1
|
Rayatpour A, Foolad F, Javan M. Deferiprone promoted remyelination and functional recovery through enhancement of oligodendrogenesis in experimental demyelination animal model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03314-1. [PMID: 39046528 DOI: 10.1007/s00210-024-03314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Remyelination refers to myelin regeneration, which reestablishes metabolic supports to axons. However, remyelination often fails in multiple sclerosis (MS), leading to chronic demyelination and axonal degeneration. Therefore, pharmacological approaches toward enhanced remyelination are highly demanded. Recently, deferiprone (DFP) was reported to exert neuroprotective effects, besides its iron-chelating ability. Since DFP exerts protective effects through various mechanisms, which share several factors with myelin formation process, we aimed to investigate the effects of DFP treatment on remyelination. Focal demyelination was induced by injection of lysolecithin, into the optic nerve of male C57BL/6J mice. The animals were treated with DFP/vehicle, starting from day 7 and continued during the myelin repair period. Histopathological, electrophysiological, and behavioral studies were used to evaluate the outcomes. Results showed that DFP treatment enhanced remyelination, decreased g-ratio and increased myelin thickness. At the mechanistic level, DFP enhanced oligodendrogenesis and ameliorated gliosis during the remyelination period. Furthermore, our results indicated that enhanced remyelination led to functional recovery as evaluated by the electrophysiological and behavioral tests. Even though the exact molecular mechanisms by which DFP-enhanced myelin repair remain to be elucidated, these results raise the possibility of using deferiprone as a therapeutic agent for remyelination therapy in MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Sinha S, McLaren E, Mullick M, Singh S, Boland BS, Ghosh P. FORWARD: A Learning Framework for Logical Network Perturbations to Prioritize Targets for Drug Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.602603. [PMID: 39071297 PMCID: PMC11275938 DOI: 10.1101/2024.07.16.602603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite advances in artificial intelligence (AI), target-based drug development remains a costly, complex and imprecise process. We introduce F.O.R.W.A.R.D [ Framework for Outcome-based Research and Drug Development ], a network-based target prioritization approach and test its utility in the challenging therapeutic area of Inflammatory Bowel Diseases (IBD), which is a chronic condition of multifactorial origin. F.O.R.W.A.R.D leverages real-world outcomes, using a machine-learning classifier trained on transcriptomic data from seven prospective randomized clinical trials involving four drugs. It establishes a molecular signature of remission as the therapeutic goal and computes, by integrating principles of network connectivity, the likelihood that a drug's action on its target(s) will induce the remission-associated genes. Benchmarking F.O.R.W.A.R.D against 210 completed clinical trials on 52 targets showed a perfect predictive accuracy of 100%. The success of F.O.R.W.A.R.D was achieved despite differences in targets, mechanisms, and trial designs. F.O.R.W.A.R.D-driven in-silico phase '0' trials revealed its potential to inform trial design, justify re-trialing failed drugs, and guide early terminations. With its extendable applications to other therapeutic areas and its iterative refinement with emerging trials, F.O.R.W.A.R.D holds the promise to transform drug discovery by generating foresight from hindsight and impacting research and development as well as human-in-the-loop clinical decision-making.
Collapse
|
3
|
Magalhães DM, Stewart NA, Mampay M, Rolle SO, Hall CM, Moeendarbary E, Flint MS, Sebastião AM, Valente CA, Dymond MK, Sheridan GK. The sphingosine 1-phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus. J Neurochem 2024; 168:1113-1142. [PMID: 38339785 DOI: 10.1111/jnc.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sara O Rolle
- Green Templeton College, University of Oxford, Oxford, UK
| | - Chloe M Hall
- School of Applied Sciences, University of Brighton, Brighton, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd, London, UK
| | - Melanie S Flint
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Marcus K Dymond
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | |
Collapse
|
4
|
Sarhan MH, Felemban SG, Alelwani W, Sharaf HM, Abd El-Latif YA, Elgazzar E, Kandil AM, Tellez-Isaias G, Mohamed AA. Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Ameliorate Murine Chronic Toxoplasmosis. Pharmaceuticals (Basel) 2024; 17:113. [PMID: 38256946 PMCID: PMC10819917 DOI: 10.3390/ph17010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.
Collapse
Affiliation(s)
- Mohamed H. Sarhan
- Microbiology Section, Basic Medical Sciences Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shatha G. Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Hesham M. Sharaf
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Yasmin A. Abd El-Latif
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Elsayed Elgazzar
- Physics Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmad M. Kandil
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aya A. Mohamed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| |
Collapse
|
5
|
Robichon K, Bibi R, Kiernan M, Denny L, Prisinzano TE, Kivell BM, La Flamme AC. Enhanced and complementary benefits of a nalfurafine and fingolimod combination to treat immune-driven demyelination. Clin Transl Immunology 2023; 12:e1480. [PMID: 38090669 PMCID: PMC10714663 DOI: 10.1002/cti2.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. METHODS Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. RESULTS Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. CONCLUSION This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Rabia Bibi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Mackenzie Kiernan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Lisa Denny
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | | | - Bronwyn M Kivell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Anne Camille La Flamme
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
6
|
Peyvandi A, Gorgani-Firouzjaee T, Najafzadehvarzi H, Jafarzadeh J. Urtica dioica Extract Leads to Cyst Reduction, Enhanced Cell-Mediated Immune Response, and Antioxidant Activity in Experimental Toxoplasmosis. Acta Parasitol 2023; 68:880-890. [PMID: 37924457 DOI: 10.1007/s11686-023-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Toxoplasmosis is a cosmopolitan parasitic infection caused by Toxoplasma gondii which is commonly treated by pyrimethamine (PYR) plus sulfadiazine (SDZ) with several adverse side effects. The present study evaluated the therapeutic effects of Urtica dioica L. aqueous extract (UDE) on acute and chronic toxoplasmosis in mice. METHODS For this purpose, mice were infected with 20 cysts (acute infection) or 10 cysts (chronic infection) of T. gondii (Me49 strain). The mice were treated with 200 mg/kg of UDE intraperitoneally (IP) and intragastric route (IG). The UDE-treated mice were compared with the PYR + SDZ treatment. The histopathological changes, cyst count, total antioxidant capacity (TAC), malondialdehyde (MDA) assay, and serum INF-γ were also evaluated. RESULTS In the acute toxoplasmosis, UDE by IP and IG administration significantly reduced the number of brain cysts by 93.74 and 92.55%, respectively, and increased the survival rate to 80% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 88.2 and 83.4%, respectively, for IP and IG treatments. Moreover, UDE significantly increased INF- γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were reduced in the UDE-treated subgroups compared to the untreated group. UDE treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. CONCLUSION The results show that U. dioica possesses significant immunostimulant and antioxidant activity with a higher cyst reduction in the brain during acute toxoplasmosis. Further studies are required to investigate the fractionations of UDE against T. gondii and its combination with other standard drugs.
Collapse
Affiliation(s)
- Ali Peyvandi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Ganj-Afroz Ave., Babol, Iran.
| | - Hossein Najafzadehvarzi
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Jafarzadeh
- Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Zare L, Rezaei S, Esmaeili E, Khajeh K, Javan M. Targeted drug delivery into glial scar using CAQK peptide in a mouse model of multiple sclerosis. Brain Commun 2023; 5:fcad325. [PMID: 38107502 PMCID: PMC10724044 DOI: 10.1093/braincomms/fcad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/01/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023] Open
Abstract
In multiple sclerosis, lesions are formed in various areas of the CNS, which are characterized by reactive gliosis, immune cell infiltration, extracellular matrix changes and demyelination. CAQK peptide (peptide sequence: cysteine-alanine-glutamine-lysine) was previously introduced as a targeting peptide for the injured site of the brain. In the present study, we aimed to develop a multifunctional system using nanoparticles coated by CAQK peptide, to target the demyelinated lesions in animal model of multiple sclerosis. We investigated the binding of fluorescein amidite-labelled CAQK and fluorescein amidite-labelled CGGK (as control) on mouse brain sections. Then, the porous silicon nanoparticles were synthesized and coupled with fluorescein amidite-labelled CAQK. Five days after lysolecithin-induced demyelination, male mice were intravenously injected with methylprednisolone-loaded porous silicon nanoparticles conjugated to CAQK or the same amount of free methylprednisolone. Our results showed that fluorescein amidite-labelled CAQK recognizes demyelinated lesions in brain sections of animal brains injected with lysolecithin. In addition, intravenous application of methylprednisolone-loaded nanoparticle porous silicon conjugated to CAQK at a single dose of 0.24 mg reduced the levels of microglial activation and astrocyte reactivation in the lesions of mouse corpus callosum after 24 and 48 h. No significant effect was observed following the injection of the same dose of free methylprednisolone. CAQK seems a potential targeting peptide for delivering drugs or other biologically active chemicals/reagents to the CNS of patients with multiple sclerosis. Low-dose methylprednisolone in this targeted drug delivery system showed significant beneficial effect.
Collapse
Affiliation(s)
- Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | - Safoura Rezaei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Elaheh Esmaeili
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver V6T1Z4, British Columbia, Canada
| |
Collapse
|
8
|
Biglari-Moghadam N, Najafzadehvarzi H, Gorgani-Firouzjaee T, Ghasemi-Kasman M. Efficacy of clofazimine against acute and chronic Toxoplasma gondii infection in mice. Microb Pathog 2023:106206. [PMID: 37331670 DOI: 10.1016/j.micpath.2023.106206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.
Collapse
Affiliation(s)
| | - Hossein Najafzadehvarzi
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran.
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Farhangi S, Karimi E, Khajeh K, Hosseinkhani S, Javan M. Peptide mediated targeted delivery of gold nanoparticles into the demyelination site ameliorates myelin impairment and gliosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102609. [PMID: 36228994 DOI: 10.1016/j.nano.2022.102609] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Drug development for multiple sclerosis (MS) clinical management focuses on both neuroprotection and repair strategies, and is challenging due to low permeability of the blood-brain barrier, off-target distribution, and the need for high doses of drugs. The changes in the extracellular matrix have been documented in MS patients. It has been shown that the expression of nidogen-1 increases in MS lesions. Laminin forms a stable complex with nidogen-1 through a heptapeptide which was selected to target the lesion area in this study. Here we showed that the peptide binding was specific to the injured area following lysophosphatidylcholine (LPC) induced demyelination. In vivo data showed enhanced delivery of the peptide-functionalized gold nanoparticles (Pep-GNPs) to the lesion area. In addition, Pep-GNPs administration significantly enhanced myelin content and reduced astrocyte/microglia activation. Results demonstrated the possibility of using this peptide to target and treat lesions in patients suffering from MS.
Collapse
Affiliation(s)
- Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Elham Karimi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
11
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
12
|
Gholami E, Gholami MR, Tavakoli A, Ahmadi M, Rezaian J, Alipour M, Chehelcheraghi F, Khaksarian M. Effect of fluoxetine treatment on neurotoxicity induced by lysolecithin in male rats. Can J Physiol Pharmacol 2022; 100:107-116. [PMID: 34935529 DOI: 10.1139/cjpp-2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κβ, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.
Collapse
Affiliation(s)
- Elham Gholami
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asadollah Tavakoli
- Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| | - Mahdie Ahmadi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Rezaian
- Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Alipour
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicine Research Center and Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
14
|
Safarpour S, Zabihi E, Ghasemi-Kasman M, Nosratiyan N, Feizi F. Prenatal and breastfeeding exposure to low dose of diethylhexyl phthalate induces behavioral deficits and exacerbates oxidative stress in rat hippocampus. Food Chem Toxicol 2021; 154:112322. [PMID: 34111487 DOI: 10.1016/j.fct.2021.112322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Diethylhexyl phthalate (DEHP) is one of the most important derivatives of phthalate that has devastating effects on nervous system function. In this study, the effects of exposure with low doses of DEHP during pregnancy and lactation periods have been evaluated in rat's puppies. DEHP at doses 5, 40, 400 μg/kg/day and 300 mg/kg/day was given to mothers by gavage during pregnancy and lactation. The spatial and working memories were evaluated by Morris water maze test and Y maze, respectively. Oxidative stress levels were measured by biochemical tests. Histopathology of hippocampal tissue was assessed using hematoxylin and eosin, Nissl staining, and immunohistofluorescence in 60-days-old puppies. Behavioral data showed that low doses of DEHP decreased the working and spatial memories of male rats. Increased oxidative stress and decreased antioxidant activity were also observed in the hippocampus of rats which received the low doses of DEHP. However, neuronal damage, inflammation, and astrocyte activation were not significantly increased in the hippocampus of rats. Overall, exposure of mothers to low doses of DEHP during pregnancy and lactation cause behavioral deficits, especially in male newborn. The destructive effects of low doses of DEHP might be mediated through increased levels of oxidative stress in the brain.
Collapse
Affiliation(s)
- Soheila Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Nasrin Nosratiyan
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
16
|
In vivo tensor-valued diffusion MRI of focal demyelination in white and deep grey matter of rodents. NEUROIMAGE-CLINICAL 2021; 30:102675. [PMID: 34215146 PMCID: PMC8100629 DOI: 10.1016/j.nicl.2021.102675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
We performed in-vivo tensor-valued diffusion MRI in demyelinating rodents. Lysolecithin was injected in white and deep grey matter to cause focal demyelination. Focal demyelination reduced microscopic fractional anisotropy (µFA). Isotropic kurtosis may be particularly sensitive to deep grey matter lesions.
Background Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease leading to damage of white matter (WM) and grey matter (GM). Magnetic resonance imaging (MRI) is the modality of choice to assess brain damage in MS, but there is an unmet need in MRI for achieving higher sensitivity and specificity to MS-related microstructural alterations in WM and GM. Objective To explore whether tensor-valued diffusion MRI (dMRI) can yield sensitive microstructural read-outs for focal demyelination in cerebral WM and deep GM (DGM). Methods Eight rats underwent L-α-Lysophosphatidylcholine (LPC) injections in the WM and striatum to introduce focal demyelination. Multimodal MRI was performed at 7 Tesla after 7 days. Tensor-valued dMRI was complemented by diffusion tensor imaging, quantitative MRI and proton magnetic resonance spectroscopy (MRS). Results Quantitative MRI and MRS confirmed that LPC injections caused inflammatory demyelinating lesions in WM and DGM. Tensor-valued dMRI illustrated a significant decline of microscopic fractional anisotropy (µFA) in both LPC-treated WM and DGM (P < 0.005) along with a marked increase of isotropic kurtosis (MKI) in DGM (P < 0.0001). Conclusion Tensor-valued dMRI bears considerable potential for microstructural imaging in MS, suggesting a regional µFA decrease may be a sensitive indicator of MS lesions, while a regional MKI increase may be particularly sensitive in detecting DGM lesions of MS.
Collapse
|
17
|
Esmaeilnejad S, Semnanian S, Javan M. Metformin Protects Myelin from Degeneration in A Mouse Model of Iysophosphatidylcholine-Induced Demyelination in The Optic Chiasm. CELL JOURNAL 2021; 23:119-128. [PMID: 33650828 PMCID: PMC7944130 DOI: 10.22074/cellj.2021.7174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Objective Multiple sclerosis (MS) is a demyelinating disease of the central nervous system. The autoimmune
pathology and long-term inflammation lead to substantial demyelination. These events lead to a substantial loss
of oligodendrocytes (OLs), which in a longer period, results in axonal loss and long-term disabilities. Neural cells
protection approaches decelerate or inhibit the disease progress to avoid further disability. Previous studies showed
that metformin has beneficial effects against neurodegenerative conditions. In this experimental study, we examined
possible protective effects of metformin on toxin-induced myelin destruction in adult mice brains.
Materials and Methods Lysophosphatidylcholine (LPC) was used to induce demyelination in mice optic chiasm. We
examined the extent of demyelination at different time points post LPC injection using myelin staining and evaluated the
severity of inflammation. Functional state of optic pathway was evaluated by visual evoked potential (VEP) recording.
Results Metformin attenuated LPC-induced demyelination (P<0.05) and inflammation (P<0.05) and protected against
significant decrease (P<0.05) in functional conductivity of optic tract. These data indicated that metformin administration
attenuates the myelin degeneration following LPC injection which led to functional enhancement.
Conclusion Our findings suggest metformin for combination therapy for patients suffering from the myelin degenerative
diseases, especially multiple sclerosis; however, additional mechanistic studies are required.
Collapse
Affiliation(s)
- Saman Esmaeilnejad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. .,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate Receptor Modulator Therapy for Multiple Sclerosis: Differential Downstream Receptor Signalling and Clinical Profile Effects. Drugs 2021; 81:207-231. [PMID: 33289881 PMCID: PMC7932974 DOI: 10.1007/s40265-020-01431-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lysophospholipids are a class of bioactive lipid molecules that produce their effects through various G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P) is perhaps the most studied lysophospholipid and has a role in a wide range of physiological and pathophysiological events, via signalling through five distinct GPCR subtypes, S1PR1 to S1PR5. Previous and continuing investigation of the S1P pathway has led to the approval of three S1PR modulators, fingolimod, siponimod and ozanimod, as medicines for patients with multiple sclerosis (MS), as well as the identification of new S1PR modulators currently in clinical development, including ponesimod and etrasimod. S1PR modulators have complex effects on S1PRs, in some cases acting both as traditional agonists as well as agonists that produce functional antagonism. S1PR subtype specificity influences their downstream effects, including aspects of their benefit:risk profile. Some S1PR modulators are prodrugs, which require metabolic modification such as phosphorylation via sphingosine kinases, resulting in different pharmacokinetics and bioavailability, contrasting with others that are direct modulators of the receptors. The complex interplay of these characteristics dictates the clinical profile of S1PR modulators. This review focuses on the S1P pathway, the characteristics and S1PR binding profiles of S1PR modulators, the mechanisms of action of S1PR modulators with regard to immune cell trafficking and neuroprotection in MS, together with a summary of the clinical effectiveness of the S1PR modulators that are approved or in late-stage development for patients with MS. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects (MP4 65540 kb).
Collapse
Affiliation(s)
- Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London, E1 2AT UK
| | - Samuel F. Hunter
- Advanced Neurosciences Institute, 101 Forrest Crossing Blvd STE 103, Franklin, TN 37064 USA
| |
Collapse
|
19
|
Bernitsas E, Kopinsky H, Lichtman-Mikol S, Razmjou S, Santiago-Martinez C, Yarraguntla K, Bao F. Multimodal MRI Response to Fingolimod in Multiple Sclerosis: A Nonrandomized, Single Arm, Observational Study. J Neuroimaging 2020; 31:379-387. [PMID: 33368776 DOI: 10.1111/jon.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Fingolimod has a favorable effect on conventional MRI measures; however, its neuroprotective effect is not clear. We aim to investigate changes of conventional and advanced MRI measures in lesions and normal-appearing white matter (NAWM) over 2 years in fingolimod-treated patients. METHODS Fifty relapsing-remitting multiple sclerosis patients and 27 healthy controls were enrolled in the study and underwent baseline, 1-year, and 2-year 3T MRI scans. T2 lesion volume, whole brain volume, cortical gray matter volume, white matter volume, corpus callosum area, percentage brain volume change (PBVC), Expanded Disability Status Scale, gadolinium-enhancing lesions, PBVC, magnetization transfer ratio (MTR), and diffusion tensor imaging metrics (fractional anisotropy [FA] and median diffusivity [MD]) in lesions and NAWM were calculated. Longitudinal changes were examined using one-way repeated measures ANOVA. Bonferroni correction for multiple testing was used when appropriate. RESULTS Conventional MRI measures were unchanged in both groups. Lesion MTR increased significantly (P < .001), but NAWM-MTR remained unchanged. Lesion FA improved significantly in year 1 (P = .003) and over the study duration (P = .05). Lesion MD changed significantly from baseline to year 1 (P < .001) and remained stable over 2 years. NAWM-FA was significant from baseline to year 1 (P = .002) and from baseline to year 2 (P < .001). NAWM-MD was significant only from baseline to year 1 (P = .001). CONCLUSIONS These findings suggest a possible neuroreparative effect of fingolimod on the MS lesions and NAWM. Larger and longer randomized studies are required to confirm these results.
Collapse
Affiliation(s)
- Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Hannah Kopinsky
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | | | - Sarah Razmjou
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | | | - Kalyan Yarraguntla
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
20
|
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation. Int J Mol Sci 2020; 21:ijms21207537. [PMID: 33066042 PMCID: PMC7588977 DOI: 10.3390/ijms21207537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.
Collapse
|
21
|
PPAR-γ Is Critical for HDAC3-Mediated Control of Oligodendrocyte Progenitor Cell Proliferation and Differentiation after Focal Demyelination. Mol Neurobiol 2020; 57:4810-4824. [PMID: 32803489 DOI: 10.1007/s12035-020-02060-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Disruption of remyelination contributes to neurodegeneration and cognitive impairment in chronically disabled patients. Valproic acid (VPA) inhibits histone deacetylase (HDAC) function and probably promotes oligodendrocyte progenitor cell (OPC) proliferation and differentiation; however, the relevant molecular mechanisms remain unknown. Here, focal demyelinating lesions (FDLs) were generated in mice by two-point stereotactic injection of lysophosphatidylcholine (LPC) into the corpus callosum. Cognitive functions, sensorimotor abilities and histopathological changes were assessed for up to 28 days post-injury with or without VPA treatment. Primary OPCs were harvested and used to study the effect of VPA on OPC differentiation under inflammatory conditions. VPA dose-dependently attenuated learning and memory deficits and robustly protected white matter after FDL induction, as demonstrated by reductions in SMI-32 and increases in myelin basic protein staining. VPA also promoted OPC proliferation and differentiation and increased subsequent remyelination efficiency by day 28 post-FDL induction. VPA treatment did not affect HDAC1, HDAC2 or HDAC8 expression but reduced HDAC3 protein levels. In vitro, VPA improved the survival of mouse OPCs and promoted their differentiation into oligodendrocytes following lipopolysaccharide (LPS) stimulation. LPS caused OPCs to overexpress HDAC3, which translocated from the cytoplasm into the nucleus, where it directly interacted with the nuclear transcription factor PPAR-γ and negatively regulated PPAR-γ expression. VPA decreased the expression of HDAC3 and promoted remyelination and functional neurological recovery after FDL. These findings may support the use of strategies modulating HDAC3-mediated regulation of protein acetylation for the treatment of demyelination-related cognitive dysfunction.
Collapse
|
22
|
Cohan S, Lucassen E, Smoot K, Brink J, Chen C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines 2020; 8:biomedicines8070227. [PMID: 32708516 PMCID: PMC7400006 DOI: 10.3390/biomedicines8070227] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS.
Collapse
|
23
|
Duffy CP, McCoy CE. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells 2020; 9:cells9071711. [PMID: 32708794 PMCID: PMC7408558 DOI: 10.3390/cells9071711] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterised by demyelination of central nervous system neurons with subsequent damage, cell death and disability. While mechanisms exist in the CNS to repair this damage, they are disrupted in MS and currently there are no treatments to address this deficit. In recent years, increasing attention has been paid to the influence of the small, non-coding RNA molecules, microRNAs (miRNAs), in autoimmune disorders, including MS. In this review, we examine the role of miRNAs in remyelination in the different cell types that contribute to MS. We focus on key miRNAs that have a central role in mediating the repair process, along with several more that play either secondary or inhibitory roles in one or more aspects. Finally, we consider the current state of miRNAs as therapeutic targets in MS, acknowledging current challenges and potential strategies to overcome them in developing effective novel therapeutics to enhance repair mechanisms in MS.
Collapse
|
24
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
25
|
Piperine ameliorated memory impairment and myelin damage in lysolecethin induced hippocampal demyelination. Life Sci 2020; 253:117671. [PMID: 32335165 DOI: 10.1016/j.lfs.2020.117671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
AIMS We still do not have effective treatment for hippocampal demyelination and memory deficit, the two common comorbidities in multiple sclerosis (MS). This study aimed to assess the therapeutic effect of Piperine (the main alkaloid of black pepper) in an experimental model of demyelination. MAIN METHODS Demyelination was induced in male Wistar rats by bilateral injection of lysolecithin (LPC) into the CA1 region of the hippocampus. Piperine (5, 10, 20 mg/kg) was daily injected intraperitoneally three days post LPC injection for ten days. The spatial memory was examined by the Morris water maze task. Demyelination and astrocyte activation were assessed by an immunohistological study. The gene expression analysis of TNF-α, IL1-β, NF-κB, IL-10, Foxp3, iNOS, Nrf2, HO1, MBP, and BDNF was done using qPCR. The total antioxidant capacity of hippocampal tissue was measured using FRAP assay. KEY FINDINGS Our results showed that piperine improved the memory performance and myelin repair in the hippocampal demyelination model. Piperine inhibited iNOS expression concomitant with enhanced expression levels of Nrf2, HO1 and the total antioxidant capacity in the hippocampal tissue. Piperine treatment significantly reduced the gene expression level of TNF-α, IL1-β, NF-κB, and glial activation in the injured area; however, the mRNA level of IL-10, Foxp3, BDNF and MBP were significantly increased. SIGNIFICANCE We found piperine to be an effective treatment for spatial memory impairment and myelin repair in the hippocampal demyelination model. However, further experimental evidence is needed to investigate the precise mechanisms underlying piperine as a promising therapeutic target in MS patients.
Collapse
|
26
|
Pépin É, Jalinier T, Lemieux GL, Massicotte G, Cyr M. Sphingosine-1-Phosphate Receptors Modulators Decrease Signs of Neuroinflammation and Prevent Parkinson's Disease Symptoms in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model. Front Pharmacol 2020; 11:77. [PMID: 32153401 PMCID: PMC7047735 DOI: 10.3389/fphar.2020.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive lipid mediator that acts as a natural ligand upon binding to five different receptors that are located in astrocytes, oligodendrocytes, microglial and neuronal cells. Recently, global activation of these receptors by FTY720 (fingolimod) has been suggested to provide neuroprotection in animal model of Parkinson’s disease (PD). Among S1P receptors, the subtype 1 (S1P1R) has been linked to features of neuroprotection and, using the selective agonist SEW2871, the present investigation assessed potential benefits (and mechanisms) of this receptor subtype in an established animal model of PD. We demonstrated that oral treatments with SEW2871 are able to provide protection to the same levels as FTY720 against loss of dopaminergic neurons and motor deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg, i.p., 5 days) mouse model of PD. At the molecular level, we observed that the beneficial effects of both S1PR agonists were not associated with alterations in ERK and Akt levels, two markers of molecular adaptations in the striatum neurons. However, these compounds have the capacity to prevent signs of neuroinflammation such as the activation of astrocytes and glial cells, as well as MPTP-induced reduction of BDNF levels in key regions of the brain implicated in motor functions. These findings suggest that selective S1P1R modulation has the ability to provide neuroprotection in response to MPTP neurotoxicity. Targeting S1P1R in PD therapy may represent a prominent candidate for treatment of this neurodegenerative conditions.
Collapse
Affiliation(s)
- Élise Pépin
- Groupe de recherche en signalisation cellulaire, Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Tim Jalinier
- Groupe de recherche en signalisation cellulaire, Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Guillaume L Lemieux
- Groupe de recherche en signalisation cellulaire, Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Guy Massicotte
- Groupe de recherche en signalisation cellulaire, Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Michel Cyr
- Groupe de recherche en signalisation cellulaire, Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
27
|
Fingolimod (FTY720) improves the functional recovery and myelin preservation of the optic pathway in focal demyelination model of rat optic chiasm. Brain Res Bull 2019; 153:109-121. [DOI: 10.1016/j.brainresbull.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
28
|
Nystad AE, Lereim RR, Wergeland S, Oveland E, Myhr KM, Bø L, Torkildsen Ø. Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but does not promote remyelination or neuroprotection in the cuprizone model. J Neuroimmunol 2019; 339:577091. [PMID: 31739156 DOI: 10.1016/j.jneuroim.2019.577091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
Abstract
Fingolimod is used to treat patients with relapsing-remitting multiple sclerosis; it crosses the blood-brain barrier and modulates sphingosine-1-phosphate receptors (S1PRs). Oligodendrocytes, astrocytes, microglia, and neuronal cells express S1PRs, and fingolimod could potentially improve remyelination and be neuroprotective. We used the cuprizone animal model, histo-, immunohistochemistry, and quantitative proteomics to study the effect of fingolimod on remyelination and axonal damage. Fingolimod was functionally active during remyelination by downregulating S1PR1 brain levels, and fingolimod-treated mice had more oligodendrocytes in the secondary motor cortex after three weeks of remyelination. However, there were no differences in remyelination or axonal damage compared to placebo. Thus, fingolimod does not seem to directly promote remyelination or protect against axonal injury or loss when given after cuprizone-induced demyelination.
Collapse
Affiliation(s)
- Agnes E Nystad
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Ragnhild Reehorst Lereim
- Proteomics Unit at University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Norway; Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Stig Wergeland
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eystein Oveland
- Proteomics Unit at University of Bergen (PROBE), Department of Biomedicine, University of Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J Neurosci Res 2019; 98:524-536. [DOI: 10.1002/jnr.24509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Azadeh Yazdi
- Department of Physiology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Maryam Ghasemi‐Kasman
- Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
- Neuroscience Research Center Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
30
|
FTY720 Improves Behavior, Increases Brain Derived Neurotrophic Factor Levels and Reduces α-Synuclein Pathology in Parkinsonian GM2+/- Mice. Neuroscience 2019; 411:1-10. [PMID: 31129200 DOI: 10.1016/j.neuroscience.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.
Collapse
|
31
|
Seyedsadr MS, Weinmann O, Amorim A, Ineichen BV, Egger M, Mirnajafi-Zadeh J, Becher B, Javan M, Schwab ME. Inactivation of sphingosine-1-phosphate receptor 2 (S1PR2) decreases demyelination and enhances remyelination in animal models of multiple sclerosis. Neurobiol Dis 2019; 124:189-201. [DOI: 10.1016/j.nbd.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022] Open
|
32
|
Zhang Y, Lu XY, Ye ZQ, Ciric B, Ma CG, Rostami A, Li X, Zhang GX. Combination Therapy With Fingolimod and Neural Stem Cells Promotes Functional Myelination in vivo Through a Non-immunomodulatory Mechanism. Front Cell Neurosci 2019; 13:14. [PMID: 30804753 PMCID: PMC6371042 DOI: 10.3389/fncel.2019.00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023] Open
Abstract
Myelination, which occurs predominantly postnatally and continues throughout life, is important for proper neurologic function of the mammalian central nervous system (CNS). We have previously demonstrated that the combination therapy of fingolimod (FTY720) and transplanted neural stem cells (NSCs) had a significantly enhanced therapeutic effect on the chronic stage of experimental autoimmune encephalomyelitis, an animal model of CNS autoimmunity, compared to using either one of them alone. However, reduced disease severity may be secondary to the immunomodulatory effects of FTY720 and NSCs, while whether this therapy directly affects myelinogenesis remains unknown. To investigate this important question, we used three myelination models under minimal or non-inflammatory microenvironments. Our results showed that FTY720 drives NSCs to differentiate into oligodendrocytes and promotes myelination in an ex vivo brain slice culture model, and in the developing CNS of healthy postnatal mice in vivo. Elevated levels of neurotrophic factors, e.g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, were observed in the CNS of the treated infant mice. Further, FTY720 and NSCs efficiently prolonged the survival and improved sensorimotor function of shiverer mice. Together, these data demonstrate a direct effect of FTY720, beyond its known immunomodulatory capacity, in NSC differentiation and myelin development as a novel mechanism underlying its therapeutic effect in demyelinating diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Xin-Yu Lu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Ze-Qin Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Shanxi Datong University Medical School, Datong, China
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States,National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi'an, China,*Correspondence: Xing Li
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States,Guang-Xian Zhang
| |
Collapse
|
33
|
Akbari A, Khalili-Fomeshi M, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Adenosine A 2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model. Life Sci 2018; 205:63-72. [PMID: 29730168 DOI: 10.1016/j.lfs.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
In recent years, inactivation of A2A adenosine receptors has been emerged as a novel strategy for treatment of several neurodegenerative diseases. Although numerous studies have shown the beneficial effects of A2A receptors blockade on spatial memory, the impacts of selective adenosine A2A receptors on memory performance has not yet been examined in the context of demyelination. In the present study, we evaluated the effect of A2A receptor antagonist SCH58261 on spatial memory and myelination in an experimental model of focal demyelination in rat fimbria. Demyelination was induced by local injection of lysolecithin (LPC) 1% (2 μl) into the hippocampus fimbria. SCH58261 (20 μg/0.5 μl or 40 μg/0.5 μl) was daily injected intracerebroventricularly (i.c.v.) for 10 days post LPC injection. The Morris water maze test was used to assess the spatial learning and memory on day 6 post lesion. Myelin staining and immunostaining against astrocytes/microglia were carried out 10 days post LPC injection. The administration of adenosine A2A receptor antagonist prevented the spatial memory impairment in LPC receiving animals. Myelin staining revealed that application of SCH58261 reduces the extent of demyelination areas in the fimbria. Furthermore, the level of astrocytes and microglia activation was attenuated following administration of A2A receptor antagonist. Collectively, the results of this study suggest that A2A receptor blockade can improve the spatial memory and protect myelin sheath, which might be considered as a novel therapeutic approach for multiple sclerosis disease.
Collapse
Affiliation(s)
- Atefeh Akbari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
34
|
Naeimi R, Baradaran S, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Querectin improves myelin repair of optic chiasm in lyolecithin-induced focal demyelination model. Biomed Pharmacother 2018; 101:485-493. [PMID: 29501770 DOI: 10.1016/j.biopha.2018.02.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Although the beneficial effects of quercetin on oligodendrocyte precursor cell (OPCs) population has been evaluated in-vitro, there are few studies about the effects of quercetin on myelin repair in the context of demyelination. The aim of this study was to investigate the effects of querectin on functional recovery and myelin repair of optic chiasm in lysolecithin (LPC)-induced demyelination model. Demyelination was induced by local injection of LPC 1% (2 μl) into rat optic chiasm. Querectin at doses 25 or 50 mg/kg was administrated daily by oral gavage for 7 or 14 days post LPC. Visual evoked potential (VEPs) recordings were used to assess the functional property of the optic pathway. Immunostaining and myelin staining were performed on brain sections 7 or 14 days post lesion. Electrophysiological data indicated that LPC injection increased the latency of VEPs waves and quercetin effectively reduced the delay of visual signals. The level of glial activation was alleviated in animals under treatment of quercetin compared to vehicle group. Furthermore, quercetin treatment decreased the extent of demyelination areas and increased the remyelination process following LPC injection. Overall, our findings indicate that quercetin could remarkably improve the functional recovery of the optic pathway by its protective effects on myelin sheath and attenuation of glial activation.
Collapse
Affiliation(s)
- Reza Naeimi
- Student Research Committee, Babol University of Medical Sciences, Babol, IranIran
| | - Saeideh Baradaran
- Student Research Committee, Babol University of Medical Sciences, Babol, IranIran
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
35
|
Antel JP, Lin YH, Cui QL, Pernin F, Kennedy TE, Ludwin SK, Healy LM. Immunology of oligodendrocyte precursor cells in vivo and in vitro. J Neuroimmunol 2018; 331:28-35. [PMID: 29566973 DOI: 10.1016/j.jneuroim.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.
Collapse
Affiliation(s)
- Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Samuel K Ludwin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett 2018. [PMID: 29530814 DOI: 10.1016/j.neulet.2018.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context.
Collapse
|
37
|
Ziser L, Meyer-Schell N, Kurniawan ND, Sullivan R, Reutens D, Chen M, Vegh V. Utility of gradient recalled echo magnetic resonance imaging for the study of myelination in cuprizone mice treated with fingolimod. NMR IN BIOMEDICINE 2018; 31:e3877. [PMID: 29266540 DOI: 10.1002/nbm.3877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 05/26/2023]
Abstract
The availability of high-field-strength magnetic resonance imaging (MRI) systems has brought about the development of techniques that aim to map myelination via the exploitation of various contrast mechanisms. Myelin mapping techniques have the potential to provide tools for the diagnosis and treatment of diseases, such as multiple sclerosis. In this study, we evaluated the sensitivity of T2 *, frequency shift and susceptibility measures to myelin levels in a cuprizone mouse model of demyelination. The model was supplemented with two different dosages of fingolimod, a drug known to positively affect demyelination. A decrease in grey-white matter contrast with the cuprizone diet was observed for T2 *, frequency shift and susceptibility measures, together with myelin basic protein antibody findings. These results indicate that T2 *, frequency shift and susceptibility measures have the potential to act as biomarkers for myelination. Susceptibility was found to be the most sensitive measure to changes in grey-white matter contrast. In addition, fingolimod treatment was found to reduce the level of demyelination, with a larger dosage exhibiting a greater reduction in demyelination for the in vivo MRI results. Overall, susceptibility mapping appears to be a more promising tool than T2 * or frequency shift mapping for the early diagnosis and treatment of diseases in which myelination is implicated.
Collapse
Affiliation(s)
- Laura Ziser
- Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia
| | - Naja Meyer-Schell
- Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia
| | - Robert Sullivan
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia
| | - Min Chen
- Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
38
|
Thomas K, Proschmann U, Ziemssen T. Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother 2017; 18:1649-1660. [PMID: 28844164 DOI: 10.1080/14656566.2017.1373093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Fingolimod was the first oral and the first in class disease modifying treatment in multiple sclerosis that acts as sphingosine-1-phospathe receptor agonist. Since approval in 2010 there is a growing experience with fingolimod use in clinical practice, but also next-generation sphingosin-1-receptor agonists in ongoing clinical trials. Growing evidence demonstrates additional effects beyond impact on lymphocyte circulation, highlighting further promising targets in multiple sclerosis therapy. Areas covered: Here we present a systematic review using PubMed database searching and expert opinion on fingolimod use in clinical practice. Long-term data of initial clinical trials and post-marketing evaluations including long-term efficacy, safety, tolerability and management especially within growing disease modifying treatment options and pre-treatment constellation in multiple sclerosis patients are critically discussed. Furthermore novel findings in mechanism of actions and prospective on additional use in progressive forms in multiple sclerosis are presented. Expert opinion: There is an extensive long-term experience on fingolimod use in clinical practice demonstrating the favorable benefit-risk of this drug. Using a defined risk management approach experienced MS clinicians should apply fingolimod after critical choice of patients and review of clinical aspects. Further studies are essential to discuss additional benefit in progressive forms in multiple sclerosis.
Collapse
Affiliation(s)
- Katja Thomas
- a Center of Clinical Neuroscience , University Hospital, Dresden , Dresden , Germany
| | - Undine Proschmann
- a Center of Clinical Neuroscience , University Hospital, Dresden , Dresden , Germany
| | - Tjalf Ziemssen
- a Center of Clinical Neuroscience , University Hospital, Dresden , Dresden , Germany
| |
Collapse
|
39
|
Cipriani R, Chara JC, Rodríguez-Antigüedad A, Matute C. Effects of FTY720 on brain neurogenic niches in vitro and after kainic acid-induced injury. J Neuroinflammation 2017; 14:147. [PMID: 28738875 PMCID: PMC5525223 DOI: 10.1186/s12974-017-0922-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/14/2017] [Indexed: 01/28/2023] Open
Abstract
Background FTY720 (fingolimod, Gilenya™) is an oral, blood-brain barrier (BBB)-passing drug approved as immunomodulatory treatment for relapsing-remitting form of the multiple sclerosis (MS). In addition, FTY720 exerts several effects in the central nervous system (CNS), ranging from neuroprotection to reduction of neuroinflammation. However, the neurogenic and oligodendrogenic potential of FTY720 has been poorly investigated. In this study, we assessed the effect of FTY720 on the production of new neurons and oligodendrocytes from neural stem/precursor cells both in vitro and in vivo. Methods Neural stem cells (NSCs) derived from the young rat subventricular zone (SVZ) were exposed to FTY720 (10, 100 nM), and their differentiation into neurons and oligodendrocytes was measured using immunofluorescence for anti-β-III tubulin or CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase) as markers of mature neurons or oligodendrocytes, respectively. In addition, intracerebroventricular (icv) administration of kainic acid (KA; 0.5 μg/2 μl) in Sprague-Dawley rats was used as an in vivo model of neuronal death and inflammation. FTY720 was applied icv (1 μg/2 μl), together with KA, plus intraperitoneally (ip; 1 mg/kg) 24 h before, and daily, until sacrifice 8 days after KA injection. To visualize cell proliferation in the hippocampus and in white matter regions, rats were administered 5-bromo-2-deoxyuridine (BrdU) 100 mg/kg, ip injected every 2 days. Immunohistochemical analyses were performed on rat brain slices to measure the production of new neuronal precursors (doublecortin/DCX+ cells) and new oligodendrocytes precursors (proteoglycan/NG2+ cells). Results In this study, we observed that FTY720 increased postnatal NSCs differentiation into both neurons and oligodendrocytes in vitro. In turn, in adult animals, FTY720 enhanced the percentage of BrdU+ cells coexpressing DCX marker, both in basal (FTY720 alone) and in neurodegenerative (FTY720 + KA) conditions. However, FTY720 had only a partial effect on proliferation and differentiation of oligodendrocyte progenitor cell (OPC) population in vivo. Conclusions FTY720 promotes neurogenesis and oligodendrogenesis in vitro under basal conditions. In addition, it increases the generation of neuroblasts and oligodendrocytes after excitotoxic brain injury. This suggests that FTY720 has the potential to activate the neurogenic niche and thus favour tissue repair after lesion. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0922-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raffaela Cipriani
- Centro de Investigaciones Biomédicas en Red (CIBERNED), Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain.
| | - Juan Carlos Chara
- Centro de Investigaciones Biomédicas en Red (CIBERNED), Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain
| | | | - Carlos Matute
- Centro de Investigaciones Biomédicas en Red (CIBERNED), Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), E-48940, Leioa, Spain
| |
Collapse
|
40
|
Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 2017; 16:617-634. [PMID: 28685761 DOI: 10.1038/nrd.2017.115] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is characterized by inflammatory activity that results in destruction of the myelin sheaths that enwrap axons. The currently available medications for multiple sclerosis are predominantly immune-modulating and do not directly promote repair. White matter regeneration, or remyelination, is a new and exciting potential approach to treating multiple sclerosis, as remyelination repairs the damaged regions of the central nervous system. A wealth of new strategies in animal models that promote remyelination, including the repopulation of oligodendrocytes that produce myelin, has led to several clinical trials to test new reparative therapies. In this Review, we highlight the biology of, and obstacles to, remyelination. We address new strategies to improve remyelination in preclinical models, highlight the therapies that are currently undergoing clinical trials and discuss the challenges of objectively measuring remyelination in trials of repair in multiple sclerosis.
Collapse
Affiliation(s)
- Jason R Plemel
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Wei-Qiao Liu
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
41
|
Kira JI. q-space Myelin Map imaging: A new imaging technique for treatment evaluation in multiple sclerosis. J Neurol Sci 2017; 373:358-359. [PMID: 28094009 DOI: 10.1016/j.jns.2017.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
42
|
Tanikawa M, Nakahara J, Hata J, Suzuki S, Fujiyoshi K, Fujiwara H, Momoshima S, Jinzaki M, Nakamura M, Okano H, Takahashi S, Suzuki N. q-Space Myelin Map imaging for longitudinal analysis of demyelination and remyelination in multiple sclerosis patients treated with fingolimod: A preliminary study. J Neurol Sci 2017; 373:352-357. [DOI: 10.1016/j.jns.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/15/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
43
|
Effects of FTY720 (Fingolimod) on Proliferation, Differentiation, and Migration of Brain-Derived Neural Stem Cells. Stem Cells Int 2016; 2016:9671732. [PMID: 27829841 PMCID: PMC5088305 DOI: 10.1155/2016/9671732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022] Open
Abstract
Insufficient proliferation, differentiation, and migration are the main pitfalls of neural stem cells (NSCs) in reparative therapeutics for the central nervous system (CNS) diseases. The potent lipid mediator sphingosine-1-phosphate (S1P) regulates cells' biological behavior broadly in the CNS. However, the effects of activating S1P on NSCs are not quite clear. In the current study, FTY720 (Fingolimod), an analog of S1P, was employed to induce the proliferation, differentiation, and migration of cultured brain-derived NSCs. The results indicated that proliferation and migration ability of NSCs were promoted by FTY720. Though we observed no obvious neuron prefers differentiation of NSCs, there were more protoplasmic astrocytes developed in the presence of certain concentration of FTY720. This work gives more comprehensive understanding of how FTY720 affects NSCs.
Collapse
|
44
|
Gol M, Ghorbanian D, Hassanzadeh S, Javan M, Mirnajafi-Zadeh J, Ghasemi-Kasman M. Fingolimod enhances myelin repair of hippocampus in pentylenetetrazol-induced kindling model. Eur J Pharm Sci 2016; 96:72-83. [PMID: 27634580 DOI: 10.1016/j.ejps.2016.09.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/10/2016] [Accepted: 09/11/2016] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that demyelination occurs in epilepsy patients and kindling animal models. Regarding the well-known literature on anti-inflammatory and myelin protective effects of fingolimod (FTY720) in multiple sclerosis patients and animal models, we hypostatized whether FTY720 administration could exert myelin protective effects in pentylenetetrazol (PTZ)-induced kindling model. To end this, animals received 0.3 or 1mg/kg dosage of FTY720, 1h before PTZ injections. In another approach, after achieving fully kindling stage, FTY720 was administrated i.p. once daily for 7 consecutive days. Treatment with FTY720 (especially lower dose) reduced the frequency of seizures and epileptiform discharges in both approaches. We found that FTY720 administration decreases cell death and glial activation in CA1 and CA3 regions of hippocampus. Myelin protection effect was shown by increasing myelin levels. Furthermore, post-treatment of FTY720 enhanced endogenous remyelination and the number of oligodendrocyte precursor cells in fully kindled animals. Together, these results demonstrate that FTY720 behind the anti-inflammatory and neuroprotection effects has beneficial role in myelin protection and remyelination enhancement in PTZ kindling model of seizure and it may be provide a new therapeutic option for demyelination associated with epilepsy.
Collapse
Affiliation(s)
- Mohammad Gol
- Student Research Committee, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Davoud Ghorbanian
- Student Research Committee, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Samaneh Hassanzadeh
- Student Research Committee, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran.
| |
Collapse
|
45
|
Iodice R, Carotenuto A, Dubbioso R, Cerillo I, Santoro L, Manganelli F. Multimodal evoked potentials follow up in multiple sclerosis patients under fingolimod therapy. J Neurol Sci 2016; 365:143-6. [DOI: 10.1016/j.jns.2016.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/09/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|