1
|
Endo N, Hiraishi A, Goto S, Nozu H, Mannari-Sasagawa T, Horii-Hayashi N, Kitsuki M, Okuda M, Makinodan M, Nishi M. Dysregulated HPA axis during postnatal developmental stages in the BTBR T + Itpr3 tf/J mouse: A model of autism spectrum disorder. Neuropsychopharmacol Rep 2025; 45:e12508. [PMID: 39610036 DOI: 10.1002/npr2.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Some children with ASD show enhanced cortisol response to stress. BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model, display behavior consistent with the three diagnostic categories of ASD and exhibit an exaggerated response to stress in adulthood. However, it remains unclear how basal corticosterone levels change and how the hypothalamic-pituitary-adrenal axis responds to stress during the early life stages in BTBR mice. In this study, we found that basal corticosterone levels showed characteristic changes, peaking at weaning during postnatal development in both BTBR and control C57BL/6J (B6J) mice. Furthermore, we observed higher corticosterone and corticotropin-releasing hormone levels in BTBR mice than in B6J mice following acute stress exposure during weaning; however, adrenocorticotropic hormone levels were lower in BTBR mice. Glucocorticoid receptor mRNA expression levels in the hippocampus and lateral septum after stress were higher in BTBR mice than in B6J mice. This study documented changes in corticosterone levels at baseline during postnatal development in mice and showed that BTBR mice exhibited disrupted stress responses at weaning.
Collapse
Affiliation(s)
- Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Atsuo Hiraishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Sayaka Goto
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Hitoshi Nozu
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Takayo Mannari-Sasagawa
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| | - Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Michiko Kitsuki
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Mamiko Okuda
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
2
|
Orsucci IC, Becker KD, Ham JR, Lee JD, Bowden SM, Veenema AH. To Play or Not to Play? Effects of Playmate Familiarity and Social Isolation on Social Play Engagement in Three Laboratory Rat Strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623692. [PMID: 39605718 PMCID: PMC11601367 DOI: 10.1101/2024.11.14.623692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Social play is a motivating and rewarding behavior displayed by juveniles of many mammalian species, including humans and rats. Social play is vital to the development of social skills. Autistic children show less social play engagement which may contribute to their impairments in social skills. There is limited knowledge about what external conditions may positively or negatively influence social play engagement in humans or other animals. Therefore, we determined how two common external conditions, playmate familiarity and social isolation, modulate social play levels and social play defense tactics in juveniles of three common laboratory rat strains: Long-Evans, Sprague-Dawley, and Wistar. Males and females were socially isolated for either 2h or 48h prior to social play testing and were then exposed to either a familiar (cage mate) or novel playmate, creating four testing conditions: 2h-Familiar, 48h-Familiar, 2h-Novel, and 48h-Novel. Both playmate familiarity and social isolation length influenced social play behavior levels and tactics in juvenile rats, but did so differently for each of the three rat strains. Long-Evans played most with a familiar playmate, irrespective of time isolated, Sprague-Dawley played most in the 48h-Familiar condition, and Wistar played the least in the 2h-Familiar condition, but Wistar played more with a novel playmate than Long-Evans and Sprague-Dawley. Analysis of social play tactics by the playmates in response to nape attacks by the experimental rats revealed strain differences with novel playmates. Here, Sprague-Dawley and Wistar defended more nape attacks than Long-Evans. Sprague-Dawley evaded these attacks, thereby shortening body contact. In contrast, Wistar turned to face their playmate attacker and showed more complete rotations, thereby extending body contact and wrestling longer. Role reversals, which increase social play reciprocity and reflect the quality of social play, were higher in Long-Evans and Sprague-Dawley with familiar playmates. Role reversals decreased for Sprague-Dawley but increased for Wistar after 48h isolation. The effects of playmate familiarity or social isolation length on social play levels and tactics were similar across sex for all three strains. In conclusion, we showed that two common external factors (playmate familiarity and social isolation length) that largely vary across social play studies have a major impact on the level and quality of social play in the three rat strains. Strain differences indicate higher level and quality of social play with familiar playmates in Long-Evans, with familiar playmates after short isolation in Sprague-Dawley, and with novel playmates after longer isolation for Wistar. Future research could determine whether strain differences in neuronal mechanisms underlie these condition-induced variations in social play engagement. Our findings are also informative in suggesting that external conditions like playmate familiarity and social isolation length could influence social play levels and social play quality in typical and atypical children.
Collapse
Affiliation(s)
- Isabella C. Orsucci
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Kira D. Becker
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Jackson R. Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jessica D.A. Lee
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Samantha M. Bowden
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexa H. Veenema
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Cordoni G, Norscia I. Nuancing 'Emotional' Social Play: Does Play Behaviour Always Underlie a Positive Emotional State? Animals (Basel) 2024; 14:2769. [PMID: 39409718 PMCID: PMC11475484 DOI: 10.3390/ani14192769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This review focuses on social play, a complex behaviour that is often difficult to categorize. Although play has been typically associated with positive emotional states, a thorough examination of the literature indicates that it may relate to different emotional systems, from attachment to conflict. Play oscillates between competition and cooperation, and includes a spectrum in between; thus, quantitatively identifying and demonstrating the emotional nature of play remains challenging. We considered examples from human and non-human animal studies and explored the emotional and neuro-hormonal systems involved in play. We assessed ethological data possibly indicating the emotional states underlying play, and we focused on the cooperative and competitive elements of play. We investigated the relationship between play and affiliative/aggressive behaviours, the communicative meaning of play signals (especially primate play faces), and the motor and possibly emotional contagion function of rapid motor mimicry during play. From all the literature on play, this review selects and combines studies in an innovative way to present the methods (e.g., play indices and social network analysis), tools (e.g., sequential analysis and facial coding software), and evidence indicative of the emotional states underlying play, which is much more complex than previously thought.
Collapse
Affiliation(s)
- Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| |
Collapse
|
4
|
Bredewold R, Washington C, Veenema AH. Vasopressin regulates social play behavior in sex-specific ways through glutamate modulation in the lateral septum. Neuropsychopharmacology 2024:10.1038/s41386-024-01987-z. [PMID: 39304743 DOI: 10.1038/s41386-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Understanding the neural basis of social play in juvenile rats may ultimately help restore social play deficits in autistic children. We previously found that administration of a vasopressin (AVP) V1a receptor (V1aR) antagonist into the lateral septum (LS) increased social play behavior in male juvenile rats and decreased it in females. Here, we demonstrate that glutamate, but not GABA, is involved in this sex-specific regulation. First, we found a sex difference in extracellular LS glutamate/GABA ratio (lower in females) that was eliminated by V1aR antagonist infusion in the LS that caused an increase in glutamate release in females only. Second, infusion of the glutamate receptor agonist L-glutamic acid into the LS mimicked the V1aR antagonist-induced decrease in female social play while preventing the increase in male social play. Third, infusion of the glutamate receptor antagonists AP-5 and CNQX into the LS prevented the V1aR antagonist-induced decrease in female social play. Fourth, there were no sex differences in extracellular GABA release in the LS upon either V1aR antagonist infusion or in social play expression upon infusion of the GABA-A receptor agonist muscimol into the LS, suggesting that GABA is not involved in the sex-specific regulation of social play by the LS-AVP system. Last, we found no sex differences in the type (GAD1/2, somatostatin, calbindin 1, Sox9) of V1aR-expressing LS cells, suggesting other cellular mechanisms mediating the sex-specific effects on glutamate release in the LS by the LS-AVP system. In conclusion, we demonstrate that the LS-AVP system regulates social play sex-specifically via glutamatergic neurotransmission. These findings have relevance for potential sex-specific effects of AVP-based treatment of social deficits in children.
Collapse
Affiliation(s)
- Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Catherine Washington
- Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Lee JDA, Reppucci CJ, Huez EDM, Bredewold R, Veenema AH. Sex differences in the structure and function of the vasopressin system in the ventral pallidum are associated with the sex-specific regulation of social play behavior in juvenile rats. Horm Behav 2024; 163:105563. [PMID: 38772158 PMCID: PMC11221216 DOI: 10.1016/j.yhbeh.2024.105563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Vasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system. First, we examined the organization of the VP-AVP system in juvenile rats and found sex differences, with higher density of both AVP-immunoreactive fibers and AVP V1a receptor (V1aR) binding in males compared to females while females show a greater number of V1aR-expressing cells compared to males. We further found that, in both sexes, V1aR-expressing cells co-express a GABA marker to a much greater extent (approx. 10 times) than a marker for glutamate. Next, we examined the functional involvement of V1aR-expressing VP cells in social play behavior. We found that exposure to social play enhanced the proportion of activated V1aR-expressing VP cells in males only. Finally, we showed that infusion of a specific V1aR antagonist into the VP increased social play behaviors in juvenile male rats while decreasing these behaviors in juvenile female rats. Overall, these findings reveal structural and functional sex differences in the AVP-V1aR system in the VP that are associated with the sex-specific regulation of social play behavior.
Collapse
Affiliation(s)
- Jessica D A Lee
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christina J Reppucci
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Elie D M Huez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Mottarlini F, Rizzi B, Targa G, Buzzelli V, Di Trapano M, Rullo L, Candeletti S, Ciccocioppo R, Fattore L, Romualdi P, Fumagalli F, Trezza V, Caffino L. Communal nesting shapes the sex-dependent glutamatergic response to early life stress in the rat prefrontal cortex. Front Psychiatry 2024; 15:1406687. [PMID: 38835543 PMCID: PMC11148342 DOI: 10.3389/fpsyt.2024.1406687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Early social environment, either positive or negative, shapes the adult brain. Communal nesting (CN), a naturalistic setting in which 2-3 females keep their pups in a single nest sharing care-giving behavior, provides high level of peer interaction for pups. Early social isolation (ESI) from dam and siblings represents, instead, an adverse condition providing no peer interaction. Methods We investigated whether CN (enrichment setting) might influence the response to ESI (impoverishment setting) in terms of social behavior and glutamate system in the medial prefrontal cortex (mPFC) of adult and adolescent male and female rats. Results Pinning (a rewarding component of social play behavior) was significantly more pronounced in males than in females exposed to the combination of CN and ESI. CN sensitized the glutamate synapse in the mPFC of ESI-exposed male, but not female, rats. Accordingly, we observed (i) a potentiation of the glutamatergic neurotransmission in the mPFC of both adolescent and adult males, as shown by the recruitment of NMDA receptor subunits together with increased expression/activation of PSD95, SynCAM 1, Synapsin I and αCaMKII; (ii) a de-recruiting of NMDA receptors from active synaptic zones of same-age females, together with reduced expression/activation of the above-mentioned proteins, which might reduce the glutamate transmission. Whether similar sex-dependent glutamate homeostasis modulation occurs in other brain areas remains to be elucidated. Discussion CN and ESI interact to shape social behavior and mPFC glutamate synapse homeostasis in an age- and sex-dependent fashion, suggesting that early-life social environment may play a crucial role in regulating the risk to develop psychopathology.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
- Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Melania Di Trapano
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Liana Fattore
- Research National Council (CNR) Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, Istituto di Ricerca e Cura di Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Xia M, Xia Y, Sun Y, Wang J, Lu J, Wang X, Xia D, Xu X, Sun B. Gut microbiome is associated with personality traits of free-ranging Tibetan macaques ( Macaca thibetana). Front Microbiol 2024; 15:1381372. [PMID: 38711972 PMCID: PMC11070476 DOI: 10.3389/fmicb.2024.1381372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Recent studies have emphasized that there is a strong link between the gut microbiome and the brain that affects social behavior and personality in animals. However, the interface between personality and the gut microbiome in wild primates remains poorly understood. Here, we used high-throughput sequencing and ethological methods in primate behavioral ecology to investigate the relationship between gut microbiome and personality in Tibetan macaques (Macaca thibetana). The behavioral assessment results indicated three personality dimensions including socialization, shyness, and anxiety. There was significant variation in alpha diversity only for shyness, with a significantly lower alpha diversity indices (including Shannon, Chao1, and PD) for bold individuals than for shy individuals. Using regression models to control for possible confounding factors, we found that the relative abundance of three genera, Akkermansia, Dialister, and Asteroleplasma, was significantly and positively correlated with the sociability scores in the macaques. In addition, Oscillospiraceae exhibited a positive correlation with scores for Shy Dimension. Furthermore, we found that the predicted functional genes for propionate and pyruvate, porphyrin and chlorophyll metabolic pathways related to animal behavior, were significant enriched in shyness group. We propose that the gut microbiome may play an important role in the formation of personality of Tibetan macaques.
Collapse
Affiliation(s)
- Mengyi Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yingna Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yu Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jingjing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jiakai Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Dongpo Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaojuan Xu
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Binghua Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
8
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Zhao C, Riters LV. The medial preoptic area and its projections to the ventral tegmental area and the periaqueductal gray are activated in response to social play behavior in juvenile rats. Behav Neurosci 2023; 137:223-235. [PMID: 36877484 PMCID: PMC10363185 DOI: 10.1037/bne0000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The medial preoptic area (MPOA) is well known for its role in sexual and maternal behaviors. This region also plays an important role in affiliative social behaviors outside reproductive contexts. We recently demonstrated that the MPOA is a central nucleus in which opioids govern highly rewarding social play behavior in adolescent rats. However, the neural circuit mechanisms underlying MPOA-mediated social play remain largely unresolved. We hypothesized that the MPOA unites a complementary neural system through which social play induces reward via a projection to the ventral tegmental area (VTA) and reduces a negative affective state through a projection to the periaqueductal gray (PAG). To test whether the two projection pathways are activated in response to social play behavior, we combined retrograde tract tracing with immediate early gene (IEG) expression and immunofluorescent labeling to identify opioid-sensitive projection pathways from the MPOA to VTA and PAG that are activated after performance of social play. Retrograde tracer, fluoro-gold (FG), was microinjected into the VTA or PAG. IEG expression (i.e., Egr1) was assessed and triple immunofluorescent labeling for mu opioid receptor (MOR), Egr1, and FG in the MPOA was performed after social play. We revealed that play animals displayed an increase in neurons double labeled for Egr1 + FG and triple labeled for MOR + Egr1 + FG in the MPOA projecting to both the VTA and PAG when compared to no-play rats. The increased activation of projection neurons that express MORs from MPOA to VTA or PAG after social play suggests that opioids may act through these projection pathways to govern social play. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Openshaw RL, Thomson DM, Bristow GC, Mitchell EJ, Pratt JA, Morris BJ, Dawson N. 16p11.2 deletion mice exhibit compromised fronto-temporal connectivity, GABAergic dysfunction, and enhanced attentional ability. Commun Biol 2023; 6:557. [PMID: 37225770 DOI: 10.1038/s42003-023-04891-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Greg C Bristow
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| | - Neil Dawson
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
11
|
Bredewold R, Washington C, Veenema AH. Vasopressin regulates social play behavior in sex-specific ways through glutamate modulation in the lateral septum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535148. [PMID: 37034639 PMCID: PMC10081315 DOI: 10.1101/2023.03.31.535148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Social play is a highly rewarding behavior that is essential for the development of social skills. Social play is impaired in children diagnosed with autism, a disorder with a strong sex bias in prevalence. We recently showed that the arginine vasopressin (AVP) system in the lateral septum (LS) regulates social play behavior sex-specifically in juvenile rats: Administration of a AVP 1a receptor (V1aR) antagonist increased social play behavior in males and decreased it in females. Here, we demonstrate that glutamate, but not GABA, is involved in the sex-specific regulation of social play by the LS-AVP system. First, males show higher extracellular glutamate concentrations in the LS than females while they show similar extracellular GABA concentrations. This resulted in a baseline sex difference in excitatory/inhibitory balance, which was eliminated by V1aR antagonist administration into the LS: V1aR antagonist increased extracellular glutamate release in females but not in males. Second, administration of the glutamate receptor agonist L-glutamic acid into the LS prevented the V1aR antagonist-induced increase in social play behavior in males while mimicking the V1aR antagonist-induced decrease in social play behavior in females. Third, administration of the glutamate receptor antagonists AP-5 and CNQX into the LS prevented the V1aR antagonist-induced decrease in social play behavior in females. Last, both sexes showed increases in extracellular LS-GABA release upon V1aR antagonist administration into the LS and decreases in social play behavior upon administration of the GABA-A receptor agonist muscimol into the LS, suggesting that GABA is not involved in the sex-specific regulation of social play by the LS-AVP system. Finally, to start identifying the cellular mechanism mediating the sex-specific effects of the LS-AVP system on LS-glutamate, we determined the presence of potential sex differences in the type of LS cells expressing V1aR. However, no sex differences were found in the percentage of Avpr1a+ LS cells expressing markers for either GABAergic neurons, somatostatin-expressing neurons, calbindin 1-expressing neurons, or astrocytes. In conclusion, these findings demonstrate that the LS-AVP system regulates social play sex-specifically via differential local glutamatergic neurotransmission in male and female juvenile rats. Further research is required to uncover the underlying cellular mechanism.
Collapse
Affiliation(s)
- Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Catherine Washington
- Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
King'uyu DN, Stephens SBZ, Kopec AM. Immune signaling in sex-specific neural and behavioral development: Adolescent opportunity. Curr Opin Neurobiol 2022; 77:102647. [PMID: 36332416 PMCID: PMC9893405 DOI: 10.1016/j.conb.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Sex differences in neural and behavioral development are integral to understanding neurodevelopmental, mental health, and neurodegenerative disorders. Much of the literature has focused on late prenatal and early postnatal life as a critical juncture for establishing sex-specific developmental trajectories, and data are now clear that immune signaling plays a central role in establishing sex differences early in life. Adolescence is another developmental period during which sex differences arise. However, we know far less about how immune signaling plays a role in establishing sex differences during adolescence. Herein, we review well-defined examples of sex differences during adolescence and then survey the literature to speculate how immune signaling might be playing a role in defining sex-specific adolescent outcomes. We discuss open questions in the literature and propose experimental design tenets that may assist in better understanding adolescent neurodevelopment.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA
| | - Shannon B Z Stephens
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA. https://twitter.com/Stephens_Lab
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, USA.
| |
Collapse
|
13
|
Li X, Zhao G, Huang H, Ye J, Xu J, Zhou Y, Zhu X, Wang L, Wang F. Lifespan changes in cannabinoid 1 receptor mRNA expression in the female C57BL/6J mouse brain. J Comp Neurol 2022; 531:294-313. [PMID: 36240125 DOI: 10.1002/cne.25427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Many brain functions that underlie behavior, cognition, and emotions vary with age, as does susceptibility to neuropsychological disorders. The expression of specific genes that are involved in these functions, such as the genes encoding for oxytocin, its receptors, and apolipoprotein D, varies with age across different brain regions. The cannabinoid 1 receptor (CB1 R) is one of the most widely spread G-protein coupled receptors in the central nervous system and is increasingly recognized for its important contribution to various brain functions. Although changes in CB1 R expression with age have been reported in the male mouse brain, they have not been well investigated in the female brain. Here, we used fluorescence in situ hybridization to target CB1 R mRNA in the whole brains of female C57BL/6J mice aged 4, 6, 12, 52 (12 months) and 86 weeks (20 months), and quantified CB1 R-positive cells in 36 brain regions across the whole brain. The results showed that CB1 R-positive cells number changed with age. Specifically, CB1 R expression increased with age in some subregions of the cortex, decreased with age in the lateral septal area, and reached its lowest level at 52 weeks in the thalamus, hypothalamus, and hindbrain subregions. Cluster analysis revealed that some brain regions shared similar temporal characteristics in CB1 R-positive cell number across the lifespan. Our results provide evidence that investigation of the neural basis of age-related characteristics of female brain functions is not only warranted but required.
Collapse
Affiliation(s)
- Xulin Li
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gaoyang Zhao
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|
14
|
Ncube D, Tallafuss A, Serafin J, Bruckner J, Farnsworth DR, Miller AC, Eisen JS, Washbourne P. A conserved transcriptional fingerprint of multi-neurotransmitter neurons necessary for social behavior. BMC Genomics 2022; 23:675. [PMID: 36175871 PMCID: PMC9523972 DOI: 10.1186/s12864-022-08879-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
Background An essential determinant of a neuron’s functionality is its neurotransmitter phenotype. We previously identified a defined subpopulation of cholinergic neurons required for social orienting behavior in zebrafish. Results We transcriptionally profiled these neurons and discovered that they are capable of synthesizing both acetylcholine and GABA. We also established a constellation of transcription factors and neurotransmitter markers that can be used as a “transcriptomic fingerprint” to recognize a homologous neuronal population in another vertebrate. Conclusion Our results suggest that this transcriptomic fingerprint and the cholinergic-GABAergic neuronal subtype that it defines are evolutionarily conserved. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08879-w.
Collapse
Affiliation(s)
- Denver Ncube
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Alexandra Tallafuss
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Jen Serafin
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Joseph Bruckner
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Dylan R Farnsworth
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
15
|
Ferrara NC, Trask S, Ritger A, Padival M, Rosenkranz JA. Developmental differences in amygdala projection neuron activation associated with isolation-driven changes in social preference. Front Behav Neurosci 2022; 16:956102. [PMID: 36090658 PMCID: PMC9449454 DOI: 10.3389/fnbeh.2022.956102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Adolescence is a developmental period characterized by brain maturation and changes in social engagement. Changes in the social environment influence social behaviors. Memories of social events, including remembering familiar individuals, require social engagement during encoding. Therefore, existing differences in adult and adolescent social repertoires and environmentally-driven changes in social behavior may impact novel partner preference, associated with social recognition. Several amygdala subregions are sensitive to the social environment and can influence social behavior, which is crucial for novelty preference. Amygdala neurons project to the septum and nucleus accumbens (NAc), which are linked to social engagement. Here, we investigated how the social environment impacts age-specific social behaviors during social encoding and its subsequent impact on partner preference. We then examined changes in amygdala-septal and -NAc circuits that accompany these changes. Brief isolation can drive social behavior in both adults and adolescents and was used to increase social engagement during encoding. We found that brief isolation facilitates social interaction in adolescents and adults, and analysis across time revealed that partner discrimination was intact in all groups, but there was a shift in preference within isolated and non-isolated groups. We found that this same isolation preferentially increases basal amygdala (BA) activity relative to other amygdala subregions in adults, but activity among amygdala subregions was similar in adolescents, even when considering conditions (no isolation, isolation). Further, we identify isolation-driven increases in BA-NAc and BA-septal circuits in both adults and adolescents. Together, these results provide evidence for changes in neuronal populations within amygdala subregions and their projections that are sensitive to the social environment that may influence the pattern of social interaction within briefly isolated groups during development.
Collapse
Affiliation(s)
- Nicole C. Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexandra Ritger
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: J. Amiel Rosenkranz,
| |
Collapse
|
16
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Hellinger Á, Erk D, Zelena D. Median raphe region GABAergic neurons contribute to social interest in mouse. Life Sci 2022; 289:120223. [PMID: 34896160 DOI: 10.1016/j.lfs.2021.120223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a well-known inhibitory neurotransmitter implicated in numerous physiological and pathological behaviors including social interest. Dysregulation of the median raphe region (MRR), a main serotoninergic nucleus, is also characterized by increased social problems. As the majority of MRR cells are GABAergic, we aimed to reveal the social role of these cells. Chemogenetic techniques were used in vesicular GABA transporter Cre mice and with the help of adeno-associated virus vectors artificial receptors (DREADDs, stimulatory, inhibitory or control, containing only a fluorophore) were expressed in MRR GABAergic cells confirmed by immunohistochemistry. Four weeks after viral injection a behavioral test battery (sociability; social interaction; resident-intruder) was conducted. The artificial ligand (clozapine-N-oxide, 1 mg/10 ml/kg) was administrated 30 min before the tests. As possible confounding factors, locomotion (open field/OF), anxiety-like behavior (elevated plus maze/EPM), and short-term memory (Y-maze) were also evaluated. Stimulation of the GABAergic cells in MRR had no effect on locomotion or working and social memory; however, it increased social interest during sociability and social interaction but not in resident-intruder tests. Accordingly, c-Fos elevation in MRR-GABAergic cells was detected after sociability, but not resident-intruder tests. In the EPM test, the inhibitory group entered into the open arms later, suggesting an anxiogenic-like tendency. We confirmed the role of MRR-GABAergic cells in promoting social interest. However, different subpopulations (e.g. long vs short projecting, various neuropeptide containing) might have divergent roles, which might remain hidden and requires further studies.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dorottya Várkonyi
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Ákos Hellinger
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dogu Erk
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dóra Zelena
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
17
|
Endocannabinoid markers in autism spectrum disorder: A scoping review of human studies. Psychiatry Res 2021; 306:114256. [PMID: 34775294 DOI: 10.1016/j.psychres.2021.114256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and patterns of restrictive and repetitive behavior. Although the neurological underpinnings of ASD remain elusive, the endocannabinoid system (ECS) may play a role in modulating social behavior in ASD. Preclinical studies have suggested that alterations in the ECS result in ASD-like phenotypes, but currently no reviews have examined ECS abnormalities in human studies. This scoping review investigated any evidence of ECS alterations in humans with ASD. A comprehensive literature search was conducted and five studies were eligible for review. Three studies reported a significant reduction of anandamide in ASD compared to controls. Other alterations included decreased 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide and elevated diacylglycerol lipase and monoacylglycerol lipase. Some discrepant findings were also noted, which included elevated or reduced CB2 receptor in three studies and elevated or reduced N-acyl phosphatidylethanolamine phospholipase D and fatty acid amide hydrolase in two studies. We conclude from this preliminary investigation that the ECS may be altered in humans with ASD. Potential limitations of the reviewed studies include medication use and psychiatric comorbidities. Further research, such as positron emission tomography studies, are necessary to fully understand the relationship between ECS markers and ASD.
Collapse
|
18
|
Menon R, Süß T, Oliveira VEDM, Neumann ID, Bludau A. Neurobiology of the lateral septum: regulation of social behavior. Trends Neurosci 2021; 45:27-40. [PMID: 34810019 DOI: 10.1016/j.tins.2021.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Social interactions are essential for mammalian life and are regulated by evolutionary conserved neuronal mechanisms. An individual's internal state, experiences, and the nature of the social stimulus are critical for determining apt responses to social situations. The lateral septum (LS) - a structure of the basal forebrain - integrates abundant cortical and subcortical inputs, and projects to multiple downstream regions to generate appropriate behavioral responses. Although incoming cognitive information is indispensable for contextualizing a social stimulus, neuromodulatory information related to the internal state of the organism significantly influences the behavioral outcome as well. This review article provides an overview of the neuroanatomical properties of the LS, and examines its neurochemical (neuropeptidergic and hormonal) signaling, which provide the neuromodulatory information essential for fine-tuning social behavior across the lifespan.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Theresa Süß
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Vinícius Elias de Moura Oliveira
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany; Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Anna Bludau
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
19
|
Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021; 41:8801-8814. [PMID: 34475199 PMCID: PMC8528495 DOI: 10.1523/jneurosci.0925-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.
Collapse
|
20
|
van der Veldt S, Etter G, Mosser CA, Manseau F, Williams S. Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum. PLoS Biol 2021; 19:e3001383. [PMID: 34460812 PMCID: PMC8432898 DOI: 10.1371/journal.pbio.3001383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/10/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
The hippocampal spatial code’s relevance for downstream neuronal populations—particularly its major subcortical output the lateral septum (LS)—is still poorly understood. Here, using calcium imaging combined with unbiased analytical methods, we functionally characterized and compared the spatial tuning of LS GABAergic cells to those of dorsal CA3 and CA1 cells. We identified a significant number of LS cells that are modulated by place, speed, acceleration, and direction, as well as conjunctions of these properties, directly comparable to hippocampal CA1 and CA3 spatially modulated cells. Interestingly, Bayesian decoding of position based on LS spatial cells reflected the animal’s location as accurately as decoding using the activity of hippocampal pyramidal cells. A portion of LS cells showed stable spatial codes over the course of multiple days, potentially reflecting long-term episodic memory. The distributions of cells exhibiting these properties formed gradients along the anterior–posterior and dorsal–ventral axes of the LS, directly reflecting the topographical organization of hippocampal inputs to the LS. Finally, we show using transsynaptic tracing that LS neurons receiving CA3 and CA1 excitatory input send projections to the hypothalamus and medial septum, regions that are not targeted directly by principal cells of the dorsal hippocampus. Together, our findings demonstrate that the LS accurately and robustly represents spatial, directional as well as self-motion information and is uniquely positioned to relay this information from the hippocampus to its downstream regions, thus occupying a key position within a distributed spatial memory network. Calcium imaging of neurons in freely behaving mice reveals how the lateral septum, the main output of the hippocampal place cells, effectively represents information about not only location, but also head direction and self-movement, and may be pivotal in sending this information to downstream brain regions.
Collapse
Affiliation(s)
| | - Guillaume Etter
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Coralie-Anne Mosser
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Frédéric Manseau
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Sylvain Williams
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
- * E-mail:
| |
Collapse
|
21
|
Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, Franceschelli DV, Galan A, Dodson CM, Lenz KM. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain Behav Immun 2021; 95:269-286. [PMID: 33798637 PMCID: PMC8187275 DOI: 10.1016/j.bbi.2021.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.
Collapse
Affiliation(s)
- Michaela R. Breach
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Steven Platko
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Rachel A. Gilfarb
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Annemarie R. Krug
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Claire M. Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021; 42:219-258. [PMID: 33704446 PMCID: PMC8348944 DOI: 10.1210/endrev/bnaa034] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/08/2023]
Abstract
In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter L Miller
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institutes of Mental Health, Intramural Research Program, Bethesda, MD, USA
| | - Ragini Verma
- Diffusion and Connectomics In Precision Healthcare Research (DiCIPHR) lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Chaichim C, Cannings MJ, Dumlao G, Power JM. Long-term depression of excitatory transmission in the lateral septum. J Neurophysiol 2021; 125:1825-1832. [PMID: 33852819 DOI: 10.1152/jn.00657.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here, we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)- and N-methyl-d-aspartate receptor (NMDA-R)-mediated currents. Low-frequency stimulation of the fimbria fiber bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist (d)-2-amino-5-phosphonovaleric acid (APV), but not the selective antagonist of GluN2B-containing NMDA-Rs ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure, and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.NEW & NOTEWORTHY The lateral septum (LS) integrates information from hippocampus and other regions to provide context-dependent (top down or higher order) regulation of mood and motivated behavior. Learning and drugs of abuse induce long-term changes in the strength of glutamatergic projections to the LS; however, the cellular mechanisms underlying such changes are poorly understood. Here, we demonstrate there are no apparent sex differences in fast excitatory transmission and that long-term synaptic depression in the LS is NMDA-R dependent.
Collapse
Affiliation(s)
- Chanchanok Chaichim
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Madeleine J Cannings
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gadiel Dumlao
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Yu X, Qian-Qian L, Cong Y, Xiao-Bing Z, Hong-Zhu D. Reduction of essential amino acid levels and sex-specific alterations in serum amino acid concentration profiles in children with autism spectrum disorder. Psychiatry Res 2021; 297:113675. [PMID: 33444991 DOI: 10.1016/j.psychres.2020.113675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Existing evidence has shown that metabolic disturbances may be involved in the pathological process of autism spectrum disorder(ASD). This study aimed to investigate the alterations of serum amino acid concentration profiles in Chinese Han children with ASD. METHODS Serum amino acid levels were measured using tandem mass spectrometry in 60 children with ASD and 30 typically developing (TD) controls. The Chinese Wechsler Young Children Scale of Intelligence (C-WYCSI) was used to evaluate the ASD subjects' intelligence quotient (IQ). RESULTS The serum levels of essential amino acids and some non-essential amino acids (glutamine, glycine, alanine, citrulline, cysteine, serine, tyrosine, and proline) in the ASD group were significantly lower than those in controls. The serum glutamate/glutamine (Glu/Gln) ratio was elevated in the ASD PIQ≥70 group, while serum levels of alanine, cysteine, phenylalanine, methionine and proline were significantly higher in male children with ASD than that in the female group. CONCLUSION The study revealed that children with ASD exhibit alterations in the serum levels of certain amino acids, and the divergence can be sex-related or associated with different cognitive function, which might provide clues for further etiological research of ASD.
Collapse
Affiliation(s)
- Xing Yu
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| | - Lv Qian-Qian
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China
| | - You Cong
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| | - Zou Xiao-Bing
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| | - Deng Hong-Zhu
- Child Developmental & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, 2693 Kaichuang Avenue, Huangpu District, Guangzhou 510630, China.
| |
Collapse
|
25
|
Chronic lithium exposure attenuates ketamine-induced mania-like behavior and c-Fos expression in the forebrain of mice. Pharmacol Biochem Behav 2021; 202:173108. [PMID: 33450292 DOI: 10.1016/j.pbb.2021.173108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/05/2023]
Abstract
Ketamine, a dissociative anaesthetic, has been used in the treatment of major depressive disorder (MDD) as a rapid acting antidepressant drug. Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in MDD patients. Lithium is a well-known mood stabilizer and has been widely used for the treatment of mania. It is not fully understood which forebrain regions are involved in ketamine- and lithium-induced expression of c-Fos. Therefore, our aim was to investigate the effect of chronic lithium treatment on mania-like behavior and c-Fos expression in the mouse forebrain activated by a single administration of ketamine. In the open field test, our results showed that ketamine significantly increased the total distance and total cumulative duration of movement in mice, while chronic lithium could attenuate these effects of ketamine. In addition, acute ketamine induced higher c-Fos expression in the lateral septal nucleus, hypothalamus, amygdala, and hippocampus of mice in the treatment group compared to those in the control group. However, chronic lithium inhibited the significant increase in c-Fos-immunoreactive neurons following acute ketamine administration in the dentate gyrus of the hippocampus, field CA1 of the hippocampus, dorsal subiculum, ventral subiculum, ventral subiculum, central amygdaloid nucleus and basolateral amygdaloid nucleus. In summary, our research shows that pretreatment with lithium moderates the effects of acute ketamine administration on mania-like behavior and c-Fos expression in the forebrain. These findings could be helpful in better understanding the episodes of mania related to ketamine treatment for MDD and bipolar disorder.
Collapse
|
26
|
Reppucci CJ, Brown LA, Chambers AQ, Veenema AH. Wistar rats and C57BL/6 mice differ in their motivation to seek social interaction versus food in the Social versus Food Preference Test. Physiol Behav 2020; 227:113162. [PMID: 32877644 PMCID: PMC7655716 DOI: 10.1016/j.physbeh.2020.113162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Here we characterized the Social versus Food Preference Test, a behavioral paradigm designed to investigate the competition between the choice to seek social interaction versus the choice to seek food. We assessed how this competition was modulated by internal cues (social isolation, food deprivation), external cues (stimulus salience), sex (males, females), age (adolescents, adults), and rodent model (Wistar rats, C57BL/6 mice). We found that changes in stimulus preference in response to the internal and external cue manipulations were similar across cohorts. Specifically, social over food preference scores were reduced by food deprivation and social familiarly in Wistar rats and C57BL/6 mice of both sexes. Interestingly, the degree of food deprivation-induced changes in stimulus investigation patterns were greater in adolescents compared to adults in Wistar rats and C57BL/6 mice. Strikingly, baseline stimulus preference and investigation times varied greatly between rodent models: across manipulations, Wistar rats were generally more social-preferring and C57BL/6 mice were generally more food-preferring. Adolescent Wistar rats spent more time investigating the social and food stimuli than adult Wistar rats, while adolescent and adult C57BL/6 mice investigated the stimuli a similar amount. Social isolation did not alter behavior in the Social versus Food Preference Test. Together, our results indicate that the Social versus Food Preference Test is a flexible behavioral paradigm suitable for future interrogations of the peripheral and central systems that can coordinate the expression of stimulus preference related to multiple motivated behaviors.
Collapse
Affiliation(s)
- Christina J Reppucci
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States.
| | - Leigha A Brown
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States
| | - Ashley Q Chambers
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States
| | - Alexa H Veenema
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States
| |
Collapse
|
27
|
Borland JM, Kim E, Swanson SP, Rothwell PE, Mermelstein PG, Meisel RL. Effect of Aggressive Experience in Female Syrian Hamsters on Glutamate Receptor Expression in the Nucleus Accumbens. Front Behav Neurosci 2020; 14:583395. [PMID: 33328919 PMCID: PMC7719767 DOI: 10.3389/fnbeh.2020.583395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions.
Collapse
Affiliation(s)
- Johnathan M. Borland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | | | | | | | |
Collapse
|
28
|
Gabriel P, Mastracchio TA, Bordner K, Jeffrey R. Impact of enriched environment during adolescence on adult social behavior, hippocampal synaptic density and dopamine D2 receptor expression in rats. Physiol Behav 2020; 226:113133. [PMID: 32795458 DOI: 10.1016/j.physbeh.2020.113133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Environmental enrichment (EE) is one experimental manipulation that induces changes in the brain. However, it is important to distinguish between physical and social components of enrichment. To this end we established four groups of rats reared in different enriched environments during the adolescent period. Our results indicate heightened social memory and increased spine density in dentate gyrus specifically in socially enriched animals. Physical enrichment increased spine density in CA1. Dopamine D2 receptor expression in hippocampus was decreased across all enrichment conditions. Altogether, our results demonstrate differing effects of physical and social enrichment, supporting an important role for environment in synaptogenesis, behavior, and dopaminergic signaling.
Collapse
Affiliation(s)
- Paul Gabriel
- Department of Biology, Southern Connecticut State University, New Haven CT, USA
| | | | - Kelly Bordner
- Department of Psychology, Southern Connecticut State University, New Haven CT, USA
| | - Rachel Jeffrey
- Department of Biology, Southern Connecticut State University, New Haven CT, USA.
| |
Collapse
|
29
|
Zhang X, Baer AG, Price JM, Jones PC, Garcia BJ, Romero J, Cliff AM, Mi W, Brown JB, Jacobson DA, Lydic R, Baghdoyan HA. Neurotransmitter networks in mouse prefrontal cortex are reconfigured by isoflurane anesthesia. J Neurophysiol 2020; 123:2285-2296. [PMID: 32347157 PMCID: PMC7311717 DOI: 10.1152/jn.00092.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
This study quantified eight small-molecule neurotransmitters collected simultaneously from prefrontal cortex of C57BL/6J mice (n = 23) during wakefulness and during isoflurane anesthesia (1.3%). Using isoflurane anesthesia as an independent variable enabled evaluation of the hypothesis that isoflurane anesthesia differentially alters concentrations of multiple neurotransmitters and their interactions. Machine learning was applied to reveal higher order interactions among neurotransmitters. Using a between-subjects design, microdialysis was performed during wakefulness and during anesthesia. Concentrations (nM) of acetylcholine, adenosine, dopamine, GABA, glutamate, histamine, norepinephrine, and serotonin in the dialysis samples are reported (means ± SD). Relative to wakefulness, acetylcholine concentration was lower during isoflurane anesthesia (1.254 ± 1.118 vs. 0.401 ± 0.134, P = 0.009), and concentrations of adenosine (29.456 ± 29.756 vs. 101.321 ± 38.603, P < 0.001), dopamine (0.0578 ± 0.0384 vs. 0.113 ± 0.084, P = 0.036), and norepinephrine (0.126 ± 0.080 vs. 0.219 ± 0.066, P = 0.010) were higher during anesthesia. Isoflurane reconfigured neurotransmitter interactions in prefrontal cortex, and the state of isoflurane anesthesia was reliably predicted by prefrontal cortex concentrations of adenosine, norepinephrine, and acetylcholine. A novel finding to emerge from machine learning analyses is that neurotransmitter concentration profiles in mouse prefrontal cortex undergo functional reconfiguration during isoflurane anesthesia. Adenosine, norepinephrine, and acetylcholine showed high feature importance, supporting the interpretation that interactions among these three transmitters may play a key role in modulating levels of cortical and behavioral arousal.NEW & NOTEWORTHY This study discovered that interactions between neurotransmitters in mouse prefrontal cortex were altered during isoflurane anesthesia relative to wakefulness. Machine learning further demonstrated that, relative to wakefulness, higher order interactions among neurotransmitters were disrupted during isoflurane administration. These findings extend to the neurochemical domain the concept that anesthetic-induced loss of wakefulness results from a disruption of neural network connectivity.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Aaron G Baer
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Joshua M Price
- Office of Information Technology, University of Tennessee, Knoxville, Tennessee
| | - Piet C Jones
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | | | - Jonathon Romero
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - Ashley M Cliff
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - Weidong Mi
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - James B Brown
- Molecular Ecosystems Biology Department, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Ralph Lydic
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
30
|
Gao T, Yin Z, Wang M, Fang Z, Zhong X, Li J, Hu Y, Wu D, Jiang K, Xu X. The effects of pubertal exposure to bisphenol-A on social behavior in male mice. CHEMOSPHERE 2020; 244:125494. [PMID: 31812767 DOI: 10.1016/j.chemosphere.2019.125494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 05/20/2023]
Abstract
Puberty is a crucial developmental period for structural modifications of brain and activation of the neural circuits underlying sex differences in social behavior. It is possible that pubertal exposure to bisphenol-A (BPA), a common EED with a weak estrogenic activity, influences social behavior. After being exposed to BPA at 0.04, 0.4, 4 mg kg-1 for 18 days, the 7-week-old male mice were tested with social play and three-chamber. The results showed that pubertal BPA exposure decreased social play between adolescent males and sociability of adolescent males. Further, pubertal BPA exposure reduced sociability and inhibited social novel preferences of adult males. BPA inhibited social interactions with opposite sex but improved socio-sexual exploration and the low-intensity mating behavior (mounting) with same sex in adult males. In residential-intruder test, BPA-exposed adult males showed a decrease in aggressiveness and an enhancement in prosocial behavior with intruder. Western blot analysis showed that BPA (especially at 4 mg/kg/d) down-regulated the levels of AR in the amygdala and the striatum but up-regulated the levels of DR1 and DAT proteins in the striatum of adult males. BPA at 4 mg kg-1 decreased the levels of T in the serum and the brain. These results suggest that pubertal BPA exposure affects social play and sociability of adolescent males and even results in long-term effects on social behavior of adult males. BPA-induced down-regulations of the levels of AR in the amygdala and the striatum and up-regulation of the levels of DR1 and DAT in the striatum may be involved.
Collapse
Affiliation(s)
- Tongtong Gao
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Zhangxin Yin
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Muye Wang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Zhaoqing Fang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Xiaoyu Zhong
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Jishui Li
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Yizhong Hu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Donghong Wu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Kesheng Jiang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Xiaohong Xu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China.
| |
Collapse
|
31
|
Reppucci CJ, Gergely CK, Bredewold R, Veenema AH. Involvement of orexin/hypocretin in the expression of social play behaviour in juvenile rats. INTERNATIONAL JOURNAL OF PLAY 2020; 9:108-127. [PMID: 33042634 PMCID: PMC7540609 DOI: 10.1080/21594937.2020.1720132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
Social play is a highly rewarding and motivated behaviour displayed by juveniles of many mammalian species. We hypothesized that the orexin/hypocretin (ORX) system is involved in the expression of juvenile social play behaviour because this system is interconnected with brain regions that comprise the social behaviour and mesocorticolimbic reward networks. We found that exposure to social play increased recruitment of ORX-A neurons in juvenile rats. Furthermore, central administration of ORX-A decreased social play duration, while central blockade of ORX-1 receptors differentially altered social play duration in juvenile rats with low versus high baseline levels of social play (increasing social play in low baseline social play individuals and decreasing social play in high baseline social play individuals). Together, our results provided the first evidence of a role for the ORX system in the modulation of juvenile social play behaviour.
Collapse
Affiliation(s)
- Christina J. Reppucci
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| | | | - Remco Bredewold
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| | - Alexa H. Veenema
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| |
Collapse
|
32
|
Social experience and sex-dependent regulation of aggression in the lateral septum by extrasynaptic δGABA A receptors. Psychopharmacology (Berl) 2020; 237:329-344. [PMID: 31691846 PMCID: PMC7024004 DOI: 10.1007/s00213-019-05368-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
Abstract
RATIONALE Understanding the neurobiological mechanisms mediating dominance and competitive aggression is essential to understanding the development and treatment of various psychiatric disorders. Previous research suggests that these mechanisms are both sexually differentiated and influenced substantially by social experience. In numerous species, GABAA receptors in the lateral septum have been shown to play a significant role in aggression in males. However, very little is known about the role of these GABAA receptors in female aggression, the role of social experience on GABAA receptor-mediated aggression, or the roles of different GABAA subtypes in regulating aggression. OBJECTIVES Thus, in the following set of experiments, we determined the role of social experience in modulating GABAA receptor-induced aggression in both male and female Syrian hamsters, with a particular focus on the GABAA receptor subtype mediating these effects. RESULTS Activation of GABAA receptors in the dorsal lateral septum increased aggression in both males and females. Social housing, however, significantly decreased the ability of GABAA receptor activation to induce aggression in males but not females. No significant differences were observed in the effects of GABAA receptor activation in dominant versus subordinate group-housed hamsters. Finally, examination of potential GABAA receptor subtype specificity revealed that social housing decreased the ratio of δ extrasynaptic to γ2 synaptic subunit GABAA receptor mRNA expression in the anterior dorsal lateral septum, while activation of δ extrasynaptic, but not γ2 synaptic, GABAA receptors in the dorsal lateral septum increased aggression. CONCLUSIONS These data suggest that social experience can have profound effects on the neuronal mechanisms mediating aggression, especially in males, and that δ extrasynaptic GABAA receptors may be an important therapeutic target in disorders characterized by high levels of aggression.
Collapse
|
33
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
34
|
Tzakis N, Holahan MR. Social Memory and the Role of the Hippocampal CA2 Region. Front Behav Neurosci 2019; 13:233. [PMID: 31632251 PMCID: PMC6779725 DOI: 10.3389/fnbeh.2019.00233] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
The CA2 region of the hippocampus is a somewhat obscure area lacking in an understanding of its form and function. Until recently, the CA2 has been thought of as merely an extension of the CA3, with some referring to it as the CA3a region. Recent investigations into this area have not only delineated the CA2, but also defined it as a region distinct from both CA1 and CA3, with a unique set of cortical inputs and outputs and contributions to cognitive processes. One such process that has been shown to depend on the CA2 is the ability to recognize a novel or familiar conspecific, known as social recognition memory. Here, we review these findings and discuss the parallels between CA2 dysfunction and social impairments.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
35
|
Alugubelly N, Mohammad AN, Edelmann MJ, Nanduri B, Sayed M, Park JW, Carr RL. Proteomic and transcriptional profiling of rat amygdala following social play. Behav Brain Res 2019; 376:112210. [PMID: 31493430 DOI: 10.1016/j.bbr.2019.112210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Social play is the most characteristic form of social interaction which is necessary for adolescents to develop proper cognitive, emotional, and social competency. The information available on neural substrates and the mechanism involved in social play is limited. This study characterized social play by proteomic and transcriptional profiling studies. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioral testing. The proteomic analysis led to the identification of 170 differentially expressed proteins (p ≤ 0.05) with 67 upregulated and 103 downregulated proteins. The transcriptomic analysis led to the identification of 188 genes (FDR ≤ 0.05) with 55 upregulated and 133 downregulated genes. DAVID analysis of gene/protein expression data revealed that social play altered GABAergic signaling, glutamatergic signaling, and G-protein coupled receptor (GPCR) signaling. These data suggest that the synaptic levels of GABA and glutamate increased during play. Ingenuity Pathway Analysis (IPA) confirmed these alterations. IPA also revealed that differentially expressed genes/proteins in our data had significant over representation of neurotransmitter signaling systems, including the opioid, serotonin, and dopamine systems, suggesting that play alters the systems involved in the regulation of reward. In addition, corticotropin-releasing hormone signaling was altered indicating that an increased level of stress occurs during play. Overall, our data suggest that increased inhibitory GPCR signaling in these neurotransmitter pathways occurs following social play as a physiological response to regulate the induced level of reward and stress and to maintain the excitatory-inhibitory balance in the neurotransmitter systems.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N Mohammad
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, KY, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, KY, USA; KBRIN Bioinformatics Core, University of Louisville, KY, USA.
| | - Russell L Carr
- Center for Environmental Health Sciences, MS, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
36
|
Identification of gender-related metabolic disturbances in autism spectrum disorders using urinary metabolomics. Int J Biochem Cell Biol 2019; 115:105594. [PMID: 31449876 DOI: 10.1016/j.biocel.2019.105594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders that are more commonly diagnosed in boys than in girls. The reasons for gender differences in ASD are unknown and no definitive current evidence can explain male predominance. Therefore, in search for laboratory biomarkers responsible for ASD, a comprehensive metabolomics study was performed by metabolic profiling of urine samples in 51 ASD subjects and 51 age- and sex-matched children with typical development. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models with poor quality failed to perform the analysis based on gender in the ASD and control groups. OPLS-DA models based on single-sex samples, especially in female subjects, had better clustering between the ASD and control groups with an increase in the R2 and Q2 values compared with those in the whole group. Significantly increased levels of adenine, 2-Methylguanosine, creatinine, and 7alpha-hydroxytestololactone and a decrease in creatine were observed in the female ASD subjects. In particular, 7alpha-hydroxytestololactone, which has a structure similar to that of testolactone, was positively correlated with adenine (Pearson correlation coefficient, r = 0.738, p < 0.01), creatinine (r = 0.826, p < 0.01), and 2-Methylguanosine (r = 0.757, p < 0.01) and negatively correlated with creatine (r=-0.413, p < 0.05). A receiver operating characteristic curve analysis using the creatinine:creatine ratio yielded an area under the curve of 0.913 (95% CI: 0.806-1). These metabolites may be sex-related or sex-sensitive to an extent and can be valuable for identification of the molecular pathways involved in the gender bias in manifestation of ASD. The creatinine:creatine ratio has a potential to be a good predictor of ASD in the female subjects.
Collapse
|
37
|
Liu Y, Donovan M, Jia X, Wang Z. The ventromedial hypothalamic circuitry and male alloparental behaviour in a socially monogamous rodent species. Eur J Neurosci 2019; 50:3689-3701. [PMID: 31423669 DOI: 10.1111/ejn.14550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
As prairie voles (Microtus ochrogaster) display spontaneous biparental care, and the ventromedial hypothalamus (VMH) has been implicated in reproductive behaviour, we conducted experiments to test the hypothesis that the VMH neurochemical circuitry is involved in alloparental behaviours in male prairie voles. We compared alloparental behaviours of adult, sexually naïve male and female voles-both displayed licking/grooming, huddling and retrieving behaviours towards conspecific pups. We also stained for the immediate-early gene encoded early growth protein Egr-1 in the vole brain. The pup-exposed animals showed levels of Egr-1 staining that was higher in the VMH but lower in the amygdala compared to animals exposed to a pup-sized piece of plastic (control). A retrograde tracer, Fluoro-Gold (FG), was injected into the VMH of male voles that were subsequently tested in the pup exposure or control condition. More FG/Egr-1 cells were detected for glutamatergic (GLU) staining in the ventral bed nucleus of the stria terminalis (BNSTv) and medial amygdala (MeA), whereas less FG/Egr-1 cells were stained for gamma-aminobutyric acid (GABA) in the MeA of the pup-exposed group compared to the control group. Further, the ratio of GLU:GABA expression in FG/Egr-1 projection neurons from both the BNSTv and MeA to the VMH was increased following pup exposure. Finally, pharmacological blockade of either dopamine D1 receptor or oxytocin receptor in the VMH impaired the onset of male alloparental behaviour. Together, these data suggest that the VMH may be involved in the onset of alloparental care and play a role in regulating social approach in male prairie voles.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Xixi Jia
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
38
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
39
|
Driessen TM, Zhao C, Saenz M, Stevenson SA, Owada Y, Gammie SC. Down-regulation of fatty acid binding protein 7 (Fabp7) is a hallmark of the postpartum brain. J Chem Neuroanat 2018; 92:92-101. [PMID: 30076883 PMCID: PMC6103884 DOI: 10.1016/j.jchemneu.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Fatty acid binding protein 7 (Fabp7) is a versatile protein that is linked to glial differentiation and proliferation, neurogenesis, and multiple mental health disorders. Recent microarray studies identified a robust decrease in Fabp7 expression in key brain regions of the postpartum rodents. Given its diverse functions, Fabp7 could play a critical role in sculpting the maternal brain and promoting the maternal phenotype. The present study aimed at investigating the expression profile of Fabp7 across the postpartum CNS. Quantitative real-time PCR (qPCR) analysis showed that Fabp7 mRNA was consistently down-regulated across the postpartum brain. Of the 9 maternal care-related regions tested, seven exhibited significant decreases in Fabp7 in postpartum (relative to virgin) females, including medial prefrontal cortex (mPFC), nucleus accumbens (NA), lateral septum (LS), bed nucleus of stria terminalis dorsal (BnSTd), paraventricular nucleus (PVN), lateral hypothalamus (LH), and basolateral and central amygdala (BLA/CeA). For both ventral tegmental area (VTA) and medial preoptic area (MPOA) levels of Fabp7 were lower in mothers, but levels of changes did not reach significance. Confocal microscopy revealed that protein expression of Fabp7 in the LS paralleled mRNA findings. Specifically, the caudal LS exhibited a significant reduction in Fabp7 immunoreactivity, while decreases in medial LS were just above significance. Double fluorescent immunolabeling confirmed the astrocytic phenotype of Fabp7-expressing cells. Collectively, this research demonstrates a broad and marked reduction in Fabp7 expression in the postpartum brain, suggesting that down-regulation of Fabp7 may serve as a hallmark of the postpartum brain and contribute to the maternal phenotype.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marissa Saenz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Sharon A Stevenson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
40
|
Bredewold R, Nascimento NF, Ro GS, Cieslewski SE, Reppucci CJ, Veenema AH. Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of juvenile socially rewarding behavior by vasopressin. Neuropsychopharmacology 2018; 43:2109-2117. [PMID: 29875448 PMCID: PMC6098123 DOI: 10.1038/s41386-018-0100-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Social play is a highly rewarding behavior displayed mostly during the juvenile period. We recently showed that vasopressin V1a receptor (V1aR) blockade in the lateral septum (LS) enhances social play in male juvenile rats, but reduces it in females. Here, we determined whether the LS-AVP system modulates dopamine (DA) and/or norepinephrine (NE) neurotransmission in the LS to regulate social play behavior in sex-specific ways. Using microdialysis combined with retrodialysis, we demonstrated that both LS-AVP administration and social play exposure increased extracellular LS-DA release in females, but not in males. Pharmacological blockade of LS-DA receptors reduced social play in both sexes, but required a higher dose in females. This suggests that baseline LS-DA release is sufficient for social play in males, while increased LS-DA release is necessary for social play in females. Administration of a V1aR antagonist into the LS inhibited the social play-induced increase in extracellular LS-DA release in females. Furthermore, co-administration of the DA agonist apomorphine prevented the LS-V1aR blockade-induced decrease in social play in females. This suggests that LS-V1aR blockade reduces social play in females by dampening the rise in LS-DA release. Extracellular LS-NE release was enhanced in response to pharmacological manipulations of the LS-AVP system and to social play in males and/or females, but pharmacological blockade or stimulation of LS-NE receptors did not alter social play in either sex. Overall, we define a mechanism by which the LS-AVP system alters LS-DA neurotransmission differently in males than females resulting in the sex-specific regulation of juvenile social play behavior.
Collapse
Affiliation(s)
- Remco Bredewold
- Department of Psychology, Neurobiology of Social Behavior Laboratory, Michigan State University, East Lansing, MI, USA.
| | - Nara F. Nascimento
- 0000 0004 0444 7053grid.208226.cDepartment of Psychology, Neurobiology of Social Behavior Laboratory, Boston College, Chestnut Hill, MA USA
| | - Grace S. Ro
- 0000 0004 0444 7053grid.208226.cDepartment of Psychology, Neurobiology of Social Behavior Laboratory, Boston College, Chestnut Hill, MA USA
| | - Shannon E. Cieslewski
- 0000 0004 0444 7053grid.208226.cDepartment of Psychology, Neurobiology of Social Behavior Laboratory, Boston College, Chestnut Hill, MA USA
| | - Christina J. Reppucci
- 0000 0001 2150 1785grid.17088.36Department of Psychology, Neurobiology of Social Behavior Laboratory, Michigan State University, East Lansing, MI USA
| | - Alexa H. Veenema
- 0000 0001 2150 1785grid.17088.36Department of Psychology, Neurobiology of Social Behavior Laboratory, Michigan State University, East Lansing, MI USA
| |
Collapse
|
41
|
Northcutt KV, Nwankwo VC. Sex differences in juvenile play behavior differ among rat strains. Dev Psychobiol 2018; 60:903-912. [DOI: 10.1002/dev.21760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022]
|
42
|
Wickens MM, Bangasser DA, Briand LA. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System. Front Mol Neurosci 2018; 11:197. [PMID: 29922129 PMCID: PMC5996114 DOI: 10.3389/fnmol.2018.00197] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alterations in glutamate, the primary excitatory neurotransmitter in the brain, are implicated in several psychiatric diseases. Many of these psychiatric diseases display epidemiological sex differences, with either males or females exhibiting different symptoms or disease prevalence. However, little work has considered the interaction of disrupted glutamatergic transmission and sex on disease states. This review describes the clinical and preclinical evidence for these sex differences with a focus on two conditions that are more prevalent in women: Alzheimer's disease and major depressive disorder, and three conditions that are more prevalent in men: schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. These studies reveal sex differences at multiple levels in the glutamate system including metabolic markers, receptor levels, genetic interactions, and therapeutic responses to glutamatergic drugs. Our survey of the current literature revealed a considerable need for more evaluations of sex differences in future studies examining the role of the glutamate system in psychiatric disease. Gaining a more thorough understanding of how sex differences in the glutamate system contribute to psychiatric disease could provide novel avenues for the development of sex-specific pharmacotherapies.
Collapse
Affiliation(s)
- Megan M Wickens
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Lisa A Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.,Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
43
|
Sex differences in the regulation of social and anxiety-related behaviors: insights from vasopressin and oxytocin brain systems. Curr Opin Neurobiol 2018. [PMID: 29518698 DOI: 10.1016/j.conb.2018.02.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To understand how the brain regulates behavior, many variables must be taken into account, with sex as a prominent variable. In this review, we will discuss recent human and rodent studies showing the sex-specific involvement of the neuropeptides vasopressin and oxytocin in social and anxiety-related behaviors. We discuss that sex differences can be evident at pre-pubertal ages as seen in the sex-specific regulation of social recognition, social play, and anxiety by the vasopressin system in juvenile rats. We further discuss that the oxytocin system in humans and rodents alters brain activation, anxiety, and sociosexual motivation in sex-specific ways. Finally, we propose that knowledge of vasopressin and oxytocin mediated sex-specific brain mechanisms can provide essential insights into how these neuropeptide systems contribute to sex-specific vulnerability as well as resilience to perturbations, with subsequent relevance to social and emotional disorders.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Neurodevelopmental disorders disproportionately affect males. The mechanisms underlying male vulnerability or female protection are not known and remain understudied. Determining the processes involved is crucial to understanding the etiology and advancing treatment of neurodevelopmental disorders. Here, we review current findings and theories that contribute to male preponderance of neurodevelopmental disorders, with a focus on autism. RECENT FINDINGS Recent work on the biological basis of the male preponderance of autism and other neurodevelopmental disorders includes discussion of a higher genetic burden in females and sex-specific gene mutations or epigenetic changes that differentially confer risk to males or protection to females. Other mechanisms discussed are sex chromosome and sex hormone involvement. Specifically, fetal testosterone is involved in many aspects of development and may interact with neurotransmitter, neuropeptide, or immune pathways to contribute to male vulnerability. Finally, the possibilities of female underdiagnosis and a multi-hit hypothesis are discussed. This review highlights current theories of male bias in developmental disorders. Topics include environmental, genetic, and epigenetic mechanisms; theories of sex chromosomes, hormones, neuroendocrine, and immune function; underdiagnosis of females; and a multi-hit hypothesis.
Collapse
Affiliation(s)
- Sarah L. Ferri
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA 52242 USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2202, Philadelphia, PA 19104-3403 USA
| |
Collapse
|
45
|
Smith CJW, Wilkins KB, Li S, Tulimieri MT, Veenema AH. Nucleus accumbens mu opioid receptors regulate context-specific social preferences in the juvenile rat. Psychoneuroendocrinology 2018; 89:59-68. [PMID: 29331800 DOI: 10.1016/j.psyneuen.2017.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
The μ opioid receptor (MOR) in the nucleus accumbens (NAc) is involved in assigning pleasurable, or hedonic value to rewarding stimuli. Importantly, the hedonic value of a given rewarding stimulus likely depends on an individual's current motivational state. Here, we examined the involvement of MORs in the motivation to interact with a novel or a familiar (cage mate) conspecific in juvenile rats. First, we demonstrated that the selective MOR antagonist CTAP administered into the NAc reduces social novelty preference of juvenile males, by decreasing the interaction time with the novel conspecific and increasing the interaction time with the cage mate. Next, we found that a 3-h separation period from the cage mate reduces social novelty preference in both juvenile males and females, which was primarily driven by an increase in interaction time with the cage mate. Last, we showed that MOR agonism (intracerebroventricularly or in the NAc) restored social novelty preference in juvenile males that did not show social novelty preference following social isolation. Taken together, these data support a model in which endogenous MOR activation in the NAc facilitates the relative hedonic value of novel over familiar social stimuli. Our results may implicate the MOR in neuropsychiatric disorders characterized by altered social motivation, such as major depression and autism spectrum disorder.
Collapse
Affiliation(s)
- Caroline J W Smith
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Kevin B Wilkins
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Sara Li
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Maxwell T Tulimieri
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
46
|
Reppucci C, Gergely C, Veenema A. Activation patterns of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile male and female rats. J Neuroendocrinol 2018; 30:10.1111/jne.12582. [PMID: 29424020 PMCID: PMC6085164 DOI: 10.1111/jne.12582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/04/2018] [Indexed: 11/28/2022]
Abstract
Social play is a highly rewarding and motivated behavior predominately displayed by juveniles and expressed by nearly all mammalian species. Prior work suggested that the vasopressin (AVP) and oxytocin (OT) systems can regulate the expression of social play in sex-specific ways. Here we investigated whether there are sex differences in the recruitment of vasopressinergic and oxytocinergic brain regions following social play exposure in juvenile rats. Single-housed rats were allowed to play, in their home cage, with an age- and sex-matched unfamiliar conspecific for 10 min, or received similar handling but no partner. Double-labeled fluorescent immunohistochemistry for Fos and either AVP or OT was completed in adjacent series of tissue to determine recruitment of AVP- and OT-immunoreactive neurons in response to social play. Exposure to social play did not increase recruitment of AVP or OT neurons in the supraoptic (SO) or paraventricular (PVH) hypothalamic nuclei of either sex compared to the no-play control condition. Interestingly, there was a robust sex difference in SO recruitment, irrespective of social play condition, with males exhibiting twice the recruitment of SO-AVP and SO-OT neurons compared to females. Lastly, exposure to social play increased recruitment of the posterior bed nuclei of the stria terminalis (pBST) and the posterodorsal medial amygdalar nucleus (MEApd) compared to the no-play control condition, and this effect was most pronounced in females. Our findings revealed sex differences in the recruitment of brain regions (i) independent of play condition (i.e., SO) possibly representing a sex difference in the baseline levels of AVP and OT signaling required for typical functioning and (ii) specific to play condition (i.e., pBST, MEApd). In sum, this study provides further evidence that the neural substrates underlying social play behavior are sex-specific. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- C.J. Reppucci
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - C.K. Gergely
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, United States
| | - A.H. Veenema
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
47
|
Robust age, but limited sex, differences in mu-opioid receptors in the rat brain: relevance for reward and drug-seeking behaviors in juveniles. Brain Struct Funct 2017; 223:475-488. [PMID: 28871491 PMCID: PMC5772146 DOI: 10.1007/s00429-017-1498-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
In the brain, the µ-opioid receptor (MOR) is involved in reward-seeking behaviors and plays a pivotal role in the mediation of opioid use disorders. Furthermore, reward-seeking behaviors and susceptibility to opioid addiction are particularly evident during the juvenile period, with a higher incidence of opioid use in males and higher sensitivity to opioids in females. Despite these age and sex differences in MOR-mediated behaviors, little is known regarding potential age and sex differences in the expression of MORs in the brain. Here, we used receptor autoradiography to compare MOR binding densities between juvenile and adult male and female rats. Age differences were found in MOR binding density in 12 out of 33 brain regions analyzed, with 11 regions showing higher MOR binding density in juveniles than in adults. These include the lateral septum, as well as sub-regions of the bed nucleus of the stria terminalis, hippocampus, and thalamus. Sex differences in MOR binding density were observed in only two brain regions, namely, the lateral septum (higher in males) and the posterior cortical nucleus of the amygdala (higher in females). Overall, these findings provide an important foundation for the generation of hypotheses regarding differential functional roles of MOR activation in juveniles versus adults. Specifically, we discuss the possibility that higher MOR binding densities in juveniles may allow for higher MOR activation, which could facilitate behaviors that are heightened during the juvenile period, such as reward and drug-seeking behaviors.
Collapse
|
48
|
Al-Suwailem E, Abdi S, El-Ansary A. Sex differences in the glutamate signaling pathway in juvenile rats. J Neurosci Res 2017; 96:459-466. [PMID: 28861894 DOI: 10.1002/jnr.24144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Abstract
Females have been found to be at lower risk for the development of neurodevelopmental disorders than males. The greater neuroprotection in females is mostly due to female sex hormones. Estrogen is hypothesized to provide neuroprotection by suppressing the neuro-excitotoxicity induced by glutamate (Glu). This study was conducted to understand the effect of sex in modulating Glu signaling in juvenile rats. Brain tissue homogenate of 15 Wistar albino rats (9 males, 6 females) weighing 60 to 80 g and aged approximately 28 days was used. Biochemical parameters related to Glu signaling, such as the absolute and relative concentrations of Glu, gamma aminobutyric acid (GABA), and glutamine, as well as glutamate transporter 1 (GLT1), glutamine synthetase (GS), glutaminase (GLN), and glutamate decarboxylase-67 (GAD-67), were measured by ELISA. The data obtained demonstrated that compared with the levels in males, female rats exhibited significantly lower levels of Glu (p = .001) and GLN/GS (p = .021). The Glu/GABA and Glu/GLT1 ratios as well as the levels of GAD-67 were also lower in female rats, although the difference was not significant. The GLN/GAD-67 ratio (p = .027) and levels of GS (p = .019) were significantly higher in female rats than in males. Multiple regression analysis confirmed the role of GLN/GS, together with the much higher affinity of GLT1 to Glu, in avoiding excitotoxicity in females. In conclusion, there was a significant difference in Glu signaling between female and male rats. The females exhibited a lower susceptibility to develop Glu-induced excitotoxicity, an etiological mechanism for multiple neurodevelopmental disorders.
Collapse
Affiliation(s)
- Etidal Al-Suwailem
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Saba Abdi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Ashar YK, Andrews-Hanna JR, Dimidjian S, Wager TD. Empathic Care and Distress: Predictive Brain Markers and Dissociable Brain Systems. Neuron 2017; 94:1263-1273.e4. [PMID: 28602689 DOI: 10.1016/j.neuron.2017.05.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 03/25/2017] [Accepted: 05/05/2017] [Indexed: 01/10/2023]
Abstract
Encountering another's suffering can elicit both empathic distress and empathic care-the warm desire to affiliate. It remains unclear whether these two feelings can be accurately and differentially predicted from neural activity and to what extent their neural substrates can be distinguished. We developed fMRI markers predicting moment-by-moment intensity levels of care and distress intensity while participants (n = 66) listened to true biographies describing human suffering. Both markers' predictions correlated strongly with self-report in out-of-sample participants (r = 0.59 and r = 0.63, p < 0.00001), and both markers predicted later trial-by-trial charitable donation amounts (p < 0.05). Empathic care was preferentially associated with nucleus accumbens and medial orbitofrontal cortex activity, whereas distress was preferentially associated with premotor and somatosensory cortical activity. In tests of marker specificity with an independent behavioral sample (n = 200), the empathic care marker was associated with a mixed-valence feeling state, whereas the empathic distress marker was specific to negative emotion.
Collapse
Affiliation(s)
- Yoni K Ashar
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | | | - Sona Dimidjian
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA; Institute of Cognitive Science, University of Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
50
|
Vanderschuren LJMJ, Achterberg EJM, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev 2016; 70:86-105. [PMID: 27587003 DOI: 10.1016/j.neubiorev.2016.07.025] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
In the young of many mammalian species, including humans, a vigorous and highly rewarding social activity is abundantly expressed, known as social play behaviour. Social play is thought to be important for the development of social, cognitive and emotional processes and their neural underpinnings, and it is disrupted in pediatric psychiatric disorders. Here, we summarize recent progress in our understanding of the brain mechanisms of social play behaviour, with a focus on its rewarding properties. Opioid, endocannabinoid, dopamine and noradrenaline systems play a prominent role in the modulation of social play. Of these, dopamine is particularly important for the motivational properties of social play. The nucleus accumbens has been identified as a key site for opioid and dopamine modulation of social play. Endocannabinoid influences on social play rely on the basolateral amygdala, whereas noradrenaline modulates social play through the basolateral amygdala, habenula and prefrontal cortex. In sum, social play behaviour is the result of coordinated activity in a network of corticolimbic structures, and its monoamine, opioid and endocannabinoid innervation.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - E J Marijke Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| |
Collapse
|