1
|
Sozer A, Sahin MC, Sozer B, Sozer E, Bayik P, Tokgoz N, Emmez H, Kaymaz M, Yaman ME. Radioneuromodulation of Nucleus Accumbens for Addiction: The First Animal Study. World Neurosurg 2024:S1878-8750(24)01575-4. [PMID: 39276968 DOI: 10.1016/j.wneu.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Addiction is a serious spiral where negative events or relationships trigger a craving even when the situation is caused by the addiction in the first place. Nucleus accumbens is identified as an important hub for the neural pathways involved in the addictive behavior. Stimulation of this structure was demonstrated to be beneficial for addiction previously, but radioneuromodulation was never investigated until today. This study aimed to investigate if radioneuromodulation of the nucleus accumbens has any effect on alcohol addiction. METHODS An addiction model was used on 36 Long-Evans rats (18 females/18 males), via a 2-bottle intermittent access protocol, and the trial group received 100 Gy of gamma irradiation to their bilateral nucleus accumbens. Rats were followed up for an additional 15 weeks. Multiple sets of a behavioral test battery, a 4-week abstinence period, and quinine adulteration challenges were used to evaluate responses. RESULTS The experiment showed that the intervention reduced alcohol preference in the presence of aversive stimuli in female rats, compared with the nonirradiated control rats, because the trial group showed a 9.83-point decrease in alcohol preference rate under high-dose quinine adulteration compared with baseline, whereas the control group did not show any decrease. There were also implications of additional benefits regarding weight control in females and behavioral tests in males. No evident adverse effect was observed with the treatment. CONCLUSIONS This study indicates that nucleus accumbens radioneuromodulation, although not significantly affecting baseline consumption, reduces intake when an aversive stimulus is involved, implying improved self-control.
Collapse
Affiliation(s)
- Alperen Sozer
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | - Batuhan Sozer
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ekin Sozer
- Directorate of Health Culture and Sports, Gazi University, Ankara, Turkey
| | - Pelin Bayik
- Department of Pathology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Nil Tokgoz
- Department of Radiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Hakan Emmez
- Department on Neurosurgery, Guven Hospital, Ankara, Turkey
| | - Memduh Kaymaz
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mesut Emre Yaman
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Alcohol, HMGB1, and Innate Immune Signaling in the Brain. Alcohol Res 2024; 44:04. [PMID: 39135668 PMCID: PMC11318841 DOI: 10.35946/arcr.v44.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Binge drinking (i.e., consuming enough alcohol to achieve a blood ethanol concentration of 80 mg/dL, approximately 4-5 drinks within 2 hours), particularly in early adolescence, can promote progressive increases in alcohol drinking and alcohol-related problems that develop into compulsive use in the chronic relapsing disease, alcohol use disorder (AUD). Over the past decade, neuroimmune signaling has been discovered to contribute to alcohol-induced changes in drinking, mood, and neurodegeneration. This review presents a mechanistic hypothesis supporting high mobility group box protein 1 (HMGB1) and Toll-like receptor (TLR) signaling as key elements of alcohol-induced neuroimmune signaling across glia and neurons, which shifts gene transcription and synapses, altering neuronal networks that contribute to the development of AUD. This hypothesis may help guide further research on prevention and treatment. SEARCH METHODS The authors used the search terms "HMGB1 protein," "alcohol," and "brain" across PubMed, Scopus, and Embase to find articles published between 1991 and 2023. SEARCH RESULTS The database search found 54 references in PubMed, 47 in Scopus, and 105 in Embase. A total of about 100 articles were included. DISCUSSION AND CONCLUSIONS In the brain, immune signaling molecules play a role in normal development that differs from their functions in inflammation and the immune response, although cellular receptors and signaling are shared. In adults, pro-inflammatory signals have emerged as contributing to brain adaptation in stress, depression, AUD, and neurodegenerative diseases. HMGB1, a cytokine-like signaling protein released from activated cells, including neurons, is hypothesized to activate pro-inflammatory signals through TLRs that contribute to adaptations to binge and chronic heavy drinking. HMGB1 alone and in heteromers with other molecules activates TLRs and other immune receptors that spread signaling across neurons and glia. Both blood and brain levels of HMGB1 increase with ethanol exposure. In rats, an adolescent intermittent ethanol (AIE) binge drinking model persistently increases brain HMGB1 and its receptors; alters microglia, forebrain cholinergic neurons, and neuronal networks; and increases alcohol drinking and anxiety while disrupting cognition. Studies of human postmortem AUD brain have found elevated levels of HMGB1 and TLRs. These signals reduce cholinergic neurons, whereas microglia, the brain's immune cells, are activated by binge drinking. Microglia regulate synapses through complement proteins that can change networks affected by AIE that increase drinking, contributing to risks for AUD. Anti-inflammatory drugs, exercise, cholinesterase inhibitors, and histone deacetylase epigenetic inhibitors prevent and reverse the AIE-induced pathology. Further, HMGB1 antagonists and other anti-inflammatory treatments may provide new therapies for alcohol misuse and AUD. Collectively, these findings suggest that restoring the innate immune signaling balance is central to recovering from alcohol-related pathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Armijo-Weingart L, San Martin L, Gallegos S, Araya A, Konar-Nie M, Fernandez-Pérez E, Aguayo LG. Loss of glycine receptors in the nucleus accumbens and ethanol reward in an Alzheimer´s Disease mouse model. Prog Neurobiol 2024; 237:102616. [PMID: 38723884 PMCID: PMC11163974 DOI: 10.1016/j.pneurobio.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aβ in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aβ in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Loreto San Martin
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Anibal Araya
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Macarena Konar-Nie
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Eduardo Fernandez-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile.
| |
Collapse
|
4
|
Lodha J, Brocato ER, Nash M, Marcus MM, Pais AC, Pais AB, Miles MF, Wolstenholme JT. Adolescent social housing protects against adult emotional and cognitive deficits and alters the PFC and NAc transcriptome in male and female C57BL/6J mice. Front Neurosci 2023; 17:1287584. [PMID: 38130694 PMCID: PMC10733512 DOI: 10.3389/fnins.2023.1287584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Adolescence is a critical period in cognitive and emotional development, characterized by high levels of social interaction and increases in risk-taking behavior including binge drinking. Adolescent exposure to social stress and binge ethanol have individually been associated with the development of social, emotional, and cognitive deficits, as well as increased risk for alcohol use disorder. Disruption of cortical development by early life social stress and/or binge drinking may partly underlie these enduring emotional, cognitive, and behavioral effects. The study goal is to implement a novel neighbor housing environment to identify the effects of adolescent neighbor housing and/or binge ethanol drinking on (1) a battery of emotional and cognitive tasks (2) adult ethanol drinking behavior, and (3) the nucleus accumbens and prefrontal cortex transcriptome. Methods Adolescent male and female C57BL/6J mice were single or neighbor housed with or without access to intermittent ethanol. One cohort underwent behavioral testing during adulthood to determine social preference, expression of anxiety-like behavior, cognitive performance, and patterns of ethanol intake. The second cohort was sacrificed in late adolescence and brain tissue was used for transcriptomics analysis. Results As adults, single housed mice displayed decreased social interaction, deficits in the novel object recognition task, and increased anxiety-like behavior, relative to neighbor-housed mice. There was no effect of housing condition on adolescent or adult ethanol consumption. Adolescent ethanol exposure did not alter adult ethanol intake. Transcriptomics analysis revealed that adolescent housing condition and ethanol exposure resulted in differential expression of genes related to synaptic plasticity in the nucleus accumbens and genes related to methylation, the extracellular matrix and inflammation in the prefrontal cortex. Discussion The behavioral results indicate that social interaction during adolescence via the neighbor housing model may protect against emotional, social, and cognitive deficits. In addition, the transcriptomics results suggest that these behavioral alterations may be mediated in part by dysregulation of transcription in the frontal cortex or the nucleus accumbens.
Collapse
Affiliation(s)
- Jyoti Lodha
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - McKenzie Nash
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Madison M. Marcus
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - A. Chris Pais
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alex B. Pais
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F. Miles
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer Theresa Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
5
|
Giacometti LL, Side CM, Chandran K, Stine S, Buck LA, Wenzel-Rideout RM, Barker JM. Effects of adolescent ethanol exposure on adult nondrug reward seeking behavior in male and female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1736-1747. [PMID: 37438117 DOI: 10.1111/acer.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Adolescent alcohol use is associated with an increased likelihood of developing an alcohol use disorder in adulthood, potentially due to the effects of alcohol exposure on reward-seeking behavior. However, it remains unclear whether adolescent drinking is sufficient to alter nondrug reward seeking in adulthood. As adolescence is a period of both brain and sexual maturation, which occur in a sex-dependent manner, males and females may be differentially sensitive to the consequences of adolescent alcohol exposure. The present study investigated whether adolescent ethanol exposure affected food reward taking and seeking in male and female adult mice. METHODS Male and female C57BL/6J mice underwent intermittent ethanol exposure (AIE) via vapor inhalation during early adolescence (28-42 days of age). At 10 weeks of age, the mice were trained in a conditioned place preference paradigm (CPP) for a food reward. We measured food consumption, CPP, and cFos expression in multiple brain regions following CPP testing. Data were analyzed using repeated measures analysis of variance with exposure (air vs. AIE), sex, and time as factors. RESULTS AIE exposure increased food consumption during CPP training in adult male mice, but reduced pellet consumption in adult female mice. AIE exposure impaired CPP expression only in female mice. Despite these behavioral differences, exposure to the reward-paired chamber did not induce differential cFos expression following CPP testing in the prelimbic and infralimbic cortices or the nucleus accumbens core and shell. CONCLUSION These findings indicate that adolescent ethanol exposure disrupted nondrug reward taking and seeking in adulthood in female mice and altered consumption in adult male mice.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelsey Chandran
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sam Stine
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rebecca M Wenzel-Rideout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Schreiner DC, Wright A, Baltz ET, Wang T, Cazares C, Gremel CM. Chronic alcohol exposure alters action control via hyperactive premotor corticostriatal activity. Cell Rep 2023; 42:112675. [PMID: 37342908 PMCID: PMC10468874 DOI: 10.1016/j.celrep.2023.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
Alcohol use disorder (AUD) alters decision-making control over actions, but disruptions to the responsible neural circuit mechanisms are unclear. Premotor corticostriatal circuits are implicated in balancing goal-directed and habitual control over actions and show disruption in disorders with compulsive, inflexible behaviors, including AUD. However, whether there is a causal link between disrupted premotor activity and altered action control is unknown. Here, we find that mice chronically exposed to alcohol (chronic intermittent ethanol [CIE]) showed impaired ability to use recent action information to guide subsequent actions. Prior CIE exposure resulted in aberrant increases in the calcium activity of premotor cortex (M2) neurons that project to the dorsal medial striatum (M2-DMS) during action control. Chemogenetic reduction of this CIE-induced hyperactivity in M2-DMS neurons rescued goal-directed action control. This suggests a direct, causal relationship between chronic alcohol disruption to premotor circuits and decision-making strategy and provides mechanistic support for targeting activity of human premotor regions as a potential treatment in AUD.
Collapse
Affiliation(s)
- Drew C Schreiner
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Wright
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily T Baltz
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Tianyu Wang
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian Cazares
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA; The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Obray JD, Landin JD, Vaughan DT, Scofield MD, Chandler LJ. Adolescent alcohol exposure reduces dopamine 1 receptor modulation of prelimbic neurons projecting to the nucleus accumbens and basolateral amygdala. ADDICTION NEUROSCIENCE 2022; 4:100044. [PMID: 36643604 PMCID: PMC9836047 DOI: 10.1016/j.addicn.2022.100044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Department of Anesthesiology, Medical University of South Carolina, Charleston SC, USA
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Corresponding author. (L.J. Chandler)
| |
Collapse
|
8
|
Borrego MB, Chan AE, Ozburn AR. Regulation of alcohol drinking by ventral striatum and extended amygdala circuitry. Neuropharmacology 2022; 212:109074. [PMID: 35487273 PMCID: PMC9677601 DOI: 10.1016/j.neuropharm.2022.109074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder is a complex psychiatric disorder that can be modeled in rodents using a number of drinking paradigms. Drinking-in-the-dark (DID) is widely used to model the binge/intoxication stage of addiction, and chronic intermittent ethanol vapor procedures (CIE) are used to induce dependence and model withdrawal/negative affect induced escalation of drinking. We discuss experiments showing the ventral striatum (vStr) and extended amygdala (EA) are engaged in response to ethanol in rodents through c-Fos/Fos immunoreactivity studies. We also discuss experiments in rodents that span a wide variety of techniques where the function of vStr and EA structures are changed following DID or CIE, and the role of neurotransmitter and neuropeptide systems studies in these ethanol-related outcomes. We note where signaling systems converge across regions and paradigms and where there are still gaps in the literature. Dynorphin/κ-opioid receptor (KOR) signaling, as well as corticotropin releasing factor (CRF)/CRF receptor signaling were found to be important regulators of drinking behaviors across brain regions and drinking paradigms. Future research will require that females and a variety of rodent strains are used in preclinical experiments in order to strengthen the generalizability of findings and improve the likelihood of success for testing potential therapeutics in human laboratory studies.
Collapse
Affiliation(s)
- Marissa B Borrego
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Amy E Chan
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Kipp BT, Nunes PT, Galaj E, Hitchcock B, Nasra T, Poynor KR, Heide SK, Reitz NL, Savage LM. Adolescent Ethanol Exposure Alters Cholinergic Function and Apical Dendritic Branching Within the Orbital Frontal Cortex. Neuroscience 2021; 473:52-65. [PMID: 34450212 DOI: 10.1016/j.neuroscience.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
During adolescence, heavy binge-like ethanol consumption can lead to frontocortical structural and functional impairments. These impairments are likely driven by adolescence being a critical time point for maturation of brain regions associated with higher-order cognitive functioning. Rodent models of heavy binge-like ethanol exposure show consistent disruptions to the typical development of the prefrontal cortex (PFC). All deep cortical layers receive cholinergic projections that originate from the Nucleus basalis of Meynert (NbM) complex. These cholinergic projections are highly involved in learning, memory, and attention. Adolescent intermittent ethanol exposure (AIE) induces cholinergic dysfunction as a result of an epigenetic suppression of the genes that drive the cholinergic phenotype. The current study used a model of AIE to assess structural and functional changes to the frontal cortex and NbM following binge-like ethanol exposure in adolescence. Western blot analysis revealed long-term disruptions of the cholinergic circuit following AIE: choline acetyltransferase (ChAT) was suppressed in the NbM and vesicular acetylcholine transporter (VAChT) was suppressed in the orbitofrontal cortex (OFC). In vivo microdialysis for acetylcholine efflux during a spatial memory task determined changes in cholinergic modulation within the PFC following AIE. However, AIE spared performance on the spatial memory task and on an operant reversal task. In a second study, Golgi-Cox staining determined that AIE increased apical dendritic complexity in the OFC, with sex influencing whether the increase in branching occurred near or away from the soma. Spine density or maturity was not affected, likely compensating for a disruption in neurotransmitter function following AIE.
Collapse
Affiliation(s)
- B T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - P T Nunes
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - E Galaj
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - B Hitchcock
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - T Nasra
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - K R Poynor
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - S K Heide
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - N L Reitz
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - L M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
11
|
Elton A, Faulkner ML, Robinson DL, Boettiger CA. Acute depletion of dopamine precursors in the human brain: effects on functional connectivity and alcohol attentional bias. Neuropsychopharmacology 2021; 46:1421-1431. [PMID: 33727642 PMCID: PMC8209208 DOI: 10.1038/s41386-021-00993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Individuals who abuse alcohol often show exaggerated attentional bias (AB) towards alcohol-related cues, which is thought to reflect reward conditioning processes. Rodent studies indicate that dopaminergic pathways play a key role in conditioned responses to reward- and alcohol-associated cues. However, investigation of the dopaminergic circuitry mediating this process in humans remains limited. We hypothesized that depletion of central dopamine levels in adult alcohol drinkers would attenuate AB and that these effects would be mediated by altered function in frontolimbic circuitry. Thirty-four male participants (22-38 years, including both social and heavy drinkers) underwent a two-session, placebo-controlled, double-blind dopamine precursor depletion procedure. At each visit, participants consumed either a balanced amino acid (control) beverage or an amino acid beverage lacking dopamine precursors (order counterbalanced), underwent resting-state fMRI, and completed behavioral testing on three AB tasks: an alcohol dot-probe task, an alcohol attentional blink task, and a task measuring AB to a reward-conditioned cue. Dopamine depletion significantly diminished AB in each behavioral task, with larger effects among subjects reporting higher levels of binge drinking. The depletion procedure significantly decreased resting-state functional connectivity among ventral tegmental area, striatum, amygdala, and prefrontal regions. Beverage-related AB decreases were mediated by decreases in functional connectivity between the fronto-insular cortex and striatum and, for alcohol AB only, between anterior cingulate cortex and amygdala. The results support a substantial role for dopamine in AB, and suggest specific dopamine-modulated functional connections between frontal, limbic, striatal, and brainstem regions mediate general reward AB versus alcohol AB.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Monica L Faulkner
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Liu W, Rohlman AR, Vetreno R, Crews FT. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol 2021; 12:651418. [PMID: 34025418 PMCID: PMC8134748 DOI: 10.3389/fphar.2021.651418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Adolescent development of prefrontal cortex (PFC) parallels maturation of executive functions as well as increasing white matter and myelination. Studies using MRI and other methods find that PFC white matter increases across adolescence into adulthood in both humans and rodents. Adolescent binge drinking is common and has been found to alter adult behaviors and PFC functions. This study examines development of oligoprogenitor (OPC) and oligodendrocytes (OLs) in Wistar rats from adolescence to adulthood within PFC white matter, corpus callosum forceps minor (fmi), PFC gray matter, and the neurogenic subventricular zone (SVZ) using immunohistochemistry for marker proteins. In addition, the effects of adolescent intermittent ethanol exposure [AIE; 5.0 g/kg/day, intragastric, 2 days on/2 days off on postnatal day (P)25-54], which is a weekend binge drinking model, were determined. OPC markers NG2+, PDGFRα+ and Olig2+IHC were differentially impacted by both age and PFC region. In both fmi and SVZ, NG2+IHC cells declined from adolescence to adulthood with AIE increasing adult NG2+IHC cells and their association with microglial marker Iba1. PFC gray matter decline in NG2+IHC in adulthood was not altered by AIE. Both adult maturation and AIE impacted OL expression of PLP+, MBP+, MAG+, MOG+, CNPase+, Olig1+, and Olig2+IHC in all three PFC regions, but in region- and marker-specific patterns. These findings are consistent with PFC region-specific changes in OPC and OL markers from adolescence to adulthood as well as following AIE that could contribute to lasting changes in PFC function.
Collapse
Affiliation(s)
| | | | | | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Altered Activity of Lateral Orbitofrontal Cortex Neurons in Mice following Chronic Intermittent Ethanol Exposure. eNeuro 2021; 8:ENEURO.0503-20.2021. [PMID: 33593732 PMCID: PMC7932186 DOI: 10.1523/eneuro.0503-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
Abstract
The lateral orbitofrontal cortex (LOFC) is thought to encode information associated with consumption of rewarding substances and is essential for flexible decision-making. Indeed, firing patterns of LOFC neurons are modulated following changes in reward value associated with an action outcome relationship. Damage to the LOFC impairs behavioral flexibility in humans and is associated with suboptimal performance in reward devaluation protocols in rodents. As chronic intermittent ethanol (CIE) exposure also impairs OFC-dependent behaviors, we hypothesized that CIE exposure would alter LOFC neuronal activity during alcohol drinking, especially under conditions when the reward value of ethanol was modulated by aversive or appetitive tastants. To test this hypothesis, we monitored LOFC activity using GCaMP6f fiber photometry in mice receiving acute injections of ethanol and in those trained in operant ethanol self-administration. In naive mice, an acute injection of ethanol caused a dose-dependent decrease in the frequency but not amplitude of GCaMP6f transients. In operant studies, mice were trained on a fixed ratio one schedule of reinforcement and were then separated into CIE or Air groups. Following four cycles of CIE exposure, GCaMP6f activity was recorded during self-administration of alcohol, alcohol+quinine (aversive), or alcohol+sucrose (appetitive) solutions. LOFC neurons showed discrete patterns of activity surrounding lever presses and surrounding drinking bouts. Responding for and consumption of ethanol was greatly enhanced by CIE exposure, was aversion resistant, and was associated with signs of LOFC hyperexcitability. CIE-exposed mice also showed altered patterns of LOFC activity that varied with the ethanol solution consumed.
Collapse
|
14
|
Dannenhoffer CA, Werner DF, Varlinskaya EI, Spear LP. Adolescent intermittent ethanol exposure does not alter responsiveness to ifenprodil or expression of vesicular GABA and glutamate transporters. Dev Psychobiol 2021; 63:903-914. [PMID: 33511630 DOI: 10.1002/dev.22099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022]
Abstract
Adolescent intermittent ethanol (AIE) exposure in the rat results in a retention of adolescent-like responsiveness to ethanol into adulthood characterized by enhanced sensitivity to socially facilitating and decreased sensitivity to socially suppressing and aversive effects. Similar pattern of responsiveness to social and aversive effects of the selective glutamate NMDA NR2B receptor antagonist ifenprodil is evident in adolescent rats, suggesting that AIE would also retain this pattern of ifenprodil sensitivity into adulthood. Social (Experiment 1) and aversive (measured via conditioned taste aversion; Experiment 2) effects of ifenprodil were assessed in adult male and female rats following AIE exposure. Sensitivity to the social and aversive effects of ifenprodil was not affected by AIE exposure. Experiment 3 assessed protein expression of vesicular transporters of GABA (vGAT) and glutamate (vGlut2) within the prelimbic cortex and nucleus accumbens in adolescents versus adults and in AIE adults versus controls. vGlut2 expression was higher in adolescents relative to adults within the PrL, but lower in the NAc. AIE adults did not retain these adolescent-typical ratios. These findings suggest that AIE is not associated with the retention of adolescent-typical sensitivity to NR2B receptor antagonism, along with no AIE-induced shift in vGlut2 to vGAT ratios.
Collapse
Affiliation(s)
- Carol A Dannenhoffer
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Linda P Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
15
|
Wukitsch TJ, Moser TJ, Brase EC, Kiefer SW, Cain ME. Adolescent ethanol exposure and differential rearing environment affect taste reactivity to ethanol in rats. Alcohol 2020; 89:113-122. [PMID: 32937167 DOI: 10.1016/j.alcohol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
The identification and characterization of variables that influence "liking" and enhance vulnerability to repeated alcohol use are vital to understanding and treating alcohol use disorders. In the current study, we explore the influence of rearing environment and experimenter-administered adolescent ethanol on the hedonic value of ethanol, sucrose, and quinine. Male and female rats were reared for 30 days starting at postnatal day (PND) 21 in either an enriched, isolated, or standard condition and received 1.5 g/kg (intraperitoneally [i.p.]) 20% (w/v) ethanol or saline every other day for 12 days starting at PND 28. Thereafter, all rats had indwelling intraoral fistulae implanted and their taste reactivities to water, ethanol (5, 10, 20, 30, 40% v/v), sucrose (0.1, 0.25, 0.5 M), and quinine (0.1, 0.5 mM) were recorded and analyzed. Results indicated that enrichment elevated hedonic responding to sucrose compared to isolation, and induced a stronger negative relationship between hedonic responding and ethanol concentration compared to standard conditions. Enrichment also elevated aversive responding to ethanol and quinine compared to both isolated and standard condition rats. Adolescent ethanol injections marginally reduced aversive responding to quinine. These results replicate previous findings that environmental enrichment enhances both "liking" and aversion. In addition, the current findings suggest that, while adolescent ethanol injections may blunt aversive responses to quinine, they have no effect on aversive or hedonic responding to ethanol or sucrose. Together with existing literature, our results may suggest that experience with the taste of ethanol is necessary for alterations to ethanol "liking" and aversion.
Collapse
|
16
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
17
|
Galaj E, Barrera E, Morris D, Ma YY, Ranaldi R. Aberrations in Incentive Learning and Responding to Heroin in Male Rats After Adolescent or Adult Chronic Binge-Like Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1214-1223. [PMID: 32311102 PMCID: PMC7313436 DOI: 10.1111/acer.14341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Binge drinking is a serious problem among adolescents and young adults despite its adverse consequences on the brain and behavior. One area that remains poorly understood concerns the impact of chronic intermittent ethanol (CIE) exposure on incentive learning. METHODS Here, we examined the effects of CIE exposure during different developmental stages on conditioned approach and conditioned reward learning in rats experiencing acute or protracted withdrawal from alcohol. Two or 21 days after adolescent or adult CIE exposure, male rats were exposed to pairings of a light stimulus (CS) and food pellets for 3 consecutive daily sessions (30 CS-food pellet pairings per session). This was followed by conditioned approach testing measuring responses (food trough head entries) to the CS-only presentations and by conditioned reward testing measuring responses on a lever producing the CS and on another producing a tone. We then measured behavioral sensitization to repeated injections of heroin (2 mg/kg/d for 9 days). RESULTS Adolescent and adult alcohol-treated rats showed significantly impaired conditioned reward learning regardless of withdrawal period (acute or prolonged). We found no evidence of changes to conditioned approach learning after adolescent or adult exposure to CIE. Finally, in addition to producing long-term impairments in incentive learning, CIE exposure enhanced locomotor activity in response to heroin and had no effect on behavioral sensitization to heroin regardless of age and withdrawal period. CONCLUSIONS Our work sets a framework for identifying CIE-induced alterations in incentive learning and inducing susceptibility to subsequent opioid effects.
Collapse
Affiliation(s)
- Ewa Galaj
- National Institute on Drug Abuse Intramural Research Program, Molecular Targets and Medication Discovery Branch, 251 Bayview Blvd, Baltimore, MD, 21224, US
| | - Eddy Barrera
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| | - Debra Morris
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| | - Yao-Ying Ma
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, 635 Barnhill Drive, Indianapolis, IN, 46202, US
| | - Robert Ranaldi
- Queens College, City University of New York, Department of Psychology, 65-30 Kissena Blvd., Flushing, NY, 11367, US
| |
Collapse
|
18
|
Nolli LM, de Oliveira DGR, Alves SS, von Zuben MV, Pic-Taylor A, Mortari MR, Caldas ED. Effects of the hallucinogenic beverage ayahuasca on voluntary ethanol intake by rats and on cFos expression in brain areas relevant to drug addiction. Alcohol 2020; 84:67-75. [PMID: 31698029 DOI: 10.1016/j.alcohol.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 11/30/2022]
Abstract
Ayahuasca is a hallucinogenic infusion used in religious rituals that has serotoninergic properties and may be a potential therapeutic option for drug addiction. In this study, Wistar rats had intermittent access to ethanol for 8 weeks, receiving water (control), naltrexone (NTX, 2 mg/kg body weight [bw] intraperitoneally [i.p.]) or ayahuasca (Aya) at 0.5x, 1x, or 2x the ritual dose in the final 5 days. A naïve group had access only to water. Ethanol intake was estimated throughout the experiment, and cFos expression was evaluated in medial orbital cortex (MO), ventral orbital cortex (VO), lateral orbital cortex (LO), nucleus accumbens (NAc), and striatum. Treatment with either NTX or Aya (oral) did not decrease ethanol intake compared to the baseline level (5th to 7th week), but the NTX group intake was significantly lower than controls (p < 0.05). Ethanol significantly increased cFos expression in the MO region for control (p < 0.0001), NTX (p < 0.05), Aya1 (p < 0.001), and Aya2 (p < 0.0001) groups. This increase was also observed in the VO for the Aya1 group (p = 0.035), in the LO for the Aya2 group (p < 0.01), and in NAc for NTX and ayahuasca groups (p < 0.005). Furthermore, NTX and Aya0.5 treatment decreased cFos expression compared to controls in the MO region (p < 0.05 and p < 0.01, respectively), but only the ayahuasca group reached levels not significantly different from the naïve group. Studies using other protocols and dose regime are necessary to better investigate the impact of ayahuasca on alcohol intake by rats to support the observations in humans. Additionally, the role of ayahuasca in mediating cFos expression in other selected brain regions and its relationship with the serotoninergic/dopaminergic systems and drug addiction need further investigation.
Collapse
Affiliation(s)
- Luciana Marangni Nolli
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Danilo Gustavo Rodrigues de Oliveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Stefany Sousa Alves
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | | | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Department of Genetics and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
19
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Somkuwar SS, Mandyam CD. Individual Differences in Ethanol Drinking and Seeking Behaviors in Rats Exposed to Chronic Intermittent Ethanol Vapor Exposure is Associated with Altered CaMKII Autophosphorylation in the Nucleus Accumbens Shell. Brain Sci 2019; 9:brainsci9120367. [PMID: 31835746 PMCID: PMC6955871 DOI: 10.3390/brainsci9120367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic intermittent ethanol vapor exposure (CIE) in rodents produces reliable and high blood ethanol concentration and behavioral symptoms associated with moderate to severe alcohol use disorder (AUD)—for example, escalation of operant ethanol self-administration, a feature suggestive of transition from recreational to addictive use, is a widely replicated behavior in rats that experience CIE. Herein, we present evidence from a subset of rats that do not demonstrate escalation of ethanol self-administration following seven weeks of CIE. These low responders (LR) maintain low ethanol self-administration during CIE, demonstrate lower relapse to drinking during abstinence and reduced reinstatement of ethanol seeking triggered by ethanol cues when compared with high responders (HR). We examined the blood ethanol levels in LR and HR rats during CIE and show higher levels in LR compared with HR. We also examined peak corticosterone levels during CIE and show that LR rats have higher levels compared with HR rats. Lastly, we evaluated the levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the nucleus accumbens shell and reveal that the activity of CaMKII, which is autophosphorylated at site Tyr-286, is significantly reduced in HR rats compared with LR rats. These findings demonstrate that dysregulation of the hypothalamic–pituitary–adrenal axis activity and plasticity-related proteins regulating molecular memory in the nucleus accumbens shell are associated with higher ethanol-drinking and -seeking in HR rats. Future mechanistic studies should evaluate CaMKII autophosphorylation-dependent remodeling of glutamatergic synapses in the ventral striatum as a plausible mechanism for the CIE-induced enhanced ethanol drinking and seeking behaviors.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
21
|
Alcohol-dependent pulmonary inflammation: A role for HMGB-1. Alcohol 2019; 80:45-52. [PMID: 30287211 DOI: 10.1016/j.alcohol.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 01/29/2023]
Abstract
Previous studies have demonstrated that acute alcohol intoxication significantly impairs lung immune responses, which can lead to the tissue being undefended from microbial infection and resulting disease. Data suggest that acute intoxication presents an axis where simultaneously suppressing early pro-inflammatory cytokines while inducing anti-inflammatory signals contributes to alcohol-dependent immune suppression in the lung, and thus undeterred microbial replication. Interestingly, alcoholics and those with alcohol use disorder present with increased pneumonia and acute respiratory diseases (ARDs), suggesting a more active priming of inflammatory responses in the lungs. There is current research evaluating the acute effects of binge ethanol consumption on adolescents, which is of grave concern, though long-term effects of adolescent ethanol binge exposure are less studied. We hypothesize that adolescent binge drinking may prime the individual to severe pulmonary distress, when later challenged by a microbial pathogen. Herein, we evaluate a model of adolescent intermittent ethanol (AIE) exposure to investigate pulmonary pathology after microbial challenge. Ethanol was administered to adolescent mice using a binge exposure schedule, and mice were then rested to early adulthood. These mice were then challenged with a sub-lethal intranasal inoculation of Klebsiella pneumoniae and evaluated for severity of disease. We find that AIE exposure initially activates inflammatory mediators within the lung, which resolves over time. However, when challenged with a microbial pathogen after this resolution period, these animals present with more severity of inflammation, pulmonary tissue damage, and mortality when challenged with a pulmonary microbial infection. Interestingly, our data suggest a role for alcohol-dependent release of the protein HMGB-1 from host cells, for both morbidity and mortality in our model of microbial-dependent pulmonary inflammation.
Collapse
|
22
|
Saalfield J, Spear L. Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats. Alcohol 2019; 78:57-68. [PMID: 30797833 DOI: 10.1016/j.alcohol.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Studies in rats have revealed marked age differences in sensitivity to the aversive properties of ethanol, with a developmental insensitivity to ethanol aversion that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion; however, it is unknown how ontogenetic changes within this reward/aversion circuitry contribute to developmental differences in aversive sensitivity. The current study examined early adolescent (postnatal day [P]28-30) and adult (P72-74) Sprague-Dawley male rats for conditioned taste aversion (CTA) after doses of 0, 1.0, or 2.5 g/kg ethanol, and patterns of neuronal activation in response to ethanol using Fos-like immunohistochemistry (Fos+) to uncover regions where age differences in activation are associated with ethanol aversion. An adolescent-specific ethanol-induced increase in Fos+ staining was seen within the nucleus accumbens shell and core. An age difference was also noted within the Edinger-Westphal nucleus (EW) following administration of the lower dose of ethanol, with 1 g/kg ethanol producing CTA in adults but not in adolescents and inducing a greater EW Fos response in adults than adolescents. Regression analysis revealed that greater numbers of Fos+ neurons within the EW and insula (Ins) were related to lower consumption of the conditioned stimulus (CS) on test day (reflecting greater CTA). Some regionally specific age differences in Fos+ were noted under baseline conditions, with adolescents displaying fewer Fos+ neurons than adults within the prelimbic (PrL) cortex, but more than adults in the bed nucleus of the stria terminalis (BNST). In the BNST (but not PrL), ethanol-induced increases in Fos-immunoreactivity (IR) were evident at both ages. Increased ethanol-induced activity within critical appetitive brain regions (NAc core and shell) supports a role for greater reward-related activation during adolescence, possibly along with attenuated responsiveness to ethanol in EW and Ins in the age-typical resistance of adolescents to the aversive properties of ethanol.
Collapse
|
23
|
Voluntary ethanol consumption during early social isolation and responding for ethanol in adulthood. Alcohol 2019; 77:1-10. [PMID: 30240808 DOI: 10.1016/j.alcohol.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the influence of rearing environments concurrent with voluntary intermittent access to ethanol on subsequent adult ethanol-related behaviors. Previous research has shown that adult rats reared in post-weaning, social isolation conditions (IC) respond more for operant ethanol compared to laboratory standard conditions (SC). Ethanol-exposed adolescents tend to consume more ethanol in adulthood than rats exposed as adults. The current study examined voluntary ethanol consumption during adolescence between IC and SC rats, subsequent operant responding for ethanol, and extinction of responding in the same rats as adults. Differences in ethanol metabolism may alter the amount of reward value per unit of ethanol consumed. Therefore, the current study also examined blood ethanol concentrations (BEC) between IC rats and SC rats. Ethanol-naïve Long-Evans rats arrived in the lab at postnatal day (PND) 21 and were separated into either IC or SC where they remained for the duration of the experiments. On PND 27, rats received intermittent access to 20% ethanol (3 days/week) for 4 or 6 weeks. Rats in the 6-week cohort were then trained to lever press for 20% ethanol in 30-min sessions followed by extinction. A separate cohort was reared in IC or SC, injected with 1.5 or 3.0 g/kg of ethanol (intraperitoneally [i.p.]), followed by BEC measurement. Overall, IC rats had higher ethanol preference and consumption during adolescence/early adulthood. IC and SC rats did not differ in their rates of operant responding for ethanol, and SC rats responded more than IC rats during extinction. There were no differences in BEC between IC and SC rats. These findings highlight the importance of the environment during rat adolescent development with isolation conditions increasing binge-like drinking and ethanol preference after 3-4 weeks without differences in metabolism as a potential factor. Additionally, the findings indicate that intermittent adolescent access to ethanol may change typical differences in operant responding patterns between IC and SC rats in adulthood.
Collapse
|
24
|
Jadhav KS, Boutrel B. Prefrontal cortex development and emergence of self-regulatory competence: the two cardinal features of adolescence disrupted in context of alcohol abuse. Eur J Neurosci 2019; 50:2274-2281. [PMID: 30586204 DOI: 10.1111/ejn.14316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
Adolescence is a tumultuous period in the lifetime of an individual confronted to major changes in emotional, social and cognitive appraisal. During this period of questioning and doubt, while the executive functions are still maturing, the abstract reasoning remains vague and the response inhibition loose; ultimately the adolescent scarcely resists temptation. Consequently, adolescence is often associated with uninhibited risk-taking, reckless behaviours, among which are alcohol and illicit drugs use. Here, we discuss how the development of the prefrontal cortex (which critically contributes to rational decision-making and temporal processing of complex events) can be associated with the idiosyncratic adolescent behaviour, and potentially uncontrolled alcohol use. Most importantly, we present clinical and preclinical evidence supporting that ethanol exposure has deleterious effects on the adolescent developing brain. Ultimately, we discuss why a late maturing prefrontal cortex represents a ripe candidate to environmental influences that contribute to shape the adolescent brain but, potentially, can also trigger lifelong maladaptive responses, including increased vulnerability to develop substance use disorder later in life.
Collapse
Affiliation(s)
- Kshitij S Jadhav
- Laboratory on the Neurobiology of Addictive and Eating Disorders, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly, Switzerland
| | - Benjamin Boutrel
- Laboratory on the Neurobiology of Addictive and Eating Disorders, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly, Switzerland.,Division of Adolescent and Child Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
25
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
26
|
El Hamrani D, Gin H, Gallis JL, Bouzier-Sore AK, Beauvieux MC. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism. Front Nutr 2018; 5:33. [PMID: 29868598 PMCID: PMC5952002 DOI: 10.3389/fnut.2018.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy (1H and 13C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.
Collapse
Affiliation(s)
- Dounia El Hamrani
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Henri Gin
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France.,Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Pessac, France
| | - Jean-Louis Gallis
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Marie-Christine Beauvieux
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| |
Collapse
|
27
|
Khokhar JY, Dwiel L, Henricks A, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophr Res 2018; 194:78-85. [PMID: 28416205 PMCID: PMC6094954 DOI: 10.1016/j.schres.2017.04.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Substance use disorders occur commonly in patients with schizophrenia and dramatically worsen their overall clinical course. While the exact mechanisms contributing to substance use in schizophrenia are not known, a number of theories have been put forward to explain the basis of the co-occurrence of these disorders. We propose here a unifying hypothesis that combines recent evidence from epidemiological and genetic association studies with brain imaging and pre-clinical studies to provide an updated formulation regarding the basis of substance use in patients with schizophrenia. We suggest that the genetic determinants of risk for schizophrenia (especially within neural systems that contribute to the risk for both psychosis and addiction) make patients vulnerable to substance use. Since this vulnerability may arise prior to the appearance of psychotic symptoms, an increased use of substances in adolescence may both enhance the risk for developing a later substance use disorder, and also serve as an additional risk factor for the appearance of psychotic symptoms. Future studies that assess brain circuitry in a prospective longitudinal manner during adolescence prior to the appearance of psychotic symptoms could shed further light on the mechanistic underpinnings of these co-occurring disorders while identifying potential points of intervention for these difficult-to-treat co-occurring disorders.
Collapse
Affiliation(s)
| | - Lucas Dwiel
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | - Angela Henricks
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | | | - Alan I. Green
- Department of Psychiatry, Geisel School of Medicine at Dartmouth,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth,Dartmouth Clinical and Translational Science Institute, Dartmouth College
| |
Collapse
|
28
|
Broadwater MA, Lee SH, Yu Y, Zhu H, Crews FT, Robinson DL, Shih YYI. Adolescent alcohol exposure decreases frontostriatal resting-state functional connectivity in adulthood. Addict Biol 2018; 23:810-823. [PMID: 28691248 PMCID: PMC5760482 DOI: 10.1111/adb.12530] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Connectivity of the prefrontal cortex (PFC) matures through adolescence, coinciding with emergence of adult executive function and top-down inhibitory control over behavior. Alcohol exposure during this critical period of brain maturation may affect development of PFC and frontolimbic connectivity. Adult rats exposed to adolescent intermittent ethanol (AIE; 5 g/kg ethanol, 25 percent v/v in water, intragastrically, 2-day-on, 2-day-off, postnatal day 25-54) or water control underwent resting-state functional MRI to test the hypothesis that AIE induces persistent changes in frontolimbic functional connectivity under baseline and acute alcohol conditions (2 g/kg ethanol or saline, intraperitoneally administered during scanning). Data were acquired on a Bruker 9.4-T MR scanner with rats under dexmedetomidine sedation in combination with isoflurane. Frontolimbic network regions-of-interest for data analysis included PFC [prelimbic (PrL), infralimbic (IL), and orbitofrontal cortex (OFC) portions], nucleus accumbens (NAc), caudate putamen (CPu), dorsal hippocampus, ventral tegmental area, amygdala, and somatosensory forelimb used as a control region. AIE decreased baseline resting-state connectivity between PFC subregions (PrL-IL and IL-OFC) and between PFC-striatal regions (PrL-NAc, IL-CPu, IL-NAc, OFC-CPu, and OFC-NAc). Acute ethanol induced negative blood-oxygen-level-dependent changes within all regions of interest examined, along with significant increases in functional connectivity in control, but not AIE animals. Together, these data support the hypothesis that binge-like adolescent alcohol exposure causes persistent decreases in baseline frontolimbic (particularly frontostriatal) connectivity and alters sensitivity to acute ethanol-induced increases in functional connectivity in adulthood.
Collapse
Affiliation(s)
| | - Sung-Ho Lee
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Yang Yu
- Department of Statistics and Operations, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
30
|
Pascual M, Montesinos J, Guerri C. Role of the innate immune system in the neuropathological consequences induced by adolescent binge drinking. J Neurosci Res 2017; 96:765-780. [PMID: 29214654 DOI: 10.1002/jnr.24203] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Adolescence is a critical stage of brain maturation in which important plastic and dynamic processes take place in different brain regions, leading to development of the adult brain. Ethanol drinking in adolescence disrupts brain plasticity and causes structural and functional changes in immature brain areas (prefrontal cortex, limbic system) that result in cognitive and behavioral deficits. These changes, along with secretion of sexual and stress-related hormones in adolescence, may impact self-control, decision making, and risk-taking behaviors that contribute to anxiety and initiation of alcohol consumption. New data support the participation of the neuroimmune system in the effects of ethanol on the developing and adult brain. This article reviews the potential pathological bases that underlie the effects of alcohol on the adolescent brain, such as the contribution of genetic background, the perturbation of epigenetic programming, and the influence of the neuroimmune response. Special emphasis is given to the actions of ethanol in the innate immune receptor toll-like receptor 4 (TLR4), since recent studies have demonstrated that by activating the inflammatory TLR4/NFκB signaling response in glial cells, binge drinking of ethanol triggers the release of cytokines/chemokines and free radicals, which exacerbate the immune response that causes neuroinflammation/neural damage as well as short- and long-term neurophysiological, cognitive, and behavioral dysfunction. Finally, potential treatments that target the neuroimmune response to treat the neuropathological and behavioral consequences of adolescent alcohol abuse are discussed.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, Valencia, Spain
| | - Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, Valencia, Spain
| |
Collapse
|
31
|
Moaddab M, Mangone E, Ray MH, McDannald MA. Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders. Brain Sci 2017; 7:brainsci7110151. [PMID: 29135933 PMCID: PMC5704158 DOI: 10.3390/brainsci7110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Elizabeth Mangone
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Madelyn H Ray
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
32
|
Walter TJ, Vetreno RP, Crews FT. Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcohol Clin Exp Res 2017; 41:2066-2081. [PMID: 28941277 PMCID: PMC5725687 DOI: 10.1111/acer.13511] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Background Cycles of alcohol and stress are hypothesized to contribute to alcohol use disorders. How this occurs is poorly understood, although both alcohol and stress activate the neuroimmune system—the immune molecules and cells that interact with the nervous system. The effects of alcohol and stress on the neuroimmune system are mediated in part by peripheral signaling molecules. Alcohol and stress both enhance immunomodulatory molecules such as corticosterone and endotoxin to impact neuroimmune cells, such as microglia, and may subsequently impact neurons. In this study, we therefore examined the effects of acute and chronic ethanol (EtOH) on the corticosterone, endotoxin, and microglial and neuronal response to acute stress. Methods Male Wistar rats were treated intragastrically with acute EtOH and acutely stressed with restraint/water immersion. Another group of rats was treated intragastrically with chronic intermittent EtOH and acutely stressed following prolonged abstinence. Plasma corticosterone and endotoxin were measured, and immunohistochemical stains for the microglial marker CD11b and neuronal activation marker c‐Fos were performed. Results Acute EtOH and acute stress interacted to increase plasma endotoxin and microglial CD11b, but not plasma corticosterone or neuronal c‐Fos. Chronic EtOH caused a lasting sensitization of stress‐induced plasma endotoxin, but not plasma corticosterone. Chronic EtOH also caused a lasting sensitization of stress‐induced microglial CD11b, but not neuronal c‐Fos. Conclusions These results find acute EtOH combined with acute stress enhanced plasma endotoxin, as well as microglial CD11b in many brain regions. Chronic EtOH followed by acute stress also increased plasma endotoxin and microglial CD11b, suggesting a lasting sensitization to acute stress. Overall, these data suggest alcohol and stress interact to increase plasma endotoxin, resulting in enhanced microglial activation that could contribute to disease progression.
Collapse
Affiliation(s)
- Thomas Jordan Walter
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, The School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
33
|
Liu W, Crews FT. Persistent Decreases in Adult Subventricular and Hippocampal Neurogenesis Following Adolescent Intermittent Ethanol Exposure. Front Behav Neurosci 2017; 11:151. [PMID: 28855864 PMCID: PMC5557743 DOI: 10.3389/fnbeh.2017.00151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Neurogenesis in hippocampal dentate gyrus (DG) and subventricular zone (SVZ) matures during adolescence to adult levels. Binge drinking is prevalent in adolescent humans, and could alter brain neurogenesis and maturation in a manner that persists into adulthood. To determine the impact of adolescent binge drinking on adult neurogenesis, Wistar rats received adolescent intermittent ethanol (AIE) exposure (5.0 g/kg/day, i.g., 2 days on/2 days off from postnatal day, P25–P54) and sacrificed on P57 or P95. Neural progenitor cell proliferation, differentiation, survival and maturation using immunohistochemistry was determined in the DG and SVZ. We found that AIE exposure decreased neurogenesis in both brain regions in adulthood (P95). In the DG at P57, AIE exposure resulted in a significant reduction of SOX2+, Tbr2+, Prox1+ and parvalbumin (PV)+IR expression, and at P95 decreased DCX+ and PV+IR expression. AIE exposure also reduced the expression of two cell proliferation markers (Ki67+ and BrdU+IR with 300 mg/kg, 2 h) at P95. The immune signaling molecule β-2 microglobulin+ and the cell death marker activated caspase-3+IR were significantly increased in the DG by AIE exposure. In the SVZ, AIE exposure decreased SOX2+, Mash1+, DCX+ and Dlx2+IR expression at P95, but not at P57. Thus, in adulthood both brain regions have reduced neurogenesis following AIE exposure. To assess progenitor cell survival and maturation, rats were treated with BrdU (150 mg/kg/day, 14 days) to label proliferating cells and were sacrificed weeks later on P95. In the hippocampus DG, AIE exposure increased survival BrdU+ cells which differentiated into Iba1+ microglia. In contrast, SVZ had decreased BrdU+ cells similar to decreased DCX+ neurogenesis. These data indicate that AIE exposure causes a lasting decrease in both adult hippocampal DG and forebrain SVZ neurogenesis with brain regional differences in the AIE response that persist into adulthood.
Collapse
Affiliation(s)
- Wen Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel HillChapel Hill, NC, United States
| |
Collapse
|
34
|
Adolescent binge ethanol exposure alters specific forebrain cholinergic cell populations and leads to selective functional deficits in the prefrontal cortex. Neuroscience 2017; 361:129-143. [PMID: 28807788 DOI: 10.1016/j.neuroscience.2017.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 01/06/2023]
Abstract
Adolescence has been identified as a vulnerable developmental time period during which exposure to drugs can have long-lasting, detrimental effects. Although adolescent binge-like ethanol (EtOH) exposure leads to a significant reduction in forebrain cholinergic neurons, EtOH's functional effect on acetylcholine (ACh) release during behavior has yet to be examined. Using an adolescent intermittent ethanol exposure model (AIE), rats were exposed to binge-like levels of EtOH from postnatal days (PD) 25 to 55. Three weeks following the final EtOH exposure, cholinergic functioning was assessed during a spontaneous alternation protocol. During maze testing, ACh levels increased in both the hippocampus and prefrontal cortex. However, selectively in the prefrontal cortex, AIE rats displayed reduced levels of behaviorally relevant ACh efflux. We found no treatment differences in spatial exploration, spatial learning, spatial reversal, or novel object recognition. In contrast, AIE rats were impaired during the first attentional set shift on an operant set-shifting task, indicative of an EtOH-mediated deficit in cognitive flexibility. A unique pattern of cholinergic cell loss was observed in the basal forebrain following AIE: Within the medial septum/diagonal band there was a selective loss (30%) of choline acetyltransferase (ChAT)-positive neurons that were nestin negative (ChAT+/nestin-); whereas in the Nucleus basalis of Meynert (NbM) there was a selective reduction (50%) in ChAT+/nestin+. These results indicate that early adolescent binge EtOH exposure leads to a long-lasting frontocortical functional cholinergic deficit, driven by a loss of ChAT+/nestin+ neurons in the NbM, which was associated with impaired cognitive flexibility during adulthood.
Collapse
|
35
|
Jury NJ, Pollack GA, Ward MJ, Bezek JL, Ng AJ, Pinard CR, Bergstrom HC, Holmes A. Chronic Ethanol During Adolescence Impacts Corticolimbic Dendritic Spines and Behavior. Alcohol Clin Exp Res 2017; 41:1298-1308. [PMID: 28614590 PMCID: PMC5509059 DOI: 10.1111/acer.13422] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/13/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Risk for alcohol use disorders (AUDs) in adulthood is linked to alcohol drinking during adolescence, but understanding of the neural and behavioral consequences of alcohol exposure during adolescence remains incomplete. Here, we examined the neurobehavioral impact of adolescent chronic intermittent EtOH (CIE) vapor exposure in mice. METHODS C57BL/6J-background Thy1-EGFP mice were CIE-exposed during adolescence or adulthood and examined, as adults, for alterations in the density and morphology of dendritic spines in infralimbic (IL) cortex, prelimbic (PL) cortex, and basolateral amygdala (BLA). In parallel, adolescent- and adult-exposed C57BL/6J mice were tested as adults for 2-bottle EtOH drinking, sensitivity to EtOH intoxication (loss of righting reflex [LORR]), blood EtOH clearance, and measures of operant responding for food reward. RESULTS CIE during adolescence decreased IL neuronal spine density and increased the head width of relatively wide-head IL and BLA spines, whereas CIE decreased head width of relatively narrow-head BLA spines. Adolescents had higher EtOH consumption prior to CIE than adults, while CIE during adulthood, but not adolescence, increased EtOH consumption relative to pre-CIE baseline. CIE produced a tolerance-like decrease in LORR sensitivity to EtOH challenge, irrespective of the age at which mice received CIE exposure. Mice exposed to CIE during adolescence, but not adulthood, required more sessions than AIR controls to reliably respond for food reward on a fixed-ratio (FR) 1, but not subsequent FR3, reinforcement schedule. On a progressive ratio reinforcement schedule, break point responding was higher in the adolescent- than the adult-exposed mice, regardless of CIE. Finally, footshock punishment markedly suppressed responding for reward in all groups. CONCLUSIONS Exposure to CIE during adolescence altered dendritic spine density and morphology in IL and BLA neurons, in parallel with a limited set of behavioral alterations. Together, these data add to growing evidence that key corticolimbic circuits are vulnerable to the effects of alcohol during adolescence, with lasting, potentially detrimental, consequences for behavior.
Collapse
Affiliation(s)
- Nicholas J Jury
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gabrielle A Pollack
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Meredith J Ward
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Jessica L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Alexandra J Ng
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Courtney R Pinard
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Lawrimore CJ, Crews FT. Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron-Like SH-SY5Y and Microglia-Like BV2. Alcohol Clin Exp Res 2017; 41:939-954. [PMID: 28273337 PMCID: PMC5407472 DOI: 10.1111/acer.13368] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ethanol (EtOH) consumption leads to an increase of proinflammatory signaling via activation of Toll-like receptors (TLRs) such as TLR3 and TLR4 that leads to kinase activation (ERK1/2, p38, TBK1), transcription factor activation (NFκB, IRF3), and increased transcription of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. This immune signaling cascade is thought to play a role in neurodegeneration and alcohol use disorders. While microglia are considered to be the primary macrophage in brain, it is unclear what if any role neurons play in EtOH-induced proinflammatory signaling. METHODS Microglia-like BV2 and retinoic acid-differentiated neuron-like SH-SY5Y were treated with TLR3 agonist Poly(I:C), TLR4 agonist lipopolysaccharide (LPS), or EtOH for 10 or 30 minutes to examine proinflammatory immune signaling kinase and transcription factor activation using Western blot, and for 24 hours to examine induction of proinflammatory gene mRNA using RT-PCR. RESULTS In BV2, both LPS and Poly(I:C) increased p-ERK1/2, p-p38, and p-NFκB by 30 minutes, whereas EtOH decreased p-ERK1/2 and increased p-IRF3. LPS, Poly(I:C), and EtOH all increased TNF-α and IL-1β mRNA, and EtOH further increased TLR2, 7, 8, and MD-2 mRNA in BV2. In SH-SY5Y, LPS had no effect on kinase or proinflammatory gene expression. However, Poly(I:C) increased p-p38 and p-IRF3, and increased expression of TNF-α, IL-1β, and IL-6, while EtOH increased p-p38, p-IRF3, p-TBK1, and p-NFκB while decreasing p-ERK1/2 and increasing expression of TLR3, 7, 8, and RAGE mRNA. HMGB1, a TLR agonist, was induced by LPS in BV2 and by EtOH in both cell types. EtOH was more potent at inducing proinflammatory gene mRNA in SH-SY5Y compared with BV2. CONCLUSIONS These results support a novel and unique mechanism of EtOH, TLR3, and TLR4 signaling in neuron-like SH-SY5Y and microglia-like BV2 that likely contributes to the complexity of brain neuroimmune signaling.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Bowles Center for Alcohol Studies , School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Neurobiology , University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fulton T Crews
- Bowles Center for Alcohol Studies , School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
38
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
39
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
40
|
Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System. Alcohol Clin Exp Res 2016; 40:2260-2270. [PMID: 27650785 DOI: 10.1111/acer.13208] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Silvia Alfonso-Loeches
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain.
| |
Collapse
|
41
|
Montesinos J, Pascual M, Rodríguez-Arias M, Miñarro J, Guerri C. Involvement of TLR4 in the long-term epigenetic changes, rewarding and anxiety effects induced by intermittent ethanol treatment in adolescence. Brain Behav Immun 2016; 53:159-171. [PMID: 26686767 DOI: 10.1016/j.bbi.2015.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Studies in humans and experimental animals have demonstrated the vulnerability of the adolescent brain to actions of ethanol and the long-term consequences of binge drinking, including the behavioral and cognitive deficits that result from alcohol neurotoxicity, and increased risk to alcohol abuse and dependence. Although the mechanisms that participate in these effects are largely unknown, we have shown that ethanol by activating innate immune receptors, toll-like receptor 4 (TLR4), induces neuroinflammation, impairs myelin proteins and causes cognitive dysfunctions in adolescent mice. Since neuroimmune signaling is also involved in alcohol abuse, the aim of this study was to assess whether ethanol treatment in adolescence promotes the long-term synaptic and molecular events associated with alcohol abuse and addiction. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3g/kg) for 2 weeks, we showed that binge-like ethanol treatment in adolescent mice promotes short- and long-term alterations in synaptic plasticity and epigenetic changes in the promoter region of bdnf and fosb, which increased their expression in the mPFC of young adult animals. These molecular events were associated with long-term rewarding and anxiogenic-related behavioral effects, along with increased alcohol preference. Our results further showed the participation of neuroimmune system activation and the TLR4 signaling response since deficient mice in TLR4 (TLR4-KO) are protected against molecular and behavioral alterations of ethanol in the adolescent brain. Our results highlight a new role of the neuroimmune function and open up new avenues to develop pharmacological treatments that can normalize the immune signaling responsible for long-term effects in adolescence, including alcohol abuse and related disorders.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain.
| |
Collapse
|
42
|
McKim TH, Shnitko TA, Robinson DL, Boettiger CA. Translational Research on Habit and Alcohol. CURRENT ADDICTION REPORTS 2016; 3:37-49. [PMID: 26925365 DOI: 10.1007/s40429-016-0089-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Habitual actions enable efficient daily living, but they can also contribute to pathological behaviors that resistant change, such as alcoholism. Habitual behaviors are learned actions that appear goal-directed but are in fact no longer under the control of the action's outcome. Instead, these actions are triggered by stimuli, which may be exogenous or interoceptive, discrete or contextual. A major hallmark characteristic of alcoholism is continued alcohol use despite serious negative consequences. In essence, although the outcome of alcohol seeking and drinking is dramatically devalued, these actions persist, often triggered by environmental cues associated with alcohol use. Thus, alcoholism meets the definition of an initially goal-directed behavior that converts to a habit-based process. Habit and alcohol have been well investigated in rodent models, with comparatively less research in non-human primates and people. This review focuses on translational research on habit and alcohol with an emphasis on cross-species methodology and neural circuitry.
Collapse
Affiliation(s)
- Theresa H McKim
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Davie Hall, CB #3270, Chapel Hill, NC 27599
| | - Tatiana A Shnitko
- University of North Carolina at Chapel Hill, Bowles Center for Alcohol Studies, CB #7178, Chapel Hill, NC 27599
| | - Donita L Robinson
- University of North Carolina at Chapel Hill, Department of Psychiatry, Bowles Center for Alcohol Studies, CB #7178, Chapel Hill, NC 27599
| | - Charlotte A Boettiger
- Biomedical Research Imaging Center, Bowles Center for Alcohol Studies, Davie Hall, CB #3270, Chapel Hill, NC 27599
| |
Collapse
|
43
|
Shnitko TA, Spear LP, Robinson DL. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology (Berl) 2016; 233:361-71. [PMID: 26487039 PMCID: PMC4840100 DOI: 10.1007/s00213-015-4106-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Rationale: Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. OBJECTIVES We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. METHODS Rats received intermittent intragastric ethanol, water, or nothing during adolescence. In adulthood, electrically evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. RESULTS Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50 % in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. CONCLUSIONS The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Linda P. Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Corresponding author: Donita L. Robinson, PhD, Bowles Center for Alcohol Studies, CB #7178, University of North Carolina, Chapel Hill, NC 27599–7178; ; Phone: 919–966–9178; Fax: 919–966–5679
| |
Collapse
|
44
|
Bendre M, Comasco E, Nylander I, Nilsson KW. Effect of voluntary alcohol consumption on Maoa expression in the mesocorticolimbic brain of adult male rats previously exposed to prolonged maternal separation. Transl Psychiatry 2015; 5:e690. [PMID: 26645625 PMCID: PMC5068586 DOI: 10.1038/tp.2015.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Discordant associations between monoamine oxidase A (MAOA) genotype and high alcohol drinking have been reported in human and non-human primates. Environmental influences likely moderate genetic susceptibility. The biological basis for this interplay remains elusive, and inconsistencies call for translational studies in which conditions can be controlled and brain tissue is accessible. The present study investigated whether early life stress and subsequent adult episodic alcohol consumption affect Maoa expression in stress- and reward-related brain regions in the rat. Outbred Wistar rats were exposed to rearing conditions associated with stress (prolonged maternal separation) or no stress during early life, and given free choice between alcohol and/or water in adulthood. Transcript levels of Maoa were assessed in the ventral tegmental area, nucleus accumbens (NAc), medial prefrontal cortex, cingulate cortex, amygdala and dorsal striatum (DS). Blood was collected to assess corticosterone levels. After alcohol consumption, lower blood corticosterone and Maoa expression in the NAc and DS were found in rats exposed to early life stress compared with control rats. An interaction between early life stress and voluntary alcohol intake was found in the NAc. Alcohol intake before death correlated negatively with Maoa expression in DS in high alcohol-drinking rats exposed to early life stress. Maoa expression is sensitive to adulthood voluntary alcohol consumption in the presence of early life stress in outbred rats. These findings add knowledge of the molecular basis of the previously reported associations between early life stress, MAOA and susceptibility to alcohol misuse.
Collapse
Affiliation(s)
- M Bendre
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - E Comasco
- Department of Neuroscience, Uppsala University, Uppsala, Sweden,Department of Neuroscience, Uppsala University, Husargatan 3, BMC, Box 593, Uppsala 751 24, SwedenE-mail:
| | - I Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden,Department of Pharmaceutical Biosciences, Uppsala University, BMC, Box 591, Uppsala SE-751 24, Sweden. E-mail:
| | - K W Nilsson
- Centre for Clinical Research, Uppsala University, County Hospital, Västerås, Sweden
| |
Collapse
|
45
|
Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders. Brain Sci 2015; 5:258-74. [PMID: 26136145 PMCID: PMC4588139 DOI: 10.3390/brainsci5030258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Collapse
|