1
|
Keresztes A, Bankó ÉM, Báthori N, Tomacsek V, Varga VA, Nárai Á, Nemecz Z, Dénes Á, Gál V, Hermann P, Simor P, Vidnyánszky Z. Multi-Night Electroencephalography Reveals Positive Association Between Sleep Efficiency and Hippocampal Subfield and Entorhinal Cortex Volumes in Healthy Aging. Hum Brain Mapp 2024; 45:e70090. [PMID: 39720895 DOI: 10.1002/hbm.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Age-related atrophy of the human hippocampus and the enthorinal cortex starts accelerating at around age 60. Due to the contributions of these regions to many cognitive functions seamlessly used in everyday life, this can heavily impact the lives of elderly people. The hippocampus is not a unitary structure, and mechanisms of its age-related decline appear to differentially affect its subfields. Human and animal studies have suggested that altered sleep is associated with hippocampal atrophy. Yet, we know little about subfield specific effects of altered sleep in healthy aging and their effect on cognition. Here, in a sample of 118 older middle-aged and older adults (Mage = 63.25 y, range: 50-80 y), we examined the association between highly reliable hippocampal subfield and entorhinal cortex volumetry (n = 112), sleep measures derived from multi-night recordings of portable electroencephalography (n = 61) and episodic memory (n = 117). Objective sleep efficiency-but not self-report measures of sleep-was associated with entorhinal cortex volume when controlling for age. Age-related differences in subfield volumes were associated with objective sleep efficiency, but not with self-report measures of sleep. Moreover, participants characterized by a common multivariate pattern of subfield volumes that contributed to positive sleep-subfield volume associations, showed lower rates of forgetting. Our results showcase the benefit of objective sleep measures in identifying potential contributors of age-related differences in brain-behavior couplings.
Collapse
Affiliation(s)
- Attila Keresztes
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva M Bankó
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Noémi Báthori
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Vivien Tomacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Virág Anna Varga
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Nemecz
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Viktor Gál
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
2
|
Tang M, Wu Y, Liang J, Yang S, Huang Z, Hu J, Yang Q, Liu F, Li S. Gut microbiota has important roles in the obstructive sleep apnea-induced inflammation and consequent neurocognitive impairment. Front Microbiol 2024; 15:1457348. [PMID: 39712898 PMCID: PMC11659646 DOI: 10.3389/fmicb.2024.1457348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a state of sleep disorder, characterized by repetitive episodes of apnea and chronic intermittent hypoxia. OSA has an extremely high prevalence worldwide and represents a serious challenge to public health, yet its severity is frequently underestimated. It is now well established that neurocognitive dysfunction, manifested as deficits in attention, memory, and executive functions, is a common complication observed in patients with OSA, whereas the specific pathogenesis remains poorly understood, despite the likelihood of involvement of inflammation. Here, we provide an overview of the current state of the art, demonstrating the intimacy of OSA with inflammation and cognitive impairment. Subsequently, we present the recent findings on the investigation of gut microbiota alteration in the OSA conditions, based on both patients-based clinical studies and animal models of OSA. We present an insightful discussion on the role of changes in the abundance of specific gut microbial members, including short-chain fatty acid (SCFA)-producers and/or microbes with pathogenic potential, in the pathogenesis of inflammation and further cognitive dysfunction. The transplantation of fecal microbiota from the mouse model of OSA can elicit inflammation and neurobehavioral disorders in naïve mice, thereby validating the causal relationship to inflammation and cognitive abnormality. This work calls for greater attention on OSA and the associated inflammation, which require timely and effective therapy to protect the brain from irreversible damage. This work also suggests that modification of the gut microbiota using prebiotics, probiotics or fecal microbiota transplantation may represent a potential adjuvant therapy for OSA.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Yongliang Wu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Junyi Liang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuai Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Zuofeng Huang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Jing Hu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Qiong Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Pan L, Li H, Guo J, Ma C, Li L, Zhan W, Chen H, Wu Y, Jiang G, Li S. Expanded gray matter atrophy with severity stages of adult comorbid insomnia and sleep apnea. Sleep Med 2024; 124:191-200. [PMID: 39321626 DOI: 10.1016/j.sleep.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To investigate gray matter volume (GMV) changes in patients with comorbid insomnia and sleep apnea (COMISA) of differing severity and relationships between GMV alterations and clinical measures. METHODS Thirty-four COMISA patients and 24 healthy controls (HC) were recruited. All patients underwent structural MRI and completed measures related to respiration, sleep, mood, and cognition. COMISA patients were further divided into a mild and moderate COMISA (MC) and a severe COMISA (SC) group. Changes in GMV of COMISA patients were investigated via VBM. The voxel-wise differences in GMV were compared between HC group and COMISA group. Analysis of covariance (ANCOVA) was performed on individual GMV maps in MC, SC, and HC groups to further investigate effects of different stages of COMISA severity on GMV. Partial correlation analysis was then performed to analyze relationships between altered GMV and clinical measures. RESULTS GMV atrophy was mainly located in the temporal lobes and fusiform gyrus in COMISA group. The post-hoc analysis of the ANCOVA revealed temporal lobes and fusiform gyrus atrophy in MC and SC groups compared to HC and the temporal lobe atrophy was expanded in SC group based on cluster size. Moreover, the SC group showed GMV atrophy of the right amygdala compared to both MC and HC groups. Partial correlation analysis revealed positive relationships between the GMV and mood-and cognitive-related measures and negative correlation between GMV and respiration measure. CONCLUSIONS Our findings showed GMV atrophy expansion from temporal lobe to limbic system (right amygdala) as severity stages increase in COMISA patients. These findings contribute to our understanding of neurobiological mechanisms underlying different stages of severity in COMISA patients.
Collapse
Affiliation(s)
- Liping Pan
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Hui Li
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, PR China
| | - Jiawei Guo
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, PR China; Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, PR China
| | - Chao Ma
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, PR China
| | - Liming Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, PR China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, PR China
| | - Huiyu Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Yuting Wu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China; Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, PR China; Xiamen Humanity Hospital Fujian Medical University, Xiamen, PR China.
| | - Shumei Li
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China; Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, PR China.
| |
Collapse
|
4
|
Guillot P, Celle S, Barth N, Roche F, Perek N. 'Selected' Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood-Brain Barrier Function: A Preliminary Report. Int J Mol Sci 2024; 25:11058. [PMID: 39456840 PMCID: PMC11507461 DOI: 10.3390/ijms252011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) affects a large part of the aging population. It is characterized by chronic intermittent hypoxia and associated with neurocognitive dysfunction. One hypothesis is that the blood-brain barrier (BBB) functions could be altered by exosomes. Exosomes are nanovesicles found in biological fluids. Through the study of exosomes and their content in tau and amyloid beta (Aβ), the aim of this study was to show how exosomes could be used as biomarkers of OSAS and of their cognitive disorders. Two groups of 15 volunteers from the PROOF cohort were selected: severe apnea (AHI > 30) and control (AHI < 5). After exosome isolation from blood serum, we characterized and quantified them (CD81, CD9, CD63) by western blot and ELISAs and put them 5 h in contact with an in vitro BBB model. The apparent permeability of the BBB was measured using sodium-fluorescein and TEER. Cell ELISAs were performed on tight junctions (ZO-1, claudin-5, occludin). The amount of tau and Aβ proteins found in the exosomes was quantified using ELISAs. Compared to controls, OSAS patients had a greater quantity of exosomes, tau, and Aβ proteins in their blood sera, which induced an increase in BBB permeability in the model and was reflected by a loss of tight junction' expression. Elderly patients suffering severe OSAS released more exosomes in serum from the brain compartment than controls. Such exosomes increased BBB permeability. The impact of such alterations on the risk of developing cognitive dysfunction and/or neurodegenerative diseases is questioned.
Collapse
Affiliation(s)
- Pauline Guillot
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| | - Sebastien Celle
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Barth
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Chaire Santé des Ainés, Ingénierie de la Prévention, Université Jen Monnet, 42000 Saint-Etienne, France
| | - Frederic Roche
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Perek
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| |
Collapse
|
5
|
Guzel A, Salış O. The role of serum C-Fos and glial fibriller acidic protein levels in detecting the severity of obstructive sleep apnea. Sleep Breath 2024; 28:2295-2302. [PMID: 38836924 DOI: 10.1007/s11325-024-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Hypoxia and sleep fragmentations that develop during sleep cause central nervous system damage in patients with obstructive sleep apnea (OSA). This study investigates the relationship between OSA severity and glial fibrillary acidic protein (GFAP) and c-Fos, which are considered indicators of neuronal damage. METHODS The study included 84 participants (70 patients with OSA and 14 healthy individuals). All participants were evaluated with the Epworth Sleepiness Scale (ESS) before polysomnography (PSG), and serum GFAP and c-Fos values were measured after PSG. All participants were grouped according to the apnea-hypopnea index (AHI) score (control: AHI < 5, Mild OSA: 5 ≤ AHI < 15; moderate OSA: 15 ≤ AHI < 30; severe OSA: AHI ≥ 30). RESULTS The average age of the participants was 48.5 ± 11.4 years. According to AHI scoring, 14 healthy individuals (16.7%) were in the control group, and 70 patients (83.3%) were in OSA groups. The serum GFAP levels and c-Fos levels were increased in the OSA groups (7.1 ± 5.7 ng/mL and 7.9 ± 7.5 pg/mL respectively) compared to the control group (1.3 ± 0.4 ng/mL and 2.7 ± 1.4 pg/mL p < 0.001 and p < 0.01, respectively). There was a significant positive correlation between AHI and oxygen desaturation index (ODI) values, which indicate disease severity, and serum c-Fos (r: 0.381 and r:0.931, p < 0.01, respectively) and GFAP (r: 0.793 and r:0.745, p < 0.01, respectively) values. CONCLUSION Serum GFAP and c-Fos values, which are considered indicators of neuronal damage, can be used as a serum marker to determine disease severity in OSA.
Collapse
Affiliation(s)
- Aygul Guzel
- Department of Chest Disease, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Osman Salış
- Department of Biochemistry, Ondokuz Mayıs University Medical Faculty, Istanbul, Turkey
| |
Collapse
|
6
|
Zhang N, Peng K, Guo JX, Liu Q, Xiao AL, Jing H. Microstructural brain abnormalities and associated neurocognitive dysfunction in obstructive sleep apnea: a pilot study with diffusion kurtosis imaging. J Clin Sleep Med 2024; 20:1571-1578. [PMID: 38656791 PMCID: PMC11446125 DOI: 10.5664/jcsm.11184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
STUDY OBJECTIVES We assessed possible brain abnormalities in adult patients with moderate and severe obstructive sleep apnea using the mean kurtosis (MK) from diffusion kurtosis imaging and analyzed the correlation between MK and cognitive function. METHODS A total of 30 patients with moderate or severe obstructive sleep apnea and 30 healthy controls evaluated by the Montreal Cognitive Assessment scale were enrolled. All participants underwent diffusion kurtosis imaging and 3-dimensional T1-weighted imaging on a 3.0T magnetic resonance scanner. The MK values of gray and white matter brain regions were compared. Partial correlation analysis was used to analyze the correlation between respiratory sleep parameters/cognitive score and MK values in different brain regions. RESULTS Compared with the healthy controls, the MK of 20 brain regions (13 after false discovery rate correction) and cognitive scores in the obstructive sleep apnea group were significantly lower. In the obstructive sleep apnea group, apnea-hypopnea index was negatively correlated with the MK in the white matter of the right occipital lobe; lowest oxygen saturation was positively correlated with the MK in the bilateral parietal, precentral, and right postcentral cortex; total score on the Montreal Cognitive Assessment scale was positively correlated with MK in the left hippocampus; language function was positively correlated with MK in the white matter of the left parietal lobe; and delayed recall was positively correlated with the MK in right insula cortex and bilateral cingulate. After false discovery rate correction, only the correlations of lowest oxygen saturation with right precentral gyrus cortex and bilateral parietal cortex were significant. CONCLUSIONS MK values of diffusion kurtosis imaging may provide valuable information in assessing the neurological impacts of obstructive sleep apnea. CITATION Zhang N, Peng K, Guo J-X, Liu Q, Xiao A-L, Jing H. Microstructural brain abnormalities and associated neurocognitive dysfunction in obstructive sleep apnea: a pilot study with diffusion kurtosis imaging. J Clin Sleep Med. 2024;20(10):1571-1578.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Radiology, The Sixth Hospital of Shanxi Medical University (General Hospital of TISCO), Taiyuan, People’s Republic of China
| | - Kun Peng
- Department of Radiology, The Sixth Hospital of Shanxi Medical University (General Hospital of TISCO), Taiyuan, People’s Republic of China
| | - Jin-Xia Guo
- GE Healthcare, Beijing, People’s Republic of China
| | - Qing Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ai-Lian Xiao
- Department of Respiratory and Critical Care Medicine, The Sixth Hospital of Shanxi Medical University (General Hospital of TISCO), Taiyuan, People’s Republic of China
| | - Hui Jing
- Department of Radiology, The Sixth Hospital of Shanxi Medical University (General Hospital of TISCO), Taiyuan, People’s Republic of China
| |
Collapse
|
7
|
Feng Y, Wu J, Yuan M, Xu T, Li J, Hou D. Causal association between brain structure and obstructive sleep apnea: A mendelian randomization study. Sleep Med 2024; 122:14-19. [PMID: 39106615 DOI: 10.1016/j.sleep.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Previous studies have reported contradictory findings regarding the relationship between obstructive sleep apnea (OSA) and abnormal brain morphology. Furthermore, the causal relationship between OSA and brain morphology has not been clearly established. The aim of this study was to utilize Mendelian randomization (MR) analysis to investigate the impact of obstructive sleep apnea (OSA) on brain morphology and determine its potential causal relationship. METHODS Firstly, the inverse-variance weighted (IVW) method was employed to assess the causal effects of OSA on cortical surface area and brain structure volume. Additionally, two additional MR methods, namely weighted median and MR-Egger, were used to supplement the results from IVW. Subsequently, a reverse MR analysis was conducted to determine the direction of causality. Furthermore, sensitivity analyses were performed including Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. RESULTS The results of the study showed that OSA patients had a tendency towards decreased cortical surface area and hippocampal volume in the precuneus region compared to individuals without OSA, while the superior temporal cortical surface area showed an increase. The results from the weighted median and MR-Egger analyses were consistent with those from the IVW analysis. Sensitivity tests confirmed the reliability of the causal estimates. CONCLUSIONS This study provides preliminary evidence of an association between OSA and brain structure using large-scale genome-wide association data. The results demonstrate that OSA is associated with changes in brain structure. Therefore, individuals with OSA should be vigilant about the risks of related diseases due to alterations in brain tissue.
Collapse
Affiliation(s)
- Yanjing Feng
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China; Department of Neurology, Baoding No. 1 Central Hospital of Heibei Medical University, Baoding, Hebei, 071000, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Mingyang Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ting Xu
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jiaxin Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Deren Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
8
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Mohammadi M, Oghabian MA, Ghaderi S, Jalali M, Samadi S. Volumetric analysis of the hypothalamic subunits in obstructive sleep apnea. Brain Behav 2024; 14:e70026. [PMID: 39236146 PMCID: PMC11376441 DOI: 10.1002/brb3.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with structural brain damage and cognitive impairment. The hypothalamus plays a crucial role in regulating sleep and wakefulness. We aimed to evaluate hypothalamic subunit volumes in patients with OSA. METHODS We enrolled 30 participants (15 patients with OSA and 15 healthy controls (HC)). Patients with OSA underwent complete overnight polysomnography (PSG) examination. All the participants underwent MRI. The hypothalamic subunit volumes were calculated using a segmentation technique that trained a 3D convolutional neural network. RESULTS Although hypothalamus subunit volumes were comparable between the HC and OSA groups (lowest p = .395), significant negative correlations were found in OSA patients between BMI and whole left hypothalamus volume (R = -0.654, p = .008), as well as between BMI and left posterior volume (R = -0.556, p = .032). Furthermore, significant positive correlations were found between ESS and right anterior inferior volume (R = 0.548, p = .042), minimum SpO2 and the whole left hypothalamus (R = 0.551, p = .033), left tubular inferior volumes (R = 0.596, p = .019), and between the percentage of REM stage and left anterior inferior volume (R = 0.584, p = .022). CONCLUSIONS While there were no notable differences in the hypothalamic subunit volumes between the OSA and HC groups, several important correlations were identified in the OSA group. These relationships suggest that factors related to sleep apnea severity could affect hypothalamic structure in patients.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalali
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Samadi
- Sleep Breathing Disorders Research Center, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Brown A, Gervais NJ, Gravelsins L, O'Byrne J, Calvo N, Ramana S, Shao Z, Bernardini M, Jacobson M, Rajah MN, Einstein G. Effects of early midlife ovarian removal on sleep: Polysomnography-measured cortical arousal, homeostatic drive, and spindle characteristics. Horm Behav 2024; 165:105619. [PMID: 39178647 DOI: 10.1016/j.yhbeh.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) prior to age 48 is associated with elevated risk for both Alzheimer's disease (AD) and sleep disorders such as insomnia and sleep apnea. In early midlife, individuals with BSO show reduced hippocampal volume, function, and hippocampal-dependent verbal episodic memory performance associated with changes in sleep. It is unknown whether BSO affects fine-grained sleep measurements (sleep microarchitecture) and how these changes might relate to hippocampal-dependent memory. We recruited thirty-six early midlife participants with BSO. Seventeen of these participants were taking 17β-estradiol therapy (BSO+ET) and 19 had never taken ET (BSO). Twenty age-matched control participants with intact ovaries (AMC) were also included. Overnight at-home polysomnography recordings were collected, along with subjective sleep quality and hot flash frequency. Multivariate Partial Least Squares (PLS) analysis was used to assess how sleep varied between groups. Compared to AMC, BSO without ET was associated with significantly decreased time spent in non-rapid eye movement (NREM) stage 2 sleep as well as increased NREM stage 2 and 3 beta power, NREM stage 2 delta power, and spindle power and maximum amplitude. Increased spindle maximum amplitude was negatively correlated with verbal episodic memory performance. Decreased sleep latency, increased sleep efficiency, and increased time spent in rapid eye movement sleep were observed for BSO+ET. Findings suggest there is an association between ovarian hormone loss and sleep microarchitecture, which may contribute to poorer cognitive outcomes and be ameliorated by ET.
Collapse
Affiliation(s)
- Alana Brown
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9712 CP, the Netherlands.
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Jordan O'Byrne
- Psychology Department, University of Montreal, Montreal H3T 1J4, Canada; Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal H3G 1M8, Canada.
| | - Noelia Calvo
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Zhuo Shao
- Genetics Program, North York General Hospital, Toronto M2K 1E1, Canada; Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.
| | | | - Michelle Jacobson
- Princess Margaret Hospital, Toronto M5G 2C4, Canada; Women's College Hospital, Toronto M5S 1B2, Canada.
| | - M Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto M6A 2E1, Canada; Tema Genus, Linköping University, Linköping 581 83, Sweden.
| |
Collapse
|
11
|
Kong Y, Ji J, Zhan X, Yan W, Liu F, Ye P, Wang S, Tai J. Tet1-mediated 5hmC regulates hippocampal neuroinflammation via wnt signaling as a novel mechanism in obstructive sleep apnoea leads to cognitive deficit. J Neuroinflammation 2024; 21:208. [PMID: 39169375 PMCID: PMC11340128 DOI: 10.1186/s12974-024-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a sleep-disordered breathing characterized by intermittent hypoxia (IH) that may cause cognitive dysfunction. However, the impact of IH on molecular processes involved in cognitive function remains unclear. METHODS C57BL / 6 J mice were exposed to either normoxia (control) or IH for 6 weeks. DNA hydroxymethylation was quantified by hydroxymethylated DNA immunoprecipitation (hMeDIP) sequencing. ten-eleven translocation 1 (Tet1) was knocked down by lentivirus. Specifically, cognitive function was assessed by behavioral experiments, pathological features were assessed by HE staining, the hippocampal DNA hydroxymethylation was examined by DNA dot blot and immunohistochemical staining, while the Wnt signaling pathway and its downstream effects were studied using qRT-PCR, immunofluorescence staining, and Luminex liquid suspension chip analysis. RESULTS IH mice showed pathological changes and cognitive dysfunction in the hippocampus. Compared with the control group, IH mice exhibited global DNA hydroxylmethylation in the hippocampus, and the expression of three hydroxylmethylases increased significantly. The Wnt signaling pathway was activated, and the mRNA and 5hmC levels of Wnt3a, Ccnd2, and Prickle2 were significantly up-regulated. Further caused downstream neurogenesis abnormalities and neuroinflammatory activation, manifested as increased expression of IBA1 (a marker of microglia), GFAP (a marker of astrocytes), and DCX (a marker of immature neurons), as well as a range of inflammatory cytokines (e.g. TNFa, IL3, IL9, and IL17A). After Tet1 knocked down, the above indicators return to normal. CONCLUSION Activation of Wnt signaling pathway by hippocampal Tet1 is associated with cognitive dysfunction induced by IH.
Collapse
Affiliation(s)
- Yaru Kong
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Jie Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Weiheng Yan
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Fan Liu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pengfei Ye
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Tai
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China.
| |
Collapse
|
12
|
Zhang XF, Li YD, Li Y, Li Y, Xu D, Bi LL, Xu HB. Ventral subiculum promotes wakefulness through several pathways in male mice. Neuropsychopharmacology 2024; 49:1468-1480. [PMID: 38734818 PMCID: PMC11251017 DOI: 10.1038/s41386-024-01875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The ventral subiculum (vSUB), the major output structure of the hippocampal formation, regulates motivation, stress integration, and anxiety-like behaviors that rely on heightened arousal. However, the roles and underlying neural circuits of the vSUB in wakefulness are poorly known. Using in vivo fiber photometry and multichannel electrophysiological recordings in mice, we found that the vSUB glutamatergic neurons exhibited high activities during wakefulness. Moreover, activation of vSUB glutamatergic neurons caused an increase in wakefulness and anxiety-like behaviors and induced a rapid transition from sleep to wakefulness. In addition, optogenetic stimulation of vSUB glutamatergic terminals and retrograde-targeted chemogenetic activation of vSUB glutamatergic neurons revealed that vSUB promoted arousal by innervating the lateral hypothalamus (LH), nucleus accumbens (NAc) shell, and prefrontal cortex (PFC). Nevertheless, local microinjection of dopamine D1 or D2/D3 receptor antagonist blocked the wake-promoting effect induced by chemogenetic activation of vSUB pathways. Finally, chemogenetic inhibition of vSUB glutamatergic neurons decreased arousal. Altogether, our findings reveal a prominent contribution of vSUB glutamatergic neurons to the control of wakefulness through several pathways.
Collapse
Affiliation(s)
- Xue-Fen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yi-Dan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yue Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lin-Lin Bi
- Department of Pathology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China.
- Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Hai-Bo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
13
|
Nance RM, Fohner AE, McClelland RL, Redline S, Nick Bryan R, Desiderio L, Habes M, Longstreth WT, Schwab RJ, Wiemken AS, Heckbert SR. The Association of Upper Airway Anatomy with Brain Structure: The Multi-Ethnic Study of Atherosclerosis. Brain Imaging Behav 2024; 18:510-518. [PMID: 38194040 PMCID: PMC11222025 DOI: 10.1007/s11682-023-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Sleep apnea, affecting an estimated 1 in 4 American adults, has been reported to be associated with both brain structural abnormality and impaired cognitive function. Obstructive sleep apnea is known to be affected by upper airway anatomy. To better understand the contribution of upper airway anatomy to pathways linking sleep apnea with impaired cognitive function, we investigated the association of upper airway anatomy with structural brain abnormalities. Based in the Multi-Ethnic Study of Atherosclerosis, a longitudinal cohort study of community-dwelling adults, a comprehensive sleep study and an MRI of the upper airway and brain were performed on 578 participants. Machine learning models were used to select from 74 upper airway measures those measures most associated with selected regional brain volumes and white matter hyperintensity volume. Linear regression assessed associations between the selected upper airway measures, sleep measures, and brain structure. Maxillary divergence was positively associated with hippocampus volume, and mandible length was negatively associated with total white and gray matter volume. Both coefficients were small (coefficients per standard deviation 0.063 mL, p = 0.04, and - 7.0 mL, p < 0.001 respectively), and not affected by adjustment for sleep study measures. Self-reported snoring >2 times per week was associated with larger hippocampus volume (coefficient 0.164 mL, p = 0.007), and higher percentage of time in the N3 sleep stage was associated with larger total white and gray matter volume (4.8 mL, p = 0.004). Despite associations of two upper airway anatomy measures with brain volume, the evidence did not suggest that these upper airway and brain structure associations were acting primarily through the pathway of sleep disturbance.
Collapse
Affiliation(s)
- Robin M Nance
- University of Washington, Seattle, WA, USA.
- , 325 9th Ave, Box 359931, Seattle, WA, 98104, USA.
| | - Alison E Fohner
- Department of Epidemiology & Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Susan Redline
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - Richard J Schwab
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew S Wiemken
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Lui KK, Dave A, Sprecher KE, Chappel-Farley MG, Riedner BA, Heston MB, Taylor CE, Carlsson CM, Okonkwo OC, Asthana S, Johnson SC, Bendlin BB, Mander BA, Benca RM. Older adults at greater risk for Alzheimer's disease show stronger associations between sleep apnea severity in REM sleep and verbal memory. Alzheimers Res Ther 2024; 16:102. [PMID: 38725033 PMCID: PMC11080222 DOI: 10.1186/s13195-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.
Collapse
Affiliation(s)
- Kitty K Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Abhishek Dave
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Kate E Sprecher
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Miranda G Chappel-Farley
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Margo B Heston
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chase E Taylor
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Cynthia M Carlsson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
- Department of Cognitive Sciences, University of California, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Ruth M Benca
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Bao J, Zhao Z, Qin S, Cheng M, Wang Y, Li M, Jia P, Li J, Yu H. Elucidating the association of obstructive sleep apnea with brain structure and cognitive performance. BMC Psychiatry 2024; 24:338. [PMID: 38711061 PMCID: PMC11071327 DOI: 10.1186/s12888-024-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a pervasive, chronic sleep-related respiratory condition that causes brain structural alterations and cognitive impairments. However, the causal association of OSA with brain morphology and cognitive performance has not been determined. METHODS We conducted a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal relationship between OSA and a range of neurocognitive characteristics, including brain cortical structure, brain subcortical structure, brain structural change across the lifespan, and cognitive performance. Summary-level GWAS data for OSA from the FinnGen consortium was used to identify genetically predicted OSA. Data regarding neurocognitive characteristics were obtained from published meta-analysis studies. Linkage disequilibrium score regression analysis was employed to reveal genetic correlations between OSA and related traits. RESULTS Our MR study provided evidence that OSA was found to significantly increase the volume of the hippocampus (IVW β (95% CI) = 158.997 (76.768 to 241.227), P = 1.51e-04), with no heterogeneity and pleiotropy detected. Nominally causal effects of OSA on brain structures, such as the thickness of the temporal pole with or without global weighted, amygdala structure change, and cerebellum white matter change covering lifespan, were observed. Bidirectional causal links were also detected between brain cortical structure, brain subcortical, cognitive performance, and OSA risk. LDSC regression analysis showed no significant correlation between OSA and hippocampus volume. CONCLUSIONS Overall, we observed a positive association between genetically predicted OSA and hippocampus volume. These findings may provide new insights into the bidirectional links between OSA and neurocognitive features, including brain morphology and cognitive performance.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Zhiyang Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Shanmei Qin
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengjia Cheng
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Yiming Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Meng Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Pingping Jia
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Hongbo Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China.
| |
Collapse
|
16
|
Berisha DE, Rizvi B, Chappel-Farley MG, Tustison N, Taylor L, Dave A, Sattari NS, Chen IY, Lui KK, Janecek JC, Keator D, Neikrug AB, Benca RM, Yassa MA, Mander BA. Cerebrovascular pathology mediates associations between hypoxemia during rapid eye movement sleep and medial temporal lobe structure and function in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577469. [PMID: 38328085 PMCID: PMC10849660 DOI: 10.1101/2024.01.28.577469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Obstructive sleep apnea (OSA) is common in older adults and is associated with medial temporal lobe (MTL) degeneration and memory decline in aging and Alzheimer's disease (AD). However, the underlying mechanisms linking OSA to MTL degeneration and impaired memory remains unclear. By combining magnetic resonance imaging (MRI) assessments of cerebrovascular pathology and MTL structure with clinical polysomnography and assessment of overnight emotional memory retention in older adults at risk for AD, cerebrovascular pathology in fronto-parietal brain regions was shown to statistically mediate the relationship between OSA-related hypoxemia, particularly during rapid eye movement (REM) sleep, and entorhinal cortical thickness. Reduced entorhinal cortical thickness was, in turn, associated with impaired overnight retention in mnemonic discrimination ability across emotional valences for high similarity lures. These findings identify cerebrovascular pathology as a contributing mechanism linking hypoxemia to MTL degeneration and impaired sleep-dependent memory in older adults.
Collapse
Affiliation(s)
- Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Nicholas Tustison
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Lisa Taylor
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - David Keator
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
17
|
González KA, Tarraf W, Stickel AM, Kaur S, Agudelo C, Redline S, Gallo LC, Isasi CR, Cai J, Daviglus ML, Testai FD, DeCarli C, González HM, Ramos AR. Sleep duration and brain MRI measures: Results from the SOL-INCA MRI study. Alzheimers Dement 2024; 20:641-651. [PMID: 37772658 PMCID: PMC10840814 DOI: 10.1002/alz.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Sleep duration has been associated with dementia and stroke. Few studies have evaluated sleep pattern-related outcomes of brain disease in diverse Hispanics/Latinos. METHODS The SOL-INCA (Study of Latinos-Investigation of Neurocognitive Aging) magnetic resonance imaging (MRI) study recruited diverse Hispanics/Latinos (35-85 years) who underwent neuroimaging. The main exposure was self-reported sleep duration. Our main outcomes were total and regional brain volumes. RESULTS The final analytic sample included n = 2334 participants. Increased sleep was associated with smaller brain volume (βtotal_brain = -0.05, p < 0.01) and consistently so in the 50+ subpopulation even after adjusting for mild cognitive impairment status. Sleeping >9 hours was associated with smaller gray (βcombined_gray = -0.17, p < 0.05) and occipital matter volumes (βoccipital_gray = -0.18, p < 0.05). DISCUSSION We found that longer sleep duration was associated with lower total brain and gray matter volume among diverse Hispanics/Latinos across sex and background. These results reinforce the importance of sleep on brain aging in this understudied population. HIGHLIGHTS Longer sleep was linked to smaller total brain and gray matter volumes. Longer sleep duration was linked to larger white matter hyperintensities (WMHs) and smaller hippocampal volume in an obstructive sleep apnea (OSA) risk group. These associations were consistent across sex and Hispanic/Latino heritage groups.
Collapse
Affiliation(s)
- Kevin A. González
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease Research CenterUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Wassim Tarraf
- Department of Healthcare Sciences and Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Ariana M. Stickel
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sonya Kaur
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Christian Agudelo
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan Redline
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Linda C. Gallo
- Department of Psychology and South Bay Latino Research CenterSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Carmen R. Isasi
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jianwen Cai
- Department of BiostatisticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Martha L. Daviglus
- Institute for Minority Health ResearchCollege of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Fernando D. Testai
- Department of Neurology and RehabilitationUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Hector M. González
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease Research CenterUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Alberto R. Ramos
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
18
|
Lui K, Dave A, Sprecher K, Chappel-Farley M, Riedner B, Heston M, Taylor C, Carlsson C, Okonkwo O, Asthana S, Johnson S, Bendlin B, Mander B, Benca R. Older adults at greater risk for Alzheimer's disease show stronger associations between sleep apnea severity and verbal memory. RESEARCH SQUARE 2023:rs.3.rs-3683218. [PMID: 38076899 PMCID: PMC10705699 DOI: 10.21203/rs.3.rs-3683218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Background Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. Methods Eighty-one adults (mean age:61.7±6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. Results Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60+ years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. Conclusion Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.
Collapse
Affiliation(s)
- Kitty Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California, Irvine
| | - Kate Sprecher
- Department of Population Health Sciences, University of Wisconsin-Madison
| | | | - Brady Riedner
- Department of Psychiatry, University of Wisconsin-Madison
| | - Margo Heston
- Department of Medicine, University of Wisconsin-Madison
| | - Chase Taylor
- Department of Neuroscience, University of Kentucky
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison
| | - Sterling Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison
| | | | - Bryce Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine
| | - Ruth Benca
- Department of Psychiatry and Behavioral Medicine, Wake Forest University
| |
Collapse
|
19
|
Legault J, Thompson C, Moullec G, Baril AA, Martineau-Dussault MÈ, André C, Marchi NA, Cross N, Dang-Vu TT, Carrier J, Gosselin N. Age- and sex-specific associations between obstructive sleep apnea risk and cognitive decline in middle-aged and older adults: A 3-year longitudinal analysis of the Canadian longitudinal study on aging. Sleep Med 2023; 112:77-87. [PMID: 37832163 DOI: 10.1016/j.sleep.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Whether obstructive sleep apnea (OSA) increases the risk of cognitive decline and how sex and age influence this association is not clear. Here, we characterized the sex- and age-specific associations between OSA risk and 3-year cognitive change in middle-aged and older adults. METHODS We included 24,819 participants aged 45-85 (52% women) from the Canadian Longitudinal Study on Aging. OSA risk was measured at baseline using the STOP combined to body mass index (STOP-B). Neuropsychological tests assessed memory, executive functioning, and psychomotor speed at baseline and at 3-year follow-up. We conducted age- and sex-specific linear mixed models to estimate the predictive role of baseline STOP-B score on 3-year cognitive change. RESULTS Men at high-risk for OSA aged 45-59 years showed a steeper decline in psychomotor speed (+13.2 [95% CI: -1.6, 27.9]) compared to men at low-risk. Men at high-risk for OSA aged 60-69 showed a steeper decline in mental flexibility (-1.2 [-1.9, -0.5]) and processing speed (+0.6 [0.3, 0.9]) than those at low-risk. Women at high-risk for OSA aged 45-59 showed a steeper decline in processing speed (+0.1 [-0.2, 0.4]) than women at low-risk, while women at high-risk ≥70 years had a steeper decline in memory (-0.2 [-0.6, 0.1]) and processing speed (+1.0 [0.4, 1.5]). CONCLUSIONS Associations between OSA risk and cognitive decline over 3 years depend on age and sex. Being at high-risk for OSA is associated with a generalized cognitive decline in attention and processing speed, while a memory decline is specific to older women (≥70 years).
Collapse
Affiliation(s)
- Julie Legault
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Thompson
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada
| | - Gregory Moullec
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; École de santé publique, Département de médecine sociale et préventive, Université de Montréal, Montreal, QC, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Claire André
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Nicola Andrea Marchi
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nathan Cross
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal, Montreal, QC, Canada; Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Thien Thanh Dang-Vu
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l'Ile-de-Montréal, Montreal, QC, Canada; Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Julie Carrier
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Nadia Gosselin
- Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Chappel-Farley MG, Adams JN, Betzel RF, Janecek JC, Sattari NS, Berisha DE, Meza NJ, Niknazar H, Kim S, Dave A, Chen IY, Lui KK, Neikrug AB, Benca RM, Yassa MA, Mander BA. Medial temporal lobe functional network architecture supports sleep-related emotional memory processing in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564260. [PMID: 37961192 PMCID: PMC10634911 DOI: 10.1101/2023.10.27.564260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.
Collapse
Affiliation(s)
- Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, University of Indiana Bloomington, Bloomington IN, 47405
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Novelle J. Meza
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Hamid Niknazar
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Soyun Kim
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
21
|
André C, Kuhn E, Rehel S, Ourry V, Demeilliez-Servouin S, Palix C, Felisatti F, Champetier P, Dautricourt S, Yushkevich P, Vivien D, de La Sayette V, Chételat G, de Flores R, Rauchs G. Association of Sleep-Disordered Breathing and Medial Temporal Lobe Atrophy in Cognitively Unimpaired Amyloid-Positive Older Adults. Neurology 2023; 101:e370-e385. [PMID: 37258299 PMCID: PMC10435067 DOI: 10.1212/wnl.0000000000207421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sleep disordered breathing (SDB) has been related to amyloid deposition and an increased dementia risk. However, how SDB relates to medial temporal lobe neurodegeneration and subsequent episodic memory impairment is unclear. Our objective was to investigate the impact of amyloid positivity on the associations between SDB severity, medial temporal lobe subregions, and episodic memory performance in cognitively unimpaired older adults. METHODS Data were acquired between 2016 and 2020 in the context of the Age-Well randomized controlled trial of the Medit-Aging European project. Participants older than 65 years who were free of neurologic, psychiatric, or chronic medical diseases were recruited from the community. They completed a neuropsychological evaluation, in-home polysomnography, a Florbetapir PET, and an MRI, including a specific high-resolution assessment of the medial temporal lobe and hippocampal subfields. Multiple linear regressions were conducted to test interactions between amyloid status and SDB severity on the volume of MTL subregions, controlling for age, sex, education, and the ApoE4 status. Secondary analyses aimed at investigating the links between SDB, MTL subregional atrophy, and episodic memory performance at baseline and at a mean follow-up of 20.66 months in the whole cohort and in subgroups stratified according to amyloid status. RESULTS We included 122 cognitively intact community-dwelling older adults (mean age ± SD: 69.40 ± 3.85 years, 77 women, 26 Aβ+ individuals) in baseline analyses and 111 at follow-up. The apnea-hypopnea index interacted with entorhinal (β = -0.81, p < 0.001, pη2 = 0.19), whole hippocampal (β = -0.61, p < 0.001, pη2 = 0.10), subiculum (β = -0.56, p = 0.002, pη2 = 0.08), CA1 (β = -0.55, p = 0.002, pη2 = 0.08), and DG (β = -0.53, p = 0.003, pη2 = 0.08) volumes such that a higher sleep apnea severity was related to lower MTL subregion volumes in amyloid-positive individuals, but not in those who were amyloid negative. In the whole cohort, lower whole hippocampal (r = 0.27, p = 0.005) and CA1 (r = 0.28, p = 0.003) volumes at baseline were associated with worse episodic memory performance at follow-up. DISCUSSION Overall, we showed that SDB was associated with MTL atrophy in cognitively asymptomatic older adults engaged in the Alzheimer continuum, which may increase the risk of developing memory impairment over time. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Claire André
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Elizabeth Kuhn
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Stéphane Rehel
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Valentin Ourry
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Solène Demeilliez-Servouin
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Cassandre Palix
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Francesca Felisatti
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Pierre Champetier
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Sophie Dautricourt
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Paul Yushkevich
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Denis Vivien
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Vincent de La Sayette
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Gaël Chételat
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Robin de Flores
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Géraldine Rauchs
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France.
| |
Collapse
|
22
|
Lee MH, Sin S, Lee S, Wagshul ME, Zimmerman ME, Arens R. Cortical thickness and hippocampal volume in adolescent children with obstructive sleep apnea. Sleep 2023; 46:zsac201. [PMID: 36006869 PMCID: PMC9995789 DOI: 10.1093/sleep/zsac201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/07/2022] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Intermittent hypoxia and sleep fragmentation due to obstructive sleep apnea (OSA) may contribute to oxidative tissue damage and apoptotic neuronal cell death, inflammation, and intracellular edema in the brain. We examined whether OSA in overweight and obese adolescent children is associated with cortical thickness and hippocampal structure compared to overweight and obese controls and whether OSA severity is associated with measures of brain integrity. METHODS We calculated cortical thickness and hippocampal subfield volumes from T1-weighted images of 45 controls (age 15.43 ± 1.73 years, 21 male) and 53 adolescent children with OSA (age 15.26 ± 1.63 years, 32 male) to investigate the association of childhood OSA with the alteration of cortical structure and hippocampal subfield structural changes. In addition, we investigated the correlation between OSA severity and cortical thickness or hippocampal subfield volume using Pearson's correlation analysis. RESULTS We found cortical thinning in the right superior parietal area of adolescent children with OSA (cluster size 32.29 mm2, cluster-wise corrected p-value = .030) that was negatively correlated with apnea-hypopnea index (AHI) (R=-0.27, p-value = .009) and arousal index (R=-0.25, p-value = .014). In addition, the volume of the right subiculum-head area of the hippocampus of adolescent children with OSA was larger than controls (0.19 ± 0.02 ml vs. 0.18 ± 0.02 ml, β = 13.79, false discovery rate corrected p-value = .044), and it was positively correlated with AHI (R = 0.23, p-value = .026) and arousal index (R = 0.31, p-value = .002). CONCLUSIONS Our findings provide evidence for OSA-associated brain structure alterations in adolescent children prior to the onset of treatment that likely have important implications for timely intervention and continued monitoring of health outcomes.
Collapse
Affiliation(s)
- Min-Hee Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Sanghun Sin
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/ Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Seonjoo Lee
- Department of Biostatistics and Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mark E Wagshul
- Department of Radiology, Albert Einstein College of Medicine, Gruss MRRC, Bronx, NY 10467, USA
| | | | - Raanan Arens
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/ Albert Einstein College of Medicine, Bronx, NY 10467, USA
| |
Collapse
|
23
|
Harper RM. Exploring the brain with sleep-related injuries, and fixing it. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad007. [PMID: 37193272 PMCID: PMC10148654 DOI: 10.1093/sleepadvances/zpad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Indexed: 05/18/2023]
Abstract
The focus of my research efforts rests with determining dysfunctional neural systems underlying disorders of sleep, and identifying interventions to overcome those disorders. Aberrant central and physiological control during sleep exerts serious consequences, including disruptions in breathing, motor control, blood pressure, mood, and cognition, and plays a major role in sudden infant death syndrome, congenital central hypoventilation, and sudden unexpected death in epilepsy, among other concerns. The disruptions can be traced to brain structural injury, leading to inappropriate outcomes. Identification of failing systems arose from the assessment of single neuron discharge in intact, freely moving and state-changing human and animal preparations within multiple systems, including serotonergic action and motor control sites. Optical imaging of chemosensitive, blood pressure and other breathing regulatory areas, especially during development, were useful to show integration of regional cellular action in modifying neural output. Identification of damaged neural sites in control and afflicted humans through structural and functional magnetic resonance imaging procedures helped to identify the sources of injury, and the nature of interactions between brain sites that compromise physiological systems and lead to failure. Interventions to overcome flawed regulatory processes were developed, and incorporate noninvasive neuromodulatory means to recruit ancient reflexes or provide peripheral sensory stimulation to assist breathing drive to overcome apnea, reduce the frequency of seizures, and support blood pressure in conditions where a failure to perfuse can lead to death.
Collapse
Affiliation(s)
- Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Fauria K, Minguillon C, Knezevic I, Tort-Colet N, Stankeviciute L, Hernández L, Rădoi A, Deulofeu C, Fuentes-Julián S, Turull I, Fusté D, Sánchez-Benavides G, Arenaza-Urquijo EM, Suárez-Calvet M, Holst SC, Garcés P, Mueggler T, Zetterberg H, Blennow K, Arqueros A, Iranzo Á, Domingo Gispert J, Molinuevo JL, Grau-Rivera O. Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study. BMJ Open 2022; 12:e067159. [PMID: 36585141 PMCID: PMC9809234 DOI: 10.1136/bmjopen-2022-067159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep. METHODS AND ANALYSIS We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers. ETHICS AND DISSEMINATION The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04932473.
Collapse
Affiliation(s)
- Karine Fauria
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Iva Knezevic
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Andreea Rădoi
- Barcelonaβeta Brain Research Center, Barcelona, Spain
| | | | | | - Israel Turull
- Barcelonaβeta Brain Research Center, Barcelona, Spain
| | - David Fusté
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Pasqual Maragall Foundation, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Aurora Arqueros
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álex Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
25
|
She N, Shi Y, Feng Y, Ma L, Yuan Y, Zhang Y, Cao Z, Chen X, Zhao B, Liu H, Ren X. NLRP3 inflammasome regulates astrocyte transformation in brain injury induced by chronic intermittent hypoxia. BMC Neurosci 2022; 23:70. [PMID: 36437451 PMCID: PMC9703760 DOI: 10.1186/s12868-022-00756-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is mainly characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), the latter one being associated with multiple organ injury. Recently, OSA-induced cognition dysfunction has received extensive attention from scholars. Astrocytes are essential in neurocognitive deficits via A1/A2 phenotypic changes. Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is considered the most important factor inducing and maintaining neuroinflammation. However, whether the NLRP3 regulates the A1/A2 transformation of astrocytes in CIH-related brain injury remains unclear. METHODS We constructed an OSA-related CIH animal model and assessed the rats' learning ability in the Morris water maze; the histopathological assessment was performed by HE and Nissl staining. The expression of GFAP (astrocyte marker), C3d (A1-type astrocyte marker), and S100a10 (A2-type astrocyte marker) were detected by immunohistochemistry and immunofluorescence. Western blotting and RT-qPCR were used to evaluate the changes of A1/A2 astrocyte-related protein and NLRP3/Caspase-1/ASC/IL-1β. RESULTS The learning ability of rats decreased under CIH. Further pathological examination revealed that the neurocyte in the hippocampus were damaged. The cell nuclei were fragmented and dissolved, and Nissl bodies were reduced. Immunohistochemistry showed that astrocytes were activated, and morphology and number of astrocytes changed. Immunofluorescence, Western blotting and RT-qPCR showed that the expression of C3d was increased while S100a10 was decreased. Also, the expression of the inflammasome (NLRP3/Caspase-1/ASC/IL-1β) was increased. After treatment of MCC950 (a small molecule inhibitor of NLRP3), the damage of nerve cells was alleviated, the Nissl bodies increased, the activation of astrocytes was reduced, and the expression of A2-type astrocytes was increased. In contrast, A1-type astrocytes decreased, and the expression of inflammasome NLRP3/Caspase-1/ASC/IL-1β pathway-related proteins decreased. CONCLUSION The NLRP3 inflammasome could regulate the A1/A2 transformation of astrocytes in brain injury induced by CIH.
Collapse
Affiliation(s)
- Ningning She
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yewen Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yani Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Lina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yuqi Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Yitong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Zine Cao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Xi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Bingjie Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Haiqin Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
26
|
Martineau-Dussault MÈ, André C, Daneault V, Baril AA, Gagnon K, Blais H, Petit D, Montplaisir JY, Lorrain D, Bastien C, Hudon C, Descoteaux M, Boré A, Theaud G, Thompson C, Legault J, Martinez Villar GE, Lafrenière A, Lafond C, Gilbert D, Carrier J, Gosselin N. Medial temporal lobe and obstructive sleep apnea: Effect of sex, age, cognitive status and free-water. Neuroimage Clin 2022; 36:103235. [PMID: 36272339 PMCID: PMC9668668 DOI: 10.1016/j.nicl.2022.103235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Medial temporal structures, namely the hippocampus, the entorhinal cortex and the parahippocampal gyrus, are particularly vulnerable to Alzheimer's disease and hypoxemia. Here, we tested the associations between obstructive sleep apnea (OSA) severity and medial temporal lobe volumes in 114 participants aged 55-86 years (35 % women). We also investigated the impact of sex, age, cognitive status, and free-water fraction correction on these associations. Increased OSA severity was associated with larger hippocampal and entorhinal cortex volumes in women, but not in men. Greater OSA severity also correlated with increased hippocampal volumes in participants with amnestic mild cognitive impairment, but not in cognitively unimpaired participants, regardless of sex. Using free-water corrected volumes eliminated all significant associations with OSA severity. Therefore, the increase in medial temporal subregion volumes may possibly be due to edema. Whether these structural manifestations further progress to neuronal death in non-treated OSA patients should be investigated.
Collapse
Affiliation(s)
- Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Centre de recherche de l’Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de l’Île-de-Montréal, Montreal, Canada
| | - Andrée-Ann Baril
- Department of Psychiatry, McGill University, Montreal, Canada,Douglas Mental Health University Institute, CIUSSS de l'Ouest-de-l'Ile-de-Montréal, Montreal, Canada
| | - Katia Gagnon
- Hôpital en santé mentale Rivière-des-Prairies, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychiatry, Université de Montréal, Montreal, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychiatry, Université de Montréal, Montreal, Canada
| | - Jacques Y. Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychiatry, Université de Montréal, Montreal, Canada
| | - Dominique Lorrain
- Research Center on Aging, Institut universitaire de gériatrie de Sherbrooke, CIUSSS de l’Estrie, Sherbrooke, Canada,Department of Psychology, Université de Sherbrooke, Sherbrooke, Canada
| | - Célyne Bastien
- CERVO Research Center, Quebec City, Canada,École de psychologie, Université Laval, Quebec City, Canada
| | - Carol Hudon
- CERVO Research Center, Quebec City, Canada,École de psychologie, Université Laval, Quebec City, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada,Imeka Solutions Inc, Sherbrooke, Canada
| | - Arnaud Boré
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de l’Île-de-Montréal, Montreal, Canada,Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada,Imeka Solutions Inc, Sherbrooke, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada,Imeka Solutions Inc, Sherbrooke, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada
| | - Julie Legault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Guillermo E. Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Chantal Lafond
- Department of Medecine, Université de Montréal, Montreal, Canada,Department of Pneumonology, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada
| | - Danielle Gilbert
- Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montréal, Montreal, Canada,Department of Radiology, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada,Centre de recherche de l’Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de l’Île-de-Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Ile-de-Montréal, Montreal, Canada,Department of Psychology, Université de Montréal, Montreal, Canada,Corresponding author at: Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, CIUSSS du Nord-de l’Ile-de-Montréal, 5400 Gouin Blvd. West, Office J-5135, Montreal, Quebec H4J 1C5, Canada.
| |
Collapse
|
27
|
Qiu K, Mao M, Hu Y, Yi X, Zheng Y, Ying Z, Cheng D, Rao Y, Zhang J, Mu X, Ren C, Xu Y, Zhang W, Xu W, Zhao Y, Ren J. Gender-specific association between obstructive sleep apnea and cognitive impairment among adults. Sleep Med 2022; 98:158-166. [PMID: 35870305 DOI: 10.1016/j.sleep.2022.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study aims to explore the gender-specific association between obstructive sleep apnea (OSA) and cognitive impairment. METHODS Participants from UK biobank who have completed at least one of the five baseline cognitive tests (visuospatial memory, prospective memory, fluid intelligence, short numeric memory and reaction time) were included, which were initially divided into two groups based on gender and were further categorized into three subgroups: (1) OSA, (2) self-reported snoring but without OSA, and (3) healthy controls (without OSA or snoring). Multivariable regression analysis was performed to examine the associations among snoring, OSA and performance of each of the five cognitive domains. RESULTS A total of 267,889 participants (47% male, mean age: 57 years old) were included in our study. In the multivariable regression analysis, female participants in the OSA group had a higher risk of having poor prospective memory (OR: 1.24, 95% CI: 1.02~1.50, p = 0.03). Meanwhile, among female participants, OSA were inversely associated with the performances of fluid intelligence (β: 0.29, 95% CI: 0.46~-0.13, p < 0.001) and short-numeric memory (β: 0.14, 95% CI: 0.35~0.08, p = 0.02). Besides, age-related subgroup analyses showed that these associations were largely reserved in younger (<65 years old) female participants rather than older (≥65 years old) female participants. In contrast, among male participants, no significant association was observed between OSA and impairment of the five cognitive domains. CONCLUSIONS OSA was significantly associated with cognitive impairment at certain dimensions in female participants rather than in male participants, indicating that more special attention and timely interventions should be given to younger female OSA patients to prevent further cognitive impairment.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
| | - Minzi Mao
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Yi
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yongbo Zheng
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhiye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Rao
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jun Zhang
- Lang Zhong People's Hospital, Lang Zhong, Sichuan, China
| | - Xiaosong Mu
- Lang Zhong People's Hospital, Lang Zhong, Sichuan, China
| | - Chuanming Ren
- Affiliated Hospital of Traditional Chinese Medicine of Chongqing Three Gorges Medical College, Chongqing, China
| | - Yanhong Xu
- Department of Oto-Rhino-Laryngology, Yaan People's Hospital, Yaan, Sichuan, China
| | - Wei Zhang
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, Toronto, Ontario, Canada.
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jianjun Ren
- Department of Oto-Rhino-Laryngology, and National Clinical Research Center for Geriatrics, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Lee MH, Lee SK, Kim S, Kim REY, Nam HR, Siddiquee AT, Thomas RJ, Hwang I, Yoon JE, Yun CH, Shin C. Association of Obstructive Sleep Apnea With White Matter Integrity and Cognitive Performance Over a 4-Year Period in Middle to Late Adulthood. JAMA Netw Open 2022; 5:e2222999. [PMID: 35857321 PMCID: PMC9301517 DOI: 10.1001/jamanetworkopen.2022.22999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Obstructive sleep apnea (OSA) is associated with cognitive impairment and brain structural alterations, but longitudinal outcomes are understudied. OBJECTIVE To examine the associations of OSA with cognition and white matter (WM) integrity over a 4-year period. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted in a community-based adult population among participants who had both baseline (2011-2014) and 4-year follow-up (2015-2018) polysomnography, diffusion tensor imaging, and cognitive assessment data. Participants with neurological disorders, anomalous findings on brain magnetic resonance imaging, or inadequate quality of the evaluations were excluded. Data were analyzed from March to November 2021. EXPOSURES Participants were categorized depending on the presence vs absence of OSA at baseline and follow-up polysomnographic analysis. MAIN OUTCOMES AND MEASURES The main outcomes were proportional changes over a 4-year period in neuropsychological performance and WM integrity. The neuropsychological assessment battery included verbal and visual memory, verbal fluency, Digit Symbol-coding, Trail Making Test-A, and Stroop Test. WM integrity was assessed by fractional anisotropy, axial, and radial diffusivity. To examine interactions with age and sex, participants were subgrouped by age older than 60 years vs 60 years or younger and men vs women. RESULTS A total of 1998 individuals were assessed for eligibility, and 888 were excluded based on exclusion criteria, leaving 1110 participants (mean [SD] age, 58.0 [6.0] years; 517 [46.6%] men) for analysis, including 458 participants grouped as OSA-free, 72 participants with resolved OSA, 163 participants with incident OSA, and 417 participants with persistent OSA. Incident OSA was associated with altered WM integrity and with concomitant changes in sustained attention compared with participants without OSA (eg, change in Digit Symbol-coding test score, -3.2% [95% CI, -5.2% to -1.2%]). Participants with resolved OSA showed better visual recall at the follow-up (change in Visual Reproduction-immediate recall test, 17.5% [95% CI, 8.9% to 26.1%]; change in Visual Reproduction-delayed recall test, 33.1% [95% CI, 11.3% to 54.9%]), with concordant changes in diffusion parameters at the relevant anatomic areas. In the older group only (age >60 years), persistent OSA was associated with altered WM integrity and cognition (eg, Visual Reproduction-recognition test: β = -24.2 [95% CI, -40.7 to -7.7]). Sex also was associated with modifying the association of OSA with WM integrity of the left posterior internal capsule, the left genu of corpus callosum, and the right middle cerebellar peduncle only in men and with cognition only in women (eg, Visual Reproduction-immediate recall test: β = 33.4 [95% CI, 19.1 to 47.7]). CONCLUSIONS AND RELEVANCE These findings suggest that dynamic changes in OSA status were significantly associated with WM integrity and cognition, which varied by age and sex. It is possible that adequate interventions for OSA could better preserve brain health in middle to late adulthood.
Collapse
Affiliation(s)
- Min-Hee Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Soriul Kim
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Regina E. Y. Kim
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hye Ryeong Nam
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ali T. Siddiquee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Inha Hwang
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jee-Eun Yoon
- Department of Neurology, Uijeongbu Eulji Medical Center, Uijeongbu, Republic of Korea
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
- Department of Pulmonary Sleep and Critical Care Medicine Disorder Center, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
29
|
Liu X, Chen L, Duan W, Li H, Kong L, Shu Y, Li P, Li K, Xie W, Zeng Y, Peng D. Abnormal Functional Connectivity of Hippocampal Subdivisions in Obstructive Sleep Apnea: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:850940. [PMID: 35546892 PMCID: PMC9082679 DOI: 10.3389/fnins.2022.850940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 01/16/2023] Open
Abstract
The hippocampus is involved in various cognitive function, including memory. Hippocampal structural and functional abnormalities have been observed in patients with obstructive sleep apnoea (OSA), but the functional connectivity (FC) patterns among hippocampal subdivisions in OSA patients remain unclear. The purpose of this study was to investigate the changes in FC between hippocampal subdivisions and their relationship with neurocognitive function in male patients with OSA. Resting-state fMRI were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers. The hippocampus was divided into anterior, middle, and posterior parts, and the differences in FC between hippocampal subdivisions and other brain regions were determined. Correlation analysis was used to explore the relationships between abnormal FC of hippocampal subdivisions and clinical characteristics in patients with OSA. Our results revealed increased FC in the OSA group between the left anterior hippocampus and left middle temporal gyrus; between the left middle hippocampus and the left inferior frontal gyrus, right anterior central gyrus, and left anterior central gyrus; between the left posterior hippocampus and right middle frontal gyrus; between the right middle hippocampus and left inferior frontal gyrus; and between the right posterior hippocampus and left middle frontal gyrus. These FC abnormalities predominantly manifested in the sensorimotor network, fronto-parietal network, and semantic/default mode network, which are closely related to the neurocognitive impairment observed in OSA patients. This study advances our understanding of the potential pathophysiological mechanism of neurocognitive dysfunction in OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenfeng Duan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Hamilton MJ, Atalaia A, McLean J, Cumming SA, Evans JJ, Ballantyne B, Jampana R, The Scottish Myotonic Dystrophy Consortium, Longman C, Livingston E, van der Plas E, Koscik T, Nopoulos P, Farrugia ME, Monckton DG. Clinical and neuroradiological correlates of sleep in myotonic dystrophy type 1. Neuromuscul Disord 2022; 32:377-389. [PMID: 35361525 DOI: 10.1016/j.nmd.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Abnormalities of sleep are common in myotonic dystrophy type 1 (DM1), but few previous studies have combined polysomnography with detailed clinical measures and brain imaging. In the present study, domiciliary polysomnography, symptom questionnaires and cognitive evaluation were undertaken in 39 DM1-affected individuals. Structural brain MRI was completed in those without contra-indication (n = 32). Polysomnograms were adequate for analysis in 36 participants. Sleep efficiency was reduced, and sleep architecture altered in keeping with previous studies. Twenty participants (56%) had moderate or severe sleep-disordered breathing (apnoea-hypopnoea index [AHI] ≥ 15). In linear modelling, apnoeas were positively associated with increasing age and male sex. AHI ≥ 15 was further associated with greater daytime pCO2 and self-reported physical impairment, somnolence and fatigue. Percentage REM sleep was inversely associated with cerebral grey matter volume, stage 1 sleep was positively associated with occipital lobe volume and stage 2 sleep with amygdala volume. Hippocampus volume was positively correlated with self-reported fatigue and somnolence. Linear relationships were also observed between measures of sleep architecture and cognitive performance. Findings broadly support the hypothesis that changes in sleep architecture and excessive somnolence in DM1 reflect the primary disease process in the central nervous system.
Collapse
Affiliation(s)
- Mark J Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK; Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Antonio Atalaia
- Sorbonne Université, Inserm, Center of Research in Myology, UMRS 974, Institut de Myologie, G.H . Pitié-Salpêtrière, Paris, France
| | - John McLean
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jonathan J Evans
- Institute of Health and Wellbeing, University of Glasgow, Gartnavel Royal Hospital, Glasgow, UK G12 0XH
| | - Bob Ballantyne
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Ravi Jampana
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | | | - Cheryl Longman
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Eric Livingston
- Department of Respiratory Medicine, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Timothy Koscik
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Peggy Nopoulos
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
31
|
Chappel-Farley MG, Mander BA, Neikrug AB, Stehli A, Nan B, Grill JD, Yassa MA, Benca RM. Symptoms of obstructive sleep apnea are associated with less frequent exercise and worse subjective cognitive function across adulthood. Sleep 2022; 45:zsab240. [PMID: 34604910 PMCID: PMC8919199 DOI: 10.1093/sleep/zsab240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/15/2021] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES To determine whether subjective measures of exercise and sleep are associated with cognitive complaints and whether exercise effects are mediated by sleep. METHODS This study analyzed questionnaire data from adults (18-89) enrolled in a recruitment registry. The Cognitive Function Instrument (CFI) assessed cognitive complaints. Medical Outcomes Study Sleep Scale (MOS-SS) subscales and factor scores assessed sleep quality, daytime sleepiness, nighttime disturbance, and insomnia and obstructive sleep apnea (OSA)-like symptoms. Exercise frequency was defined as the weekly number of exercise sessions. Exercise frequency, MOS-SS subscales, and factor scores were examined as predictors of CFI score, adjusting for age, body mass index, education, sex, cancer diagnosis, antidepressant usage, psychiatric conditions, and medical comorbidities. Analyses of covariance examined the relationship between sleep duration groups (short, mid-range, and long) and CFI score, adjusting for covariates. Mediation by sleep in the exercise-CFI score relationship was tested. RESULTS Data from 2106 adults were analyzed. Exercise and MOS-SS subscales and factor scores were associated with CFI score. Higher Sleep Adequacy scores were associated with fewer cognitive complaints, whereas higher Sleep Somnolence, Sleep Disturbance, Sleep Problems Index I, Sleep Problems Index II, and factor scores were associated with more cognitive complaints. MOS-SS subscales and factor scores, except Sleep Disturbance and the insomnia factor score, mediated the association between exercise and cognitive complaints. CONCLUSIONS The relationship between exercise frequency and subjective cognitive performance is mediated by sleep. In particular, the mediation effect appears to be driven by symptoms possibly suggestive of OSA which are negatively associated with exercise engagement, sleep quality, daytime sleepiness, and subjective cognitive performance.
Collapse
Affiliation(s)
- Miranda G Chappel-Farley
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Bryce A Mander
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
| | - Ariel B Neikrug
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Annamarie Stehli
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Bin Nan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Joshua D Grill
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Ruth M Benca
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Pal A, Martinez F, Akey MA, Aysola RS, Henderson LA, Malhotra A, Macey PM. Breathing rate variability in obstructive sleep apnea during wakefulness. J Clin Sleep Med 2022; 18:825-833. [PMID: 34669569 PMCID: PMC8883075 DOI: 10.5664/jcsm.9728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is defined by pauses in breathing during sleep, but daytime breathing dysregulation may also be present. Sleep may unmask breathing instability in OSA that is usually masked by behavioral influences during wakefulness. A breath-hold (BH) challenge has been used to demonstrate breathing instability. One measure of breathing stability is breathing rate variability (BRV). We aimed to assess BRV during rest and in response to BH in OSA. METHODS We studied 62 participants (31 with untreated OSA: respiratory event index [mean ± SD] 20 ± 15 events/h, 12 females, age 51 ± 14 years, body mass index [BMI] 32 ± 8 kg/m2; 31 controls: 17 females, age 47 ± 13 years; BMI 26 ± 4 kg/m2). Breathing movements were collected using a chest belt for 5 minutes of rest and during a BH protocol (60 seconds baseline, 30 seconds BH, 90 seconds recovery, 3 repeats). From the breathing movements, we calculated median breathing rate (BR) and interquartile BRV at rest. We calculated change in BRV during BH recovery from baseline. Group comparisons of OSA vs control were conducted using analysis of covariance with age, sex, and BMI as covariates. RESULTS We found 10% higher BRV in OSA vs controls (P < .05) during rest. In response to BH, BRV increased 7% in OSA vs 1% in controls (P < .001). Resting BR was not significantly different in OSA and controls, and sex and age did not have any significant interaction effects. BMI was associated with BR at rest (P < .05) and change in BRV with BH (P < .001), but no significant BMI-by-group interaction effect was observed. CONCLUSIONS The findings suggest breathing instability as reflected by BRV is high in OSA during wakefulness, both at rest and in response to a stimulus. Breathing instability together with high blood pressure variability in OSA may reflect a compromised cardiorespiratory consequence in OSA during wakefulness. CITATION Pal A, Martinez F, Akey MA, et al. Breathing rate variability in obstructive sleep apnea during wakefulness. J Clin Sleep Med. 2022;18(3):825-833.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, California
| | - Fernando Martinez
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, California
| | - Margaret A. Akey
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, California
| | - Ravi S. Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - Luke A. Henderson
- Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Atul Malhotra
- Department of Pulmonary Critical Care and Sleep Medicine, University of California, San Diego, San Diego, California
| | - Paul M. Macey
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, California,Address correspondence to: Paul M. Macey, PhD, UCLA School of Nursing, 700 Tiverton Avenue, Los Angeles, CA 90095-1702; Tel: (424) 234-3244;
| |
Collapse
|
33
|
Feng Y, Ma L, Chen X, Zhang Y, Cao Z, Yuan Y, Xie Y, Liu H, Shi Y, Ren X. Relationship between serum brain-derived neurotrophic factor and cognitive impairment in children with sleep-disordered breathing. Front Pediatr 2022; 10:1027894. [PMID: 36683819 PMCID: PMC9849753 DOI: 10.3389/fped.2022.1027894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND As an important neuroprotective factor, the brain-derived neurotrophic factor (BDNF) may have a key role in cognitive impairment in children with sleep-disordered breathing (SDB). The main aim of this study was to compare the levels of BDNF and tyrosine kinase receptor B (TrkB) in normal children and those with obstructive sleep apnea (OSA) and primary snoring (PS) and to explore a possible link between BDNF/TrkB, inflammation, and SDB with cognitive impairment in children. METHODS A total of 44 OSA children and 35 PS children who completed polysomnography between October 2017 and October 2019 were enrolled. At the same time, 40 healthy children during the same period were included as a control. Enzyme-linked immunosorbent assay was used to measure serum indices of BDNF, TrkB, interleukin-1beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Correlation and pooled analyses were performed between the cognitive scores and four serological indicators. Logistic regression was used to analyze the risk factors for cognitive impairment. RESULTS Significant differences were found in serum BDNF, TrkB, IL-1β, and TNF-α between the three groups (all P < 0.01). The serum BDNF and TrkB in the OSA and PS groups were lower than those in the control group, whereas the serum IL-1β and TNF-α were higher than those in the control group (all P < 0.05). Moreover, among these four indices, the strongest correlation was found between BDNF and the Chinese Wechsler Intelligence Scale (all P < 0.05). Logistic regression analysis revealed a correlation between OSA status, TrkB, and course of mouth breathing and cognitive status. CONCLUSION The levels of serum BDNF and TrkB were related to cognitive impairment in children with SDB. Also, BDNF and TrkB could be used as noninvasive and objective candidate markers and predictive indices of cognitive impairment in children with SDB.
Collapse
Affiliation(s)
- Yani Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yitong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zine Cao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuqi Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yushan Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haiqin Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yewen Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Yang L, Yu S, Zhang L, Peng W, Hu Y, Feng F, Yang J. Gender Differences in Hippocampal/Parahippocampal Functional Connectivity Network in Patients Diagnosed with Chronic Insomnia Disorder. Nat Sci Sleep 2022; 14:1175-1186. [PMID: 35761887 PMCID: PMC9233514 DOI: 10.2147/nss.s355922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gender differences in hippocampal and parahippocampal gyrus (HIP/PHG) volumes have been reported in sleep disorders. Therefore, this study investigated the moderating effect of gender on the relationship between chronic insomnia disorder (CID) and the HIP/PHG functional connectivity (FC) network. METHODS For this study, 110 patients diagnosed with CID (43 men and 67 women) and 60 matched good sleep control (GSC) (22 men and 38 women) were recruited. These participants underwent resting-state functional magnetic resonance imaging scans, after which a 2 × 2 (diagnosis × gender) analysis of variance was used to detect the main and interactive effect of insomnia and gender on their HIP/PHG FC networks. RESULTS Although the main effect of insomnia on the HIP FC network was observed in the bilateral cerebellar tonsil, superior frontal gyrus, and the medial orbitofrontal cortex, effects on the PHG FC network were observed in the bilateral HIP and amygdala. In contrast, the main effect of gender on the HIP FC network was observed in the right cerebellum posterior lobe, the dorsolateral prefrontal cortex (DLPFC), and the supplemental motor area. Of note, the interactive effect of both insomnia and gender was observed in FCs between the right HIP and the dorsal anterior cingulate cortex, and then between the right PHG and DLPFC. Moreover, the FC between the right PHG and left DLPFC was positively associated with anxiety scores in the female patients with CID. CONCLUSION Our study identified that gender differences in brain connectivity existed between the HIP/PHG and executive control network in patients diagnosed with CID, these results will eventually extend our understanding of the important role that gender plays in the pathophysiology of CID.
Collapse
Affiliation(s)
- Lili Yang
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People's Republic of China
| | - Siyi Yu
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People's Republic of China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Leixiao Zhang
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Peng
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People's Republic of China
| | - Youping Hu
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People's Republic of China
| | - Fen Feng
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People's Republic of China
| | - Jie Yang
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, People's Republic of China
| |
Collapse
|
35
|
Kim REY, Abbott RD, Kim S, Thomas RJ, Yun CH, Kim H, Johnson H, Shin C. Sleep Duration, Sleep Apnea, and Gray Matter Volume. J Geriatr Psychiatry Neurol 2022; 35:47-56. [PMID: 33511901 DOI: 10.1177/0891988720988918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.
Collapse
Affiliation(s)
- Regina Eun Young Kim
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Robert Douglas Abbott
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| | - Soriul Kim
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| | - Robert Joseph Thomas
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si Gyeonggi-do, South Korea
| | - Chang-Ho Yun
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Hyun Kim
- Department of Clinical Psychology, Boston University, Boston, MA, USA
| | - Hans Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Chol Shin
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| |
Collapse
|
36
|
Abstract
Abstract
Purpose of Review
Obstructive sleep apnoea (OSA) is increasingly found to have an impact on neurodegeneration. In this review, we summarise recent findings on the association between OSA and brain morphology, cognition, and processes related to Alzheimer’s dementia (AD) and Parkinson’s disease (PD).
Recent Findings
Associations between OSA and alterations in grey and white matter, brain diffusivity, and deficits in memory, attention, and executive control were reported. Furthermore, OSA was correlated with higher risks of developing AD and PD and associated pathophysiology. Treatment was found to alleviate but not reverse some of the damage.
Summary
There are strong indications that OSA plays a major role in neurodegenerative processes. The broad picture however remains elusive, likely due to insufficient sample sizes, heterogeneous outcomes, and OSA definitions failing to quantify the disorder’s sub-processes. While studies resolving these issues are required, the available evidence shows OSA to be a promising target to slow neurodegeneration and delay the onset of related disorders.
Collapse
|
37
|
Pal A, Martinez F, Aguila AP, Akey MA, Chatterjee R, Conserman MGE, Aysola RS, Henderson LA, Macey PM. Beat-to-beat blood pressure variability in patients with obstructive sleep apnea. J Clin Sleep Med 2021; 17:381-392. [PMID: 33089774 DOI: 10.5664/jcsm.8866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
STUDY OBJECTIVES Cardiovascular comorbidities in obstructive sleep apnea (OSA) are difficult to treat, perhaps due to autonomic dysfunction. We assessed beat-to-beat blood pressure (BP) variability (BPV) in OSA while considering other markers derived from electrocardiogram and continuous BP signals. METHODS We studied 66 participants (33 participants with OSA: respiratory event index [mean ± SEM]: 21.1 ± 2.7 events/h; 12 females, aged 51.5 ± 2.4 years; body mass index: 32.8 ± 1.4 kg/m²; 33 healthy controls: 20 females; aged 45.3 ± 2.4 years; body mass index: 26.3 ± 0.7 kg/m²). We collected 5-minute resting noninvasive beat-to-beat BP and electrocardiogram values. From BP, we derived systolic, diastolic, and mean BP values, and calculated variability as standard deviations (systolic BPV, diastolic BPV, BPV). We also calculated diastole-to-systole time (time to peak). From the electrocardiogram, we derived QRS markers and calculated heart rate and heart rate variability. We performed a multivariate analysis of variance based on sex and group (OSA vs control), with Bonferroni-corrected post hoc comparisons (P ≤ .05) between groups. We calculated correlations of BPV with biological variables. RESULTS Multivariate analysis of variance showed effects of diastolic BPV and BPV in OSA; post hoc comparisons revealed high diastolic BPV and BPV only in female participants with OSA vs controls. QRS duration was higher in OSA, with post hoc comparisons showing the effect only in males. BPV correlated positively with heart rate variability in controls but not in participants with OSA. BPV correlated positively with time to peak in females with OSA and OSA combined, whereas there was no BPV-time-to-peak correlation in healthy participants. CONCLUSIONS The findings show sex-specific autonomic dysfunction reflected in beat-to-beat BP in OSA. The higher BPV may reflect poor baroreflex control or vascular damage in OSA, which are potential precursors to cardiovascular complications.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, Los Angeles, California
| | | | | | | | | | | | - Ravi S Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | | |
Collapse
|
38
|
Legault J, Thompson C, Martineau-Dussault MÈ, André C, Baril AA, Martinez Villar G, Carrier J, Gosselin N. Obstructive Sleep Apnea and Cognitive Decline: A Review of Potential Vulnerability and Protective Factors. Brain Sci 2021; 11:706. [PMID: 34071739 PMCID: PMC8226698 DOI: 10.3390/brainsci11060706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Around 40% of dementia risk is attributable to modifiable risk factors such as physical inactivity, hypertension, diabetes and obesity. Recently, sleep disorders, including obstructive sleep apnea (OSA), have also been considered among these factors. However, despite several epidemiological studies investigating the link between OSA and cognitive decline, there is still no consensus on whether OSA increases the risk of dementia or not. Part of the heterogeneity observed in previous studies might be related to some individual characteristics that modulate the association between OSA and cognitive decline. In this narrative review, we present these individual characteristics, namely, age, sex, menopause, obesity, diabetes mellitus, hypertension, cardiovascular diseases, smoking, excessive alcohol consumption, depression, air pollution, Apolipoprotein E ε4 allele, physical activity, and cognitive reserve. To date, large cohort studies of OSA and cognitive decline tended to statistically control for the effects of these variables, but whether they interact with OSA to predict cognitive decline remains to be elucidated. Being able to better predict who is at risk of cognitive decline when they have OSA would improve clinical management and treatment decisions, particularly when patients present relatively mild OSA.
Collapse
Affiliation(s)
- Julie Legault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada;
| | - Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Recherche CIUSSS NIM, Montreal, QC H4J 1C5, Canada; (J.L.); (C.T.); (M.-È.M.-D.); (C.A.); (G.M.V.); (J.C.)
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
39
|
Lam A, Haroutonian C, Grummitt L, Ireland C, Grunstein RR, Duffy S, D'Rozario A, Naismith SL. Sleep-Dependent Memory in Older People With and Without MCI: The Relevance of Sleep Microarchitecture, OSA, Hippocampal Subfields, and Episodic Memory. Cereb Cortex 2021; 31:2993-3005. [PMID: 33565576 DOI: 10.1093/cercor/bhaa406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine if, relative to cognitively healthy controls, sleep-dependent memory consolidation (SDMC) is diminished in mild cognitive impairment (MCI), a group at high risk of conversion to dementia. We also sought to determine whether SDMC is associated with sleep characteristics, daytime episodic memory, and hippocampal integrity. Participants with MCI (n = 43) and controls (n = 20) underwent clinical and neuropsychological profiling. From polysomnography, apnea hypopnea index (AHI) and non-REM sleep spindle characteristics were derived. From magnetic resonance imaging, hippocampal subfield volumes were computed. Participants learned a novel 32-item word-pair prior to sleep; morning retention of the word-pairs was used to determine SDMC. Results showed that SDMC did not differ between MCI and controls, but there was a large effect size decrement in SDMC in those with multiple domain MCI (Hedge's g = 0.85). In MCI, poorer SDMC was correlated with CA1 and CA3 hippocampal atrophy, shorter spindle duration, and worse daytime episodic memory. In controls, poorer SDMC was associated with higher AHI. Impaired daytime memory consolidation, reduced hippocampal volumes, shorter sleep spindles, and greater sleep apnea severity are indicators of diminished SDMC in older adults and should be explored in future studies.
Collapse
Affiliation(s)
- Aaron Lam
- School of Psychology, University of Sydney, Sydney, New South Wales, 2000, Australia.,Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, 2050, Australia.,CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, 2000, Australia
| | - Carla Haroutonian
- School of Psychology, University of Sydney, Sydney, New South Wales, 2000, Australia.,Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, 2050, Australia.,CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, 2000, Australia
| | - Lucy Grummitt
- School of Psychology, University of Sydney, Sydney, New South Wales, 2000, Australia.,CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, 2000, Australia
| | - Catriona Ireland
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, 2000, Australia.,Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, New South Wales, 2000, Australia.,Royal Prince Alfred Hospital, Sydney, New South Wales, 2000, Australia
| | - Shantel Duffy
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, 2050, Australia.,CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, 2000, Australia
| | - Angela D'Rozario
- School of Psychology, University of Sydney, Sydney, New South Wales, 2000, Australia.,Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, 2050, Australia.,CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, New South Wales, 2000, Australia.,Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, New South Wales, 2000, Australia
| | - Sharon L Naismith
- School of Psychology, University of Sydney, Sydney, New South Wales, 2000, Australia.,Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, 2050, Australia.,Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, New South Wales, 2000, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
40
|
Pal A, Ogren JA, Aguila AP, Aysola R, Kumar R, Henderson LA, Harper RM, Macey PM. Functional organization of the insula in men and women with obstructive sleep apnea during Valsalva. Sleep 2021; 44:5864015. [PMID: 32592491 DOI: 10.1093/sleep/zsaa124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) patients show impaired autonomic regulation, perhaps related to functional reorganization of the insula, which in healthy individuals shows sex-specific anterior and right dominance during sympathetic activation. We examined insular organization of responses to a Valsalva maneuver in OSA with functional magnetic resonance imaging (fMRI). METHODS We studied 43 newly diagnosed OSA (age mean ± SD: 46.8 ± 8.7 years; apnea-hypopnea index (AHI) ± SD: 32.1 ± 20.1 events/hour; 34 males) and 63 healthy (47.2 ± 8.8 years; 40 males) participants. Participants performed four 18-second Valsalva maneuvers (1-minute intervals, pressure ≥ 30 mmHg) during scanning. fMRI time trends from five insular gyri-anterior short (ASG); mid short (MSG); posterior short (PSG); anterior long (ALG); and posterior long (PLG)-were assessed for within-group responses and between-group differences with repeated measures ANOVA (p < 0.05); age and resting heart rate (HR) influences were also assessed. RESULTS Right and anterior fMRI signal dominance appeared in OSA and controls, with no between-group differences. Separation by sex revealed group differences. Left ASG anterior signal dominance was lower in OSA versus control males. Left ASG and ALG anterior dominance was higher in OSA versus control females. In all right gyri, only OSA females showed greater anterior dominance than controls. Right dominance was apparent in PSG and ALG in all groups; females showed right dominance in MSG and PLG. OSA males did not show PLG right dominance. Responses were influenced substantially by HR but modestly by age. CONCLUSIONS Anterior and right insular fMRI dominance appears similar in OSA versus control participants during the sympathetic phase of the Valsalva maneuver. OSA and control similarities were present in just males, but not necessarily females, which may reflect sex-specific neural injury.
Collapse
Affiliation(s)
- Amrita Pal
- UCLA School of Nursing, University of California, Los Angeles, CA
| | - Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Andrea P Aguila
- UCLA School of Nursing, University of California, Los Angeles, CA
| | - Ravi Aysola
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA.,Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Luke A Henderson
- Department of Anatomy and Histology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Paul M Macey
- UCLA School of Nursing, University of California, Los Angeles, CA
| |
Collapse
|
41
|
Ferini-Strambi L, Hensley M, Salsone M. Decoding Causal Links Between Sleep Apnea and Alzheimer’s Disease. J Alzheimers Dis 2021; 80:29-40. [DOI: 10.3233/jad-201066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer’s disease (AD) are two common chronic diseases with a well-documented association. Whether the association is causal has been highlighted by recent evidence reporting a neurobiological link between these disorders. This narrative review discusses the brain regions and networks involved in OSA as potential vulnerable areas for the development of AD neuropathology with a particular focus on gender-related implications. Using a neuroimaging perspective supported by neuropathological investigations, we provide a new model of neurodegeneration common to OSA and AD, that we have called OSA-AD neurodegeneration in order to decode the causal links between these two chronic conditions.
Collapse
Affiliation(s)
| | - Michael Hensley
- John Hunter Hospital and The University of Newcastle, Newcastle, Australia
| | - Maria Salsone
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| |
Collapse
|
42
|
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest 2021; 130:5042-5051. [PMID: 32730232 DOI: 10.1172/jci137560] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) is a hallmark manifestation of obstructive sleep apnea (OSA), a widespread disorder of breathing. This Review focuses on the role of hypoxia-inducible factors (HIFs) in hypertension, type 2 diabetes (T2D), and cognitive decline in experimental models of IH patterned after O2 profiles seen in OSA. IH increases HIF-1α and decreases HIF-2α protein levels. Dysregulated HIFs increase reactive oxygen species (ROS) through HIF-1-dependent activation of pro-oxidant enzyme genes in addition to reduced transcription of antioxidant genes by HIF-2. ROS in turn activate chemoreflex and suppress baroreflex, thereby stimulating the sympathetic nervous system and causing hypertension. We also discuss how increased ROS generation by HIF-1 contributes to IH-induced insulin resistance and T2D as well as disrupted NMDA receptor signaling in the hippocampus, resulting in cognitive decline.
Collapse
|
43
|
Baril AA, Martineau-Dussault MÈ, Sanchez E, André C, Thompson C, Legault J, Gosselin N. Obstructive Sleep Apnea and the Brain: a Focus on Gray and White Matter Structure. Curr Neurol Neurosci Rep 2021; 21:11. [PMID: 33586028 DOI: 10.1007/s11910-021-01094-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea is extremely prevalent in the elderly and may precipitate dementia. We review recent advances on gray and white matter structure in obstructive sleep apnea, the impact of treatment, and potential pathological and neurodegenerative processes underlying brain structural changes. RECENT FINDINGS Two opposite patterns are observed in neuroimaging studies of obstructive sleep apnea. One may indicate cellular damage (gray matter atrophy, higher white matter hyperintensity burden, lower white matter fractional anisotropy, higher water diffusivities), while the other (gray matter hypertrophy, restricted white matter diffusivities) may reflect transitory responses, such as intracellular edema, reactive gliosis or compensatory structural changes. Treating obstructive sleep apnea could partly reverse these structural changes. Structural alterations related to obstructive sleep apnea may follow a multi-determined biphasic pattern depending on numerous factors (e.g. severity, symptomatology, age) that could tip the scale toward neurodegeneration and need to be investigated by longitudinal studies.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- The Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, 5400 boul. Gouin Ouest, local J-5135, Montréal, Québec, H4J 1C5, Canada.,Department of Psychology, Université de Montréal, Montréal, Canada
| | - Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, 5400 boul. Gouin Ouest, local J-5135, Montréal, Québec, H4J 1C5, Canada.,Department of Neuroscience, Université de Montréal, Montréal, Canada
| | - Claire André
- Physiopathology and Imaging of Neurological Disorders, Institut National de la Santé et de la Recherche Médicale, Institut Blood and Brain, Université de Caen, Normandie Université, GIP Cyceron, Caen, France.,Neuropsychologie et Imagerie de la Mémoire Humain, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Caen, Université de Caen, Normandie Université, Paris Sciences & Lettres Université, École Pratique des Hautes Études, GIP Cyceron, Caen, France
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, 5400 boul. Gouin Ouest, local J-5135, Montréal, Québec, H4J 1C5, Canada
| | - Julie Legault
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, 5400 boul. Gouin Ouest, local J-5135, Montréal, Québec, H4J 1C5, Canada.,Department of Psychology, Université de Montréal, Montréal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, 5400 boul. Gouin Ouest, local J-5135, Montréal, Québec, H4J 1C5, Canada. .,Department of Psychology, Université de Montréal, Montréal, Canada.
| |
Collapse
|
44
|
Long Z, Zhao J, Chen D, Lei X. Age-related abnormalities of thalamic shape and dynamic functional connectivity after three hours of sleep restriction. PeerJ 2021; 9:e10751. [PMID: 33569254 PMCID: PMC7845526 DOI: 10.7717/peerj.10751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background Previous neuroimaging studies have detected abnormal activation and intrinsic functional connectivity of the thalamus after total sleep deprivation. However, very few studies have investigated age-related changes in the dynamic functional connectivity of the thalamus and the abnormalities in the thalamic shape following partial sleep deprivation. Methods Fifty-five participants consisting of 23 old adults (mean age: 68.8 years) and 32 young adults (mean age: 23.5 years) were included in current study. A vertex-based shape analysis and a dynamic functional connectivity analysis were used to evaluate the age-dependent structural and functional abnormalities after three hours of sleep restriction. Results Shape analysis revealed the significant main effect of deprivation with local atrophy in the left thalamus. In addition, we observed a significant age deprivation interaction effect with reduced variability of functional connectivity between the left thalamus and the left superior parietal cortex following sleep restriction. This reduction was found only in young adults. Moreover, a significantly negative linear correlation was observed between the insomnia severity index and the changes of variability (post-deprivation minus pre-deprivation) in the functional connectivity of the left thalamus with the left superior parietal cortex. Conclusions The results indicated that three hours of sleep restriction could affect both the thalamic structure and its functional dynamics. They also highlighted the role of age in studies of sleep deprivation.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| | - Jia Zhao
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China
| | - Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, University of the Southwest, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China
| |
Collapse
|
45
|
Neurocognitive and Synaptic Potentiation Deficits Are Mitigated by Inhibition of HIF1a Signaling following Intermittent Hypoxia in Rodents. eNeuro 2020; 7:7/6/ENEURO.0449-20.2020. [PMID: 33273035 PMCID: PMC7716431 DOI: 10.1523/eneuro.0449-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Highlighted Research Paper:A HIF1a-Dependent Pro-Oxidant State Disrupts Synaptic Plasticity and Impairs Spatial Memory in Response to Intermittent Hypoxia. Alejandra Arias-Cavieres, Maggie A. Khuu, Chinwendu U. Nwakudu, Jasmine E. Barnard, Gokhan Dalgin and Alfredo J. Garcia III
Collapse
|
46
|
Tsapanou A, Scarmeas N, Stern Y. Sleep and the aging brain. A multifaceted approach. SLEEP SCIENCE (SAO PAULO, BRAZIL) 2020; 13:152-156. [PMID: 32742587 PMCID: PMC7384533 DOI: 10.5935/1984-0063.20190128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the current review we provide a theoretical background on studies examining the association between sleep and brain function. We focus on the association between sleep and cognitive performance, cognitive changes over time and incident dementia as well. We then present some data on the link between sleep and subjective cognitive complaints, in participants without any objective clinical cognitive decline. We conclude with investigating the association between sleep and brain biomarkers, by highlighting the importance of specific genes and specific brain regions' morphometry. The role of sleep is vital in maintaining a healthy aging brain, and multiple factors should be taken under account when investigating this association.
Collapse
Affiliation(s)
- Angeliki Tsapanou
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center - New York - New York
| | - Nikolaos Scarmeas
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center - New York - New York
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Medical Center - New York - New York
| |
Collapse
|
47
|
Liu X, Ma Y, Ouyang R, Zeng Z, Zhan Z, Lu H, Cui Y, Dai Z, Luo L, He C, Li H, Zong D, Chen Y. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflammation 2020; 17:229. [PMID: 32738920 PMCID: PMC7395983 DOI: 10.1186/s12974-020-01905-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS), a state of sleep disorder, is characterized by repetitive apnea, chronic hypoxia, oxygen desaturation, and hypercapnia. Previous studies have revealed that intermittent hypoxia (IH) conditions in OSAS patients elicited neuron injury (especially in the hippocampus and cortex), leading to cognitive dysfunction, a significant and extraordinary complication of OSAS patients. The repeated courses of airway collapse and obstruction in OSAS patients resulted in apnea and arousal during sleep, leading to IH and excessive daytime sleepiness (EDS) and subsequently contributing to the development of inflammation. IH-mediated inflammation could further trigger various types of cognitive dysfunction. Many researchers have found that, besides continuous positive airway pressure (CPAP) treatment and surgery, anti-inflammatory substances might alleviate IH-induced neurocognitive dysfunction. Clarifying the role of inflammation in IH-mediated cognitive impairment is crucial for potentially valuable therapies and future research in the related domain. The objective of this article was to critically review the relationship between inflammation and cognitive deficits in OSAS.
Collapse
Affiliation(s)
- Xiangming Liu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yiming Ma
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zijie Zhan
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Huanhuan Lu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yanan Cui
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zhongshang Dai
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Chenjie He
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Dandan Zong
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
48
|
Obstructive sleep apnea, depression and cognitive impairment. Sleep Med 2020; 72:50-58. [DOI: 10.1016/j.sleep.2020.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
|
49
|
Sera of elderly obstructive sleep apnea patients alter blood-brain barrier integrity in vitro: a pilot study. Sci Rep 2020; 10:11309. [PMID: 32647186 PMCID: PMC7347951 DOI: 10.1038/s41598-020-68374-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/08/2020] [Indexed: 01/23/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is characterized by repeated episodes of hypoxia during the night. The severity of the disorder can be evaluated using an apnea–hypopnea index (AHI). The physiological consequences are mainly cardiovascular and neuronal dysfunctions. One hypothesis to explain such associated neurological disorders is disruption of the blood–brain barrier (BBB), which protects the brain from endovascular cytotoxic compounds. We selected two subgroups of volunteers from the PROOF cohort study (France), a group of patients suffering newly diagnosed severe OSAS (AHI > 30/h) and a group showing no sleep apnea (AHI < 5/h). We exposed a human in vitro BBB model of endothelial cells (HBEC-5i) with sera of patients with and without OSAS. After exposure, we measured the apparent BBB permeability as well as tight junction and ABC transporter expression using whole cell ELISA. We showed that after incubation with sera from OSAS patients, there was a loss of integrity in the human in vitro BBB model; this was reflected by an increase in permeability (43%; p < 0.001) and correlated with a 50% and 40% decrease in tight junction protein expression of ZO-1 and claudin-5, respectively. At the same time, we observed an upregulation in Pgp protein expression (52%) and functionality, and a downregulation in BCRP expression (52%). Our results demonstrated that severe BBB disorder after exposure to sera from OSAS patients was reflected by an opening of the BBB.
Collapse
|
50
|
A HIF1a-Dependent Pro-Oxidant State Disrupts Synaptic Plasticity and Impairs Spatial Memory in Response to Intermittent Hypoxia. eNeuro 2020; 7:ENEURO.0024-20.2020. [PMID: 32493757 PMCID: PMC7363479 DOI: 10.1523/eneuro.0024-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep apnea causes cognitive deficits and is associated with several neurologic diseases. Intermittent hypoxia (IH) is recognized as a principal mediator of pathophysiology associated with sleep apnea, yet the basis by which IH contributes to impaired cognition remains poorly defined. Using a mouse model exposed to IH, this study examines how the transcription factor, hypoxia inducible factor 1a (HIF1a), contributes to disrupted synaptic physiology and spatial memory. In wild-type mice, impaired performance in the Barnes maze caused by IH coincided with a loss of NMDA receptor (NMDAr)-dependent long-term potentiation (LTP) in area CA1 and increased nuclear HIF1a within the hippocampus. IH-dependent HIF1a signaling caused a two-fold increase in expression of the reactive oxygen species (ROS) generating enzyme NADPH oxidase 4 (NOX4). These changes promoted a pro-oxidant state and the downregulation of GluN1 within the hippocampus. The IH-dependent effects were not present in either mice heterozygous for Hif1a (HIF1a+/-) or wild-type mice treated with the antioxidant manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP). Our findings indicate that HIF1a-dependent changes in redox state are central to the mechanism by which IH disrupts hippocampal synaptic plasticity and impairs spatial memory. This mechanism may enhance the vulnerability for cognitive deficit and lower the threshold for neurologic diseases associated untreated sleep apnea.
Collapse
|