1
|
Hor CC, Duan B. Lateral parabrachial nucleus: the commander-in-chief for nocifensive behavior expression in cold allodynia. Pain 2024:00006396-990000000-00777. [PMID: 39715171 DOI: 10.1097/j.pain.0000000000003469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Chia Chun Hor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | | |
Collapse
|
2
|
Park S, Zhu A, Cao F, Palmiter RD. Parabrachial Calca neurons mediate second-order conditioning. Nat Commun 2024; 15:9721. [PMID: 39521770 PMCID: PMC11550384 DOI: 10.1038/s41467-024-53977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Learning to associate cues, both directly and indirectly, with biologically significant events is essential for survival. Second-order conditioning (SOC) involves forming an association between a previously reinforced conditioned stimulus (CS1) and a new conditioned stimulus (CS2) without the presence of an unconditioned stimulus (US). The neural substrates mediating SOC, however, remain unclear. Parabrachial Calca neurons, which react to the noxious US, also respond to a CS after pairing with a US, suggesting that Calca neurons mediate SOC. We established an aversive SOC behavioral paradigm in mice and monitored Calca neuron activity via single-cell calcium imaging during conditioning and subsequent recall phases. These neurons were activated by both CS1 and CS2 after SOC. Chemogenetically inhibiting Calca neurons during CS1-CS2 pairing attenuated SOC. Thus, reactivation of the US pathway by a learned CS plays an important role in forming the association between the old and a new CS, promoting the formation of second-order memories.
Collapse
Affiliation(s)
- Sekun Park
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anqi Zhu
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Feng Cao
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Howard Hugues Medical Institute, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Department of Genome Science, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Koo H, Wang J, Pariyar R, Hammond RM, La JH. Modulation of mechanosensation by endogenous dopaminergic signaling in the lateral parabrachial nucleus in mice. Pain Rep 2024; 9:e1186. [PMID: 39263005 PMCID: PMC11390053 DOI: 10.1097/pr9.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The lateral parabrachial nucleus (LPBN), a crucial hub for integrating and modulating diverse sensory information, is known to express both D1 and D2 dopamine receptors and receive dopaminergic inputs. However, the role of the LPBN's dopaminergic system in somatosensory processing remains largely unexplored. In this study, we investigated whether mechanical sensory stimulation triggers dopamine release in the LPBN and how D1- and D2-like receptor signaling in the LPBN influences mechanosensitivity in mice. Methods We used a G-protein-coupled receptor-based dopamine sensor to monitor dopamine release in the LPBN and a von Frey filament assay to measure the mechanical threshold for nocifensive withdrawal in mouse hind paws after unilateral microinjection of D1- or D2-like receptor antagonist into the LPBN. Results Noxious mechanical stimulation increased the dopamine sensor signal in the LPBN. Thresholds of nocifensive withdrawal from mechanical stimulation were decreased by the D1-like receptor antagonist SCH-23390 (0.1 µg) but increased by the D2-like receptor antagonist eticlopride (1 µg). In the intraplantar capsaicin injection model that develops mechanical hypersensitivity in the injected paw, the dopamine sensor signal in the LPBN was increased, and eticlopride (1 µg) in the LPBN significantly inhibited the capsaicin-induced mechanical hypersensitivity. Conclusions These results suggest that endogenous dopaminergic signaling occurs in the LPBN upon noxious mechanical stimulation, inhibiting mechanosensitivity through D1-like receptors while enhancing it through D2-like receptors. D2-like receptor signaling in the LPBN may contribute to an injury-induced increase in mechanical nociception, indicating that inhibiting the receptor within the LPBN could offer potential as a novel analgesic strategy.
Collapse
Affiliation(s)
- Ho Koo
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jigong Wang
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ramesh Pariyar
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Regan M Hammond
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Jia L, Yin J, Liu T, Qi W, Du T, Li Q, Ma K, Si J, Yin J, Li Y. Activation of Ventral Tegmental Area Dopaminergic Neurons Projecting to the Parabrachial Nucleus Promotes Emergence from Propofol Anesthesia in Male Rats. Neurochem Res 2024; 49:2060-2074. [PMID: 38814359 DOI: 10.1007/s11064-024-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.
Collapse
Affiliation(s)
- Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tongyu Du
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Quntao Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
5
|
Korkutata M, De Luca R, Fitzgerald B, Arrigoni E, Scammell TE. Afferent projections to the Calca /CGRP-expressing parabrachial neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593004. [PMID: 38766214 PMCID: PMC11100666 DOI: 10.1101/2024.05.07.593004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons which regulate responses to a variety of interoceptive and cutaneous sensory signals. The lateral PB subpopulation expressing the Calca gene which produces the neuropeptide calcitonin gene-related peptide (CGRP) relays signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet the afferents to these neurons are only partially understood. We mapped the afferent projections to the lateral part of the PB in mice using conventional cholera toxin B subunit (CTb) retrograde tracing, and then used conditional rabies virus retrograde tracing to map monosynaptic inputs specifically targeting the PB Calca /CGRP neurons. Using vesicular GABA (vGAT) and glutamate (vGLUT2) transporter reporter mice, we found that lateral PB neurons receive GABAergic afferents from regions such as the lateral part of the central nucleus of the amygdala, lateral dorsal subnucleus of the bed nucleus of the stria terminalis, substantia innominata, and the ventrolateral periaqueductal gray. Additionally, they receive glutamatergic afferents from the infralimbic and insular cortex, paraventricular nucleus, parasubthalamic nucleus, trigeminal complex, medullary reticular nucleus, and nucleus of the solitary tract. Using anterograde tracing and confocal microscopy, we then identified close axonal appositions between these afferents and PB Calca /CGRP neurons. Finally, we used channelrhodopsin-assisted circuit mapping to test whether some of these inputs directly synapse upon the PB Calca /CGRP neurons. These findings provide a comprehensive neuroanatomical framework for understanding the afferent projections regulating the PB Calca /CGRP neurons.
Collapse
|
6
|
Wang Q, Caraballo SG, Rychkov G, McGovern AE, Mazzone SB, Brierley SM, Harrington AM. Comparative localization of colorectal sensory afferent central projections in the mouse spinal cord dorsal horn and caudal medulla dorsal vagal complex. J Comp Neurol 2024; 532:e25546. [PMID: 37837642 DOI: 10.1002/cne.25546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.
Collapse
Affiliation(s)
- QingQing Wang
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sonia Garcia Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Grigori Rychkov
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Alice E McGovern
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564223. [PMID: 37961621 PMCID: PMC10634894 DOI: 10.1101/2023.10.26.564223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitter or directly stimulating them we demonstrate that activation of Calca neurons is both necessary for the manifestation of chronic pain after nerve ligation and is sufficient to drive nociplasticity in wild-type mice. Aversive stimuli such as exposure to nitroglycerin, cisplatin, or LiCl can drive nociplasticity in a Calca-neuron-dependent manner. Calcium fluorescence imaging reveals that nitroglycerin activates PBN Calca neurons and potentiates their responses to mechanical stimulation. The activity and excitability of Calca neurons increased for several days after aversive events, but prolonged nociplasticity likely occurs in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, NY 10010, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Lead Contact
| |
Collapse
|
8
|
Takemoto M, Kato S, Kobayashi K, Song WJ. Dissection of insular cortex layer 5 reveals two sublayers with opposing modulatory roles in appetitive drinking behavior. iScience 2023; 26:106985. [PMID: 37378339 PMCID: PMC10291511 DOI: 10.1016/j.isci.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The insular cortex (insula) is known to play a modulatory role in feeding and drinking. Previous studies have revealed anterior-posterior differences of subcortical projections and roles for the insula, yet the anatomical and functional heterogeneity among the cortical layers remains poorly understood. Here, we show that layer 5 of the mouse dysgranular insula has two distinct neuronal subpopulations along the entire anterior-posterior axis: The L5a population, expressing NECAB1, projects bilaterally to the lateral and capsular divisions of the central amygdala, and the L5b population, expressing CTIP2, projects ipsilaterally to the parasubthalamic nucleus and the medial division of the central amygdala. Optogenetically activating L5a and L5b neuronal populations in thirsty male mice led to suppressed and facilitated water spout licking, respectively, without avoidance against or preference for the spout paired with the opto-stimulation. Our results suggest sublayer-specific bidirectional modulatory roles of insula layer 5 in the motivational aspect of appetitive behavior.
Collapse
Affiliation(s)
- Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
9
|
Wang F, Chen Y, Lin Y, Wang X, Li K, Han Y, Wu J, Shi X, Zhu Z, Long C, Hu X, Duan S, Gao Z. A parabrachial to hypothalamic pathway mediates defensive behavior. eLife 2023; 12:85450. [PMID: 36930206 PMCID: PMC10023160 DOI: 10.7554/elife.85450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Defensive behaviors are critical for animal's survival. Both the paraventricular nucleus of the hypothalamus (PVN) and the parabrachial nucleus (PBN) have been shown to be involved in defensive behaviors. However, whether there are direct connections between them to mediate defensive behaviors remains unclear. Here, by retrograde and anterograde tracing, we uncover that cholecystokinin (CCK)-expressing neurons in the lateral PBN (LPBCCK) directly project to the PVN. By in vivo fiber photometry recording, we find that LPBCCK neurons actively respond to various threat stimuli. Selective photoactivation of LPBCCK neurons promotes aversion and defensive behaviors. Conversely, photoinhibition of LPBCCK neurons attenuates rat or looming stimuli-induced flight responses. Optogenetic activation of LPBCCK axon terminals within the PVN or PVN glutamatergic neurons promotes defensive behaviors. Whereas chemogenetic and pharmacological inhibition of local PVN neurons prevent LPBCCK-PVN pathway activation-driven flight responses. These data suggest that LPBCCK neurons recruit downstream PVN neurons to actively engage in flight responses. Our study identifies a previously unrecognized role for the LPBCCK-PVN pathway in controlling defensive behaviors.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yuge Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yuxin Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xuze Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Kaiyuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Yong Han
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Jintao Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xingyi Shi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Zhenggang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Chaoying Long
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
| | - Xiaojun Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
- The Institute of Brain and Cognitive Sciences, Zhejiang University City CollegeHangzhouChina
- Chuanqi Research and Development Center of Zhejiang UniversityHangzhouChina
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Labotatory of Brain-machine intelligence, Zhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Kikuchi E, Inui T, Su S, Sato Y, Funahashi M. Chemogenetic inhibition of the bed nucleus of the stria terminalis suppresses the intake of a preferable and learned aversive sweet taste solution in male mice. Behav Brain Res 2023; 439:114253. [PMID: 36509179 DOI: 10.1016/j.bbr.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Conditioned taste aversion (CTA) is established by pairing a taste solution as a conditioned stimulus (CS) with visceral malaise as an unconditioned stimulus (US). CTA decreases the taste palatability of a CS. The bed nucleus of the stria terminalis (BNST) receives taste inputs from the brainstem. However, the involvement of the BNST in CTA remains unclear. Thus, this study examined the effects of chemogenetic inhibition of the BNST neurons on CS intake after CTA acquisition. An adeno-associated virus was microinjected into the BNST of male C57/BL6 mice to induce the inhibitory designer receptor hM4Di. The mice received a pairing of 0.2% saccharin solution (CS) with 0.3 M lithium chloride (2% BW, intraperitoneal). After conditioning, the administration of clozapine-N-oxide (CNO, 1 mg/kg) significantly enhanced the suppression of CS intake on the retrieval of CTA compared with its intake following saline administration (p < 0.01). We further assessed the effect of BNST neuron inhibition on the intake of water and taste solutions (saccharin, sucralose, sodium chloride, monosodium glutamate, quinine hydrochloride, and citric acid) using naïve (not learned CTA) mice. CNO administration significantly decreased the intake of saccharin and sucralose (p < 0.05). Our results indicate that BNST neurons mediate sweet taste and regulate sweet intake, regardless of whether sweets should be ingested or rejected. BNST neurons may be inhibited in the retrieval of CTA, thereby suppressing CS intake.
Collapse
Affiliation(s)
- Emi Kikuchi
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Orthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tadashi Inui
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Shaoyi Su
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshiaki Sato
- Department of Orthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Funahashi
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
12
|
Wiaderkiewicz J, Reilly S. Expression of c-Fos following voluntary ingestion of a novel or familiar taste in rats. Brain Res 2023; 1799:148177. [PMID: 36503889 PMCID: PMC9795852 DOI: 10.1016/j.brainres.2022.148177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022]
Abstract
Taste neophobia, the rejection of novel tastes or foods, involves an interplay of various brain regions encompassing areas within the central gustatory system, as well as nuclei serving other functions. Previous findings, utilising c-Fos imaging, identified several brain regions which displayed higher activity after ingestion of a novel taste as compared to a familiar taste. The present study extends this analysis to include additional regions suspected of contributing to the neurocircuitry involved in evoking taste neophobia. Our data show increased c-Fos expression in the basolateral amygdala, central nucleus of the amygdala, gustatory portion of the thalamus, gustatory portion of the insular cortex and the medial and lateral regions of the parabrachial nucleus. These results confirm the contribution of areas previously identified as active during ingestion of novel tastes and expose additional areas that express elevated levels of c-Fos under these conditions, thus adding to the neural network involved in the detection and initial processing of taste novelty.
Collapse
Affiliation(s)
- Jan Wiaderkiewicz
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| | - Steve Reilly
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, United States.
| |
Collapse
|
13
|
Santollo J, Daniels D, Leshem M, Schulkin J. Sex Differences in Salt Appetite: Perspectives from Animal Models and Human Studies. Nutrients 2023; 15:208. [PMID: 36615865 PMCID: PMC9824138 DOI: 10.3390/nu15010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Salt ingestion by animals and humans has been noted from prehistory. The search for salt is largely driven by a physiological need for sodium. There is a large body of literature on sodium intake in laboratory rats, but the vast majority of this work has used male rats. The limited work conducted in both male and female rats, however, reveals sex differences in sodium intake. Importantly, while humans ingest salt every day, with every meal and with many foods, we do not know how many of these findings from rodent studies can be generalized to men and women. This review provides a synthesis of the literature that examines sex differences in sodium intake and highlights open questions. Sodium serves many important physiological functions and is inextricably linked to the maintenance of body fluid homeostasis. Indeed, from a motivated behavior perspective, the drive to consume sodium has largely been studied in conjunction with the study of thirst. This review will describe the neuroendocrine controls of fluid balance, mechanisms underlying sex differences, sex differences in sodium intake, changes in sodium intake during pregnancy, and the possible neuronal mechanisms underlying these differences in behavior. Having reviewed the mechanisms that can only be studied in animal experiments, we address sex differences in human dietary sodium intake in reproduction, and with age.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Derek Daniels
- Department of Biology, University at Buffalo, Buffalo, NY 14260, USA
| | - Micah Leshem
- School of Psychological Sciences, The University of Haifa, Haifa 3498838, Israel
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Parabrachial-to-parasubthalamic nucleus pathway mediates fear-induced suppression of feeding in male mice. Nat Commun 2022; 13:7913. [PMID: 36585411 PMCID: PMC9803671 DOI: 10.1038/s41467-022-35634-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.
Collapse
|
15
|
Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, McKnight GS, Stuber GD, Palmiter RD. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 2022; 11:e81868. [PMID: 36317965 PMCID: PMC9668336 DOI: 10.7554/elife.81868] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Collapse
Affiliation(s)
- Jordan L Pauli
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Matthew E Carter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Elisenda Sanz
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - G Stanley McKnight
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
16
|
Nakatomi C, Sako N, Miyamura Y, Horie S, Shikayama T, Morii A, Naniwa M, Hsu CC, Ono K. Novel approaches to the study of viscosity discrimination in rodents. Sci Rep 2022; 12:16448. [PMID: 36180505 PMCID: PMC9525710 DOI: 10.1038/s41598-022-20441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Texture has enormous effects on food preferences. The materials used to study texture discrimination also have tastes that experimental animal can detect; therefore, such studies must be designed to exclude taste differences. In this study, to minimize the effects of material tastes, we utilized high- and low-viscosity forms of carboxymethyl cellulose (CMC-H and CMC-L, respectively) at the same concentrations (0.1-3%) for viscosity discrimination tests in rats. In two-bottle preference tests of water and CMC, rats avoided CMC-H solutions above 1% (63 mPa·s) but did not avoid less viscous CMC-L solutions with equivalent taste magnitudes, suggesting that rats spontaneously avoided high viscosity. To evaluate low-viscosity discrimination, we performed conditioned aversion tests to 0.1% CMC, which initially showed a comparable preference ratio to water in the two-bottle preference tests. Conditioning with 0.1% CMC-L (1.5 mPa·s) did not induce aversion to 0.1% CMC-L or CMC-H. However, rats acquired a conditioned aversion to 0.1% CMC-H (3.6 mPa·s) even after latent inhibition to CMC taste by pre-exposure to 0.1% CMC-L. These results suggest that rats can discriminate considerably low viscosity independent of CMC taste. This novel approach for viscosity discrimination can be used to investigate the mechanisms of texture perception in mammals.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Noritaka Sako
- Department of Oral Physiology, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Yuichi Miyamura
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Seiwa Horie
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Takemi Shikayama
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Aoi Morii
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Mako Naniwa
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Chia-Chien Hsu
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, 803-8580, Japan.
| |
Collapse
|
17
|
Tian Y, Wang P, Du L, Wu C. Advances in gustatory biomimetic biosensing technologies: In vitro and in vivo bioelectronic tongue. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Chen Z, Terman DH, Travers SP, Travers JB. Regulation of Rostral Nucleus of the Solitary Tract Responses to Afferent Input by A-type K+ Current. Neuroscience 2022; 495:115-125. [PMID: 35659639 PMCID: PMC9253083 DOI: 10.1016/j.neuroscience.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Responses in the rostral (gustatory) nucleus of the solitary tract (rNST) are modified by synaptic interactions within the nucleus and the constitutive membrane properties of the neurons themselves. The potassium current IA is one potential source of modulation. In the caudal NST, projection neurons with IA show lower fidelity to afferent stimulation compared to cells without. We explored the role of an A-type K+ current (IA) in modulating the response to afferent stimulation and GABA-mediated inhibition in the rNST using whole cell patch clamp recording in transgenic mice that expressed channelrhodopsin (ChR2 H134R) in GABAergic neurons. The presence of IA was determined in current clamp and the response to electrical stimulation of afferent fibers in the solitary tract was assessed before and after treatment with the specific Kv4 channel blocker AmmTX3. Blocking IA significantly increased the response to afferent stimulation by 53%. Using dynamic clamp to create a synthetic IA conductance, we demonstrated a significant 14% decrease in responsiveness to afferent stimulation in cells lacking IA. Because IA reduced excitability and is hyperpolarization-sensitive, we examined whether IA contributed to the inhibition resulting from optogenetic release of GABA. Although blocking IA decreased the percent suppression induced by GABA, this effect was attributable to the increased responsiveness resulting from AmmTX3, not to a change in the absolute magnitude of suppression. We conclude that rNST responses to afferent input are regulated independently by IA and GABA.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, Ohio State University, United States
| | - D H Terman
- Department of Mathematics, Ohio State University, United States
| | - S P Travers
- Division of Biosciences, Ohio State University, United States
| | - J B Travers
- Division of Biosciences, Ohio State University, United States.
| |
Collapse
|
19
|
Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022; 227:2409-2437. [PMID: 35838792 PMCID: PMC9418111 DOI: 10.1007/s00429-022-02534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) projects to areas of the forebrain involved in regulating behavior. Homeostatic challenges and salient cues activate the PVT and evidence shows that the PVT regulates appetitive and aversive responses. The brainstem is a source of afferents to the PVT and the present study was done to determine if the lateral parabrachial nucleus (LPB) is a relay for inputs to the PVT. Retrograde tracing experiments with cholera toxin B (CTB) demonstrate that the LPB contains more PVT projecting neurons than other regions of the brainstem including the catecholamine cell groups. The hypothesis that the LPB is a relay for signals to the PVT was assessed using an intersectional monosynaptic rabies tracing approach. Sources of inputs to LPB included the reticular formation; periaqueductal gray (PAG); nucleus cuneiformis; and superior and inferior colliculi. Distinctive clusters of input cells to LPB-PVT projecting neurons were also found in the dorsolateral bed nucleus of the stria terminalis (BSTDL) and the lateral central nucleus of the amygdala (CeL). Anterograde viral tracing demonstrates that LPB-PVT neurons densely innervate all regions of the PVT in addition to providing collateral innervation to the preoptic area, lateral hypothalamus, zona incerta and PAG but not the BSTDL and CeL. The paper discusses the anatomical evidence that suggests that the PVT is part of a network of interconnected neurons involved in arousal, homeostasis, and the regulation of behavioral states with forebrain regions potentially providing descending modulation or gating of signals relayed from the LPB to the PVT.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada. .,Departments of Psychiatry and Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| | - Shuanghong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2, Canada
| |
Collapse
|
20
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
21
|
Forstenpointner J, Elman I, Freeman R, Borsook D. The Omnipresence of Autonomic Modulation in Health and Disease. Prog Neurobiol 2022; 210:102218. [PMID: 35033599 DOI: 10.1016/j.pneurobio.2022.102218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
The Autonomic Nervous System (ANS) is a critical part of the homeostatic machinery with both central and peripheral components. However, little is known about the integration of these components and their joint role in the maintenance of health and in allostatic derailments leading to somatic and/or neuropsychiatric (co)morbidity. Based on a comprehensive literature search on the ANS neuroanatomy we dissect the complex integration of the ANS: (1) First we summarize Stress and Homeostatic Equilibrium - elucidating the responsivity of the ANS to stressors; (2) Second we describe the overall process of how the ANS is involved in Adaptation and Maladaptation to Stress; (3) In the third section the ANS is hierarchically partitioned into the peripheral/spinal, brainstem, subcortical and cortical components of the nervous system. We utilize this anatomical basis to define a model of autonomic integration. (4) Finally, we deploy the model to describe human ANS involvement in (a) Hypofunctional and (b) Hyperfunctional states providing examples in the healthy state and in clinical conditions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, SH, Germany.
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
23
|
Liu S, Kim DI, Oh TG, Pao GM, Kim JH, Palmiter RD, Banghart MR, Lee KF, Evans RM, Han S. Neural basis of opioid-induced respiratory depression and its rescue. Proc Natl Acad Sci U S A 2021; 118:e2022134118. [PMID: 34074761 PMCID: PMC8201770 DOI: 10.1073/pnas.2022134118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Opioid-induced respiratory depression (OIRD) causes death following an opioid overdose, yet the neurobiological mechanisms of this process are not well understood. Here, we show that neurons within the lateral parabrachial nucleus that express the µ-opioid receptor (PBL Oprm1 neurons) are involved in OIRD pathogenesis. PBL Oprm1 neuronal activity is tightly correlated with respiratory rate, and this correlation is abolished following morphine injection. Chemogenetic inactivation of PBL Oprm1 neurons mimics OIRD in mice, whereas their chemogenetic activation following morphine injection rescues respiratory rhythms to baseline levels. We identified several excitatory G protein-coupled receptors expressed by PBL Oprm1 neurons and show that agonists for these receptors restore breathing rates in mice experiencing OIRD. Thus, PBL Oprm1 neurons are critical for OIRD pathogenesis, providing a promising therapeutic target for treating OIRD in patients.
Collapse
Affiliation(s)
- Shijia Liu
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Dong-Il Kim
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Tae Gyu Oh
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Gerald M Pao
- Molecular and Cellular Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Jong-Hyun Kim
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Richard D Palmiter
- HHMI, University of Washington, Seattle, WA 98195
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Matthew R Banghart
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- HHMI, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Sung Han
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037;
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
24
|
Lemon CH. Tasting temperature: neural and behavioral responses to thermal stimulation of oral mucosa. CURRENT OPINION IN PHYSIOLOGY 2021; 20:16-22. [PMID: 33937598 DOI: 10.1016/j.cophys.2020.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Temperature sensation contributes to human enjoyment of foods and beverages. The mouthfeel of warmed foods or drinking ice-cold water on a hot day are respectively pleasant and refreshing. Although historically under-studied for a role in food preference, new data have shed light on how oral temperature sensing and thermoreceptor mechanisms inside the mouth influence ingestive acceptance behaviors in rodent models used in flavor neurobiology. Moreover, recent functional data have uncovered a broad diversity of thermosensory neurons in primary afferents and brain pathways that signal oral temperature. This review will discuss some of the progress made in these areas. Ultimately, unraveling the biological basis of oral temperature sensing will be critical to reveal how thermosensory factors interact with other orosensory modalities to shape ingestive preferences. Elucidating oral thermal processing will also be key for establishing general principles of temperature coding by the nervous system.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Biology, 730 Van Vleet Oval, University of Oklahoma, Norman, OK, 73019 USA.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, 73019 USA
| |
Collapse
|
25
|
Huang D, Grady FS, Peltekian L, Geerling JC. Efferent projections of Vglut2, Foxp2, and Pdyn parabrachial neurons in mice. J Comp Neurol 2020; 529:657-693. [PMID: 32621762 DOI: 10.1002/cne.24975] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB. In this study, we compared the projection patterns of glutamatergic neurons here with a subpopulation expressing the transcription factor Foxp2 and a further subpopulation expressing the neuropeptide Pdyn. To do this, we injected an AAV into the PB region to deliver a Cre-dependent anterograde tracer (synaptophysin-mCherry) in three different strains of Cre-driver mice. We then analyzed 147 neuroanatomical regions for labeled boutons in every brain (n = 11). Overall, glutamatergic neurons in the PB region project to a wide variety of sites in the cerebral cortex, basal forebrain, bed nucleus of the stria terminalis, amygdala, diencephalon, and brainstem. Foxp2 and Pdyn subpopulations project heavily to the hypothalamus, but not to the cortex, basal forebrain, or amygdala. Among the few differences between Foxp2 and Pdyn cases was a notable lack of Pdyn projections to the ventromedial hypothalamic nucleus. Our results indicate that genetic identity determines connectivity (and therefore, function), providing a framework for mapping all PB output projections based on the genetic identity of its neurons. Using genetic markers to systematically classify PB neurons and their efferent projections will enhance the translation of research findings from experimental animals to humans.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Fillan S Grady
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Lila Peltekian
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Selective Removal of Sodium Salt Taste Disrupts the Maintenance of Dendritic Architecture of Gustatory Relay Neurons in the Mouse Nucleus of the Solitary Tract. eNeuro 2020; 7:ENEURO.0140-20.2020. [PMID: 32817119 PMCID: PMC7598914 DOI: 10.1523/eneuro.0140-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity plays critical roles in the development of sensory circuits in the mammalian brain. Experimental procedures are now available to alter the function of specific taste transduction pathways and have been especially useful in studying how stimulus-specific taste activity influences the development of central gustatory circuits. We previously used a mouse knock-out (KO) model in which the transduction channel necessary for sodium taste is removed from taste bud cells throughout life. In these KO mice, the terminal fields that carry taste information from taste buds into the nucleus of the solitary tract (NST) fail to mature, suggesting that sodium-elicited taste activity is important for the proper development of central gustatory circuits. Here, we tested the hypothesis that the development and maintenance of the dendritic architecture of NST relay cells, the primary postsynaptic partner of gustatory nerve terminal fields, are similarly dependent on sodium-elicited taste activity. The dendritic fields of NST relay cells, from adult male and female mice in which the α-subunit of the epithelial sodium channel (αENaC) was conditionally deleted in taste bud cells throughout life, were up to 2.4× larger and more complex than that of age-matched control mice. Interestingly, these differences in dendritic architecture did not appear until after the age when terminal fields begin “pruning,” after postnatal day (P)20. Overall, our results suggest that ENaC-mediated sodium taste activity is necessary for the maintenance of dendritic fields of relay cells in the gustatory NST.
Collapse
|
27
|
Agostinelli LJ, Mix MR, Hefti MM, Scammell TE, Bassuk AG. Input-output connections of LJA5 prodynorphin neurons. J Comp Neurol 2020; 529:635-654. [PMID: 32602558 PMCID: PMC7769903 DOI: 10.1002/cne.24974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
Abstract
Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain. Sensory information may be modulated by projections from the brain to the spinal cord, but the neural substrates for top‐down sensory control are incompletely understood. We identified a novel population of inhibitory neurons in the mouse brainstem, distinguished by their expression of prodynorphin, which we named LJA5. Here, we identify a similar group of Pdyn+ neurons in the human brainstem, and we define the efferent and afferent projection patterns of LJA5 neurons in mouse. Using specific genetic tools, we selectively traced the projections of the Pdyn‐expressing LJA5 neurons through the brain and spinal cord. Terminal fields were densest in the lateral and ventrolateral periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), caudal pressor area, and lamina I of the spinal trigeminal nucleus and all levels of the spinal cord. We then labeled cell types in the PAG, LPB, medulla, and spinal cord to better define the specific targets of LJA5 boutons. LJA5 neurons send the only known inhibitory descending projection specifically to lamina I of the spinal cord, which transmits afferent pain, temperature, and itch information up to the brain. Using retrograde tracing, we found LJA5 neurons receive inputs from sensory and stress areas such as somatosensory/insular cortex, preoptic area, paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus, PAG, and LPB. This pattern of inputs and outputs suggest LJA5 neurons are uniquely positioned to be activated by sensation and stress, and in turn, inhibit pain and itch.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Madison R Mix
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander G Bassuk
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Lundy R. Comparison of GABA, Somatostatin, and Corticotrophin-Releasing Hormone Expression in Axon Terminals That Target the Parabrachial Nucleus. Chem Senses 2020; 45:275-282. [PMID: 32107535 DOI: 10.1093/chemse/bjaa010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. Some sources of descending input such as the central nucleus of the amygdala (CeA) might utilize somatostatin (Sst) and/or corticotrophin-releasing hormone (Crh) to influence taste processing in the PBN (Panguluri S, Saggu S, Lundy R. 2009. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 1298:57-69; Magableh A, Lundy R. 2014. Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice. Chem Senses 39:673-682). Since the predominate effect of CeA stimulation on PBN taste-evoked responses is inhibition, this study used transgenic reporter lines (Sst/TdTomato and Crh/TdTomato) and electron microscopy to assess Sst/gamma aminobutyric acid (GABA) and Crh/GABA coexpression in axon terminals within the PBN. Robust expression of Sst and Crh axon terminals was observed in the PBN. The majority of Sst-positive axon terminals were positive for GABA expression, while the majority of Crh terminals were not. The results indicate that Sst-expressing neurons, but not Crh neurons, are a source of GABAergic input to the PBN. To assess whether the CeA is a source of GABAergic input to the PBN, the CeA of Sst-cre mice was injected with cre-dependent enhanced yellow fluorescent protein (EYFP) virus and PBN tissue processed for GABA and EYFP expression. Again, the majority of EYFP Sst-positive axon terminals in the PBN coexpressed GABA. Together, the present results suggest that CeA neurons marked by Sst expression represent a major extrinsic source of GABAergic input to the PBN and this could underlie the predominate inhibitory effect of CeA stimulation on taste-evoked responses in the PBN.
Collapse
Affiliation(s)
- Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston St., HSC A, rm 1003, Louisville, KY, USA
| |
Collapse
|
29
|
Grady F, Peltekian L, Iverson G, Geerling JC. Direct Parabrachial-Cortical Connectivity. Cereb Cortex 2020; 30:4811-4833. [PMID: 32383444 DOI: 10.1093/cercor/bhaa072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The parabrachial nucleus (PB) in the upper brain stem tegmentum includes several neuronal subpopulations with a wide variety of connections and functions. A subpopulation of PB neurons projects axons directly to the cerebral cortex, and limbic areas of the cerebral cortex send a return projection directly to the PB. We used retrograde and Cre-dependent anterograde tracing to identify genetic markers and characterize this PB-cortical interconnectivity in mice. Cortical projections originate from glutamatergic PB neurons that contain Lmx1b (81%), estrogen receptor alpha (26%), and Satb2 (20%), plus mRNA for the neuropeptides cholecystokinin (Cck, 48%) and calcitonin gene-related peptide (Calca, 13%), with minimal contribution from FoxP2+ PB neurons (2%). Axons from the PB produce an extensive terminal field in an unmyelinated region of the insular cortex, extending caudally into the entorhinal cortex, and arcing rostrally through the dorsolateral prefrontal cortex, with a secondary terminal field in the medial prefrontal cortex. In return, layer 5 neurons in the insular cortex and other prefrontal areas, along with a dense cluster of cells dorsal to the claustrum, send a descending projection to subregions of the PB that contain cortically projecting neurons. This information forms the neuroanatomical basis for testing PB-cortical interconnectivity in arousal and interoception.
Collapse
Affiliation(s)
- Fillan Grady
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Lila Peltekian
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Gabrielle Iverson
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| | - Joel C Geerling
- Department of Neurology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
30
|
Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020; 5:133429. [PMID: 32213703 DOI: 10.1172/jci.insight.133429] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Semaglutide, a glucagon-like peptide 1 (GLP-1) analog, induces weight loss, lowers glucose levels, and reduces cardiovascular risk in patients with diabetes. Mechanistic preclinical studies suggest weight loss is mediated through GLP-1 receptors (GLP-1Rs) in the brain. The findings presented here show that semaglutide modulated food preference, reduced food intake, and caused weight loss without decreasing energy expenditure. Semaglutide directly accessed the brainstem, septal nucleus, and hypothalamus but did not cross the blood-brain barrier; it interacted with the brain through the circumventricular organs and several select sites adjacent to the ventricles. Semaglutide induced central c-Fos activation in 10 brain areas, including hindbrain areas directly targeted by semaglutide, and secondary areas without direct GLP-1R interaction, such as the lateral parabrachial nucleus. Automated analysis of semaglutide access, c-Fos activity, GLP-1R distribution, and brain connectivity revealed that activation may involve meal termination controlled by neurons in the lateral parabrachial nucleus. Transcriptomic analysis of microdissected brain areas from semaglutide-treated rats showed upregulation of prolactin-releasing hormone and tyrosine hydroxylase in the area postrema. We suggest semaglutide lowers body weight by direct interaction with diverse GLP-1R populations and by directly and indirectly affecting the activity of neural pathways involved in food intake, reward, and energy expenditure.
Collapse
Affiliation(s)
| | | | | | | | | | - Arian F Baquero
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | - Erzsébet Farkas
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Hans Christian C Helms
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | | | | | | | | | | | | | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | | | - Gao Sun
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | - Anett Szilvásy-Szabó
- Institute of Experimental Medicine Hungarian Academy of Sciences, Budapest, Hungary
| | - Hanni Willenbrock
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark, and Seattle, Washington, USA
| | | | | | | |
Collapse
|
31
|
Meoni S, Cury RG, Moro E. New players in basal ganglia dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:307-327. [PMID: 32247369 DOI: 10.1016/bs.pbr.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The classical model of the basal ganglia (BG) circuit has been recently revised with the identification of other structures that play an increasing relevant role especially in the pathophysiology of Parkinson's disease (PD). Numerous studies have supported the spreading of the alpha-synuclein pathology to several areas beyond the BG and likely even before their involvement. With the aim of better understanding PD pathophysiology and finding new targets for treatment, the spinal cord, the pedunculopontine nucleus, the substantia nigra pars reticulata, the retina, the superior colliculus, the cerebellum, the nucleus parabrachialis and the Meynert's nucleus have been investigated both in animal and human studies. In this chapter, we describe the main anatomical and functional connections between the above structures and the BG, the relationship between their pathology and PD features, and the rational of applying neuromodulation treatment to improve motor and non-motor symptoms in PD. Some of these new players in the BG circuits might also have a potential intriguing role as early biomarkers of PD.
Collapse
Affiliation(s)
- Sara Meoni
- Movement Disorders Unit, Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble, France; INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Movement Disorders Unit, Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble, France; INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France.
| |
Collapse
|
32
|
Chaskiel L, Bristow AD, Bluthé RM, Dantzer R, Blomqvist A, Konsman JP. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav Immun 2019; 81:560-573. [PMID: 31310797 DOI: 10.1016/j.bbi.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
A reduction in food intake is commonly observed after bacterial infection, a phenomenon that can be reproduced by peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. The arcuate nucleus of the hypothalamus (ARH) plays a major role in food intake regulation and expresses IL-1 type 1 receptor (IL-1R1) mRNA. In the present work, we tested the hypothesis that IL-1R1 expressing cells in the ARH mediate IL-1β and/or LPS-induced hypophagia in the rat. To do so, we developed an IL-1β-saporin conjugate, which eliminated IL-R1-expressing neurons in the hippocampus, and micro-injected it into the ARH prior to systemic IL-1β and LPS administration. ARH IL-1β-saporin injection resulted in loss of neuropeptide Y-containing cells and attenuated hypophagia and weight loss after intraperitoneal IL-1β, but not LPS, administration. In conclusion, the present study shows that ARH NPY-containing neurons express functional IL-1R1s that mediate peripheral IL-1β-, but not LPS-, induced hypophagia. Our present and previous findings indicate that the reduction of food intake after IL-1β and LPS are mediated by different neural pathways.
Collapse
Affiliation(s)
- Léa Chaskiel
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Adrian D Bristow
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Rose-Marie Bluthé
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Jan Pieter Konsman
- UMR CNRS 5287 Aquitaine Institute for Integrative and Cognitive Neuroscience, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
33
|
Abstract
The phenomenon of conditioned taste aversion (CTA) is generated after ingestion of a specific food is associated with an adverse outcome, i.e., sickness. In this issue of Neuron, Chen et al. (2018) interrogate the pivotal role of PBNCGRP neurons in both the acquisition and the expression of CTA.
Collapse
Affiliation(s)
- Arnab Barik
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019; 224:1097-1117. [PMID: 30612231 PMCID: PMC6500474 DOI: 10.1007/s00429-018-01820-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/16/2018] [Indexed: 12/25/2022]
Abstract
The basal forebrain (BF) contains at least three distinct populations of neurons (cholinergic, glutamatergic, and GABA-ergic) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Much attention has focused on the BF's ascending projections to cortex, but less is known about descending projections to subcortical regions. Given the neurochemical and anatomical heterogeneity of the BF, we used conditional anterograde tracing to map the patterns of subcortical projections from multiple BF regions and neurochemical cell types using mice that express Cre recombinase only in cholinergic, glutamatergic, or GABAergic neurons. We confirmed that different BF regions innervate distinct subcortical targets, with more subcortical projections arising from neurons in the caudal and lateral BF (substantia innominata and magnocellular preoptic area). Additionally, glutamatergic and GABAergic BF neurons have distinct patterns of descending projections, while cholinergic descending projections are sparse. Considering the intensity of glutamatergic and GABAergic descending projections, the BF likely acts through subcortical targets to promote arousal, motivation, and other behaviors.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Sweet and bitter taste stimuli activate VTA projection neurons in the parabrachial nucleus. Brain Res 2019; 1714:99-110. [PMID: 30807736 DOI: 10.1016/j.brainres.2019.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
This study investigated neural projections from the parabrachial nucleus (PBN), a gustatory and visceral processing area in the brainstem, to the ventral tegmental area (VTA) in the midbrain. The VTA contains a large population of dopaminergic neurons that have been shown to play a role in reward processing. Anterograde neural tracing methods were first used to confirm that a robust projection from the caudal PBN terminates in the dorsal VTA; this projection was larger on the contralateral side. In the next experiment, we combined dual retrograde tracing from the VTA and the gustatory ventral posteromedial thalamus (VPMpc) with taste-evoked Fos protein expression, which labels activated neurons. Mice were stimulated through an intraoral cannula with sucrose, quinine, or water, and PBN sections were processed for immunofluorescent detection of Fos and retrograde tracers. The distribution of tracer-labeled PBN neurons demonstrated that the populations of cells projecting to the VTA or VPMpc are largely independent. Quantification of cells double labeled for Fos and either tracer demonstrated that sucrose and quinine were effective in activating both pathways. These results indicate that information about both appetitive and aversive tastes is delivered to a key midbrain reward interface via direct projections from the PBN.
Collapse
|
36
|
Kjaergaard M, Salinas CBG, Rehfeld JF, Secher A, Raun K, Wulff BS. PYY(3-36) and exendin-4 reduce food intake and activate neuronal circuits in a synergistic manner in mice. Neuropeptides 2019; 73:89-95. [PMID: 30471778 DOI: 10.1016/j.npep.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
Peptide YY(3-36) ((PYY(3-36)) and glucagon like peptide 1 (GLP-1) in combination reduce food intake and body weight in an additive or synergistic manner in animal models and in humans. Nevertheless, the mechanisms behind are not completely understood. The present study aims to investigate the effect of combining PYY(3-36) and the GLP-1 receptor agonist exendin-4 (Ex4) by examining acute food intake and global neuronal activation as measured by c-fos in C57BL/6 J mice. An additive reduction in food intake was found 1.5 h after s.c dosing with the combination of PYY(3-36) (200 μg/kg) and Ex4 (2.5 μg/kg). This was associated with a synergistic enhancement of c-fos reactivity in central amygdalar nucleus (CeA), rostral part of the mediobasal arcuate nucleus (ARH), supratrigeminal nucleus (SUT), lateral parabrachial nucleus (PB), area postrema (AP) and nucleus tractus solitarius (NTS) compared to vehicle, PYY(3-36) and Ex4 individually dosed mice. The regions activated by Ex4 individually and PYY(3-36) and Ex4 in combination resembled each other, but the combination group had a significantly stronger c-fos response. Twenty-five brain areas were activated by PYY(3-36) and Ex4 in combination compared to vehicle versus nine brain areas by Ex4 individually. No significant increase in c-fos reactivity was found by PYY(3-36) compared to vehicle dosed mice. The neuronal activation of ARH and the AP/NTS to PB to CeA pathway is important for appetite regulation while SUT has not previously been reported in the regulation of energy balance. As PYY(3-36) and Ex4 act on different neurons leading to recruitment of different signalling pathways within and to the brain, an interaction of these pathways may contribute to their additive/synergistic action. Thus, PYY(3-36) boosts the effect of Ex4 possibly by inducing less inhibition of neuronal activity leading to an enhanced neuronal activity induced by Ex4.
Collapse
Affiliation(s)
- Marina Kjaergaard
- Histology and Imaging, Novo Nordisk A/S, 2760 Måløv, Denmark.; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark..
| | | | - Jens F Rehfeld
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anna Secher
- Histology and Imaging, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Kirsten Raun
- Obesity Research, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | |
Collapse
|
37
|
Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct Funct 2019; 224:1067-1095. [PMID: 30610368 DOI: 10.1007/s00429-018-01825-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The central extended amygdala (EAc) is a forebrain macrosystem which has been widely implicated in reward, fear, anxiety, and pain. Its two key structures, the lateral bed nucleus of the stria terminalis (BSTL) and the central nucleus of the amygdala (CeA), share similar mesoscale connectivity. However, it is not known whether they also share similar cell-specific neuronal circuits. We addressed this question using tract-tracing and immunofluorescence to reveal the EAc microcircuits involving two neuronal populations expressing either protein kinase C delta (PKCδ) or somatostatin (SOM). PKCδ and SOM are expressed predominantly in the dorsal BSTL (BSTLD) and in the lateral/capsular parts of CeA (CeL/C). We found that, in both BSTLD and CeL/C, PKCδ+ cells are the main recipient of extra-EAc inputs from the lateral parabrachial nucleus (LPB), while SOM+ cells constitute the main source of long-range projections to extra-EAc targets, including LPB and periaqueductal gray. PKCδ+ cells can also integrate inputs from the basolateral nucleus of the amygdala or insular cortex. Within EAc, PKCδ+, but not SOM+ neurons, serve as the major source of inputs to the ventral BSTL and to the medial part of CeA. However, both cell types can be involved in mutual connections between BSTLD and CeL/C. These results unveil the pivotal positions of PKCδ+ and SOM+ neurons in organizing parallel cell-specific neuronal circuits within CeA and BSTL, but also between them, which further reinforce the notion of EAc as a structural and functional macrosystem.
Collapse
|
38
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
39
|
Activation of Parabrachial Nucleus Glutamatergic Neurons Accelerates Reanimation from Sevoflurane Anesthesia in Mice. Anesthesiology 2019; 130:106-118. [DOI: 10.1097/aln.0000000000002475] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
EDITOR’S PERSPECTIVE
What We Already Know about This Topic
The parabrachial nucleus is a brainstem region involved in arousal.
Brain regions involved in arousal regulate anesthetic induction and emergence.
What This Article Tells Us That Is New
Using chemogenetic techniques, activation of parabrachial nucleus glutamatergic neurons prolonged anesthetic induction and hastened emergence in mice. Inhibition of these neurons provided opposite effects.
Modulating the activity of arousal centers may provide an approach to controlling the duration of general anesthesia.
Background
The parabrachial nucleus (PBN), which is a brainstem region containing glutamatergic neurons, is a key arousal nucleus. Injuries to the area often prevent patient reanimation. Some studies suggest that brain regions that control arousal and reanimation are a key part of the anesthesia recovery. Therefore, we hypothesize that the PBN may be involved in regulating emergence from anesthesia.
Methods
We investigated the effects of specific activation or inhibition of PBN glutamatergic neurons on sevoflurane general anesthesia using the chemogenetic “designer receptors exclusively activated by designer drugs” approach. Optogenetic methods combined with polysomnographic recordings were used to explore the effects of transient activation of PBN glutamatergic neuron on sevoflurane anesthesia. Immunohistochemical techniques are employed to reveal the mechanism by which PBN regulated sevoflurane anesthesia.
Results
Chemogenetic activation of PBN glutamatergic neurons by intraperitoneal injections of clozapine-N-oxide decreased emergence time (mean ± SD, control vs. clozapine-N-oxide, 55 ± 24 vs. 15 ± 9 s, P = 0.0002) caused by sevoflurane inhalation and prolonged induction time (70 ± 15 vs. 109 ± 38 s, n = 9, P = 0.012) as well as the ED50 of sevoflurane (1.48 vs. 1.60%, P = 0.0002), which was characterized by a rightward shift of the loss of righting reflex cumulative curve. In contrast, chemogenetic inhibition of PBN glutamatergic neurons slightly increased emergence time (56 ± 26 vs. 87 ± 26 s, n = 8, P = 0.034). Moreover, instantaneous activation of PBN glutamatergic neurons expressing channelrhodopsin-2 during steady-state general anesthesia with sevoflurane produced electroencephalogram evidence of cortical arousal. Immunohistochemical experiments showed that activation of PBN induced excitation of cortical and subcortical arousal nuclei during sevoflurane anesthesia.
Conclusions
Activation of PBN glutamatergic neurons is helpful to accelerate the transition from general anesthesia to an arousal state, which may provide a new strategy in shortening the recovery time after sevoflurane anesthesia.
Collapse
|
40
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
41
|
Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2018; 1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.
Collapse
Affiliation(s)
- Aline R Abreu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
42
|
Fukushi I, Yokota S, Okada Y. The role of the hypothalamus in modulation of respiration. Respir Physiol Neurobiol 2018; 265:172-179. [PMID: 30009993 DOI: 10.1016/j.resp.2018.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
The hypothalamus is a higher center of the autonomic nervous system and maintains essential body homeostasis including respiration. The paraventricular nucleus, perifornical area, dorsomedial hypothalamus, and lateral and posterior hypothalamus are the primary nuclei of the hypothalamus critically involved in respiratory control. These hypothalamic nuclei are interconnected with respiratory nuclei located in the midbrain, pons, medulla and spinal cord. We provide an extensive review of the role of the above hypothalamic nuclei in the maintenance of basal ventilation, and modulation of respiration in hypoxic and hypercapnic conditions, during dynamic exercise, in awake and sleep states, and under stress. Dysfunction of the hypothalamus causes abnormal breathing and hypoventilation. However, the cellular and molecular mechanisms how the hypothalamus integrates and modulates autonomic and respiratory functions remain to be elucidated.
Collapse
Affiliation(s)
- Isato Fukushi
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
43
|
Augustine V, Gokce SK, Oka Y. Peripheral and Central Nutrient Sensing Underlying Appetite Regulation. Trends Neurosci 2018; 41:526-539. [PMID: 29914721 DOI: 10.1016/j.tins.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
The precise regulation of fluid and energy homeostasis is essential for survival. It is well appreciated that ingestive behaviors are tightly regulated by both peripheral sensory inputs and central appetite signals. With recent neurogenetic technologies, considerable progress has been made in our understanding of basic taste qualities, the molecular and/or cellular basis of taste sensing, and the central circuits for thirst and hunger. In this review, we first highlight the functional similarities and differences between mammalian and invertebrate taste processing. We then discuss how central thirst and hunger signals interact with peripheral sensory signals to regulate ingestive behaviors. We finally indicate some of the directions for future research.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sertan Kutal Gokce
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
44
|
Palmiter RD. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci 2018; 41:280-293. [PMID: 29703377 PMCID: PMC5929477 DOI: 10.1016/j.tins.2018.03.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/17/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
The parabrachial nucleus (PBN), which is located in the pons and is dissected by one of the major cerebellar output tracks, is known to relay sensory information (visceral malaise, taste, temperature, pain, itch) to forebrain structures including the thalamus, hypothalamus, and extended amygdala. The availability of mouse lines expressing Cre recombinase selectively in subsets of PBN neurons and viruses for Cre-dependent gene expression is beginning to reveal the connectivity and functions of PBN component neurons. This review focuses on PBN neurons expressing calcitonin gene-related peptide (CGRPPBN) that play a major role in regulating appetite and transmitting real or potential threat signals to the extended amygdala. The functions of other specific PBN neuronal populations are also discussed. This review aims to encourage investigation of the numerous unanswered questions that are becoming accessible.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute, and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Campos CA, Bowen AJ, Roman CW, Palmiter RD. Encoding of danger by parabrachial CGRP neurons. Nature 2018; 555:617-622. [PMID: 29562230 PMCID: PMC6129987 DOI: 10.1038/nature25511] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Abstract
Animals must respond to various threats to survive. Neurons that express calcitonin gene-related peptide (CGRP) in the parabrachial nucleus (PBN) relay sensory signals that contribute to satiation and pain-induced fear behavior, but it is unknown how they encode these distinct processes. By recording calcium transients in vivo from individual CGRPPBN neurons, we reveal that most neurons are activated by noxious cutaneous (shock, heat, itch) and visceral stimuli (lipopolysaccharide). These same neurons are inhibited during feeding, but become activated during satiation, consistent with evidence that CGRPPBN neurons prevent overeating. CGRPPBN neurons are also activated during consumption of novel food or by an auditory cue that was previously paired with electrical foot shocks. Correspondingly, silencing CGRPPBN neurons attenuates expression of food neophobia and conditioned fear responses. Therefore, in addition to transducing primary sensory danger signals, CGRPPBN neurons promote affective-behavioral states that limit harm in response to potential threats.
Collapse
Affiliation(s)
- Carlos A Campos
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Anna J Bowen
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Carolyn W Roman
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
46
|
Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H. Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Front Neural Circuits 2018; 12:6. [PMID: 29467628 PMCID: PMC5808303 DOI: 10.3389/fncir.2018.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 01/12/2018] [Indexed: 11/28/2022] Open
Abstract
Cerebellar malformations cause changes to the sleep-wake cycle, resulting in sleep disturbance. However, it is unclear how the cerebellum contributes to the sleep-wake cycle. To examine the neural connections between the cerebellum and the nuclei involved in the sleep-wake cycle, we investigated the axonal projections of Purkinje cells in the mouse posterior vermis by using an adeno-associated virus (AAV) vector (serotype rh10) as an anterograde tracer. When an AAV vector expressing humanized renilla green fluorescent protein was injected into the cerebellar lobule IX, hrGFP and synaptophysin double-positive axonal terminals were observed in the region of medial parabrachial nucleus (MPB). The MPB is involved in the phase transition from rapid eye movement (REM) sleep to Non-REM sleep and vice versa, and the cardiovascular and respiratory responses. The hrGFP-positive axons from lobule IX went through the ventral spinocerebellar tract and finally reached the MPB. By contrast, when the AAV vector was injected into cerebellar lobule VI, no hrGFP-positive axons were observed in the MPB. To examine neurons projecting to the MPB, we unilaterally injected Fast Blue and AAV vector (retrograde serotype, rAAV2-retro) as retrograde tracers into the MPB. The cerebellar Purkinje cells in lobules VIII–X on the ipsilateral side of the Fast Blue-injected MPB were retrogradely labeled by Fast Blue and AAV vector (retrograde serotype), but no retrograde-labeled Purkinje cells were observed in lobules VI–VII and the cerebellar hemispheres. These results indicated that Purkinje cells in lobules VIII–X directly project their axons to the ipsilateral MPB but not lobules VI–VII. The direct connection between lobules VIII–X and the MPB suggests that the cerebellum participates in the neural network controlling the sleep-wake cycle, and cardiovascular and respiratory responses, by modulating the physiological function of the MPB.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Neuroanatomy and Embryology, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan.,Brain Interdisciplinary Research Division, Research Institute for Science and Technology, Tokyo University of Science, Noda-shi, Japan.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Japan.,Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, Saitama, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, Saitama, Japan.,Department of Life Science and Medical Bio-Science, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University Graduate School of Medicine, Fukushima, Japan
| |
Collapse
|
47
|
Rodriguez E, Sakurai K, Xu J, Chen Y, Toda K, Zhao S, Han BX, Ryu D, Yin H, Liedtke W, Wang F. A craniofacial-specific monosynaptic circuit enables heightened affective pain. Nat Neurosci 2017; 20:1734-1743. [PMID: 29184209 PMCID: PMC5819335 DOI: 10.1038/s41593-017-0012-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023]
Abstract
Humans often rank craniofacial pain as more severe than body pain. Evidence suggests that a stimulus of the same intensity induces stronger pain in the face than in the body. However, the underlying neural circuitry for the differential processing of facial versus bodily pain remains unknown. Interestingly, the lateral parabrachial nucleus (PBL), a critical node in the affective pain circuit, is activated more strongly by noxious stimulation of the face than of the hindpaw. Using a novel activity-dependent technology called CANE developed in our laboratory, we identified and selectively labeled noxious-stimulus-activated PBL neurons and performed comprehensive anatomical input-output mapping. Surprisingly, we uncovered a hitherto uncharacterized monosynaptic connection between cranial sensory neurons and the PBL-nociceptive neurons. Optogenetic activation of this monosynaptic craniofacial-to-PBL projection induced robust escape and avoidance behaviors and stress calls, whereas optogenetic silencing specifically reduced facial nociception. The monosynaptic circuit revealed here provides a neural substrate for heightened craniofacial affective pain.
Collapse
Affiliation(s)
- Erica Rodriguez
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jennie Xu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Koji Toda
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - David Ryu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
48
|
Mercante B, Enrico P, Floris G, Quartu M, Boi M, Serra MP, Follesa P, Deriu F. Trigeminal nerve stimulation induces Fos immunoreactivity in selected brain regions, increases hippocampal cell proliferation and reduces seizure severity in rats. Neuroscience 2017; 361:69-80. [DOI: 10.1016/j.neuroscience.2017.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/06/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
|
49
|
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
50
|
Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex. J Neurosci 2017; 37:7595-7605. [PMID: 28674169 DOI: 10.1523/jneurosci.0649-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|