body temperature and FosB/ΔFosB immunohistochemistry. Tolerance to CP55,940-induced hypothermia and locomotor suppression developed more rapidly in Nrg1 HET mice than WT mice. Conversely in the light-dark test, while tolerance to the anxiogenic effect of CP55,940 developed in WT mice over days of testing, Nrg1 hypomorphs maintained marked anxiety even after 15 d of treatment. Repeated cannabinoid exposure selectively increased FosB/ΔFosB expression in the lateral septum, ventral part (LSV) of Nrg1 HET but not WT mice. On day 1 of exposure opposite effects of CP55,940 treatment were observed on PPI, i.e. it was facilitated in Nrg1 hypomorphs and impaired in WT mice, despite the drug significantly impairing the acoustic startle reflex equally in both genotypes. These effects of CP55,940 on PPI were not maintained as both genotypes became tolerant to cannabinoid action with repeated exposure. Our results highlight that Nrg1 modulates the development of cannabinoid tolerance dependent on the parameter being measured. Furthermore, these data reinforce the notion that the VLS is an important brain region involved in Nrg1-cannabinoid interactions.
Collapse
|
37
|
Wilson AA, Garcia A, Parkes J, Houle S, Tong J, Vasdev N. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography. Nucl Med Biol 2011; 38:247-53. [PMID: 21315280 DOI: 10.1016/j.nucmedbio.2010.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/05/2010] [Accepted: 08/08/2010] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. METHODS A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([(11)C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. RESULTS Upon intravenous injection into rats, [(11)C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [(11)C]CURB was irreversibly bound to FAAH. CONCLUSIONS The title radiotracer demonstrates favourable properties such as good brain uptake, regional heterogeneity and specificity of binding based on ex vivo biodistribution studies in conscious rat brain. [(11)C]CURB represents a highly promising radiotracer for the imaging of FAAH using PET.
Collapse
Affiliation(s)
- Alan A Wilson
- PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
El Rawas R, Thiriet N, Nader J, Lardeux V, Jaber M, Solinas M. Early exposure to environmental enrichment alters the expression of genes of the endocannabinoid system. Brain Res 2011; 1390:80-9. [PMID: 21419109 DOI: 10.1016/j.brainres.2011.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 01/19/2023]
Abstract
Early environmental enrichment (EE) produces several changes in gene expression in the brain and confers protection against the behavioral, neurochemical and molecular effects of repeated administration of drugs of abuse. Because the endogenous cannabinoid system (ECS) is known to play an important role in the rewarding effects of drugs, we investigated whether the positive effects of early exposure to EE are associated with changes in the expression of genes encoding for proteins that belong to the ECS in C57 mice. Using in situ hybridization, we compared the expression of the cannabinoid receptor CB1, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL) enzymes in brain regions involved in drug addiction in mice reared in either EE or standard environments (SE) from weaning until adulthood. We found that EE increases CB1 mRNA levels in the hypothalamus and in the basolateral amygdala but decreased them in the basomedial amygdala. Similarly, we found that FAAH mRNA levels are higher in the hypothalamus and the basolateral amygdala of EE mice compared to SE mice, with no change in the basomedial amygdala. In contrast, MGL mRNA levels were not affected by EE in any of the areas analyzed. The regional selectivity of EE-induced changes may indicate that early exposure to EE induces changes in the ECS that could result in reduced responses to stress, as confirmed in EE mice in a novelty-induced suppression of feeding test, and, ultimately, in resistance to addiction.
Collapse
Affiliation(s)
- Rana El Rawas
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS, 1 rue Georges Bonnet, Poitiers, F-86022, France
| | | | | | | | | | | |
Collapse
|
39
|
Lim AL, Taylor DA, Malone DT. Isolation rearing in rats: effect on expression of synaptic, myelin and GABA-related immunoreactivity and its utility for drug screening via the subchronic parenteral route. Brain Res 2011; 1381:52-65. [PMID: 21241674 DOI: 10.1016/j.brainres.2011.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/22/2010] [Accepted: 01/08/2011] [Indexed: 12/31/2022]
Abstract
Depriving weaned rats of social contact by rearing them in isolation brings about a spectrum of behavioural and neuropathological changes in adulthood which resemble some of the characteristics observed in schizophrenia. Hence, isolation rearing provides a non-pharmacological means to induce in an animal model certain aspects of schizophrenia with a neurodevelopmental origin. We compared the prepulse inhibition and locomotor activity behaviours in group-reared and isolation-reared rats in the context of determining the robustness of any behavioural changes following a subchronic parenteral drug administration protocol. The expression of synaptic, myelin and GABA-related proteins was also assessed in the brains of these rats using semi-quantitative fluorescence immunohistochemistry. Compared to their group-reared counterparts, isolation-reared rats displayed disruption in prepulse inhibition which was lost after repeated testing and subchronic vehicle administration. However, isolation-reared rats showed open-field hyperlocomotion post-subchronic vehicle treatment compared to group-reared rats. Isolation rearing resulted in reduced expression of synaptophysin, synapsin I, myelin basic protein and GABA(B1) receptor proteins, along with an increase in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Of the brain areas examined these observed changes were localised to the hippocampal regions and the substantia nigra. These results suggest an alteration in the synaptic, myelin and GABA-related functions in the brains of isolation-reared rats that displayed behavioural anomalies. Since dysfunction in these systems has also been implicated in schizophrenia, our findings provide additional evidence to support the use of isolation rearing for schizophrenia research; however, its use in the screening of putative antipsychotics following subchronic administration needs to be undertaken warily.
Collapse
Affiliation(s)
- Ann Li Lim
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| | | | | |
Collapse
|
40
|
Malone DT, Hill MN, Rubino T. Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models. Br J Pharmacol 2010; 160:511-22. [PMID: 20590561 DOI: 10.1111/j.1476-5381.2010.00721.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cannabis is one of the most widely used illicit drugs among adolescents, and most users first experiment with it in adolescence. Adolescence is a critical phase for brain development, characterized by neuronal maturation and rearrangement processes, such as myelination, synaptic pruning and dendritic plasticity. The endocannabinoid system plays an important role in fundamental brain developmental processes such as neuronal cell proliferation, migration and differentiation. Therefore changes in endocannabinoid activity during this specific developmental phase, induced by the psychoactive component of marijuana, Delta(9)-tetrahydrocannabinol, might lead to subtle but lasting neurobiological changes that can affect brain functions and behaviour. In this review, we outline recent research into the endocannabinoid system focusing on the relationships between adolescent exposure to cannabinoids and increased risk for certain neuropsychiatric diseases such as schizophrenia, as highlighted by both human and animal studies. Particular emphasis will be given to the possible mechanisms by which adolescent cannabis consumption could render a person more susceptible to developing psychoses such as schizophrenia.
Collapse
Affiliation(s)
- Daniel T Malone
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia
| | | | | |
Collapse
|
41
|
Abstract
The endocannabinoids anandamide and 2-arachydonoylglycerol (2-AG) are lipids naturally derived from membrane precursors which bind cannabinoid receptors (CB1, CB2). This endocannabinoid system is disturbed in schizophrenia. Indeed, there seems to be an association between schizophrenia and polymorphisms of the CB1 receptor gene. Moreover, CB1 receptors are found in higher density in the prefrontal cortex, hippocampus and basal ganglia of patients with schizophrenia. Similarly, anandamide levels are increased in the cerebrospinal fluid (CSF) and in the serum of schizophrenia patients, including during the prodromal state, suggesting that they may play a protective role in psychosis homeostasis. Future studies are needed to further explore the role of the endocannabinoid system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | | | | | - Stéphane Potvin
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-251-4015; Fax: +1-514-251-2617
| |
Collapse
|
42
|
Retraction. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Vulnerability Factors for the Psychiatric and Behavioral Effects of Cannabis. Pharmaceuticals (Basel) 2010; 3:2799-2820. [PMID: 27713377 PMCID: PMC4034098 DOI: 10.3390/ph3092799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 11/18/2022] Open
Abstract
Cogent evidence shows that cannabis plays a variable role on behavioral regulation and the pathophysiology of most psychiatric conditions. Accordingly, cannabis has been alternatively shown to exacerbate or ameliorate mental symptoms, depending on its composition and route of consumption, as well as specific individual and contextual characteristics. The vulnerability to the psychological effects of cannabis is influenced by a complex constellation of genetic and environmental factors. In the present article, we will review the current evidence on the pharmacological, individual and situational factors that have been documented to affect the behavioral and psychiatric effects of cannabinoids.
Collapse
|
44
|
Robinson SA, Loiacono RE, Christopoulos A, Sexton PM, Malone DT. The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling. Brain Res 2010; 1343:153-67. [DOI: 10.1016/j.brainres.2010.04.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
45
|
Sciolino NR, Bortolato M, Eisenstein SA, Fu J, Oveisi F, Hohmann AG, Piomelli D. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 2010; 168:371-86. [PMID: 20394803 PMCID: PMC2882942 DOI: 10.1016/j.neuroscience.2010.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 12/22/2022]
Abstract
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced changes in endocannabinoid content (piriform, prefrontal cortices), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Marco Bortolato
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Sarah A. Eisenstein
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Jin Fu
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Fariba Oveisi
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| | - Andrea G. Hohmann
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA, 30622 USA
| | - Daniele Piomelli
- Department of Pharmacology, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
46
|
Inhibition of fatty-acid amide hydrolase and CB1 receptor antagonism differentially affect behavioural responses in normal and PCP-treated rats. Int J Neuropsychopharmacol 2010; 13:373-86. [PMID: 19607756 DOI: 10.1017/s146114570999023x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 'cannabinoid hypothesis' of schizophrenia tulates that over-activity of the endocannabinoid system might contribute to the aetiology of schizophrenia. In keeping with this hypothesis, increased expression of CB1 receptors, elevation of the endocannabinoid anandamide (AEA) and cannabinoid-induced cognitive changes have been reported in animal models of schizophrenia and psychotic patients. In this study we measured brain endocannabinoid levels and [35S]GTPgammaS binding stimulated by the CB receptor agonist CP55,940 in rats undergoing withdrawal from subchronic administration of phencyclidine (PCP), a well-established pharmacological model of schizophrenia. We also investigated whether systemic application of the fatty-acid amide hydrolase (FAAH) inhibitor URB597 or CB1 receptor blockade by AM251 affected the following PCP-induced behavioural deficits reminiscent of schizophrenia-like symptoms: (1) working-memory impairment (cognitive deficit), (2) social withdrawal (negative symptom), and (3) hyperactivity in response to d-amphetamine challenge (positive symptoms). PCP-treated rats showed increased endocannabinoid levels in the nucleus accumbens and ventral tegmental area, whereas CB1 receptor expression and CP55,940-stimulated [35S]GTPgammaS binding were unaltered. URB597 reversed the PCP-induced social withdrawal but caused social withdrawal and working-memory deficits in saline-treated rats that were comparable to those observed after PCP treatment. Administration of AM251 ameliorated the working-memory deficit in PCP-treated rats, but impaired working memory in saline-injected controls. Taken together, these results suggest that FAAH inhibition may improve negative symptoms in PCP-treated rats but produce deleterious effects in untreated animals, possibly by disturbing endocannabinoid tone. A similar pattern (beneficial for schizophrenia-related cognitive deficits, but detrimental under normal conditions) accompanies CB1 receptor blockade.
Collapse
|
47
|
Abstract
The present review summarizes the latest information on the role and the pharmacological modulation of the endocannabinoid system in mood disorders and its potential implication in psychotic disorders such as schizophrenia. Reduced functionality might be considered a predisposing factor for major depression, so boosting endocannabinoid tone might be a useful alternative therapeutic approach for depressive disorders. The picture regarding endocannabinoids and anxiety is more complicated since either too much or too little anandamide can lead to anxiety states. However, a small rise in its level in specific brain areas might be beneficial for the response to a stressful situation and therefore to tone down anxiety. This effect might be achieved with low doses of cannabinoid indirect agonists, such as blockers of the degradative pathway (i.e. FAAH) or re-uptake inhibitors. Moreover several lines of experimental and clinical evidence point to a dysregulation of the endocannabinoid system in schizophrenia. The high anandamide levels found in schizophrenic patients, negatively correlated with psychotic symptoms, point to a protective role, whereas the role of 2-arachidonoyl glycerol is still unclear. There is a potential for pharmacological manipulation of the endocannabinoid system as a novel approach for treating schizophrenia, although experimental findings are still controversial, often with different effects depending on the drug, the dose, the species and the model used for simulating positive or negative symptoms. Besides all these limitations, SR141716A and cannabidiol show the most constant antipsychotic properties in dopamine- and glutamate-based models of schizophrenia, with profiles similar to an atypical antipsychotic drug.
Collapse
Affiliation(s)
- Daniela Parolaro
- DBSF and Neuroscience Center, University of Insubria, Via A. da Giussano 10, 21052 Busto Arsizio (Varese), Italy.
| | | | | | | | | |
Collapse
|
48
|
Viveros MP, Llorente R, López-Gallardo M, Suarez J, Bermúdez-Silva F, De la Fuente M, Rodriguez de Fonseca F, Garcia-Segura LM. Sex-dependent alterations in response to maternal deprivation in rats. Psychoneuroendocrinology 2009; 34 Suppl 1:S217-26. [PMID: 19553026 DOI: 10.1016/j.psyneuen.2009.05.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 05/24/2009] [Accepted: 05/25/2009] [Indexed: 12/20/2022]
Abstract
We review here our latest results regarding short- and long-term effects of a neonatal maternal deprivation (MD) stress [24h at postnatal day (PND) 9] on diverse psychoneuroimmunoendocrine parameters, pointing out the existence of numerous sexual dimorphisms. Behavioral changes observed in MD animals might be at least in part attributable to neurodevelopmental effects of MD-induced elevated corticosterone levels. Our findings of short-term effects of MD on hippocampal and cerebellar neurons and glial cells appear to support this hypothesis. However, it is important to note that these cellular effects were more marked in males than in females. Moreover, in analyzing the effects of this neonatal stress on the endocannabinoid system (hippocampal endocannabinoid levels and CB1 receptors) we have also found that males were more affected by MD. Since all these sexual dimorphisms were found at an early neonatal age (PND 13), they are attributable to organizational effects of gonadal steroids. We discuss the potential implications of the elevated corticosterone and decreased leptin levels shown by MD animals in their diverse functional alterations, including the above mentioned neural effects as well as the intriguing persistent deficit in their immunological system. We also emphasize the necessity of analyzing the important influence of sex as regards the specific consequences of early life stress.
Collapse
Affiliation(s)
- M P Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Galve-Roperh I, Palazuelos J, Aguado T, Guzmán M. The endocannabinoid system and the regulation of neural development: potential implications in psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2009; 259:371-82. [PMID: 19588184 DOI: 10.1007/s00406-009-0028-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/05/2009] [Indexed: 12/20/2022]
Abstract
During brain development, functional neurogenesis is achieved by the concerted action of various steps that include the expansion of progenitor cells, neuronal specification, and establishment of appropriate synapses. Brain patterning and regionalization is regulated by a variety of extracellular signals and morphogens that, together with neuronal activity, orchestrate and regulate progenitor proliferation, differentiation, and neuronal maturation. In the adult brain, CB(1) cannabinoid receptors are expressed at very high levels in selective areas and are engaged by endocannabinoids, which act as retrograde messengers controlling neuronal function and preventing excessive synaptic activity. In addition, the endocannabinoid system is present at early developmental stages of nervous system formation. Recent studies have provided novel information on the role of this endogenous neuromodulatory system in the control of neuronal specification and maturation. Thus, cannabinoid receptors and locally produced endocannabinoids regulate neural progenitor proliferation and pyramidal specification of projecting neurons. CB(1) receptors also control axonal navigation, migration, and positioning of interneurons and excitatory neurons. Loss of function studies by genetic ablation or pharmacological blockade of CB(1) receptors interferes with long-range subcortical projections and, likewise, prenatal cannabinoid exposure induces different functional alterations in the adult brain. Potential implications of these new findings, such as the participation of the endocannabinoid system in the pathogenesis of neurodevelopmental disorders (e.g., schizophrenia) and the regulation of neurogenesis in brain depression, are discussed herein.
Collapse
Affiliation(s)
- Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, School of Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Complutense University, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
50
|
Wyffels L, Muccioli GG, De Bruyne S, Moerman L, Sambre J, Lambert DM, De Vos F. Synthesis, in vitro and in vivo evaluation, and radiolabeling of aryl anandamide analogues as candidate radioligands for in vivo imaging of fatty acid amide hydrolase in the brain. J Med Chem 2009; 52:4613-22. [PMID: 19719235 DOI: 10.1021/jm900324e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fatty acid amide hydrolyase (FAAH) is one of the main enzymes responsible for terminating the signaling of endocannabinoids in the brain. Imaging FAAH in vivo using PET or SPECT is important to deeper understanding of its role in neuropsychiatric disorders. However, at present, no radioligand is available for mapping the enzyme in vivo. Here, we synthesized 18 aryl analogues of anandamide, FAAH's endogenous substrate, and in vitro evaluated their potential as metabolic trapping tracers. Interaction studies with recombinant FAAH revealed good to very good interaction of the methoxy substituted aryl anandamide analogues 17, 18, 19, and 20 with FAAH and they were identified as competing substrates. Compounds 17 and 18 did not display significant binding to CB1 and CB2 cannabinoid receptors and stand out as potential candidate metabolic trapping tracers. They were successfully labeled with 11C in good yields and high radiochemical purity and displayed brain uptake in C57BL/6J mice. Radioligands [11C]-17 and [11C]-18 merit further investigation in vivo.
Collapse
Affiliation(s)
- Leonie Wyffels
- Department of Radiopharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|