1
|
Wilbrecht L, Davidow JY. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat Rev Neurosci 2024; 25:176-194. [PMID: 38263216 DOI: 10.1038/s41583-023-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Juliet Y Davidow
- Department of Psychology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
2
|
Luong K, Bernardo MF, Lindstrom M, Alluri RK, Rose GJ. Brain regions controlling courtship behavior in the bluehead wrasse. Curr Biol 2023; 33:4937-4949.e3. [PMID: 37898122 PMCID: PMC10764105 DOI: 10.1016/j.cub.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Bluehead wrasses (Thalassoma bifasciatum) follow a socially controlled mechanism of sex determination. A socially dominant initial-phase (IP) female is able to transform into a new terminal-phase (TP) male if the resident TP male is no longer present. TP males display an elaborate array of courtship behaviors, including both color changes and motor behaviors. Little is known concerning the neural circuits that control male-typical courtship behaviors. This study used glutamate iontophoresis to identify regions that may be involved in courtship. Stimulation of the following brain regions elicited diverse types of color change responses, many of which appear similar to courtship color changes: the ventral telencephalon (supracommissural nucleus of the ventral telencephalon [Vs], lateral nucleus of the ventral telencephalon [Vl], ventral nucleus of the ventral telencephalon [Vv], and dorsal nucleus of the ventral telencephalon [Vd]), parts of the preoptic area (NPOmg and NPOpc), entopeduncular nucleus, habenular nucleus, and pretectal nuclei (PSi and PSm). Stimulation of two regions in the posterior thalamus (central posterior thalamic [CP] and dorsal posterior thalamic [DP]) caused movements of the pectoral fins that are similar to courtship fluttering and vibrations. Furthermore, these responses were elicited in female IP fish, indicating that circuits for sexual behaviors typical of TP males exist in females. Immunohistochemistry results revealed regions that are more active in fish that are not courting: interpeduncular nucleus, red nucleus, and ventrolateral thalamus (VL). Taken together, we propose that the telencephalic-habenular-interpeduncular pathway plays an important role in controlling and regulating courtship behaviors in TP males; in this model, in response to telencephalic input, the habenular nucleus inhibits the interpeduncular nucleus, thereby dis-inhibiting forebrain regions and promoting the expression of courtship behaviors.
Collapse
Affiliation(s)
- Kyphuong Luong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Madeline F Bernardo
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Michael Lindstrom
- College of Osteopathic Medicine, New York Institute of Technology, 101 Northern Blvd, Glen Head, NY 11545, USA
| | - Rishi K Alluri
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| | - Gary J Rose
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Brain-Wide Synaptic Inputs to Aromatase-Expressing Neurons in the Medial Amygdala Suggest Complex Circuitry for Modulating Social Behavior. eNeuro 2022; 9:ENEURO.0329-21.2021. [PMID: 35074828 PMCID: PMC8925724 DOI: 10.1523/eneuro.0329-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Here, we reveal an unbiased view of the brain regions that provide specific inputs to aromatase-expressing cells in the medial amygdala, neurons that play an outsized role in the production of sex-specific social behaviors, using rabies tracing and light sheet microscopy. While the downstream projections from these cells are known, the specific inputs to the aromatase-expressing cells in the medial amygdala remained unknown. We observed established connections to the medial amygdala (e.g., bed nucleus of the stria terminalis and accessory olfactory bulb) indicating that aromatase neurons are a major target cell type for efferent input including from regions associated with parenting and aggression. We also identified novel and unexpected inputs from areas involved in metabolism, fear and anxiety, and memory and cognition. These results confirm the central role of the medial amygdala in sex-specific social recognition and social behavior, and point to an expanded role for its aromatase-expressing neurons in the integration of multiple sensory and homeostatic factors, which are likely used to modulate many other social behaviors.
Collapse
|
4
|
Równiak M, Bogus‐Nowakowska K, Kalinowski D, Kozłowska A. The evolutionary trajectories of the individual amygdala nuclei in the common shrew, guinea pig, rabbit, fox and pig: A consequence of embryological fate and mosaic-like evolution. J Anat 2022; 240:489-502. [PMID: 34648181 PMCID: PMC8819052 DOI: 10.1111/joa.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
The amygdala primarily evolved as a danger detector that regulates emotional behaviours and learning. However, it is also engaged in stress responses as well as olfactory/pheromonal and reproductive functions. All of these functions are processed by a set of nuclei which are derived from different telencephalic sources (pallial and subpallial) and have a unique cellular structure and specific connections. It is unclear how these individual anatomical and functional units evolved to fit the amygdala to the specific needs of various mammals. Thus, this study provides quantitative data regarding volumes, neuron density and neuron numbers in the main amygdala nuclei of the common shrew, guinea pig, rabbit, fox and pig - species from across the mammalian phylogeny which differ in brain complexity and ecology. The results show that the volume of the amygdala and its individual nuclei scale with negative allometry relative to brain mass (an allometric coefficient below one). However, in relation to the whole amygdala volume, volumes and volumetric percentages of the lateral (LA) and basomedial (BM) nuclei scale with positive allometry, for the medial (ME) and lateral olfactory tract (NLOT) nuclei these parameters scale with negative allometry while the values of these parameters for the basolateral (BL), central (CE) and cortical (CO) nuclei scale with isometry. Moreover, density of neurons scales with strong negative allometry relative to both brain mass and amygdala volume with values of allometric coefficient below zero across studied species. This value for BL is significantly lower than that for the whole amygdala, for ME it is significantly higher while values for NLOT, CE, CO, LA and BM are quite similar to the value for whole amygdala. Finally, neuron numbers in the whole amygdala and its individual nuclei scale with negative allometry in relation to brain mass. However, in relation to the number of neurons in the whole amygdala, neuron numbers and percentages of neurons for LA and BM scale with positive allometry, for BL and NLOT they scale with negative allometry while the values of these parameters for CE, CO and ME scale with isometry. In conclusion, all of these results indicate that each of the nuclei studied displays a different and unique pattern of evolution in relation to brain mass or the whole amygdala volume. These patterns do not match with the various classical concepts of amygdala parcellation; however, in some way, they reflect diversity revealed by the expression of homeobox genes in various embryological studies.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Krystyna Bogus‐Nowakowska
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Daniel Kalinowski
- Department of Animal Anatomy and PhysiologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Anna Kozłowska
- Department of Human Physiology and PathophysiologySchool of MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
5
|
Wang M, Zeng N, Zheng H, Du X, Potenza MN, Dong GH. Altered effective connectivity from the pregenual anterior cingulate cortex to the laterobasal amygdala mediates the relationship between internet gaming disorder and loneliness. Psychol Med 2022; 52:737-746. [PMID: 32684185 DOI: 10.1017/s0033291720002366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individual with internet gaming disorder (IGD) often experience a high level of loneliness, and neuroimaging studies have demonstrated that amygdala function is associated with both IGD and loneliness. However, the neurobiological basis underlying these relationships remains unclear. METHODS In the current study, Granger causal analysis was performed to investigate amygdalar subdivision-based resting-state effective connectivity differences between 111 IGD subjects and 120 matched participants with recreational game use (RGUs). We further correlated neuroimaging findings with clinical measures. Mediation analysis was conducted to explore whether amygdalar subdivision-based effective connectivity mediated the relationship between IGD severity and loneliness. RESULTS Compared with RGUs, IGD subjects showed inhibitory effective connections from the left pregenual anterior cingulate cortex (pACC) to the left laterobasal amygdala (LBA) and from the right medial prefrontal cortex (mPFC) to the left LBA, as well as an excitatory effective connection from the left middle prefrontal gyrus (MFG) to the right superficial amygdala. Further analyses demonstrated that the left pACC-left LBA effective connection was negatively correlated with both Internet Addiction Test and UCLA Loneliness scores, and it mediated the relationship between the two. CONCLUSION IGD subjects and RGUs showed different connectivity patterns involving amygdalar subdivisions. These findings support a neurobiological mechanism for the relationship between IGD and loneliness, and suggest targets for therapeutic approaches that could be used to treat IGD.
Collapse
Affiliation(s)
- Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
| | - Ningning Zeng
- Department of Psychology, Zhejiang Normal University, Jinhua, PR, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR, China
| |
Collapse
|
6
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
7
|
Huijgens PT, Heijkoop R, Snoeren EMS. Silencing and stimulating the medial amygdala impairs ejaculation but not sexual incentive motivation in male rats. Behav Brain Res 2021; 405:113206. [PMID: 33639266 DOI: 10.1016/j.bbr.2021.113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
The medial amygdala (MeA) is a sexually dimorphic brain region that integrates sensory information and hormonal signaling, and is involved in the regulation of social behaviors. Lesion studies have shown a role for the MeA in copulation, most prominently in the promotion of ejaculation. The role of the MeA in sexual motivation, but also in temporal patterning of copulation, has not been extensively studied in rats. Here, we investigated the effect of chemogenetic inhibition and stimulation of the MeA on sexual incentive motivation and copulation in sexually experienced male rats. AAV5-CaMKIIa viral vectors coding for Gi, Gq, or no DREADDs (sham) were bilaterally infused into the MeA. Rats were assessed in the sexual incentive motivation test and copulation test upon systemic clozapine N-oxide (CNO) or vehicle administration. We report that MeA stimulation and inhibition did not affect sexual incentive motivation. Moreover, both stimulation and inhibition of the MeA decreased the number of ejaculations in a 30 min copulation test and increased ejaculation latency and the number of mounts and intromissions preceding ejaculation, while leaving the temporal pattern of copulation intact. These results indicate that the MeA may be involved in the processing of sensory feedback required to reach ejaculation threshold. The convergence of the behavioral effects of stimulating as well as inhibiting the MeA may reflect opposing behavioral control of specific neuronal populations within the MeA.
Collapse
Affiliation(s)
- Patty T Huijgens
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Roy Heijkoop
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Równiak M, Bogus-Nowakowska K. The amygdala of the common shrew, guinea pig, rabbit, fox and pig: five flavours of the mammalian amygdala as a consequence of clade-specific mosaic-like evolution. J Anat 2020; 236:891-905. [PMID: 31898329 DOI: 10.1111/joa.13148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/11/2023] Open
Abstract
The amygdala is a part of neural networks that contribute to the regulation of emotional behaviours and emotional learning, stress response, and olfactory, pheromonal and reproductive functions. All these various functions are processed by the three main functional systems, frontotemporal, autonomic and olfactory, which are derived from different telencephalic sources (claustrum, striatum and olfactory cortex) and are represented, respectively, by the basolateral complex (BLC), the central complex (CC) and corticomedial complex (CMC) of the amygdala. The question arises of how these three functional systems evolved during mammalian phylogeny to fit the amygdala to specific needs of various animals. In the present study, we provide quantitative information regarding the individual volumes and neuron numbers in the BLC, CC and CMC of the common shrew, guinea pig, rabbit, fox and pig, a series of animals arranged according to increasing size and complexity of the brain. The results show that, in this series of animals, the BLC underwent a gradual size increase in volume and number of neurons, whereas the CMC was gradually reduced with regard to both these measures. The CC was more or less conserved across studied species. For example, the volume of the amygdala in pigs is ~250 times larger than that in shrews and it also has almost 26 times as many neurons as the amygdala of shrews. However, the volumes of the BLC, CC and CMC were ~380, 208 and 148 times larger, respectively, in pigs than in shrews. The number of neurons in these three regions was ~38, 23 and 20 times greater, respectively, in pigs than in shrews. The results also show striking morphometric similarities of the amygdala in the guinea pig and rabbit as well as fox and pig. For example, the percentages of neurons in the fox and pig are 42.23% and 42.78%, respectively, for the BLC, 16.64% and 16.58%, respectively, for the CC, and 41.12% and 40.64%, respectively, for the CMC. In conclusion, our results indicate that the amygdala does not evolve as a single unit but, instead, the three main functional systems evolved independently, which suggests that brain structures with major functional links evolve together independently of evolutionary changes in other unrelated structures. The size progression of the BLC parallels the size progression of the neocortex with which it is strongly functionally linked, whereas the CMC is strongly connected to olfactory regions, and all these structures follow the same regression course. Remarkable morphometric similarity of the amygdala in the guinea pig and rabbit as well as in the fox and pig, however, suggest that there must also be another mechanism shaping the morphology of the amygdala and the brain during evolution. The gradual nature of size changes in the BLC and CMC support this hypothesis as well.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
9
|
Hofmann D, Straube T. Resting-state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Hum Brain Mapp 2019; 40:2723-2735. [PMID: 30829454 DOI: 10.1002/hbm.24555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.
Collapse
Affiliation(s)
- David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
10
|
Amygdala Corticofugal Input Shapes Mitral Cell Responses in the Accessory Olfactory Bulb. eNeuro 2018; 5:eN-NWR-0175-18. [PMID: 29911171 PMCID: PMC6001136 DOI: 10.1523/eneuro.0175-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Interconnections between the olfactory bulb and the amygdala are a major pathway for triggering strong behavioral responses to a variety of odorants. However, while this broad mapping has been established, the patterns of amygdala feedback connectivity and the influence on olfactory circuitry remain unknown. Here, using a combination of neuronal tracing approaches, we dissect the connectivity of a cortical amygdala [posteromedial cortical nucleus (PmCo)] feedback circuit innervating the mouse accessory olfactory bulb. Optogenetic activation of PmCo feedback mainly results in feedforward mitral cell (MC) inhibition through direct excitation of GABAergic granule cells. In addition, LED-driven activity of corticofugal afferents increases the gain of MC responses to olfactory nerve stimulation. Thus, through corticofugal pathways, the PmCo likely regulates primary olfactory and social odor processing.
Collapse
|
11
|
Robust age, but limited sex, differences in mu-opioid receptors in the rat brain: relevance for reward and drug-seeking behaviors in juveniles. Brain Struct Funct 2017; 223:475-488. [PMID: 28871491 PMCID: PMC5772146 DOI: 10.1007/s00429-017-1498-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
In the brain, the µ-opioid receptor (MOR) is involved in reward-seeking behaviors and plays a pivotal role in the mediation of opioid use disorders. Furthermore, reward-seeking behaviors and susceptibility to opioid addiction are particularly evident during the juvenile period, with a higher incidence of opioid use in males and higher sensitivity to opioids in females. Despite these age and sex differences in MOR-mediated behaviors, little is known regarding potential age and sex differences in the expression of MORs in the brain. Here, we used receptor autoradiography to compare MOR binding densities between juvenile and adult male and female rats. Age differences were found in MOR binding density in 12 out of 33 brain regions analyzed, with 11 regions showing higher MOR binding density in juveniles than in adults. These include the lateral septum, as well as sub-regions of the bed nucleus of the stria terminalis, hippocampus, and thalamus. Sex differences in MOR binding density were observed in only two brain regions, namely, the lateral septum (higher in males) and the posterior cortical nucleus of the amygdala (higher in females). Overall, these findings provide an important foundation for the generation of hypotheses regarding differential functional roles of MOR activation in juveniles versus adults. Specifically, we discuss the possibility that higher MOR binding densities in juveniles may allow for higher MOR activation, which could facilitate behaviors that are heightened during the juvenile period, such as reward and drug-seeking behaviors.
Collapse
|
12
|
Fos Expression in the Olfactory Pathway of High- and Low-Sexually Performing Rams Exposed to Urine from Estrous or Ovariectomized Ewes. Appl Anim Behav Sci 2015; 186:22-28. [PMID: 28348447 DOI: 10.1016/j.applanim.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to estrous ewe urine stimulates investigation and mounting activity in sexually active but not sexually inactive rams. It was hypothesized sexual indifference may result from an inability to detect olfactory cues or an interruption of the pathway from detection of the olfactory stimulus to the motor response. Sexually active (n=4) and inactive (n=3) rams were exposed to urine from estrous ewes. An additional group of sexually active rams (n=3) were exposed to urine from ovariectomized ewes. Rams were exsanguinated following 1 h of exposure to stimulus. Neural activity was determined in tissues of interest by the presence of fos and fos-related proteins detected by immunohistochemistry procedures. Sexually active rams exposed to urine from ovariectomized ewes had more (P ≤ 0.05) fos-positive cells in the olfactory bulb, but fewer (P = 0.03) fos-positive cells in the cortical amygdala compared to sexually active rams exposed to urine from estrous ewes. Sexually inactive rams had similar (P ≥ 0.13) numbers of fos positive neurons in the olfactory bulb and medial amygdala but fewer (P ≤ 0.04) in the central amygdala, bed nucleus of the stria terminalis and the medial preoptic area compared to sexually active rams exposed to urine from estrous ewes. Sexual inactivity was not associated with decreased hypothalamic function since fos activity was similar (P ≥ 0.14) among groups in the suprachiasmatic and ventral medial nucleus. Sexual inactivity is not likely due to an impaired ability to detect or process olfactory stimuli by the main olfactory bulb and medial-cortical amygdala. Sexually inactive rams may have reduced attentiveness to sexual stimuli and/or decreased responsiveness of regions in the brain which regulate reproductive behaviors.
Collapse
|
13
|
Wernecke KEA, Vincenz D, Storsberg S, D'Hanis W, Goldschmidt J, Fendt M. Fox urine exposure induces avoidance behavior in rats and activates the amygdalar olfactory cortex. Behav Brain Res 2014; 279:76-81. [PMID: 25449843 DOI: 10.1016/j.bbr.2014.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
Predator odors represent a group of biologically-relevant chemosignals called kairomones. Kairomones enable prey animals to recognize potential predatory threats in their environment and to initiate appropriate defensive responses. Although the behavioral repertoire of anti-predatory responses (e.g. avoidance, freezing, risk assessment) has been investigated extensively, our knowledge about the neural network mediating these innate fear responses is rather limited. In the present study, the GABAA agonist muscimol was bilaterally injected (2.6 nmol/0.3 μl) into the amygdalar olfactory cortex (AOC), a brain area that receives massive olfactory input from both olfactory systems and is strongly interconnected with the medial hypothalamic defense circuit. Temporary inactivation of the AOC substantially disrupted avoidance behavior of rats to fox urine that is strongly avoided under control conditions (saline injections). Taken together, these results demonstrate that the AOC is critically involved in fox urine-induced fear behavior. This suggests that the AOC is part of a brain fear circuit that mediates innate fear responses toward predatory odors.
Collapse
Affiliation(s)
- K E A Wernecke
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - D Vincenz
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - S Storsberg
- Institute for Anatomy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - W D'Hanis
- Institute for Anatomy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - J Goldschmidt
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - M Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
14
|
Tu W, Cook A, Scholl JL, Mears M, Watt MJ, Renner KJ, Forster GL. Serotonin in the ventral hippocampus modulates anxiety-like behavior during amphetamine withdrawal. Neuroscience 2014; 281:35-43. [PMID: 25241066 DOI: 10.1016/j.neuroscience.2014.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Withdrawal from amphetamine is associated with increased anxiety and sensitivity to stressors which are thought to contribute to relapse. Rats undergoing amphetamine withdrawal fail to exhibit stress-induced increases in serotonin (5-HT) release in the ventral hippocampus and show heightened anxiety-like behaviors. Therefore, we tested the hypothesis that reducing 5-HT levels in the ventral hippocampus is a causal mechanism in increasing anxiety-like behaviors during amphetamine withdrawal. First, we tested whether reducing 5-HT levels in the ventral hippocampus directly increases anxiety behavior. Male rats were bilaterally infused with 5,7-dihydroxytryptamine (5,7-DHT) into the ventral hippocampus, which produced a 83% decrease in ventral hippocampus 5-HT content, and were tested on the elevated plus maze (EPM) for anxiety-like behavior. Reducing ventral hippocampus 5-HT levels decreased the time spent in the open arms of the maze, suggesting that diminished ventral hippocampus 5-HT levels increases anxiety-like behavior. Next, we tested whether increasing 5-HT levels in the ventral hippocampus reverses anxiety behavior exhibited by rats undergoing amphetamine withdrawal. Rats were treated daily with either amphetamine (2.5-mg/kg, i.p.) or saline for 2weeks, and at 2weeks withdrawal, were infused with the selective serotonin reuptake inhibitor paroxetine (0.5μM) bilaterally into the ventral hippocampus and tested for anxiety-like behavior on the EPM. Rats pre-treated with amphetamine exhibited increased anxiety-like behavior on the EPM. This effect was reversed by ventral hippocampus infusion of paroxetine. Our results suggest that 5-HT levels in the ventral hippocampus are critical for regulating anxiety behavior. Increasing 5-HT levels during withdrawal may be an effective strategy for reducing anxiety-induced drug relapse.
Collapse
Affiliation(s)
- W Tu
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - A Cook
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - J L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - M Mears
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - M J Watt
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - K J Renner
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | - G L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark Street, Vermillion, SD, USA.
| |
Collapse
|
15
|
Liu Y, Lieberwirth C, Jia X, Curtis JT, Meredith M, Wang ZX. Chemosensory cues affect amygdaloid neurogenesis and alter behaviors in the socially monogamous prairie vole. Eur J Neurosci 2014; 39:1632-41. [PMID: 24641515 DOI: 10.1111/ejn.12531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
The current study examined the effects of pheromonal exposure on adult neurogenesis and revealed the role of the olfactory pathways on adult neurogenesis and behavior in the socially monogamous prairie vole (Microtus ochrogaster). Subjects were injected with a cell proliferation marker [5-bromo-2'-deoxyuridine (BrdU)] and then exposed to their own soiled bedding or bedding soiled by a same- or opposite-sex conspecific. Exposure to opposite-sex bedding increased BrdU labeling in the amygdala (AMY), but not the dentate gyrus (DG), of female, but not male, voles, indicating a sex-, stimulus-, and brain region-specific effect. The removal of the main olfactory bulbs or lesioning of the vomeronasal organ (VNOX) in females reduced BrdU labeling in the AMY and DG, and inhibited the male bedding-induced BrdU labeling in the AMY, revealing the importance of an intact olfactory pathway for amygdaloid neurogenesis. VNOX increased anxiety-like behavior and altered social preference, but it did not affect social recognition memory in female voles. VNOX also reduced the percentage of BrdU-labeled cells that co-expressed the neuronal marker TuJ1 in the AMY, but not the DG. Together, our data indicate the importance of the olfactory pathway in mediating brain plasticity in the limbic system as well as its role in behavior.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychology, Florida State University, 1107 W. Call Street, Tallahassee, FL, 32306, USA; Program in Neuroscience, Florida State University, 1107 W. Call Street, Tallahassee, FL, 32306, USA
| | | | | | | | | | | |
Collapse
|
16
|
Petrulis A. Chemosignals and hormones in the neural control of mammalian sexual behavior. Front Neuroendocrinol 2013; 34:255-67. [PMID: 23911848 DOI: 10.1016/j.yfrne.2013.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Males and females of most mammalian species depend on chemosignals to find, attract and evaluate mates and, in most cases, these appetitive sexual behaviors are strongly modulated by activational and organizational effects of sex steroids. The neural circuit underlying chemosensory-mediated pre- and peri-copulatory behavior involves the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), medial preoptic area (MPOA) and ventromedial hypothalamus (VMH), each area being subdivided into interconnected chemoreceptive and hormone-sensitive zones. For males, MA-BNST connections mediate chemoinvestigation whereas the MA-MPOA pathway regulates copulatory initiation. For females, MA-MPOA/BNST connections also control aspects of precopulatory behavior whereas MA-VMH projections control both precopulatory and copulatory behavior. Significant gaps in understanding remain, including the role of VMH in male behavior and MPOA in female appetitive behavior, the function of cortical amygdala, the underlying chemical architecture of this circuit and sex differences in hormonal and neurochemical regulation of precopulatory behavior.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
The amygdala in the guinea pig is sexually dimorphic—A morphometric study. Brain Res 2013; 1524:44-53. [DOI: 10.1016/j.brainres.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 11/22/2022]
|
18
|
Infusion of endomorphin-1 (EM-1) in the MPOA and the Me modulate sexual and socio-sexual behavior in the male rat. Brain Res 2013; 1517:36-43. [DOI: 10.1016/j.brainres.2013.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 11/23/2022]
|
19
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
20
|
Lieberwirth C, Liu Y, Jia X, Wang Z. Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles. Horm Behav 2012; 62:357-66. [PMID: 22465453 PMCID: PMC3565461 DOI: 10.1016/j.yhbeh.2012.03.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 12/18/2022]
Abstract
Disruptions in the social environment, such as social isolation, are distressing and can induce various behavioral and neural changes in the distressed animal. We conducted a series of experiments to test the hypothesis that long-term social isolation affects brain plasticity and alters behavior in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult female prairie voles were injected with a cell division marker, 5-bromo-2'-deoxyuridine (BrdU), and then same-sex pair-housed (control) or single-housed (isolation) for 6 weeks. Social isolation reduced cell proliferation, survival, and neuronal differentiation and altered cell death in the dentate gyrus of the hippocampus and the amygdala. In addition, social isolation reduced cell proliferation in the medial preoptic area and cell survival in the ventromedial hypothalamus. These data suggest that long-term social isolation affects distinct stages of adult neurogenesis in specific limbic brain regions. In Experiment 2, isolated females displayed higher levels of anxiety-like behaviors in both the open field and elevated plus maze tests and higher levels of depression-like behavior in the forced swim test than controls. Further, isolated females showed a higher level of affiliative behavior than controls, but the two groups did not differ in social recognition memory. Together, our data suggest that social isolation not only impairs cell proliferation, survival, and neuronal differentiation in limbic brain areas, but also alters anxiety-like, depression-like, and affiliative behaviors in adult female prairie voles. These data warrant further investigation of a possible link between altered neurogenesis within the limbic system and behavioral changes.
Collapse
Affiliation(s)
| | | | | | - Zuoxin Wang
- Corresponding author at: Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA. Fax: +1 850 644 7739. (Z. Wang)
| |
Collapse
|
21
|
Been LE, Petrulis A. Dissociated functional pathways for appetitive and consummatory reproductive behaviors in male Syrian hamsters. Horm Behav 2012; 61:204-11. [PMID: 22210198 PMCID: PMC3278532 DOI: 10.1016/j.yhbeh.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
Abstract
In many species, including Syrian hamsters, the generation of male reproductive behavior depends critically on the perception of female odor cues from conspecifics in the environment. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (MA), posterior bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). Previous studies have demonstrated that each of these three nuclei is required for appropriate sexual behavior and that MA preferentially sends female odor information directly to BNST and MPOA. It is unknown, however, how the functional connections between MA and BNST and/or MPOA are organized to generate different aspects of reproductive behavior. Therefore, the following experiments used the asymmetrical pathway lesion technique to test the role of the functional connections between MA and BNST and/or MPOA in odor preference and copulatory behaviors. Lesions that functionally disconnected MA from MPOA eliminated copulatory behavior but did not affect odor preference. In contrast, lesions that functionally disconnected MA from BNST eliminated preference for volatile female odors but did not affect preference for directly contacted odors or copulatory behavior. These results therefore demonstrate a double dissociation in the functional connections required for attraction to volatile sexual odors and copulation and, more broadly, suggest that appetitive and consummatory reproductive behaviors are mediated by distinct neural pathways.
Collapse
Affiliation(s)
- Laura E Been
- Georgia State University, Neuroscience Institute, 100 Piedmont Avenue NE, Atlanta, GA 30303, USA.
| | | |
Collapse
|
22
|
Arakawa H, Arakawa K, Deak T. Oxytocin and vasopressin in the medial amygdala differentially modulate approach and avoidance behavior toward illness-related social odor. Neuroscience 2010; 171:1141-51. [DOI: 10.1016/j.neuroscience.2010.10.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 11/15/2022]
|
23
|
Maras PM, Petrulis A. The anterior medial amygdala transmits sexual odor information to the posterior medial amygdala and related forebrain nuclei. Eur J Neurosci 2010; 32:469-82. [PMID: 20704594 DOI: 10.1111/j.1460-9568.2010.07289.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Syrian hamsters, reproductive behavior relies on the perception of chemical signals released from conspecifics. The medial amygdala (MEA) processes sexual odors through functionally distinct, but interconnected, sub-regions; the anterior MEA (MEAa) appears to function as a chemosensory filter to distinguish between opposite-sex and same-sex odors, whereas the posterodorsal MEA (MEApd) is critical for generating attraction specifically to opposite-sex odors. To identify how these sub-regions interact during odor processing, we measured odor-induced Fos expression, an indirect marker of neuronal activation, in the absence of either MEAa or MEApd processing. In Experiment 1, electrolytic lesions of the MEAa decreased Fos expression throughout the posterior MEA in male hamsters exposed to either female or male odors, whereas MEApd lesions had no effect on Fos expression within the MEAa. These results indicate that the MEAa normally enhances processing of sexual odors within the MEApd and that this interaction is primarily unidirectional. Furthermore, lesions of the MEAa, but not the MEApd, decreased Fos expression within several connected forebrain nuclei, suggesting that the MEAa provides the primary excitatory output of the MEA during sexual odor processing. In Experiment 2, we observed a similar pattern of decreased Fos expression, using fiber-sparing, NMDA lesions of the MEAa, suggesting that the decreases in Fos expression were not attributable exclusively to damage to passing fibers. Taken together, these results provide the first direct test of how the different sub-regions within the MEA interact during odor processing, and highlight the role of the MEAa in transmitting sexual odor information to the posterior MEA, as well as to related forebrain nuclei.
Collapse
Affiliation(s)
- Pamela M Maras
- Georgia State University, Neuroscience Institute, Atlanta, GA 30302-5030, USA.
| | | |
Collapse
|
24
|
Gutiérrez-Castellanos N, Martínez-Marcos A, Martínez-García F, Lanuza E. Chemosensory Function of the Amygdala. VITAMINS & HORMONES 2010; 83:165-96. [DOI: 10.1016/s0083-6729(10)83007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Lesions that functionally disconnect the anterior and posterodorsal sub-regions of the medial amygdala eliminate opposite-sex odor preference in male Syrian hamsters (Mesocricetus auratus). Neuroscience 2009; 165:1052-62. [PMID: 19931356 DOI: 10.1016/j.neuroscience.2009.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
In many rodent species, such as Syrian hamsters, reproductive behavior requires neural integration of chemosensory information and steroid hormone cues. The medial amygdala (MA) processes both of these signals through anatomically distinct sub-regions; the anterior region (MeA) receives substantial chemosensory input, but contains few steroid receptor-labeled neurons, whereas the posterodorsal region (MePD) receives less chemosensory input, but contains a dense population of steroid receptors. Importantly, these sub-regions have considerable reciprocal connections, and the goal of this experiment was therefore to determine whether interactions between MeA and MePD are required for male hamsters' preference to investigate female over male odors. To functionally disconnect MeA and MePD, males received unilateral lesions of MeA and MePD within opposite brain hemispheres. Control males received either unilateral lesions of MeA and MePD within the same hemisphere or sham surgery. Odor preferences were measured using a 3-choice apparatus, which simultaneously presented female, male and clean odor stimuli; all tests were done under conditions that either prevented or allowed contact with the odor sources. Under non-contact conditions, males with asymmetrical lesions investigated female and male odors equally, whereas males in both control groups preferred to investigate female odors. Under contact conditions, all groups investigated female odors longer than male odors, although males with asymmetrical lesions displayed decreased investigation of female odors compared to sham males. These data suggest that MeA-MePD interactions are critical for processing primarily the volatile components of social odors and highlight the importance of input from the main olfactory system (MOS) to these nuclei in the regulation of reproductive behavior. More broadly, these results support the role of the MA in integrating chemosensory and hormone information, a process that may underlie social odor processing in a variety of behavioral contexts.
Collapse
|
26
|
Petrulis A. Neural mechanisms of individual and sexual recognition in Syrian hamsters (Mesocricetus auratus). Behav Brain Res 2009; 200:260-7. [PMID: 19014975 PMCID: PMC2668739 DOI: 10.1016/j.bbr.2008.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/27/2022]
Abstract
Recognizing the individual and sexual identities of conspecifics is critical for adaptive social behavior and, in most mammals this information is communicated primarily by chemosensory cues. Due to its heavy reliance on odor cues, we have used the Syrian hamster as our model species for investigating the neural regulation of social recognition. Using lesion, electrophysiological and immunocytochemical techniques, separate neural pathways underlying recognition of individual odors and guidance of sex-typical responses to opposite-sex odors have been identified in both male and female hamsters. Specifically, we have found that recognition of individual odor identity requires olfactory bulb connections to entorhinal cortex (ENT) rather than other chemoreceptive brain regions. This kind of social memory does not appear to require the hippocampus and may, instead, depend on ENT connections with piriform cortex. In contrast, sexual recognition, through either differential investigation or scent marking toward opposite-sex odors, depends on both olfactory and vomeronasal system input to the corticomedial amygdala. Preference for investigating opposite-sex odors requires primarily olfactory input to the medial amygdala (ME) whereas appropriately targeted scent marking responses require vomeronasal input to ME as well as to other structures. Within the ME, the anterior section (MEa) appears important for evaluating or classifying social odors whereas the posterodorsal region (MEpd) may be more involved in generating approach to social odors. Evidence is presented that analysis of social odors may initially be done in MEa and then communicated to MEpd, perhaps through micro-circuits that separately process male and female odors.
Collapse
Affiliation(s)
- Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA.
| |
Collapse
|