1
|
Wang T, Chen HY, Yang P, Zhang X, Su SY. Electroacupuncture induces analgesia by regulating spinal synaptic plasticity via the AMPA/NMDA receptor in a model of cervical spondylotic radiculopathy: secondary analysis of an experimental study in rats. Acupunct Med 2025:9645284251314189. [PMID: 39895325 DOI: 10.1177/09645284251314189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Cervical spondylotic radiculopathy (CSR) is characterized by neuropathic pain (NP). Although the analgesic effect of electroacupuncture (EA) has been widely recognized in clinical practice, the mechanism of EA in the treatment of CSR remains unknown. We previously reported that 7 days of EA improved behavioral markers of NP, attenuated increases in α-synuclein, synapsin 1 and 2, postsynaptic density (PSD)-95 and growth-associated protein (GAP)-43, and improved ultrastructural changes within synapses in a rat model of CSR. Herein, we present supplemental data from the same cohort of animals examining the timing of behavioral improvement within the first week (through additional measurements at 3 and 5 days into the EA treatment) and new data on the effects of EA on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartic acid receptor (NMDAR) levels. METHODS As previously reported, the rats were divided into four groups at random: normal, sham, CSR and CSR + EA. EA at bilateral LI4 and LR3 was administered once a day for 7 days (20 min each) in the CSR + EA group after the CSR model was established by inserting a fishing line under the laminae. Behavioral assessments were carried out prior to initiation of EA and at 3, 5 and 7 days into the 7-day treatment course. Concentrations ofγ-aminobutyric acid (GABA) and glutamate (Glu) were determined using enzyme-linked immunosorbent assay and ultraviolet colorimetry, respectively, and AMPAR (glutamate receptor (GluR)1 and GluR2 membrane protein) expression was determined using Western blotting. Immunohistochemistry was used to detect the protein expression and average optical density (AOD) of NMDAR1 (NR1), NMDAR2A (NR2A) and NMDAR2B (NR2B). Quantitative reverse transcription-polymerase chain reaction was used to detect the mRNA expression of NR1, NR2A and NR2B. Transmission electron microscopy was used to observe changes in synaptic ultrastructure. RESULTS EA significantly improved the pressure pain threshold (PPT) and mechanical withdrawal threshold (MWT) 5 days into the intervention, although effects were less pronounced than at 7 days (at completion of treatment). However, significant effects on gait scores were not seen prior to 7 days. As previously reported, EA also improved markers of synaptic ultrastructure. In the spinal cord, GluR1 membrane protein expression was decreased, GluR2 membrane protein expression was increased, and the GluR1/GluR2 ratio was decreased. Protein and mRNA expression of NR1, NR2A and NR2B was significantly decreased. GABA concentration was markedly increased, while Glu concentration was markedly decreased. CONCLUSION Evidence of EA analgesia (higher PPT and MWT scores) was seen after 5 days of EA, while positive effects on motor function required 7 days of treatment. The underlying mechanism may be related to inhibition of AMPAR and NMDAR expression, regulation of the concentration of related neurotransmitters and improvement of spinal cord synaptic plasticity. This study establishes a preliminary theoretical foundation for the use of EA in the clinical treatment of CSR.
Collapse
Affiliation(s)
- Tian Wang
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai-Yan Chen
- Department of Nursing, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Pu Yang
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xi Zhang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Sheng-Yong Su
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2024; 125:e30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
3
|
Kremer TL, Chen J, Buhl A, Berhe O, Bilek E, Geiger LS, Ma R, Moessnang C, Reichert M, Reinhard I, Schwarz K, Schweiger JI, Streit F, Witt SH, Zang Z, Zhang X, Nöthen MM, Rietschel M, Ebner-Priemer UW, Schwarz E, Meyer-Lindenberg A, Braun U, Tost H. Multimodal Associations of FKBP5 Methylation With Emotion-Regulatory Brain Circuits. Biol Psychiatry 2024; 96:858-867. [PMID: 38460581 DOI: 10.1016/j.biopsych.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Understanding the biological processes that underlie individual differences in emotion regulation and stress responsivity is a key challenge for translational neuroscience. The gene FKBP5 is a core regulator in molecular stress signaling that is implicated in the development of psychiatric disorders. However, it remains unclear how FKBP5 DNA methylation in peripheral blood is related to individual differences in measures of neural structure and function and their relevance to daily-life stress responsivity. METHODS Here, we characterized multimodal correlates of FKBP5 DNA methylation by combining epigenetic data with neuroimaging and ambulatory assessment in a sample of 395 healthy individuals. RESULTS First, we showed that FKBP5 demethylation as a psychiatric risk factor was related to an anxiety-associated reduction of gray matter volume in the ventromedial prefrontal cortex, a brain area that is involved in emotion regulation and mental health risk and resilience. This effect of epigenetic upregulation of FKBP5 on neuronal structure is more pronounced where FKBP5 is epigenetically downregulated at baseline. Leveraging 208 functional magnetic resonance imaging scans during a well-established emotion-processing task, we found that FKBP5 DNA methylation in peripheral blood was associated with functional differences in prefrontal-limbic circuits that modulate affective responsivity to daily stressors, which we measured using ecological momentary assessment in daily life. CONCLUSIONS Overall, we demonstrated how FKBP5 contributes to interindividual differences in neural and real-life affect regulation via structural and functional changes in prefrontal-limbic brain circuits.
Collapse
Affiliation(s)
- Thomas L Kremer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anais Buhl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Edda Bilek
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ren Ma
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Reichert
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mental mHealth Lab, Chair of Applied Psychology, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of eHealth and Sports Analytics, Ruhr University Bochum, Bochum, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Fabian Streit
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaolong Zhang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrich W Ebner-Priemer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Mental mHealth Lab, Chair of Applied Psychology, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany.
| |
Collapse
|
4
|
Wang Z, Hu X, Wang Z, Chen J, Wang L, Li C, Deng J, Yue K, Wang L, Kong Y, Sun L. Ketamine alleviates PTSD-like effect and improves hippocampal synaptic plasticity via regulation of GSK-3β/GR signaling of rats. J Psychiatr Res 2024; 178:259-269. [PMID: 39167905 DOI: 10.1016/j.jpsychires.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Each year, 3-4% of the global population experiences post-traumatic stress disorder (PTSD), a chronic mental disorder with significant social and economic repercussions. Although it has been shown that ketamine can effectively alleviate PTSD symptoms in individuals, the specific mechanism of action underlying its anti-PTSD effects remains unclear. In this study, we investigated how a single, low dose of ketamine affected the glycogen synthase kinase 3β (GSK-3β)/glucocorticoid receptor (GR) signaling pathway in a single prolonged stress (SPS)-induced PTSD rat model. METHODS After establishing the model, stress-related behavioral alterations in the rats were assessed following intraperitoneal injections of ketamine (10 mg/kg) and GSK-3β antagonist SB216763 (5 mg/kg). In the hippocampus, alterations in the expression of specific proteins implicated in PTSD development, such as GR, brain-derived neurotrophic factor (BDNF), GSK-3β, and phosphorylated glycogen synthase kinase 3β (p-GSK-3β), were assessed. We also measured changes in the mRNA expression levels of GR, BDNF, GSK-3β, FK501 binding protein 51 (FKBP5), and corticotropin-releasing hormone (CRH), as well as synaptic ultrastructure, in the hippocampus, and measured changes in corticosterone levels in the blood. RESULTS SPS induced anxiety-like and depression-like behaviors in rats and induced morphological changes in synapse, which were accompanied by higher GSK-3β protein expression and conversely, decreased expression of GR, BDNF, p-GSK-3β, FKBP5 and CRH. Intraperitoneal administration of ketamine (10 mg/kg) after SPS prevented SPS-induced anxiety-like behaviors. Most importantly, ketamine attenuated SPS-induced dysfunctions in GSK-3β/GR signaling and synaptic deficits. Furthermore, treatment with a GSK-3β inhibitor played the same effect as ketamine on behavioral changes of SPS model rats. CONCLUSION Single doses of ketamine effectively ameliorate SPS-induced anxiety-like symptoms, potentially by improving synaptic plastic in the hippocampus by regulating GSK-3β/GR signaling.
Collapse
Affiliation(s)
- Zixun Wang
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China; Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Xinyu Hu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhongyi Wang
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China; Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003 PR China
| | - Jiaming Chen
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Ling Wang
- Clinical Competency Training Center Medical Experiment and Training Center, Shandong Second Medical University, 261053, PR China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Jing Deng
- Weifang Second People's Hospital, 7# Yuanxiao Street, Weifang, Shandong, 261053, PR China
| | - Kuitao Yue
- Medical Imaging Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Lizhuo Wang
- People's Hospital of Shanting District of Zaozhuang, Zaozhuang, Shandong, 277200, PR China
| | - Yujia Kong
- School of Public Health, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China; Management Committee of Shanting Economic Development Zone, No.37, Fuqian Road, Zaozhuang, Shandong, 277200, PR China; Department of Neurosurgery, Shanting District People's Hospital, Beijing Road, New Town, Zaozhuang, Shandong, 277200, PR China.
| |
Collapse
|
5
|
Irizarry-Méndez N, Criado-Marrero M, Hernandez A, Colón M, Porter JT. Reducing FKBP51 Expression in the Ventral Hippocampus Decreases Auditory Fear Conditioning in Male Rats. Int J Mol Sci 2024; 25:7097. [PMID: 39000204 PMCID: PMC11241630 DOI: 10.3390/ijms25137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.
Collapse
Affiliation(s)
- Nashaly Irizarry-Méndez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | | | - Anixa Hernandez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | - Maria Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| |
Collapse
|
6
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
7
|
Williams KE, Zou Y, Qiu B, Kono T, Guo C, Garcia D, Chen H, Graves T, Lai Z, Evans-Molina C, Ma YY, Liangpunsakul S, Yong W, Liang T. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells 2023; 13:89. [PMID: 38201293 PMCID: PMC10778370 DOI: 10.3390/cells13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.
Collapse
Affiliation(s)
- Kent E. Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Bin Qiu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Tatsuyoshi Kono
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Changyong Guo
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Hanying Chen
- Department Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tamara Graves
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Carmella Evans-Molina
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Yao-Ying Ma
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| |
Collapse
|
8
|
Min EK, Lee H, Sung EJ, Seo SW, Song M, Wang S, Kim SS, Bae MA, Kim TY, Lee S, Kim KT. Integrative multi-omics reveals analogous developmental neurotoxicity mechanisms between perfluorobutanesulfonic acid and perfluorooctanesulfonic acid in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131714. [PMID: 37263023 DOI: 10.1016/j.jhazmat.2023.131714] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The molecular mechanism of perfluorobutanesulfonic acid (PFBS), an alternative to legacy perfluorooctanesulfonic acid (PFOS), is not fully understood yet. Therefore, we conducted a developmental toxicity evaluation on zebrafish embryos exposed to PFBS and PFOS and assessed neurobehavioral changes at concentrations below each point of departure (POD) determined by embryonic mortality. Using transcriptomics, proteomics, and metabolomics, biomolecular perturbations in response to PFBS were profiled and then integrated for comparison with those for PFOS. Although PFBS (7525.47 μM POD) was approximately 700 times less toxic than PFOS (11.42 μM POD), altered neurobehavior patterns and affected kinds of endogenous neurochemicals were similar between PFBS and PFOS at the corresponding POD-based concentrations. Multi-omics analysis revealed that the PFBS neurotoxicity mechanism was associated with oxidative stress, lipid metabolism, and glycolysis/glucogenesis. The commonalities in developmental neurotoxicity-related mechanisms between PFBS and PFOS interconnected by knowledge-based integration of multi-omics included the calcium signaling pathway, lipid homeostasis, and primary bile acid biosynthesis. Despite being less toxic than PFOS, PFBS exhibited similar dysregulated molecular mechanisms, suggesting that chain length differences do not affect the intrinsic toxicity mechanism. Overall, carefully managing potential toxicity of PFBS can secure its status as an alternative to PFOS.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eun Ji Sung
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Woo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myungha Song
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seungjun Wang
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
9
|
Matosin N, Arloth J, Czamara D, Edmond KZ, Maitra M, Fröhlich AS, Martinelli S, Kaul D, Bartlett R, Curry AR, Gassen NC, Hafner K, Müller NS, Worf K, Rehawi G, Nagy C, Halldorsdottir T, Cruceanu C, Gagliardi M, Gerstner N, Ködel M, Murek V, Ziller MJ, Scarr E, Tao R, Jaffe AE, Arzberger T, Falkai P, Kleinmann JE, Weinberger DR, Mechawar N, Schmitt A, Dean B, Turecki G, Hyde TM, Binder EB. Associations of psychiatric disease and ageing with FKBP5 expression converge on superficial layer neurons of the neocortex. Acta Neuropathol 2023; 145:439-459. [PMID: 36729133 PMCID: PMC10020280 DOI: 10.1007/s00401-023-02541-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia.
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Katrina Z Edmond
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Malosree Maitra
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Anna S Fröhlich
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Dominic Kaul
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Amber R Curry
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Neurohomeostasis Research Group, Institute of Psychiatry, Clinical Centre, University of Bonn, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Karolina Worf
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ghalia Rehawi
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Cristiana Cruceanu
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nathalie Gerstner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael J Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Peter Falkai
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Joel E Kleinmann
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, 05453-010, Brazil
| | - Brian Dean
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
10
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
11
|
Luan Y, Yuan Q, Wang Q, Compton S, Wu D, Tang W. Pazopanib Is a Potential Treatment for Coronavirus-Induced Lung Injuries. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:723-730. [PMID: 35914834 PMCID: PMC9378470 DOI: 10.4049/jimmunol.2100968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/04/2022] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2, responsible for the severe acute respiratory syndrome known as COVID-19, has rapidly spread in almost every country and devastated the global economy and health care system. Lung injury is an early disease manifestation believed to be a major contributor to short- and long-term pathological consequences of COVID-19, and thus drug discovery aiming to ameliorate lung injury could be a potential strategy to treat COVID-19 patients. By inducing a severe acute respiratory syndrome-like pulmonary disease model through infecting A/J mice with murine hepatitis virus strain 1 (MHV-1), we show that i.v. administration of pazopanib ameliorates acute lung injuries without affecting MHV-1 replication. Pazopanib reduces cell apoptosis in MHV-1-infected lungs. Furthermore, we also identified that pazopanib has to be given no later than 48 h after the virus infection without compromising the therapeutic effect. Our study provides a potential treatment for coronavirus-induced lung injuries and support for further evaluation of pazopanib in COVID-19 patients.
Collapse
Affiliation(s)
- Yi Luan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT; and
| | - Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT; and
| | - Qijun Wang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT; and
| | - Susan Compton
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT; and
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT; and
| |
Collapse
|
12
|
Gan YL, Wang CY, He RH, Hsu PC, Yeh HH, Hsieh TH, Lin HC, Cheng MY, Jeng CJ, Huang MC, Lee YH. FKBP51 mediates resilience to inflammation-induced anxiety through regulation of glutamic acid decarboxylase 65 expression in mouse hippocampus. J Neuroinflammation 2022; 19:152. [PMID: 35705957 PMCID: PMC9198626 DOI: 10.1186/s12974-022-02517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/05/2022] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear. Methods Fkbp5-deficient (Fkbp5-KO) mice were used to study inflammatory stress by a single intraperitoneal injection of lipopolysaccharide (LPS). The anxiety-like behaviors, neuroimaging, immunofluorescence staining, immunohistochemistry, protein and mRNA expression analysis of inflammation- and neurotransmission-related mediators were evaluated. A dexamethasone drinking model was also applied to examine the effect of Fkbp5-KO in glucocorticoid-induced stress. Results LPS administration induced FKBP51 elevation in the liver and hippocampus accompanied with transient sickness. Notably, Fkbp5-KO but not wild-type (WT) mice showed anxiety-like behaviors 7 days after LPS injection (LPS-D7). LPS challenge rapidly increased peripheral and central immune responses and hippocampal microglial activation followed by a delayed GR upregulation on LPS-D7, and these effects were attenuated in Fkbp5-KO mice. Whole-brain [18F]-FEPPA neuroimaging, which target translocator protein (TSPO) to indicate neuroinflammation, showed that Fkbp5-KO reduced LPS-induced neuroinflammation in various brain regions including hippocampus. Interestingly, LPS elevated glutamic acid decarboxylase 65 (GAD65), the membrane-associated GABA-synthesizing enzyme, in the hippocampus of WT but not Fkbp5-KO mice on LPS-D7. This FKBP51-dependent GAD65 upregulation was observed in the ventral hippocampal CA1 accompanied by the reduction of c-Fos-indicated neuronal activity, whereas both GAD65 and neuronal activity were reduced in dorsal CA1 in a FKBP51-independent manner. GC-induced anxiety was also examined, which was attenuated in Fkbp5-KO and hippocampal GAD65 expression was unaffected. Conclusions These results suggest that FKBP51/FKBP5 is involved in the systemic inflammation-induced neuroinflammation and hippocampal GR activation, which may contribute to the enhancement of GAD65 expression for GABA synthesis in the ventral hippocampus, thereby facilitating resilience to inflammation-induced anxiety. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02517-8.
Collapse
Affiliation(s)
- Yu-Ling Gan
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Chen-Yu Wang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Rong-Heng He
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Pei-Chien Hsu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hsin-Hsien Yeh
- Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Yen Cheng
- Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tsai, Hong Kong, China
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Department and Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309 Song-De Street, Taipei, 110, Taiwan. .,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan. .,Psychiatric Research Center, Taipei Medical University Hospital, 252 Wu-Xing Street,, Taipei, 110, Taiwan.
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
13
|
Qiu B, Zhong Z, Righter S, Xu Y, Wang J, Deng R, Wang C, Williams KE, Ma YY, Tsechpenakis G, Liang T, Yong W. FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cell Mol Life Sci 2022; 79:175. [PMID: 35244772 PMCID: PMC11072506 DOI: 10.1007/s00018-022-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Shawn Righter
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gavriil Tsechpenakis
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
The Interactive Effect of Genetic and Epigenetic Variations in FKBP5 and ApoE Genes on Anxiety and Brain EEG Parameters. Genes (Basel) 2022; 13:genes13020164. [PMID: 35205209 PMCID: PMC8872390 DOI: 10.3390/genes13020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
FKBP51 is a key stress-responsive regulator of the hypothalamic–pituitary–adrenal axis. To elucidate the contribution of rs1360780 FKBP5 C/T alleles to aging and longevity, we genotyped FKBP5 in a cohort of 800 non-demented and Alzheimer’s disease (AD) subjects of different age, taking into account the allele state of ApoE ε4, the major risk factor for AD. Furthermore, we searched for the association of FKBP5 with subcohorts of non-demented subjects evaluated for anxiety and resting-state quantitative EEG characteristics, associated with cognitive, emotional, and functional brain activities. We observed that increased state anxiety scores depend on the combination of the FKBP5 and ApoE genotypes and on the DNA methylation state of the FKBP5 promoter and ApoE genotype. We also found a significant gender-dependent correlation between FKBP5 promoter methylation and alpha-, delta-, and theta-rhythms. Analysis of the FKBP5 expression in an independent cohort revealed a significant upregulation of FKBP5 in females versus males. Our data suggest a synergistic effect of the stress-associated (FKBP5) and neurodegeneration-associated (ApoE) gene alleles on anxiety and the gender-dependent effect of FKBP5 on neurophysiological brain activity.
Collapse
|
15
|
Interaction Between Glucocorticoid Receptors and FKBP5 in Regulating Neurotransmission of the Hippocampus. Neuroscience 2021; 483:95-103. [PMID: 34923037 DOI: 10.1016/j.neuroscience.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
FK501 binding protein 51 (FKBP5) is a stress response prolyl isomerase that inhibits the translocation of the glucocorticoid receptor (GR) heterocomplex to the nucleus. Previous studies have shown that the expression levels of FKBP5 are positively correlated with psychiatric disorders, including depression and post-traumatic stress disorder. In rodents, FKBP5 deletion in the brain leads to be resilient to stress-induced depression. The hippocampus is known to be one of the primary locations mediating stress responses in the brain by providing negative feedback signals to the hypothalamus-pituitaryadrenal gland axis. Therefore, we aimed to investigate the role of FKBP5 and its interaction with GRs in the hippocampus. We observed that FKBP5 deletion in the hippocampus resulted in a minimal change in synaptic transmission. In the hippocampus, GR activation alters the release probability in inhibitory synapses as well as the postsynaptic contribution of glutamate receptors in excitatory synapses; however, no such alterations were induced in the absence of FKBP5. FKBP5 deficiency causes insensitivity to activated GRs in the hippocampus suggesting that FKBP5 mediates synaptic changes caused by GR activation. Our study provides electrophysiological evidence of stress resilience observed in FKBP5-deficient mice.
Collapse
|
16
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
17
|
Buurstede JC, van Weert LTCM, Colucci P, Gentenaar M, Viho EMG, Koorneef LL, Schoonderwoerd RA, Lanooij SD, Moustakas I, Balog J, Mei H, Kielbasa SM, Campolongo P, Roozendaal B, Meijer OC. Hippocampal glucocorticoid target genes associated with enhancement of memory consolidation. Eur J Neurosci 2021; 55:2666-2683. [PMID: 33840130 PMCID: PMC9292385 DOI: 10.1111/ejn.15226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
Glucocorticoids enhance memory consolidation of emotionally arousing events via largely unknown molecular mechanisms. This glucocorticoid effect on the consolidation process also requires central noradrenergic neurotransmission. The intracellular pathways of these two stress mediators converge on two transcription factors: the glucocorticoid receptor (GR) and phosphorylated cAMP response element‐binding protein (pCREB). We therefore investigated, in male rats, whether glucocorticoid effects on memory are associated with genomic interactions between the GR and pCREB in the hippocampus. In a two‐by‐two design, object exploration training or no training was combined with post‐training administration of a memory‐enhancing dose of corticosterone or vehicle. Genomic effects were studied by chromatin immunoprecipitation followed by sequencing (ChIP‐seq) of GR and pCREB 45 min after training and transcriptome analysis after 3 hr. Corticosterone administration induced differential GR DNA‐binding and regulation of target genes within the hippocampus, largely independent of training. Training alone did not result in long‐term memory nor did it affect GR or pCREB DNA‐binding and gene expression. No strong evidence was found for an interaction between GR and pCREB. Combination of the GR DNA‐binding and transcriptome data identified a set of novel, likely direct, GR target genes that are candidate mediators of corticosterone effects on memory consolidation. Cell‐specific expression of the identified target genes using single‐cell expression data suggests that the effects of corticosterone reflect in part non‐neuronal cells. Together, our data identified new GR targets associated with memory consolidation that reflect effects in both neuronal and non‐neuronal cells.
Collapse
Affiliation(s)
- Jacobus C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Max Gentenaar
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva M G Viho
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin A Schoonderwoerd
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne D Lanooij
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Bioinformatics Center of Expertise, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Li S, Hu W, Deng F, Chen S, Zhu P, Wang M, Chen X, Wang Y, Hu X, Zhao B, Zhong W, Ma G, Li Y. Identification of Circular RNA hsa_circ_0001599 as a Novel Biomarker for Large-Artery Atherosclerotic Stroke. DNA Cell Biol 2021; 40:457-468. [PMID: 33493415 DOI: 10.1089/dna.2020.5662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered noncoding RNA isoform capable of regulating neurological disease incidence. The present study was designed to characterize the circRNA expression profiles present in large-artery atherosclerosis (LAA)-type acute ischemic stroke patients and to detect biomarkers suitable for LAA-stroke detection. Using a RNA-seq-based approach, we characterized circRNA expression profiles in five LAA-stroke patients and four controls. We confirmed the differential expression of target circRNAs through quantitative real-time polymerase chain reaction (qRT-PCR), and used Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses to explore their functional roles. The diagnostic value of specific circRNAs was evaluated through a receiver operating characteristic (ROC) curve analysis. We identified 182 upregulated and 176 downregulated circRNAs in LAA-stroke patients and confirmed the differential expression of six circRNAs through qRT-PCR. These differentially expressed circRNAs are primarily associated with chromatin modification, autophagy, platelet activation, and neural precursor cell proliferation. The hsa_circRNA_0001599 expression levels were positively correlated with the National Institutes of Health Stroke Scale scores and infarct volumes, with an ROC analysis of hsa_circRNA_0001599 in LAA-stroke, yielding an area under the curve of 0.805 (95% confidence interval: 0.748-0.862; p < 0.001), consistent with sensitivity and specificity values of 64.41% and 89.93%, respectively, for the diagnosis of LAA-stroke. A transcriptome-wide survey of differential circRNA expression in LAA-stroke patients revealed hsa_circRNA_0001599 as a putative circRNA biomarker of LAA-stroke diagnosis.
Collapse
Affiliation(s)
- Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weidong Hu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fu Deng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shaofeng Chen
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peiyi Zhu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mengxu Wang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinglan Chen
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ying Wang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingjuan Hu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Guangdong Medical University, Shunde Maternal and Children's Hospital, Shunde, China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
19
|
Sampedro-Piquero P, Moreno-Fernández R. Building Resilience with Aerobic Exercise: Role of FKBP5. Curr Neuropharmacol 2021; 19:1156-1160. [PMID: 33829973 PMCID: PMC8719288 DOI: 10.2174/1570159x19666210408124937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have pointed that aerobic exercise, at moderate doses, is beneficial at all stages of life by promoting a range of physiological and neuroplastic adaptations that reduce the anxiety response. Previous research about this topic has repeatedly described how the regular practice of aerobic exercise induces a positive regulation of neuroplasticity and neurogenesis-related genes, as well as a better control of the HPA axis function. However, limited progress has been carried out in the integration of neuroendocrine and neuroplastic changes, as well as in introducing new factors to understand how aerobic exercise can promote resilience to future stressful conditions. Resilience is defined as the ability to adapt to stress while maintaining healthy mental and physical performance. Consistent findings point to an important role of FKBP5, the gene expressing FK506-binding protein 51 (FKBP51), as a strong inhibitor of the glucocorticoid receptor (GR), and thus, an important regulator of the stress response. We propose that aerobic exercise could contribute to modulate FKBP5 activity acting as a potential therapeutic approach for mood disorders. In this sense, aerobic exercise is well known for increasing the growth factor BDNF, which by downstream pathways could affect the FKBP5 activity. Therefore, our manuscript has the aim of analyzing how FKBP5 could constitute a promising target of aerobic exercise promoting resilient-related phenotypes.
Collapse
Affiliation(s)
- P. Sampedro-Piquero
- Address correspondence to these authors at the Department of Psychology, Faculty of Psychology, University of Oviedo. Plaza Feijoo s/n 33003, Oviedo, Spain; E-mails: ;
| | - R.D. Moreno-Fernández
- Address correspondence to these authors at the Department of Psychology, Faculty of Psychology, University of Oviedo. Plaza Feijoo s/n 33003, Oviedo, Spain; E-mails: ;
| |
Collapse
|
20
|
The Impact of FKBP5 Deficiency in Glucocorticoid Receptor Mediated Regulation of Synaptic Transmission in the Medial Prefrontal Cortex. Neuroscience 2020; 457:20-26. [PMID: 33359659 DOI: 10.1016/j.neuroscience.2020.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Exposure to stress activates glucocorticoid receptors in the brain and facilitates the onset of multitude psychiatric disorders. It has been shown that FK506 binding protein 51 (FKBP5) expression increases during glucocorticoid receptor (GR) activation in various brain regions including the medial prefrontal cortex (mPFC). FKBP5 knockout (KO) mice are reported to be resilient to stress, however, it remains uninvestigated whether FKBP5 loss affects neurotransmission and if so, what the functional consequences are. Here, we examined the impact of FKBP5 deletion in synaptic transmission of the mPFC. We found that GR activation significantly decreased excitatory neurotransmission in the mPFC, which was completely abolished upon FKBP5 deletion, in consistent with behavioral resilience observed in FKBP5 KO mice. Even though FKBP5 loss has minimal impact on neural excitability, we found that FKBP5 deletion distorts the excitatory/inhibitory balance in the mPFC. Our study suggests that FKBP5 deficiency leads to the mPFC insensitive to GR activation and provides a neurophysiological explanation for how FKBP5 deficiency may mediate stress resilience.
Collapse
|
21
|
Xing L, Cai Y, Yang T, Yu W, Gao M, Chai R, Ding S, Wei J, Pan J, Chen G. Epitranscriptomic m6A regulation following spinal cord injury. J Neurosci Res 2020; 99:843-857. [PMID: 33271625 DOI: 10.1002/jnr.24763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
RNA methylation is involved in multiple physiological and pathological processes. However, the role of RNA methylation in spinal cord regeneration has not been reported. In this study, we find an altered m6A (N6-methyladenosine) RNA methylation profiling following zebrafish spinal cord injury (SCI), in line with an altered transcription level of the m6A methylase Mettl3. Interestingly, many of the differential m6A-tagged genes associated with neural regeneration are hypomethylated, but their transcription levels are upregulated in SCI. Moreover, we find that METTL3 may be important for spinal cord regeneration. We also show a conserved feature of METTL3 changes in mouse SCI model, in which the expression of METTL3 is increased in both astrocytes and neural stem cells. Together, our results indicate that m6A RNA methylation is dynamic and conserved following SCI and may contribute to spinal cord regeneration.
Collapse
Affiliation(s)
- Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yunyun Cai
- Department of Physiology, School of medicine, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Weiwei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengdie Gao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Rui Chai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sujun Ding
- Department of Medical Ultrasound, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinhuan Wei
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Jingying Pan
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Lei G, Liu F, Liu P, Jiao T, Yang L, Chu Z, Deng LS, Li Y, Dang YH. Does genetic mouse model of constitutive Hint1 deficiency exhibit schizophrenia-like behaviors? Schizophr Res 2020; 222:304-318. [PMID: 32439293 DOI: 10.1016/j.schres.2020.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is closely related to many neuropsychiatric disorders. Clinical studies supported that mutations in the Hint1 gene correlated potentially with schizophrenia. In addition, Hint1 gene knockout (KO) mice exhibited hyperactivity induced by amphetamine and apomorphine. However, it is still unclear whether this animal model exhibits schizophrenia-like behaviors and, if so, their underlying mechanisms remain to be elucidated. Thus, our study sought to evaluate schizophrenia-like behaviors in Hint1-KO mice, and explore the associated changes in neuronal structural plasticity and schizophrenia-related molecules. A series of behavioral tests were used to compare Hint1-KO and their wild-type (WT) littermates, alongside a number of morphological and molecular biological methods. Relative to WT mice, Hint1-KO mice exhibited reduced social interaction behaviors, aggressive behavior, sensorimotor gating deficits, apathetic and self-neglect behaviors, and increased MK-801-induced hyperactivity. Hint1-KO mice also showed partly increased dendritic complexity in the hippocampus (Hip) relative to WT mice. Total glutamate was decreased in the medial prefrontal cortex, nucleus accumbens (NAc), and Hip of KO mice. Expression of NR1, NR2A, and D4R was decreased whereas that of D1R was increased in the NAc of KO relative to WT mice. The expression level of NR2B was increased whereas that of D1R was decreased in the Hip of KO mice. Hint1-KO mice exhibited schizophrenia-like behaviors. Partly increased dendritic complexity and dysfunction in both the dopaminergic and glutamatergic systems may be involved in the abnormalities in Hint1-KO mice.
Collapse
Affiliation(s)
- Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Tong Jiao
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Liu Yang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zheng Chu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Li-Sha Deng
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
23
|
Anderzhanova E, Hafner K, Genewsky AJ, Soliman A, Pöhlmann ML, Schmidt MV, Blum R, Wotjak CT, Gassen NC. The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice. Neurobiol Stress 2020; 13:100239. [PMID: 33344695 PMCID: PMC7739030 DOI: 10.1016/j.ynstr.2020.100239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
We report here the involvement of the stress-responsive glucocorticoid receptor co-chaperone FKBP51 in the mechanism of in vivo secretion of mature BDNF (mBDNF). We used a novel method combining brain microdialysis with a capillary electrophoresis-based immunoassay, to examine mBDNF secretion in the medial prefrontal cortex (mPFC) in vivo in freely moving mice. By combining optogenetic, neurochemical (KCl-evoked depolarization), and transgenic (conditional BDNF knockout mice) means, we have shown that the increase in extracellular mBDNF in vivo is determined by neuronal activity. Withal, mBDNF secretion in the mPFC of mice was stimulated by a systemic administration of S-ketamine (10 or 50 mg/kg) or S-hydroxynorketamine (10 mg/kg). KCl- and S-ketamine-evoked mBDNF secretion was strongly dependent on the expression of FKBP51. Moreover, the inability of S-ketamine to evoke a transient secretion in mBDNF in the mPFC in FKBP51- knockout mice matched the lack of antidepressant-like effect of S-ketamine in the tail suspension test. Our data reveal a critical role of FKBP51 in mBDNF secretion and suggest the involvement of mBDNF in the realization of immediate stress-coping behavior induced by acute S-ketamine.
Collapse
Affiliation(s)
- Elmira Anderzhanova
- Neurohomeostatis Research Group, Clinic of Psychiatry and Psychotherapy University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinst. 2-10, 80804, Munich, Germany.,BAU International University, Fridon Khalvashi st. 237, Batumi, 6010, Georgia
| | - Kathrin Hafner
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Andreas J Genewsky
- Research Group Neuroplasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.,Department Biology II Cognition and Neural Plasticity, Faculty of Medicine Ludwig-Maximilians Universität München, Großhaderner str. 2, 82152, Planegg-Martinsried, Germany
| | - Azza Soliman
- Research Group Neuroplasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.,Institute of Human Genetics University Medical Centre, Mainz Langenbeckstr, 155131 Mainz, Germany
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacherstraße 2, 97080, Würzburg, Germany
| | - Carsten T Wotjak
- Research Group Neuroplasticity, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Dept. CNS Discovery Research, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Nils C Gassen
- Neurohomeostatis Research Group, Clinic of Psychiatry and Psychotherapy University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| |
Collapse
|
24
|
Okauchi H, Higo-Yamamoto S, Sowa T, Oike H, Yamamoto S, Wada N, Sakamoto K, Oishi K. Chronically skipping breakfast impairs hippocampal memory-related gene expression and memory function accompanied by reduced wakefulness and body temperature in mice. Biochem Biophys Res Commun 2020; 524:129-134. [DOI: 10.1016/j.bbrc.2020.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
|
25
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochem Pharmacol 2019; 168:438-451. [PMID: 31404529 DOI: 10.1016/j.bcp.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
Maternal smoking of conventional or vapor cigarettes during pregnancy, a form of developmental nicotine exposure (DNE), enhances the risk of neurodevelopmental disorders such as ADHD, autism, and schizophrenia in children. Modeling the multigenerational effects of smoking during pregnancy and nursing in the first- (F1) and second- (F2) generation adolescent offspring of oral nicotine-treated female C57BL/6J mice, we have previously reported that DNE precipitates intergenerational transmission of nicotine preference, hyperactivity and impulsivity-like behaviors, altered rhythmicity of home cage activity, corticostriatal nicotinic acetylcholine receptor and dopamine transporter dysfunction, and corticostriatal global DNA methylome deficits. In aggregate, these DNE-evoked behavioral, neuropharmacological, and epigenomic anomalies mirror fundamental etiological aspects of neurodevelopmental disorders including ADHD, autism, and schizophrenia. Expanding this line of research, the current study profiled the multigenerational neurotrophic and neuroendocrine consequences of DNE. Results reveal impaired proBDNF proteolysis as indicated by proBDNF-BDNF imbalance, downregulation of the proBDNF processing enzyme furin, atypical glucocorticoid receptor (GR) activity as implied by decreased relative nuclear GR localization, and deficient basal plasma corticosterone (CORT) levels in adolescent DNE offspring and grandoffspring. Collectively, these data recapitulate the BDNF deficits and HPA axis dysregulation characteristic of neurodevelopmental disorders such as ADHD, autism, and schizophrenia as well as the children of maternal smokers. Notably, as BDNF is a quintessential mediator of neurodevelopment, our prior findings of multigenerational DNE-induced behavioral and neuropharmacological abnormalities may stem from neurodevelopmental insults conferred by the proBDNF-BDNF imbalance detected in DNE mice. Similarly, our findings of multigenerational GR hypoactivity may contribute to the increased risk-taking behaviors and aberrant circadian rhythmicity of home cage activity that we previously documented in first- and second-generation DNE mice.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|