1
|
Clark IA, Vissel B. Autocrine positive feedback of tumor necrosis factor from activated microglia proposed to be of widespread relevance in chronic neurological disease. Pharmacol Res Perspect 2023; 11:e01136. [PMID: 37750203 PMCID: PMC10520644 DOI: 10.1002/prp2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Over a decade's experience of post-stroke rehabilitation by administering the specific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with a wide range of chronically diminished neurological function having been caused by persistent excessive cerebral levels of TNF. We propose that this TNF persistence, and cerebral disease chronicity, largely arises from a positive autocrine feedback loop of this cytokine, allowing the persistence of microglial activation caused by the excess TNF that these cells produce. It appears that many of these observations have never been exploited to construct a broad understanding and treatment of certain chronic, yet reversible, neurological illnesses. We propose that this treatment allows these chronically activated microglia to revert to their normal quiescent state, rather than simply neutralizing the direct harmful effects of this cytokine after its release from microglia. Logically, this also applies to the chronic cerebral aspects of various other neurological conditions characterized by activated microglia. These include long COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic traumatic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cerebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, are candidates for being understood through this approach and treated accordingly. Perispinal etanercept provides the prospect of being able to treat various chronic central nervous system illnesses, whether they are of infectious or non-infectious origin, through reversing excess TNF generation by microglia.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical ResearchSt Vincent's HospitalDarlinghurstAustralia
- UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and HealthSchool of Clinical Medicine, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Hashimoto JG, Singer ML, Goeke CM, Zhang F, Song Y, Xia K, Linhardt RJ, Guizzetti M. Sex differences in hippocampal structural plasticity and glycosaminoglycan disaccharide levels after neonatal handling. Exp Neurol 2023; 361:114313. [PMID: 36572372 PMCID: PMC10097408 DOI: 10.1016/j.expneurol.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
In this study we investigated the effects of a neonatal handling protocol that mimics the handling of sham control pups in protocols of neonatal exposure to brain insults on dendritic arborization and glycosaminoglycan (GAG) levels in the developing brain. GAGs are long, unbranched polysaccharides, consisting of repeating disaccharide units that can be modified by sulfation at specific sites and are involved in modulating neuronal plasticity during brain development. In this study, male and female Sprague-Dawley rats underwent neonatal handling daily between post-natal day (PD)4 and PD9, with brains analyzed on PD9. Neuronal morphology and morphometric analysis of the apical and basal dendritic trees of CA1 hippocampal pyramidal neurons were carried out by Golgi-Cox staining followed by neuron tracing and analysis with the software Neurolucida. Chondroitin sulfate (CS)-, Hyaluronic Acid (HA)-, and Heparan Sulfate (HS)-GAG disaccharide levels were quantified in the hippocampus by Liquid Chromatography/Mass Spectrometry analyses. We found sex by neonatal handling interactions on several parameters of CA1 pyramidal neuron morphology and in the levels of HS-GAGs, with females, but not males, showing an increase in both dendritic arborization and HS-GAG levels. We also observed increased expression of glucocorticoid receptor gene Nr3c1 in the hippocampus of both males and females following neonatal handling suggesting that both sexes experienced a similar stress during the handling procedure. This is the first study to show sex differences in two parameters of brain plasticity, CA1 neuron morphology and HS-GAG levels, following handling stress in neonatal rats.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Mo L Singer
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Calla M Goeke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
3
|
Baker JA, Bodnar TS, Breit KR, Weinberg J, Thomas JD. Choline Supplementation Alters Hippocampal Cytokine Levels in Adolescence and Adulthood in an Animal Model of Fetal Alcohol Spectrum Disorders. Cells 2023; 12:546. [PMID: 36831213 PMCID: PMC9953782 DOI: 10.3390/cells12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Alcohol (ethanol) exposure during pregnancy can adversely affect development, with long-lasting consequences that include neuroimmune, cognitive, and behavioral dysfunction. Alcohol-induced alterations in cytokine levels in the hippocampus may contribute to abnormal cognitive and behavioral outcomes in individuals with fetal alcohol spectrum disorders (FASD). Nutritional intervention with the essential nutrient choline can improve hippocampal-dependent behavioral impairments and may also influence neuroimmune function. Thus, we examined the effects of choline supplementation on hippocampal cytokine levels in adolescent and adult rats exposed to alcohol early in development. From postnatal day (PD) 4-9 (third trimester-equivalent), Sprague-Dawley rat pups received ethanol (5.25 g/kg/day) or sham intubations and were treated with choline chloride (100 mg/kg/day) or saline from PD 10-30; hippocampi were collected at PD 35 or PD 60. Age-specific ethanol-induced increases in interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO) were identified in adulthood, but not adolescence, whereas persistent ethanol-induced increases of interleukin-6 (IL-6) levels were present at both ages. Interestingly, choline supplementation reduced age-related changes in interleukin-1 beta (IL-1β) and interleukin-5 (IL-5) as well as mitigating the long-lasting increase in IFN-γ in ethanol-exposed adults. Moreover, choline influenced inflammatory tone by modulating ratios of pro- to -anti-inflammatory cytokines. These results suggest that ethanol-induced changes in hippocampal cytokine levels are more evident during adulthood than adolescence, and that choline can mitigate some effects of ethanol exposure on long-lasting inflammatory tone.
Collapse
Affiliation(s)
- Jessica A. Baker
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kristen R. Breit
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
- Department of Psychology, West Chester University, West Chester, PA 19383, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
4
|
Guo Y, Yan M, Li L, Zhao L, Li Y. Treadmill Exercise Prevents Cognitive Impairments in Adolescent Intermittent Ethanol Rats by Reducing the Excessive Activation of Microglia Cell in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314701. [PMID: 36499029 PMCID: PMC9740642 DOI: 10.3390/ijms232314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The excessive activation of microglia cell induced by adolescent intermittent ethanol (AIE) leads to neuroinflammation in the hippocampus. The endocannabinoid system plays a key role in the modulation of microglia activation. Accumulating evidence suggests that regular exercise improves learning and memory deficits in AIE models. The purpose of this study was to explore the effects of treadmill exercise intervention on the cognitive performance, activation of microglia cells and the expression of monoacylglycerol lipase (MAGL), cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) in the hippocampus of AIE rats. Here, we show that AIE rats exhibited cognitive impairments, whereas the treadmill exercise improves the cognitive performance in AIE rats. In order to explore the possible mechanisms for the exercise-induced attenuation of cognitive disorder, we examined the neuroinflammation in the hippocampus. We found that treadmill exercise led to the decrease in the level of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increase in the level of anti-inflammatory cytokine (IL-10). In addition, we found that treadmill exercise reduced the excessive activation of the microglia cell in the hippocampus of AIE rats. Finally, we found that AIE led to a decrease in the expression of CB1R and CB2R in the hippocampus; however, the treadmill exercise further decreased the expression of CB2R in the hippocampus of AIE rats. Our results suggest that treadmill exercise attenuates AIE-induced neuroinflammation and the excessive activation of hippocampus microglial cells, which may contribute to the exercise-induced improvement of cognitive performance in AIE rats.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Min Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
5
|
Choline Supplementation Modifies the Effects of Developmental Alcohol Exposure on Immune Responses in Adult Rats. Nutrients 2022; 14:nu14142868. [PMID: 35889826 PMCID: PMC9316525 DOI: 10.3390/nu14142868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure can disrupt the development of numerous systems, including the immune system. Indeed, alterations in cytokine levels may contribute to the neuropathological, behavioral, and cognitive problems, and other adverse outcomes observed in individuals with fetal alcohol spectrum disorders. Importantly, supplementation with the essential nutrient choline can improve performance in hippocampal-dependent behaviors; thus, the present study examined the effects of choline on plasma and hippocampal cytokines in adult rats exposed to ethanol in early development. From postnatal day (PD) 4–9 (third trimester equivalent), pups received ethanol (5.25 g/kg/day) or Sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline from PD10–30. On PD60, plasma and hippocampal tissue was collected before and after an immune challenge (lipopolysaccharide (LPS); 50 ug/kg). Prior to the immune challenge, ethanol-exposed subjects showed an overall increase in hippocampal pro-inflammatory cytokines, an effect mitigated by choline supplementation. In contrast, in the plasma, choline reduced LPS-related increases in pro-inflammatory markers, particularly in ethanol-exposed subjects. Thus, early choline supplementation may modify both brain and peripheral inflammation. These results suggest that early choline can mitigate some long-term effects of ethanol exposure on hippocampal inflammation, which may contribute to improved hippocampal function, and could also influence peripheral immune responses that may impact overall health.
Collapse
|
6
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
7
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
8
|
Sabzali M, Eidi A, Khaksari M, Khastar H. Anti-inflammatory, Antioxidant, and Antiapoptotic Action of Metformin Attenuates Ethanol Neurotoxicity in the Animal Model of Fetal Alcohol Spectrum Disorders. Neurotox Res 2022; 40:605-613. [PMID: 35386022 DOI: 10.1007/s12640-022-00499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Fetal alcohol exposure has permanent effects on the brain structure, leading to functional deficits in several aspects of behavior, including learning and memory. Alcohol-induced neurocognitive impairment in offsprings is included with activation of oxidative- inflammatory cascade followed with wide apoptotic neurodegeneration in several brain areas, such as the hippocampus. Metformin is the first-line treatment for diabetic patients. It rapidly crosses the blood-brain barrier (BBB) and exerts antioxidant, anti-inflammatory, and neuroprotective effects. In this study, we evaluated the protective effects of metformin on ethanol-related neuroinflammation, as well as neuron apoptosis in the hippocampus of adult male rat in animal model of fetal alcohol spectrum disorders. Treatment with ethanol in milk solution (5.25 and 27.8 g/kg, respectively) was conducted by intragastric intubation at 2-10 days after birth. To examine the antioxidant and anti-inflammatory properties of metformin, an ELISA assay was performed for determining the tumor necrosis factor-α (TNF-α) and antioxidant enzyme concentrations. Immunohistochemical staining was conducted for evaluating the glial fibrillary acidic protein (GFAP) and cleaved caspase-3 expression. Based on the results, metformin caused a significant increase in the superoxide dismutase (SOD) (P < 0.05) and glutathione peroxidase (GSH-Px) (P < 0.01) activities. On the other hand, it reduced the concentrations of TNF-α and malondialdehyde, compared to the ethanol group (P < 0.01). In the metformin group, there was a reduction in cell apoptosis in the hippocampus, as well as GFAP-positive cells (P < 0.01). Overall, apoptotic signaling, regulated by the oxidative inflammatory cascade, can be suppressed by metformin in adult brain rats following animal model of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Maryam Sabzali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Hossein Khastar
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
9
|
Macht VA, Vetreno RP, Crews FT. Cholinergic and Neuroimmune Signaling Interact to Impact Adult Hippocampal Neurogenesis and Alcohol Pathology Across Development. Front Pharmacol 2022; 13:849997. [PMID: 35308225 PMCID: PMC8926387 DOI: 10.3389/fphar.2022.849997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023] Open
Abstract
Alcohol (ethanol) use and misuse is a costly societal issue that can affect an individual across the lifespan. Alcohol use and misuse typically initiates during adolescence and generally continues into adulthood. Not only is alcohol the most widely abused drug by adolescents, but it is also one of the most widely abused drugs in the world. In fact, high rates of maternal drinking make developmental ethanol exposure the most preventable cause of neurological deficits in the Western world. Preclinical studies have determined that one of the most consistent effects of ethanol is its disruption of hippocampal neurogenesis. However, the severity, persistence, and reversibility of ethanol’s effects on hippocampal neurogenesis are dependent on developmental stage of exposure and age at assessment. Complicating the neurodevelopmental effects of ethanol is the concurrent development and maturation of neuromodulatory systems which regulate neurogenesis, particularly the cholinergic system. Cholinergic signaling in the hippocampus directly regulates hippocampal neurogenesis through muscarinic and nicotinic receptor actions and indirectly regulates neurogenesis by providing anti-inflammatory regulatory control over the hippocampal environmental milieu. Therefore, this review aims to evaluate how shifting maturational patterns of the cholinergic system and its regulation of neuroimmune signaling impact ethanol’s effects on adult neurogenesis. For example, perinatal ethanol exposure decreases basal forebrain cholinergic neuron populations, resulting in long-term developmental disruptions to the hippocampus that persist into adulthood. Exaggerated neuroimmune responses and disruptions in adult hippocampal neurogenesis are evident after environmental, developmental, and pharmacological challenges, suggesting that perinatal ethanol exposure induces neurogenic deficits in adulthood that can be unmasked under conditions that strain neural and immune function. Similarly, adolescent ethanol exposure persistently decreases basal forebrain cholinergic neuron populations, increases hippocampal neuroimmune gene expression, and decreases hippocampal neurogenesis in adulthood. The effects of neither perinatal nor adolescent ethanol are mitigated by abstinence whereas adult ethanol exposure-induced reductions in hippocampal neurogenesis are restored following abstinence, suggesting that ethanol-induced alterations in neurogenesis and reversibility are dependent upon the developmental period. Thus, the focus of this review is an examination of how ethanol exposure across critical developmental periods disrupts maturation of cholinergic and neuroinflammatory systems to differentially affect hippocampal neurogenesis in adulthood.
Collapse
Affiliation(s)
- Victoria A Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Lussier AA, Bodnar TS, Weinberg J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front Neurosci 2021; 15:788630. [PMID: 34924946 PMCID: PMC8680672 DOI: 10.3389/fnins.2021.788630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
12
|
Carloni E, Ramos A, Hayes LN. Developmental Stressors Induce Innate Immune Memory in Microglia and Contribute to Disease Risk. Int J Mol Sci 2021; 22:13035. [PMID: 34884841 PMCID: PMC8657756 DOI: 10.3390/ijms222313035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Many types of stressors have an impact on brain development, function, and disease susceptibility including immune stressors, psychosocial stressors, and exposure to drugs of abuse. We propose that these diverse developmental stressors may utilize a common mechanism that underlies impaired cognitive function and neurodevelopmental disorders such as schizophrenia, autism, and mood disorders that can develop in later life as a result of developmental stressors. While these stressors are directed at critical developmental windows, their impacts are long-lasting. Immune activation is a shared pathophysiology across several different developmental stressors and may thus be a targetable treatment to mitigate the later behavioral deficits. In this review, we explore different types of prenatal and perinatal stressors and their contribution to disease risk and underlying molecular mechanisms. We highlight the impact of developmental stressors on microglia biology because of their early infiltration into the brain, their critical role in brain development and function, and their long-lived status in the brain throughout life. Furthermore, we introduce innate immune memory as a potential underlying mechanism for developmental stressors' impact on disease. Finally, we highlight the molecular and epigenetic reprogramming that is known to underlie innate immune memory and explain how similar molecular mechanisms may be at work for cells to retain a long-term perturbation after exposure to developmental stressors.
Collapse
Affiliation(s)
- Elisa Carloni
- Department of Molecular and Cellular Biology, Dartmouth College, Hanover, NH 03755, USA;
| | - Adriana Ramos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
13
|
Silva-Gotay A, Davis J, Tavares ER, Richardson HN. Alcohol drinking during early adolescence activates microglial cells and increases frontolimbic Interleukin-1 beta and Toll-like receptor 4 gene expression, with heightened sensitivity in male rats compared to females. Neuropharmacology 2021; 197:108698. [PMID: 34252404 PMCID: PMC8552486 DOI: 10.1016/j.neuropharm.2021.108698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022]
Abstract
Adolescent drinking is risky because neural circuits in the frontal lobes are undergoing maturational processes important for cognitive function and behavioral control in adulthood. Previous studies have shown that myelinated axons in the medial prefrontal cortex (mPFC) are particularly sensitive to alcohol drinking, especially in males. Pro-inflammatory mediators like toll-like receptor 4 (TLR4) and interleukin-1 beta (IL1b) have been implicated in alcohol induced-inflammation and demyelination; thus, herein we test the hypothesis that voluntary alcohol drinking early in adolescence elicits a pro-inflammatory state that is more pronounced in the brain of males compared to females. Adolescent male and female Wistar rats self-administered sweetened alcohol or sweetened water from postnatal days 28-42 and separate sets of brains were processed for 1) immunolabeling for ionized calcium-binding adapter molecule 1 to analyze microglial cell morphology, or 2) qPCR analysis of gene expression of pro-inflammatory mediators. Binge drinking alcohol activated microglia in the mPFC and hippocampus of both males and females, suggesting that voluntary alcohol exposure initiates an inflammatory response. Il1b mRNA was upregulated in the mPFC of both sexes. Conversely, Tlr4 mRNA levels were elevated after drinking only in males, which could explain more robust effects of alcohol on myelin in this region in developing males compared to females. Il1b mRNA changes were not observed in the hippocampus, but alcohol elevated Tlr4 mRNA in both sexes, highlighting regional specificity in inflammatory responses to alcohol. Overall, these findings give insight into potential mechanisms by which low-to-moderate voluntary alcohol intake impacts the developing brain. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Andrea Silva-Gotay
- Neuroscience and Behavior Graduate Program, University of
Massachusetts, Amherst, MA 01003
| | - Jillian Davis
- Department of Psychological and Brain Sciences, University
of Massachusetts, Amherst, MA 01003
| | - Elizabeth R. Tavares
- Department of Psychological and Brain Sciences, University
of Massachusetts, Amherst, MA 01003
| | - Heather N. Richardson
- Neuroscience and Behavior Graduate Program, University of
Massachusetts, Amherst, MA 01003,Department of Psychological and Brain Sciences, University
of Massachusetts, Amherst, MA 01003
| |
Collapse
|
14
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
15
|
Lowery RL, Cealie MY, Lamantia CE, Mendes MS, Drew PD, Majewska AK. Microglia and astrocytes show limited, acute alterations in morphology and protein expression following a single developmental alcohol exposure. J Neurosci Res 2021; 99:2008-2025. [PMID: 33606320 PMCID: PMC8349862 DOI: 10.1002/jnr.24808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are the most common cause of nonheritable, preventable mental disability and are characterized by cognitive, behavioral, and physical impairments. FASD occurs in almost 5% of births in the United States, but despite this prevalence there is no known cure, largely because the biological mechanisms that translate alcohol exposure to neuropathology are not well understood. While the effects of early ethanol exposure on neuronal survival and circuitry have received more attention, glia, the cells most closely tied to initiating and propagating inflammatory events, could be an important target for alcohol in the developing brain. Inflammation is known to alter developmental trajectories, but it has recently been shown that even small changes in both astrocytes and microglia in the absence of full-blown inflammatory signaling can alter brain function long-term. Here, we studied the acute response of astrocytes and microglia to a single exposure to ethanol in development across sexes in a mouse model of human third trimester exposure, in order to understand how these cells may transition from their normal developmental path to a different program that leads to FASD neuropathology. We found that although a single ethanol exposure delivered subcutaneously on postnatal day 4 did not cause large changes in microglial morphology or the expression of AldH1L1 and GFAP in the cortex and hippocampus, subtle effects were observed. These findings suggest that even a single, early ethanol exposure can induce mild acute alterations in glia that could contribute to developmental deficits.
Collapse
Affiliation(s)
- Rebecca L. Lowery
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - MaKenna Y. Cealie
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Cassandra E. Lamantia
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Monique S. Mendes
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ania K. Majewska
- Department of Neuroscience, School of Medicine and Dentistry, Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Mankiw C, Whitman ET, Torres E, Lalonde F, Clasen LS, Blumenthal JD, Chakravarty MM, Raznahan A. Sex-specific associations between subcortical morphometry in childhood and adult alcohol consumption: A 17-year follow-up study. Neuroimage Clin 2021; 31:102771. [PMID: 34359014 PMCID: PMC8350402 DOI: 10.1016/j.nicl.2021.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023]
Abstract
Men and women tend to differ in the age of first alcohol consumption, transition into disordered drinking, and the prevalence of alcohol use disorder. Here, we use a unique longitudinal dataset to test for potentially predispositonal sex-biases in brain organization prior to initial alcohol exposure. Our study combines measures of subcortical morphometry gathered in alcohol naive individuals during childhood (mean age: 9.43 years, SD = 2.06) with self-report measures of alcohol use in the same individuals an average of 17 years later (N = 81, 46 males, 35 females). We observe that pediatric amygdala and hippocampus volume both show sex-biased relationships with adult drinking. Specifically, females show a stronger association between subcortical volumetric reductions in childhood and peak drinking in adulthood as compared to males. Detailed analysis of subcortical shape localizes these effects to the rostro-medial hippocampus and basolateral amygdala subnuclei. In contrast, we did not observe sex-specific associations between striatal anatomy and peak alcohol consumption. These results are consistent with a model in which organization of the amygdala and hippocampus in childhood is more relevant for subsequent patterns of peak alcohol use in females as compared to males. Differential neuroanatomical precursors of alcohol use in males and females could provide a potential developmental basis for well recognized sex-differences in alcohol use behaviors.. Thus, our findings not only indicate that brain correlates of human alcohol consumption are manifest long before alcohol initiation, but that some of these correlates are not equivalent between males and females.
Collapse
Affiliation(s)
- Catherine Mankiw
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Ethan T Whitman
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - François Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Liv S Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jonathan D Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - M Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Mohseni F, Garmabi B, Khaksari M. Apelin-13 attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against ethanol neurotoxicity in the neonatal rat hippocampus. Neuropeptides 2021; 87:102130. [PMID: 33640615 DOI: 10.1016/j.npep.2021.102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
It has been shown that alcohol consumption by pregnant women can have detrimental effects on the developing fetus and lead to fetal alcohol spectrum disorders (FASD). Exposure to alcohol in rat pups during this period causes long-term changes in the structure of the animal's hippocampus, leading to impaired hippocampal-related brain functions such as navigation tasks and spatial memory. Apelin-13, a principal neuropeptide with inhibitory effects on neuroinflammation and brain oxidative stress production, has beneficial properties on memory impairment and neuronal injury. The protective effects of apelin-13 have been evaluated on ethanol-related neurotoxicity in the hippocampus of rat pups. Rat pups from 2 until 10 postnatal day, similar to the third trimester of pregnancy in humans, were intubated total daily dose of ethanol (5/27 g/kg/day). Immediately after intubation, 25 and 50 μg/ kg of apelin-13 was injected subcutaneously. By using Morris water maze task, the hippocampus- dependent memory and spatial learning were evaluated 36 days after birth. Then, Immunohistochemical staining was done to determine the levels of GFAP and caspase-3. ELISA assay was also performed to measure both TNF-α and antioxidant enzymes levels. The current study demonstrates that administration of apelin-13 attenuates spatial memory impairment significantly (P < 0.001). After ethanol neurotoxicity, apelin-13 could also increase the catalase level (P < 0.001), activity of total superoxide dismutase as well as glutathione concentration noticeably (P < 0.05). Other impacts of it could be mentioned as attenuating TNF-α production and also preventing lipid peroxidation (P < 0.001). In addition, the results showed that the level of GFAP as a neuroinflammation factor and the number of active caspase-3 positive cells can be decreased by apelin-13 (P < 0.01). Regarding the protective effects of apelin-13 against ethanol-induced neurotoxicity, it is a promising therapeutic choice for FASD; but more studies are needed.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Garmabi
- Study and Treatment of Circadian Rhythms Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
18
|
Salem NA, Mahnke AH, Konganti K, Hillhouse AE, Miranda RC. Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. iScience 2021; 24:102439. [PMID: 33997709 PMCID: PMC8105653 DOI: 10.1016/j.isci.2021.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) results in cerebral cortical dysgenesis. Single-cell RNA sequencing was performed on murine fetal cerebral cortical cells from six timed pregnancies, to decipher persistent cell- and sex-specific effects of an episode of PAE during early neurogenesis. We found, in an analysis of 38 distinct neural subpopulations across 8 lineage subtypes, that PAE altered neural maturation and cell cycle and disrupted gene co-expression networks. Whereas most differentially regulated genes were inhibited, particularly in females, PAE also induced sex-independent neural expression of fetal hemoglobin, a presumptive epigenetic stress adaptation. PAE inhibited Bcl11a, Htt, Ctnnb1, and other upstream regulators of differentially expressed genes and inhibited several autism-linked genes, suggesting that neurodevelopmental disorders share underlying mechanisms. PAE females exhibited neural loss of X-inactivation, with correlated activation of autosomal genes and evidence for spliceosome dysfunction. Thus, episodic PAE persistently alters the developing neural transcriptome, contributing to sex- and cell-type-specific teratology. The neurogenic murine fetal cortex contains about 33 distinct cell subtypes Prenatal Alcohol Exposure (PAE) resulted in sex-specific alterations in developmental trajectory and cell cycle PAE females exhibited neural loss of X-inactivation and spliceosomal dysfunction PAE induced sex-independent neural expression of fetal hemoglobin gene transcripts
Collapse
Affiliation(s)
- Nihal A. Salem
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
- Corresponding author
| |
Collapse
|
19
|
Volumetric trajectories of hippocampal subfields and amygdala nuclei influenced by adolescent alcohol use and lifetime trauma. Transl Psychiatry 2021; 11:154. [PMID: 33654086 PMCID: PMC7925562 DOI: 10.1038/s41398-021-01275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alcohol use and exposure to psychological trauma frequently co-occur in adolescence and share many risk factors. Both exposures have deleterious effects on the brain during this sensitive developmental period, particularly on the hippocampus and amygdala. However, very little is known about the individual and interactive effects of trauma and alcohol exposure and their specific effects on functionally distinct substructures within the adolescent hippocampus and amygdala. Adolescents from a large longitudinal sample (N = 803, 2684 scans, 51% female, and 75% White/Caucasian) ranging in age from 12 to 21 years were interviewed about exposure to traumatic events at their baseline evaluation. Assessments for alcohol use and structural magnetic resonance imaging scans were completed at baseline and repeated annually to examine neurodevelopmental trajectories. Hippocampal and amygdala subregions were segmented using Freesurfer v6.0 tools, followed by volumetric analysis with generalized additive mixed models. Longitudinal statistical models examined the effects of cumulative lifetime trauma measured at baseline and alcohol use measured annually on trajectories of hippocampal and amygdala subregions, while controlling for covariates known to impact brain development. Greater alcohol use, quantified using the Cahalan scale and measured annually, was associated with smaller whole hippocampus (β = -12.0, pFDR = 0.009) and left hippocampus tail volumes (β = -1.2, pFDR = 0.048), and larger right CA3 head (β = 0.4, pFDR = 0.027) and left subiculum (β = 0.7, pFDR = 0.046) volumes of the hippocampus. In the amygdala, greater alcohol use was associated with larger right basal nucleus volume (β = 1.3, pFDR = 0.040). The effect of traumatic life events measured at baseline was associated with larger right CA3 head volume (β = 1.3, pFDR = 0.041) in the hippocampus. We observed an interaction between baseline trauma and within-person age change where younger adolescents with greater trauma exposure at baseline had smaller left hippocampal subfield volumes in the subiculum (β = 0.3, pFDR = 0.029) and molecular layer HP head (β = 0.3, pFDR = 0.041). The interaction also revealed that older adolescents with greater trauma exposure at baseline had larger right amygdala nucleus volume in the paralaminar nucleus (β = 0.1, pFDR = 0.045), yet smaller whole amygdala volume overall (β = -3.7, pFDR = 0.003). Lastly, we observed an interaction between alcohol use and baseline trauma such that adolescents who reported greater alcohol use with greater baseline trauma showed smaller right hippocampal subfield volumes in the CA1 head (β = -1.1, pFDR = 0.011) and hippocampal head (β = -2.6, pFDR = 0.025), yet larger whole hippocampus volume overall (β = 10.0, pFDR = 0.032). Cumulative lifetime trauma measured at baseline and alcohol use measured annually interact to affect the volume and trajectory of hippocampal and amygdala substructures (measured via structural MRI annually), regions that are essential for emotion regulation and memory. Our findings demonstrate the value of examining these substructures and support the hypothesis that the amygdala and hippocampus are not homogeneous brain regions.
Collapse
|
20
|
Kane CJM, Douglas JC, Rafferty T, Johnson JW, Niedzwiedz-Massey VM, Phelan KD, Majewska AK, Drew PD. Ethanol modulation of cerebellar neuroinflammation in a postnatal mouse model of fetal alcohol spectrum disorders. J Neurosci Res 2021; 99:1986-2007. [PMID: 33533128 DOI: 10.1002/jnr.24797] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there is no effective treatment for these disorders. Cerebellar neuropathology is common in FASD and causes aberrant cognitive and motor function. Ethanol-induced neuroinflammation is believed to contribute to neuropathological sequelae of FASD, and was previously demonstrated in the cerebellum in animal models of FASD. We now demonstrate neuroinflammation persists in the cerebellum several days following cessation of ethanol treatment in an early postnatal mouse model, with meaningful implications for timing of therapeutic intervention in FASD. We also demonstrate by Sholl analysis that ethanol decreases ramification of microglia cell processes in cells located near the Purkinje cell layer but not those near the external granule cell layer. Ethanol did not alter the expression of anti-inflammatory molecules or molecules that constitute NLRP1 and NLRP3 inflammasomes. Interestingly, ethanol decreased the expression of IL-23a (P19) and IL-12Rβ1 suggesting that ethanol may suppress IL-12 and IL-23 signaling. Fractalkine-fractalkine receptor (CX3CL1-CX3CR1) signaling is believed to suppress microglial activation and our demonstration that ethanol decreases CX3CL1 expression suggests that ethanol modulation of CX3CL1-CX3CR1 signaling may contribute to cerebellar neuroinflammation and neuropathology. We demonstrate ethanol alters the expression of specific molecules in the cerebellum understudied in FASD, but crucial for immune responses. Ethanol increases the expression of NOX-2 and NGP and decreases the expression of RAG1, NOS1, CD59a, S1PR5, PTPN22, GPR37, and Serpinb1b. These molecules represent a new horizon as potential targets for development of FASD therapy.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer W Johnson
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin D Phelan
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ania Katarzyna Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, Biomedical Research Center II, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
21
|
Arzua T, Yan Y, Jiang C, Logan S, Allison RL, Wells C, Kumar SN, Schäfer R, Bai X. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry 2020; 10:347. [PMID: 33051447 PMCID: PMC7553959 DOI: 10.1038/s41398-020-01029-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal alcohol exposure during pregnancy can substantially impact the development of the fetus, causing a range of symptoms, known as fetal alcohol spectrum disorders (FASDs), such as cognitive dysfunction and psychiatric disorders, with the pathophysiology and mechanisms largely unknown. Recently developed human cerebral organoids from induced pluripotent stem cells are similar to fetal brains in the aspects of development and structure. These models allow more relevant in vitro systems to be developed for studying FASDs than animal models. Modeling binge drinking using human cerebral organoids, we sought to quantify the downstream toxic effects of alcohol (ethanol) on neural pathology phenotypes and signaling pathways within the organoids. The results revealed that alcohol exposure resulted in unhealthy organoids at cellular, subcellular, bioenergetic metabolism, and gene expression levels. Alcohol induced apoptosis on organoids. The apoptotic effects of alcohol on the organoids depended on the alcohol concentration and varied between cell types. Specifically, neurons were more vulnerable to alcohol-induced apoptosis than astrocytes. The alcohol-treated organoids exhibit ultrastructural changes such as disruption of mitochondria cristae, decreased intensity of mitochondrial matrix, and disorganized cytoskeleton. Alcohol exposure also resulted in mitochondrial dysfunction and metabolic stress in the organoids as evidenced by (1) decreased mitochondrial oxygen consumption rates being linked to basal respiration, ATP production, proton leak, maximal respiration and spare respiratory capacity, and (2) increase of non-mitochondrial respiration in alcohol-treated organoids compared with control groups. Furthermore, we found that alcohol treatment affected the expression of 199 genes out of 17,195 genes analyzed. Bioinformatic analyses showed the association of these dysregulated genes with 37 pathways related to clinically relevant pathologies such as psychiatric disorders, behavior, nervous system development and function, organismal injury and abnormalities, and cellular development. Notably, 187 of these genes are critically involved in neurodevelopment, and/or implicated in nervous system physiology and neurodegeneration. Furthermore, the identified genes are key regulators of multiple pathways linked in networks. This study extends for the first time animal models of binge drinking-related FASDs to a human model, allowing in-depth analyses of neurotoxicity at tissue, cellular, subcellular, metabolism, and gene levels. Hereby, we provide novel insights into alcohol-induced pathologic phenotypes, cell type-specific vulnerability, and affected signaling pathways and molecular networks, that can contribute to a better understanding of the developmental neurotoxic effects of binge drinking during pregnancy.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Reilly L Allison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Clive Wells
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Suresh N Kumar
- Department of Pathology, Children's Research Institute Imaging Core, Neuroscience Imaging Facility, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, 60438, Frankfurt am Main, Germany
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| |
Collapse
|
22
|
Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res 2020; 99:1973-1985. [PMID: 32959429 DOI: 10.1002/jnr.24735] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
Ethanol exposure to the fetus during pregnancy can result in fetal alcohol spectrum disorders (FASD). These disorders vary in severity, can affect multiple organ systems, and can lead to lifelong disabilities. Damage to the central nervous system (CNS) is common in FASD, and can result in altered behavior and cognition. The incidence of FASD is alarmingly high, resulting in significant personal and societal costs. There are no cures for FASD. Alcohol can directly alter the function of neurons in the developing CNS. In addition, ethanol can alter the function of CNS glial cells including microglia and astrocytes which normally maintain homeostasis in the CNS. These glial cells can function as resident immune cells in the CNS to protect against pathogens and other insults. However, activation of glia can also damage CNS cells and lead to aberrant CNS function. Ethanol exposure to the developing brain can result in the activation of glia and neuroinflammation, which may contribute to the pathology associated with FASD. This suggests that anti-inflammatory agents may be effective in the treatment of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
23
|
Gursky ZH, Johansson JR, Klintsova AY. Postnatal alcohol exposure and adolescent exercise have opposite effects on cerebellar microglia in rat. Int J Dev Neurosci 2020; 80:558-571. [PMID: 32681672 DOI: 10.1002/jdn.10051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Developmental alcohol exposure results in altered neuroimmune function in both humans and rodents. Given the critical role for the principle neuroimmune cell, microglia, in maintaining synaptic form and function, microglial dysfunction in the cerebellum may be an important mechanism underlying the aberrant cerebellar connectivity observed in rodent models of fetal alcohol spectrum disorders. Using an established rodent model of alcohol exposure during human third-trimester fetal development, we examine the cerebellum of male and female Long Evans rats to determine the impact of early postnatal alcohol exposure on cerebellar microglia, and the potential therapeutic effects of an adolescent intervention consisting of voluntary exercise (running). All cerebelli were examined at postnatal day 42 (i.e., late adolescence), and microglia were labeled with Iba1, a microglia-specific protein. Early postnatal alcohol exposure caused an increase in microglial density throughout cerebellum and a reduction in cerebellar volume, and a reduction in the proportion of fully ramified (often called "resting state") microglia selective to lobules 1-4. In contrast, adolescent exercise decreased microglial density throughout cerebellum and increased cerebellar volume, while activating microglia (as indicated by increases in amoeboid microglia, and reductions in fully and partially ramified microglia) selectively in lobules 1-4. These results suggest that adolescent exercise may be a suitable intervention to ameliorate alcohol-induced neuroimmune dysfunction as it alters microglia density and cerebellar volume in opposite to the effects of developmental alcohol exposure. Importantly, exercise intervention can be flexibly implemented well after the time window of vulnerability to alcohol.
Collapse
Affiliation(s)
- Zachary H Gursky
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Julia R Johansson
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
24
|
Boschen KE, Ptacek TS, Simon JM, Parnell SE. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1540-1550. [PMID: 32557641 DOI: 10.1111/acer.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early gestational alcohol exposure is associated with severe craniofacial and CNS dysmorphologies and behavioral abnormalities during adolescence and adulthood. Alcohol exposure during the formation of the neural tube (gestational day [GD] 8 to 10 in mice; equivalent to4th week of human pregnancy) disrupts development of ventral midline brain structures such as the pituitary, septum, and ventricles. This study identifies transcriptomic changes in the rostroventral neural tube (RVNT), the region of the neural tube that gives rise to the midline structures sensitive to alcohol exposure during neurulation. METHODS Female C57BL/6J mice were administered 2 doses of alcohol (2.9 g/kg) or vehicle 4 hours apart on GD 9.0. The RVNTs of embryos were collected 6 or 24 hours after the first dose and processed for RNA-seq. RESULTS Six hours following GD 9.0 alcohol exposure (GD 9.25), over 2,300 genes in the RVNT were determined to be differentially regulated by alcohol. Enrichment analysis determined that PAE affected pathways related to cell proliferation, p53 signaling, ribosome biogenesis, and immune activation. In addition, over 100 genes involved in primary cilia formation and function and regulation of morphogenic pathways were altered 6 hours after alcohol exposure. The changes to gene expression were largely transient, as only 91 genes identified as differentially regulated by prenatal alcohol at GD 10 (24 hours postexposure). Functionally, the differentially regulated genes at GD 10 were related to organogenesis and cell migration. CONCLUSIONS These data give a comprehensive view of the changing landscape of the embryonic transcriptome networks in regions of the neural tube that give rise to brain structures impacted by a neurulation-stage alcohol exposure. Identification of gene networks dysregulated by alcohol will help elucidate the pathogenic mechanisms of alcohol's actions.
Collapse
Affiliation(s)
- Karen E Boschen
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Travis S Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Cantacorps L, Montagud-Romero S, Valverde O. Curcumin treatment attenuates alcohol-induced alterations in a mouse model of foetal alcohol spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109899. [PMID: 32109509 DOI: 10.1016/j.pnpbp.2020.109899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Alcohol exposure during development produces physical and mental abnormalities in the foetus that result in long-term molecular adjustments in the brain, which could underlie the neurobehavioural deficits observed in individuals suffering from foetal alcohol spectrum disorders. In this study, we assessed the effects of curcumin on cognitive impairments caused by prenatal and lactational alcohol exposure (PLAE). Furthermore, we examined whether curcumin could counteract the molecular alterations that may underlie these behavioural impairments. We focused on inflammatory and epigenetic mechanisms by analysing the expression of pro-inflammatory mediators, such as IL-6, TNF-α, and NF-κB, in the hippocampus and prefrontal cortex, as well as microglia and astrocyte activation in the dentate gyrus. We also assessed the activity of histone acetyltransferase in these brain areas. To model binge alcohol drinking, we exposed pregnant C57BL/6 mice to a 20% v/v alcohol solution during gestation and lactation, with limited access periods. We treated male offspring with curcumin during postnatal days (PD28-35) and then evaluated their behaviour in adulthood (PD60). Our results showed that curcumin treatment during the peri-adolescence period improved the anxiety and memory deficits observed in PLAE mice. At the molecular level, we found enhanced histone acetyltransferase activity in mice subjected to PLAE that curcumin treatment could not reverse to baseline levels. These mice also showed increased expression of pro-inflammatory mediators, which could be rescued by curcumin treatment. They also displayed astrogliosis and microglia activation. Our study provides further evidence to support the use of curcumin as a therapeutic agent for counteracting behavioural and molecular alterations induced by PLAE.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
26
|
Gursky ZH, Spillman EC, Klintsova AY. Single-day Postnatal Alcohol Exposure Induces Apoptotic Cell Death and Causes long-term Neuron Loss in Rodent Thalamic Nucleus Reuniens. Neuroscience 2020; 435:124-134. [PMID: 32251710 PMCID: PMC7236664 DOI: 10.1016/j.neuroscience.2020.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) constitute a prevalent, yet preventable, developmental disorder worldwide. While a wealth of research demonstrates that altered function of hippocampus (HPC) and prefrontal cortex may underlie behavioral impairments in FASD, only one published paper to date has examined the impact of developmental alcohol exposure (AE) on the region responsible for coordinated prefrontal-hippocampal activity: thalamic nucleus reuniens (Re). In the current study, we used a rodent model of human third trimester AE to examine both the acute and lasting impact of a single-day AE on Re. We administered 5.25 g/kg of ethanol to male and female Long Evans rat pups on postnatal day (PD) 7. We used unbiased stereological estimation to evaluate cell death or cell loss at three time points: 12 h after alcohol administration; 4 days after alcohol administration (i.e., PD11); in adulthood (i.e.,PD 72). AE on PD7 increased apoptotic cell death in Re on PD7, and caused short-term cell loss on PD11. This relationship between short-term cell death versus cell number suggests that alcohol-related cell loss is driven by induction of apoptosis. In adulthood, alcohol-exposed animals displayed permanent cell loss (mediating volume loss in the Re), which included a reduction in neuron number (relative to procedural controls). Both procedural controls and alcohol exposed animals displayed a deficit in non-neuronal cell number relative to typically-developing controls, suggesting that Re cell populations may be vulnerable to early life stress as well as AE in an insult- and cell type-dependent manner.
Collapse
Affiliation(s)
- Zachary H Gursky
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Emma C Spillman
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anna Y Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
27
|
Chagas LDS, Sandre PC, Ribeiro e Ribeiro NCA, Marcondes H, Oliveira Silva P, Savino W, Serfaty CA. Environmental Signals on Microglial Function during Brain Development, Neuroplasticity, and Disease. Int J Mol Sci 2020; 21:ijms21062111. [PMID: 32204421 PMCID: PMC7139373 DOI: 10.3390/ijms21062111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recent discoveries on the neurobiology of the immunocompetent cells of the central nervous system (CNS), microglia, have been recognized as a growing field of investigation on the interactions between the brain and the immune system. Several environmental contexts such as stress, lesions, infectious diseases, and nutritional and hormonal disorders can interfere with CNS homeostasis, directly impacting microglial physiology. Despite many encouraging discoveries in this field, there are still some controversies that raise issues to be discussed, especially regarding the relationship between the microglial phenotype assumed in distinct contexts and respective consequences in different neurobiological processes, such as disorders of brain development and neuroplasticity. Also, there is an increasing interest in discussing microglial–immune system cross-talk in health and in pathological conditions. In this review, we discuss recent literature concerning microglial function during development and homeostasis. In addition, we explore the contribution of microglia to synaptic disorders mediated by different neuroinflammatory outcomes during pre- and postnatal development, with long-term consequences impacting on the risk and vulnerability to the emergence of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
| | - Poliana Capucho Sandre
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Natalia Cristina Aparecida Ribeiro e Ribeiro
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
| | - Henrique Marcondes
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
| | - Priscilla Oliveira Silva
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
- National Institute of Science and Technology on Neuroimmunomodulation –INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation –INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Correspondence: (W.S.); (C.A.S.)
| | - Claudio A. Serfaty
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi 24020-141, Brazil; (L.d.S.C.); (P.C.S.); (N.C.A.R.eR.); (H.M.); (P.O.S.)
- National Institute of Science and Technology on Neuroimmunomodulation –INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Correspondence: (W.S.); (C.A.S.)
| |
Collapse
|
28
|
Microglial Function in the Effects of Early-Life Stress on Brain and Behavioral Development. J Clin Med 2020; 9:jcm9020468. [PMID: 32046333 PMCID: PMC7074320 DOI: 10.3390/jcm9020468] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
The putative effects of early-life stress (ELS) on later behavior and neurobiology have been widely investigated. Recently, microglia have been implicated in mediating some of the effects of ELS on behavior. In this review, findings from preclinical and clinical literature with a specific focus on microglial alterations induced by the exposure to ELS (i.e., exposure to behavioral stressors or environmental agents and infection) are summarized. These studies were utilized to interpret changes in developmental trajectories based on the time at which the stress occurred, as well as the paradigm used. ELS and microglial alterations were found to be associated with a wide array of deficits including cognitive performance, memory, reward processing, and processing of social stimuli. Four general conclusions emerged: (1) ELS interferes with microglial developmental programs, including their proliferation and death and their phagocytic activity; (2) this can affect neuronal and non-neuronal developmental processes, which are dynamic during development and for which microglial activity is instrumental; (3) the effects are extremely dependent on the time point at which the investigation is carried out; and (4) both pre- and postnatal ELS can prime microglial reactivity, indicating a long-lasting alteration, which has been implicated in behavioral abnormalities later in life.
Collapse
|
29
|
Aghaie CI, Hausknecht KA, Wang R, Dezfuli PH, Haj-Dahmane S, Kane CJM, Sigurdson WJ, Shen RY. Prenatal Ethanol Exposure and Postnatal Environmental Intervention Alter Dopaminergic Neuron and Microglia Morphology in the Ventral Tegmental Area During Adulthood. Alcohol Clin Exp Res 2020; 44:435-444. [PMID: 31872887 DOI: 10.1111/acer.14275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prenatal ethanol exposure (PE) impairs midbrain dopaminergic (DA) neuron function, which might contribute to various cognitive and behavioral deficits, including attention deficits and increased addiction risk, often observed in individuals with fetal alcohol spectrum disorders. Currently, the underlying mechanisms for PE-induced deficits are unclear. PE could lead to neuroinflammation by activating microglia, which play an important role in synaptic function. In the present study, we investigated PE effects on microglial activation and DA neuron density and morphology in the ventral tegmental area (VTA). Since postnatal environmental enrichment can reduce neuroinflammation and ameliorate several PE-induced behavioral deficits, we examined if a postnatal environmental intervention strategy using neonatal handling and postweaning complex housing could reverse PE effects on VTA DA neurons and microglia. METHODS Pregnant rats received 0 or 6 g/kg/d ethanol by 2 intragastric intubations on gestation days 8 to 20. After birth, rats were reared in the standard laboratory or enriched condition. Male adult rats (8 to 12 weeks old) were used for immunocytochemistry. RESULTS The results showed that PE decreased VTA DA neuron body size in standardly housed rats. Moreover, there was a significant decrease in numbers of VTA microglial branches and junctions in PE rats, suggesting morphological activation of microglia and possible neuroinflammation. The PE effects on microglia were normalized by postnatal environmental intervention, which also decreased the numbers of microglial branches and junctions in control animals, possibly via reduced stress. CONCLUSIONS Our findings show an association between PE-induced morphological activation of microglia and impaired DA neuron morphology in the VTA. Importantly, postnatal environmental intervention rescues possible PE-induced microglial activation. These data support that environmental intervention can be effective in ameliorating cognitive and behavioral deficits associated with VTA DA neuron dysfunctions, such as attention deficits and increased addiction risk.
Collapse
Affiliation(s)
- Claudia I Aghaie
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
| | | | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, College of Medicine, the University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wade J Sigurdson
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Roh-Yu Shen
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
| |
Collapse
|
30
|
Nesfatin-1 Ameliorate Learning and Memory Deficit via Inhibiting Apoptosis and Neuroinflammation Following Ethanol-Induced Neurotoxicity in Early Postnatal Rats. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09999-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Mohseni F, Bagheri F, Rafaiee R, Norozi P, Khaksari M. Hydrogen sulfide improves spatial memory impairment via increases of BDNF expression and hippocampal neurogenesis following early postnatal alcohol exposure. Physiol Behav 2019; 215:112784. [PMID: 31863854 DOI: 10.1016/j.physbeh.2019.112784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
According to experimental and clinical findings, fetal brain development may be interrupted by maternal alcohol consumption during pregnancy. Adult hippocampal neurogenesis is thought to play a role in cognition function (i.e. learning and memory). Recent evidence suggests that ethanol administration causes major apoptotic neurodegeneration in many regions of the rats' developing brain during the synaptogenesis period. Based on the recent studies, H2S improve learning and memory via increased neurogenesis and antiapoptotic mechanisms in different animal models. In this study, we aimed to evaluate the protective effects of hydrogen sulfide on alcohol-induced memory impairment, hippocampus neurogenesis and neuronal apoptosis in rat pups with postnatal ethanol exposure. Administration of ethanol to male rat pups was performed through intragastric intubation on postnatal days 2-10. The pups were administered 1 mg/kg of NaHS (H2S donor) on postnatal days 2-10. For examining the spatial memory, Morris water maze test was carried out 36 days after birth. Following the behavioral test, immunohistochemical staining was performed to evaluate the expression levels of BrdU, BDNF and Apoptotic cell death was detected by TUNEL staining. Hydrogen sulfide (H2S) treatment could significantly improve spatial memory impairment (P < 0.05) and significantly increase the expression of BrdU and BDNF in dentate gyrus area (P < 0.05). It also decreased positive TUNEL cells, compared with the ethanol group (P < 0.01). Based on the findings, H2S makes significant neuroprotective effects on Ethanol neurotoxicity due to its neurogenesis and anti-apoptotic activity.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Pirasteh Norozi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
32
|
Ethanol Exposure Induces Microglia Activation and Neuroinflammation through TLR4 Activation and SENP6 Modulation in the Adolescent Rat Hippocampus. Neural Plast 2019; 2019:1648736. [PMID: 31781182 PMCID: PMC6874951 DOI: 10.1155/2019/1648736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
The ethanol-induced toll-like receptor 4 (TLR4) signal activation of microglia and neuroinflammation are observed in both adolescent and adult rat brains, but the regulatory mechanisms of some TLR4 signaling-related factors in this process are still unclear. SUMO-specific protease 6 (SENP6) inhibits neuroinflammation by dampening nuclear factor kappa-B (NF-κB) activation via the de-SUMOylation of NF kappa-B essential modulator (NEMO). This study investigates the effects of long-term ethanol consumption on neuroinflammation in the hippocampus of adolescent rats and the regulatory roles of TLR4 and SENP6. Twenty-one days of ethanol exposure in adolescent rats were used to develop an animal model. The number of microglia, microglial activation, and the expression of TLR4 in the hippocampus of adolescent rats were examined by immunoreactivity. The levels of TLR4, activation of NF-κB including IkB-α and p-NF-κB-p65, and SENP6 were measured by western blotting. Proinflammatory cytokines including TNF-α, IL-1β, and IL-6 were measured by enzyme-linked immunosorbent assay. The NF-κB activation and proinflammatory cytokines released in overexpressed SENP6 and siRNA targeting SENP6 microglial cells after treatment with ethanol were estimated in vitro. This study found that alcohol exposure increased the number of activated microglia and the levels of p-NF-κB-p65 and proinflammatory cytokines, while it decreased the SENP6 level in wild-type rats, but not in TLR4 knockout rats. The ethanol-induced increases of p-NF-κB-p65, TNF-α, and IL-1β were dampened by overxpression of SENP6 and enhanced in SENP6-siRNA microglia. Our data suggest that ethanol exposure during adolescence induces the microglia-mediated neuroinflammation via TLR4 activation, and SENP6 plays an essential role in dampening NF-κB activation and neuroinflammation.
Collapse
|
33
|
Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology 2019; 44:1579-1588. [PMID: 30737481 PMCID: PMC6785096 DOI: 10.1038/s41386-019-0326-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
Growing evidence has shown that developmental alcohol exposure induces central nervous system inflammation and microglia activation, which may contribute to long-term health conditions, such as fetal alcohol spectrum disorders. These studies sought to investigate whether neonatal alcohol exposure during postnatal days (PND) 2-6 in rats (third trimester human equivalent) leads to long-term disruption of the neuroimmune response by microglia. Exposure to neonatal alcohol resulted in acute increases in activation and inflammatory gene expression in hypothalamic microglia including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Adults with neonatal alcohol pre-exposure (alcohol fed; AF) animals showed an exaggerated peripheral stress hormonal response to an immune challenge (lipopolysaccharides; LPS). In addition, there were significantly more microglia present in the hypothalamus of adult AF animals, and their hypothalamic microglia showed more cluster of differentiation molecule 11b (Cd11b) activation, TNF-α expression, and IL-6 expression in response to LPS. Interestingly, blocking microglia activation with minocycline treatment during PND 2-6 alcohol exposure ameliorated the hormonal and microglial hypersensitivity to LPS in AF adult animals. Investigation of possible epigenetic programming mechanisms by alcohol revealed neonatal alcohol decreased several repressive regulators of transcription in hypothalamic microglia, while concomitantly increasing histone H3 acetyl lysine 9 (H3K9ac) enrichment at TNF-α and IL-6 promoter regions. Importantly, adult hypothalamic microglia from AF animals showed enduring increases in H3K9ac enrichment of TNF-α and IL-6 promoters both at baseline and after LPS exposure, suggesting a possible epigenetic mechanism for the long-term immune disruption due to hypothalamic microglial priming.
Collapse
|
34
|
Rice J, Gu C. Function and Mechanism of Myelin Regulation in Alcohol Abuse and Alcoholism. Bioessays 2019; 41:e1800255. [PMID: 31094014 DOI: 10.1002/bies.201800255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Indexed: 12/26/2022]
Abstract
Excessive alcohol use has adverse effects on the central nervous system (CNS) and can lead to alcohol use disorders (AUDs). Recent studies have suggested that myelin reductions may directly contribute to CNS dysfunctions associated with AUDs. Myelin consists of compact lipid membranes wrapped around axons to provide electrical insulation and trophic support. Regulation of myelin is considered as a new form of neural plasticity due to its profound impacts on the computation of neural networks. In this review, the authors first discuss experimental evidence showing how alcohol exposure causes demyelination in different brain regions, often accompanied by deficits in cognition and emotion. Next, they discuss postulated molecular and cellular mechanisms underlying alcohol's impact on myelin. It is clear that more extensive investigations are needed in this important but underexplored research field in order to gain a better understanding of the myelin-behavior relationship and to develop new treatment strategies for AUDs.
Collapse
Affiliation(s)
- James Rice
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Road, Columbus, OH, 43210, USA
| |
Collapse
|
35
|
Toosi A, Shajiee H, Khaksari M, Vaezi G, Hojati V. Obestatin improve spatial memory impairment in a rat model of fetal alcohol spectrum disorders via inhibiting apoptosis and neuroinflammation. Neuropeptides 2019; 74:88-94. [PMID: 30642580 DOI: 10.1016/j.npep.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Abstract
Clinical and experimental evidence have demonstrated that, use of alcohol during pregnancy can interrupt brain development. Alcohol-induced neurocognitive deficits in offspring's are involved with activation of oxidative-inflammatory cascade joined with extensive apoptotic neurodegeneration in different brain regions such as hippocampus. Obestatin is a newly discovered peptide with anti-inflammatory, antioxidant, activities in different animal models. In this study, we aimed to evaluate the protective effects of obestatin on alcohol-induced neuronal apoptosis and neuroinflammation in rat pups with postnatal ethanol exposure. Through intragastric intubation, ethanol (5/27 g/kg/day) was administered in male Wistar rat pups on postnatal days 2-10 (third trimester in humans). The animals received Obestatin (1 and 5 μg/kg, S.C.) on postnatal days 2-10. Thirty-six days after birth, the spatial memory test was performed using Morris water maze test, and then, antioxidant enzymes and TNF-α levels were measured by ELISA assay. The expression level of GFAP and caspase-3 proteins was determined via immunohistochemical staining after the behavioral test. Obestatin significantly improved spatial memory deficits (P < .01), and obestatin treatment could significantly increase glutathione and total superoxide dismutase activity (P < .05), reduce level of malondialdehyde (P < .05) and TNF-α in comparison with the ethanol group (P < .01). It's also reduced caspase-3 level, and decreased GFAP-positive cells in the hippocampus of ethanol-exposed rat pups (P < .01). The result of this study shows the potential involvement of oxidative-inflammatory cascade-mediated apoptotic signaling in cognitive deficits due to postnatal ethanol exposure, the results also indicated the neuroprotective effects of Obestatin on alcohol-related behavioral, biochemical and molecular deficits.
Collapse
Affiliation(s)
- Azadeh Toosi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hooman Shajiee
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Golamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
36
|
Jansson LM. Maternal Alcohol Use During Lactation and Child Development. Pediatrics 2018; 142:peds.2018-1377. [PMID: 30061303 DOI: 10.1542/peds.2018-1377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lauren M Jansson
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
37
|
Noor S, Milligan ED. Lifelong Impacts of Moderate Prenatal Alcohol Exposure on Neuroimmune Function. Front Immunol 2018; 9:1107. [PMID: 29910801 PMCID: PMC5992426 DOI: 10.3389/fimmu.2018.01107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
In utero alcohol exposure is emerging as a major risk factor for lifelong aberrant neuroimmune function. Fetal alcohol spectrum disorder encompasses a range of behavioral and physiological sequelae that may occur throughout life and includes cognitive developmental disabilities as well as disease susceptibility related to aberrant immune and neuroimmune actions. Emerging data from clinical studies and findings from animal models support that very low to moderate levels of fetal alcohol exposure may reprogram the developing central nervous system leading to altered neuroimmune and neuroglial signaling during adulthood. In this review, we will focus on the consequences of low to moderate prenatal alcohol exposure (PAE) on neuroimmune interactions during early life and at different stages of adulthood. Data discussed here will include recent studies suggesting that while abnormal immune function is generally minimal under basal conditions, following pathogenic stimuli or trauma, significant alterations in the neuroimmune axis occur. Evidence from published reports will be discussed with a focus on observations that PAE may bias later-life peripheral immune responses toward a proinflammatory phenotype. The propensity for proinflammatory responses to challenges in adulthood may ultimately shape neuron–glial-immune processes suspected to underlie various neuropathological outcomes including chronic pain and cognitive impairment.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
38
|
Mitigation of postnatal ethanol-induced neuroinflammation ameliorates trace fear memory deficits in juvenile rats. Behav Brain Res 2018; 338:28-31. [DOI: 10.1016/j.bbr.2017.09.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
|
39
|
Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicol Lett 2018; 283:21-31. [DOI: 10.1016/j.toxlet.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022]
|
40
|
Wong EL, Lutz NM, Hogan VA, Lamantia CE, McMurray HR, Myers JR, Ashton JM, Majewska AK. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex. Brain Behav Immun 2018; 67:257-278. [PMID: 28918081 PMCID: PMC5696045 DOI: 10.1016/j.bbi.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in a brain region where microglia do not acutely assume nor maintain an activated phenotype.
Collapse
Affiliation(s)
- Elissa L. Wong
- Dept. of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nina M. Lutz
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Victoria A. Hogan
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cassandra E. Lamantia
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Helene R. McMurray
- Dept. of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY14642, USA,Inst. For Innovative Education, Miner Libraries, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jason R. Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ania K. Majewska
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA,Corresponding author: Ania K. Majewska:
| |
Collapse
|
41
|
Ruggiero MJ, Boschen KE, Roth TL, Klintsova AY. Sex Differences in Early Postnatal Microglial Colonization of the Developing Rat Hippocampus Following a Single-Day Alcohol Exposure. J Neuroimmune Pharmacol 2017; 13:189-203. [PMID: 29274031 DOI: 10.1007/s11481-017-9774-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/03/2017] [Indexed: 02/08/2023]
Abstract
Microglia are involved in various homeostatic processes in the brain, including phagocytosis, apoptosis, and synaptic pruning. Sex differences in microglia colonization of the developing brain have been reported, but have not been established following alcohol insult. Developmental alcohol exposure represents a neuroimmune challenge that may contribute to cognitive dysfunction prevalent in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. Most studies have investigated neuroimmune activation following adult alcohol exposure or following multiple exposures. The current study uses a single day binge alcohol exposure model (postnatal day [PD] 4) to examine sex differences in the neuroimmune response in the developing rat hippocampus on PD5 and 8. The neuroimmune response was evaluated through measurement of microglial number and cytokine gene expression at both time points. Male pups had higher microglial number compared to females in many hippocampal subregions on PD5, but this difference disappeared by PD8, unless exposed to alcohol. Expression of pro-inflammatory marker CD11b was higher on PD5 in alcohol-exposed (AE) females compared to AE males. After alcohol exposure, C-C motif chemokine ligand 4 (CCL4) was significantly increased in female AE pups on PD5 and PD8. Tumor necrosis factor-α (TNF-α) levels were also upregulated by AE in males on PD8. The results demonstrate a clear difference between the male and female neuroimmune response to an AE challenge, which also occurs in a time-dependent manner. These findings are significant as they add to our knowledge of specific sex-dependent effects of alcohol exposure on microglia within the developing brain.
Collapse
Affiliation(s)
- M J Ruggiero
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE, 19716, USA
| | - K E Boschen
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE, 19716, USA
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE, 19716, USA
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
42
|
Seth B, Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK. Inhibition of the transforming growth factor-β/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem 2017; 292:19423-19440. [PMID: 28982980 DOI: 10.1074/jbc.m117.798074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The widely used carbamate pesticide carbofuran causes neurophysiological and neurobehavioral deficits in rodents and humans and therefore poses serious health hazards around the world. Previously, we reported that gestational carbofuran exposure has detrimental effects on hippocampal neurogenesis, the generation of new neurons from neural stem cells (NSC), in offspring. However, the underlying cellular and molecular mechanisms for carbofuran-impaired neurogenesis remain unknown. Herein, we observed that chronic carbofuran exposure from gestational day 7 to postnatal day 21 altered expression of genes and transcription factors and levels of proteins involved in neurogenesis and the TGF-β pathway (i.e. TGF-β; SMAD-2, -3, and -7; and SMURF-2) in the rat hippocampus. We found that carbofuran increases TGF-β signaling (i.e. increased phosphorylated SMAD-2/3 and reduced SMAD-7 expression) in the hippocampus, which reduced NSC proliferation because of increased p21 levels and reduced cyclin D1 levels. Moreover, the carbofuran-altered TGF-β signaling impaired neuronal differentiation (BrdU/DCX+ and BrdU/NeuN+ cells) and increased apoptosis and neurodegeneration in the hippocampus. Blockade of the TGF-β pathway with the specific inhibitor SB431542 and via SMAD-3 siRNA prevented carbofuran-mediated inhibition of neurogenesis in both hippocampal NSC cultures and the hippocampus, suggesting the specific involvement of this pathway. Of note, both in vitro and in vivo studies indicated that TGF-β pathway attenuation reverses carbofuran's inhibitory effects on neurogenesis and associated learning and memory deficits. These results suggest that carbofuran inhibits NSC proliferation and neuronal differentiation by altering TGF-β signaling. Therefore, we conclude that TGF-β may represent a potential therapeutic target against carbofuran-mediated neurotoxicity and neurogenesis disruption.
Collapse
Affiliation(s)
- Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India, .,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
43
|
Terasaki LS, Schwarz JM. Impact of Prenatal and Subsequent Adult Alcohol Exposure on Pro-Inflammatory Cytokine Expression in Brain Regions Necessary for Simple Recognition Memory. Brain Sci 2017; 7:brainsci7100125. [PMID: 28973966 PMCID: PMC5664052 DOI: 10.3390/brainsci7100125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
Abstract
Microglia, the immune cells of the brain, are important and necessary for appropriate neural development; however, activation of microglia, concomitant with increased levels of secreted immune molecules during brain development, can leave the brain susceptible to certain long-term changes in immune function associated with neurological and developmental disorders. One mechanism by which microglia can be activated is via alcohol exposure. We sought to investigate if low levels of prenatal alcohol exposure can alter the neuroimmune response to a subsequent acute dose of alcohol in adulthood. We also used the novel object location and recognition memory tasks to determine whether there are cognitive deficits associated with low prenatal alcohol exposure and subsequent adulthood alcohol exposure. We found that adult rats exposed to an acute binge-like level of alcohol, regardless of gestational alcohol exposure, have a robust increase in the expression of Interleukin (IL)-6 within the brain, and a significant decrease in the expression of IL-1β and CD11b. Rats exposed to alcohol during gestation, adulthood, or at both time points exhibited impaired cognitive performance in the cognitive tasks. These results indicate that both low-level prenatal alcohol exposure and even acute alcohol exposure in adulthood can significantly impact neuroimmune and associated cognitive function.
Collapse
Affiliation(s)
- Laurne S Terasaki
- Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA.
| | - Jaclyn M Schwarz
- Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
44
|
Cantacorps L, Alfonso-Loeches S, Moscoso-Castro M, Cuitavi J, Gracia-Rubio I, López-Arnau R, Escubedo E, Guerri C, Valverde O. Maternal alcohol binge drinking induces persistent neuroinflammation associated with myelin damage and behavioural dysfunctions in offspring mice. Neuropharmacology 2017; 123:368-384. [DOI: 10.1016/j.neuropharm.2017.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023]
|
45
|
Wong EL, Stowell RD, Majewska AK. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Front Synaptic Neurosci 2017; 9:11. [PMID: 28674490 PMCID: PMC5474469 DOI: 10.3389/fnsyn.2017.00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD). Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%–5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol’s actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain’s immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.
Collapse
Affiliation(s)
- Elissa L Wong
- Department of Environmental Medicine, University of Rochester Medical CenterRochester, NY, United States
| | - Rianne D Stowell
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| |
Collapse
|
46
|
Gursky ZH, Klintsova AY. Wheel Running and Environmental Complexity as a Therapeutic Intervention in an Animal Model of FASD. J Vis Exp 2017. [PMID: 28190057 DOI: 10.3791/54947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aerobic exercise (e.g., wheel running (WR) extensively used in animal research) positively impacts many measures of neuroplastic potential in the brain, such as rates of adult neurogenesis, angiogenesis, and expression of neurotrophic factors in rodents. This intervention has also been shown to mitigate behavioral and neuroanatomical aspects of the negative impacts of teratogens (i.e., developmental exposure to alcohol) and age-related neurodegeneration in rodents. Environmental complexity (EC) has been shown to produce numerous neuroplastic benefits in cortical and subcortical structures and can be coupled with wheel running to increase the proliferation and survival of new cells in the adult hippocampus. The combination of these two interventions provides a robust "superintervention" (WR-EC) that can be implemented in a range of rodent models of neurological disorders. We will discuss the implementation of WR/EC and its constituent interventions for use as a more powerful therapeutic intervention in rats using the animal model of prenatal exposure to alcohol in humans. We will also discuss which elements of the procedures are absolutely necessary for the interventions and which ones may be altered depending on the experimenter's question or facilities.
Collapse
Affiliation(s)
- Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware;
| |
Collapse
|
47
|
Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse. Neuropsychopharmacology 2017; 42:156-177. [PMID: 27402494 PMCID: PMC5143481 DOI: 10.1038/npp.2016.121] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022]
Abstract
Drugs of abuse cause persistent alterations in synaptic plasticity that may underlie addiction behaviors. Evidence suggests glial cells have an essential and underappreciated role in the development and maintenance of drug abuse by influencing neuronal and synaptic functions in multifaceted ways. Microglia and astrocytes perform critical functions in synapse formation and refinement in the developing brain, and there is growing evidence that disruptions in glial function may be implicated in numerous neurological disorders throughout the lifespan. Linking evidence of function in health and under pathological conditions, this review will outline the glial and neuroimmune mechanisms that may contribute to drug-abuse liability, exploring evidence from opioids, alcohol, and psychostimulants. Drugs of abuse can activate microglia and astrocytes through signaling at innate immune receptors, which in turn influence neuronal function not only through secretion of soluble factors (eg, cytokines and chemokines) but also potentially through direct remodeling of the synapses. In sum, this review will argue that neural-glial interactions represent an important avenue for advancing our understanding of substance abuse disorders.
Collapse
|
48
|
Bake S, Gardner R, Tingling JD, Miranda RC, Sohrabji F. Fetal Alcohol Exposure Alters Blood Flow and Neurological Responses to Transient Cerebral Ischemia in Adult Mice. Alcohol Clin Exp Res 2016; 41:117-127. [PMID: 27987329 DOI: 10.1111/acer.13277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in physical and neurocognitive deficits that are collectively termed "fetal alcohol spectrum disorders" (FASD). Although FASD is associated with lifelong intellectual disability, the mechanisms mediating the emergence of secondary mental health and physical disabilities are poorly understood. Based on our previous data showing that maternal ethanol (EtOH) exposure in mice resulted in an immediate reduction in cranially directed fetal blood flow, we hypothesized that such exposure would also result in persistent alterations in cranially directed blood flow in the prenatally alcohol-exposed (PAE) adult. We also hypothesized that PAE adults exposed to an acute cerebrovascular insult would exhibit more brain damage and neurobehavioral impairment compared to non-PAE adult controls. METHODS Pregnant C57BL/6 mice were exposed to EtOH, 3 g/kg, or water by intragastric gavage. Blood flow in carotid, renal, and femoral arteries was assessed by ultrasound imaging in PAE and control adults at 3, 6, and 12 months of age. To mimic ischemic stroke in young adult populations, 3-month-old PAE and control animals were subject to transient middle cerebral artery occlusion (MCAo) and subsequently assessed for behavioral recovery, stroke infarct volume, and brain cytokine profiles. RESULTS PAE resulted in a significant age-related decrease in blood acceleration in adult mice, specifically in the carotid artery. A unilateral transient MCAo resulted in equivalent cortico-striatal damage in both PAE and control adults. However, PAE adult mice exhibited significantly decreased poststroke behavioral recovery compared to controls. CONCLUSIONS Our data collectively show that PAE adult mice exhibit a persistent, long-term loss of cranially directed blood flow, and decreased capacity to compensate for brain trauma due to acute-onset adult diseases like ischemic stroke.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Rachel Gardner
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Joseph D Tingling
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
49
|
Binge alcohol alters exercise-driven neuroplasticity. Neuroscience 2016; 343:165-173. [PMID: 27932309 DOI: 10.1016/j.neuroscience.2016.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/17/2022]
Abstract
Exercise is increasingly being used as a treatment for alcohol use disorders (AUD), but the interactive effects of alcohol and exercise on the brain remain largely unexplored. Alcohol damages the brain, in part by altering glial functioning. In contrast, exercise promotes glial health and plasticity. In the present study, we investigated whether binge alcohol would attenuate the effects of subsequent exercise on glia. We focused on the medial prefrontal cortex (mPFC), an alcohol-vulnerable region that also undergoes neuroplastic changes in response to exercise. Adult female Long-Evans rats were gavaged with ethanol (25% w/v) every 8h for 4days. Control animals received an isocaloric, non-alcohol diet. After 7days of abstinence, rats remained sedentary or exercised for 4weeks. Immunofluorescence was then used to label microglia, astrocytes, and neurons in serial tissue sections through the mPFC. Confocal microscope images were processed using FARSIGHT, a computational image analysis toolkit capable of automated analysis of cell number and morphology. We found that exercise increased the number of microglia in the mPFC in control animals. Binged animals that exercised, however, had significantly fewer microglia. Furthermore, computational arbor analytics revealed that the binged animals (regardless of exercise) had microglia with thicker, shorter arbors and significantly less branching, suggestive of partial activation. We found no changes in the number or morphology of mPFC astrocytes. We conclude that binge alcohol exerts a prolonged effect on morphology of mPFC microglia and limits the capacity of exercise to increase their numbers.
Collapse
|
50
|
Drew PD, Kane CJ. Peroxisome Proliferator-Activated Receptor-γ Agonists: Potential Therapeutics for Neuropathology Associated with Fetal Alcohol Spectrum Disorders. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:469. [PMID: 28203487 PMCID: PMC5305275 DOI: 10.4172/2155-9899.1000469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol during pregnancy. These disorders present a variety of sequelae including involvement of the central nervous system (CNS) with lasting impact on cognitive function and behavior. FASD occur at an alarming rate and have significant personal and societal impact. There are currently no effective treatments for FASD. Recent studies demonstrate that ethanol induces potent neuroinflammation in many regions of the developing brain. Furthermore, anti-inflammatory agents such as peroxisome proliferator-activated receptor (PPAR)-γ agonists suppress ethanol-induced neuroinflammation and neurodegeneration. This suggests that anti-inflammatory agents may be effective in treatment of FASD. Future studies designed to determine the specific mechanisms by which alcohol induces neuroinflammation in the developing CNS may lead to targeted therapies for FASD.
Collapse
Affiliation(s)
- Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J.M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|