1
|
Wang J, Yu S, Jin H, Li Y, Zhang K, Phillips DL, Yang S. Nonstoichiometry Promoted Solventless Recrystallization of a Thick and Compact CsPbBr 3 Film for Real-Time Dynamic X-Ray Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407314. [PMID: 39429203 DOI: 10.1002/advs.202407314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Inorganic CsPbBr3 perovskite emerges as a promising material for the development of next-generation X-ray detectors. However, the formation of a high-quality thick film of CsPbBr3 has been challenging due to the low solubility of its precursor and its high melting point. To address this limitation, a nonstoichiometry approach is taken that allows lower-temperature crystallization of the target perovskite under the solventless condition. This approach capitalizes on the presence of excess volatile PbBr2 within the CsPbBr3 film, which induces melting point depression and promotes recrystallization of CsPbBr3 at a temperature much lower than its melting point concomitant with the escape of PbBr2. Consequently, thick and compact films of CsPbBr3 are formed with grains ten times larger than those in the pristine films. The resulting X-ray detector exhibits a remarkable sensitivity of 4.2 × 104 µC Gyair -1 cm-2 and a low detection limit of 136 nGyair s-1, along with exceptional operational stability. Notably, the CsPbBr3-based flat-panel detector achieves a high resolution of 0.65 lp pix-1 and the first demonstration of real-time dynamic X-ray imaging for perovskite-based devices.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
| | - Shanshan Yu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Handong Jin
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
| | - Yu Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
| | - Kai Zhang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shihe Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518107, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Ba Y, Zhu W, Xu Z, Jiang S, Yang M, Bai F, Xi H, Chen D, Zhang J, Zhang C, Hao Y. Wafer-Sized CsPbBr 3/CsPbCl 3 Heterojunction: Breaking the Trade-Off between Sensitivity and Dark Current for Efficient X-ray Detector. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361505 DOI: 10.1021/acsami.4c12010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Polycrystalline lead halide perovskite finds promising use in fabricating X-ray detectors with a large lateral size, adjustable thickness, and diverse synthesis processes. However, a large dark current hinders its development for weak signal detection. Herein, we propose a multistep pressing strategy for manufacturing a CsPbBr3/CsPbCl3 heterojunction wafer for a reduced dark current X-ray detector, and the device keeps a high sensitivity value after the insertion of a barrier by heterojunction; thus, the trade-off between sensitivity and dark current can be broken. The X-ray detector with a metal-semiconductor-metal structure yields a sensitivity of 6.32 × 104 μC Gyair-1 cm-2 at a bias of 12 V, a 1/f noise of 1.02 × 10-13 A/Hz-1/2, and a detection limit of 66.58 nGy s-1. These performance parameters are considerably better than those of a similar X-ray detector based on the single-structure wafer. The improved device performance of the heterostructure X-ray detector is ascribed to the suppressed carrier recombination, enhanced carrier transportation of the heterojunction, and strong X-ray attenuation of the CsPbCl3 layer. The pixel array device is further used in imaging applications. Hence, this study provides an efficient strategy for fabricating heterostructure polycrystalline lead halide perovskite wafers for use in high-performance wafer-based X-ray detectors.
Collapse
Affiliation(s)
- Yanshuang Ba
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Weidong Zhu
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China
| | - Zhuangjie Xu
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Shaohua Jiang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Mei Yang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Fuhui Bai
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - He Xi
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Dazheng Chen
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China
| | - Jincheng Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Chunfu Zhang
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
- Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou institute of technology, Xidian University, Guangzhou 510555, China
| | - Yue Hao
- State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
3
|
Cheng J, Xue C, Yang M, Wang X, Xu Z, Li N, Zhang X, Feng X, Liu X, Liu Y, Liu SF, Yang Z. Dense Perovskite Thick Film Enabled by Saturated Solution Filling for Sensitive X-ray Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36649-36657. [PMID: 38961051 DOI: 10.1021/acsami.4c08706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Thick polycrystalline perovskite films synthesized by using solution processes show great potential in X-ray detection applications. However, due to the evaporation of the solvent, many pinholes and defects appear in the thick films, which deteriorate their optoelectronic properties and diminish their X-ray detection performance. Therefore, the preparation of large area and dense perovskite thick films is desired. Herein, we propose an effective strategy of filling the pores with a saturated precursor solution. By adding the saturated perovskite solution to the polycrystalline perovskite thick film, the original perovskite film will not be destroyed because of the solution-solute equilibrium relationship. Instead, it promotes in situ crystal growth within the thick film during the annealing process. The loosely packed grains in the original thick perovskite film are connected, and the pores and defects are partially filled and fixed. Finally, a much denser perovskite thick film with improved optoelectronic properties has been obtained. The optimized thick film exhibits an X-ray sensitivity of 1616.01 μC Gyair-1 cm-2 under an electric field of 44.44 V mm-1 and a low detection limit of 28.64 nGyair s-1 under an electric field of 22.22 V mm-1. These values exceed the 323.86 μC Gyair-1 cm-2 and 40.52 nGyair s-1 of the pristine perovskite thick film measured under the same conditions. The optimized thick film also shows promising working stability and X-ray imaging capability.
Collapse
Affiliation(s)
- Jiatian Cheng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chengzhi Xue
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Yang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xi Wang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ziwei Xu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Li
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | | | - Xiaolong Feng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xinmei Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yucheng Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shengzhong Frank Liu
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhou Yang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Ali N, Shehzad K, Attique S, Ali A, Akram F, Younis A, Ali S, Sun Y, Yu G, Wu H, Dai N. Exploring Non-Toxic Lower Dimensional Perovskites for Next-Generation X-Ray Detectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310946. [PMID: 38229536 DOI: 10.1002/smll.202310946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Owing to their extraordinary photophysical properties, organometal halide perovskites are emerging as a new material class for X-ray detection. However, the existence of toxic lead makes their commercialization questionable and should readily be replaced. Accordingly, several lead alternatives have been introduced into the framework of conventional perovskites, resulting in various new perovskite dimensionalities. Among these, Pb-free lower dimensional perovskites (LPVKs) not only show promising X-ray detecting properties due to their higher ionic migration energy, wider and tunable energy bandgap, smaller dark currents, and structural versatility but also exhibit extended environmental stability. Herein, first, the structural organization of the PVKs (including LPVKs) is summarized. In the context of X-ray detectors (XDs), the outstanding properties of the LPVKs and active layer synthesis routes are elaborated afterward. Subsequently, their applications in direct XDs are extensively discussed and the device performance, in terms of the synthesis method, device architecture, active layer size, figure of merits, and device stability are tabulated. Finally, the review is concluded with an in-depth outlook, thoroughly exploring the present challenges to LPVKs XDs, proposing innovative solutions, and future directions. This review provides valuable insights into optimizing non-toxic Pb-free perovskite XDs, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Nasir Ali
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Khurram Shehzad
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Sanam Attique
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ayaz Ali
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Fazli Akram
- Center for High Technology Materials and the Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Adnan Younis
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Shahid Ali
- Department of Physics, University of Peshawar, Peshawar, 25000, Pakistan
| | - Yan Sun
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Guolin Yu
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| | - Huizhen Wu
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
- School of Physics, State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ning Dai
- Research Center for Frontier Fundamental Studies, Zhejiang Labs, Yuhang District, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
5
|
Pang J, Wu H, Li H, Jin T, Tang J, Niu G. Reconfigurable perovskite X-ray detector for intelligent imaging. Nat Commun 2024; 15:1769. [PMID: 38413618 PMCID: PMC10899650 DOI: 10.1038/s41467-024-46184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
X-ray detection is widely used in various applications. However, to meet the demand for high image quality and high accuracy diagnosis, the raw data increases and imposes challenges for conventional X-ray detection hardware regarding data transmission and power consumption. To tackle these issues, we present a scheme of in-X-ray-detector computing based on CsPbBr3 single-crystal detector with convenient polarity reconfigurability, good linear dynamic range, and robust stability. The detector features a stable trap-free device structure and achieves a high linear dynamic range of 106 dB. As a result, the detector could achieve edge extraction imaging with a data compression ratio of ~50%, and could also be programmed and trained to perform pattern recognition tasks with a high accuracy of 100%. Our research shows that in-X-ray-detector computing can be used in flexible and complex scenarios, making it a promising platform for intelligent X-ray imaging.
Collapse
Affiliation(s)
- Jincong Pang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Haodi Wu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hao Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Tong Jin
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
- Optical Valley Laboratory, 430074, Wuhan, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China.
- Optical Valley Laboratory, 430074, Wuhan, China.
| |
Collapse
|
6
|
Yao F, Dong K, Ke W, Fang G. Micro/Nano Perovskite Materials for Advanced X-ray Detection and Imaging. ACS NANO 2024; 18:6095-6110. [PMID: 38372495 DOI: 10.1021/acsnano.3c10116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Halide perovskites have emerged as highly promising materials for ionizing radiation detection due to their exceptional characteristics, including a large mobility-lifetime product, strong stopping power, tunable band gap, and cost-effective crystal growth via solution processes. Semiconductor-type X-ray detectors employing various micro/nano perovskite materials have shown impressive progress in achieving heightened sensitivity and lower detection limits. Here, we present a comprehensive review of the applications of micro/nano perovskite materials for direct type X-ray detection, with a focus on the requirements for micro/nano crystal assembly and device properties in advanced X-ray detectors. We explore diverse processing techniques and optoelectronic considerations applied to perovskite X-ray detectors. Additionally, this review highlights the challenges and promising opportunities for perovskite X-ray detector arrays in real-world applications, potentially necessitating further research efforts.
Collapse
Affiliation(s)
- Fang Yao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Kailian Dong
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China
- Shenzhen Institute, Wuhan University, Shenzhen 518055, Guangdong, People's Republic of China
| |
Collapse
|
7
|
Clinckemalie L, Pradhan B, Brande RV, Zhang H, Vandenwijngaerden J, Saha RA, Romolini G, Sun L, Vandenbroucke D, Bonn M, Wang HI, Debroye E. Phase-engineering compact and flexible CsPbBr 3 microcrystal films for robust X-ray detection. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:655-663. [PMID: 38188498 PMCID: PMC10766070 DOI: 10.1039/d3tc01903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
All-inorganic CsPbBr3 perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions. Furthermore, we investigate the effect of introducing the 2D CsPb2Br5 phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport. Upon X-ray exposure, the devices consisting of the dual phase exhibit improved stability and more effective operation at higher voltages. Rietveld refinement shows that, due to the presence of the second phase, local distortions and Pb-vacancies are introduced within the CsPbBr3 lattice. This in turn presumably increases the ion migration energy barrier, resulting in a very low dark current and hence, enhanced stability. This feature might benefit local charge extraction and, ultimately, the X-ray image resolution. These findings also suggest that introducing a second phase in the perovskite structure can be advantageous for efficient photon-to-charge carrier conversion, as applied in medical imaging.
Collapse
Affiliation(s)
- Lotte Clinckemalie
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Bapi Pradhan
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Roel Vanden Brande
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Heng Zhang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | - Rafikul Ali Saha
- cMACS, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Giacomo Romolini
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Li Sun
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Elke Debroye
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
8
|
Li L, Fang X, Zhang Z, Yang Q, Wang F, Li M, Zhu R, Wang L, Zhu Y, Miao X, Lu Y, Shi J, Wu Y, Liu G, Fang Y, Tian H, Ren Z, Yang D, Han G. Lattice-Gradient Perovskite KTaO 3 Films for an Ultrastable and Low-Dose X-Ray Detector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211026. [PMID: 37796177 DOI: 10.1002/adma.202211026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Conventional indirect X-ray detectors employ scintillating phosphors to convert X-ray photons into photodiode-detectable visible photons, leading to low conversion efficiencies, low spatial resolutions, and optical crosstalk. Consequently, X-ray detectors that directly convert photons into electric signals have long been desired for high-performance medical imaging and industrial inspection. Although emerging hybrid inorganic-organic halide perovskites, such as CH3 NH3 PbI3 and CH3 NH3 PbBr3 , exhibit high sensitivity, they have salient drawbacks including structural instability, ion motion, and the use of toxic Pb. Here, this work reports an ultrastable, low-dose X-ray detector comprising KTaO3 perovskite films epitaxially grown on a Nb-doped strontium titanate substrate using a low-cost solution method. The detector exhibits a stable photocurrent under high-dose irradiation, high-temperature (200 °C), and aqueous conditions. Moreover, the prototype KTaO3 -film-based detector exhibits a 150-fold higher sensitivity (3150 µC Gyair -1 cm-2 ) and 150-fold lower detection limit (<40 nGyair s-1 ) than those of commercial α-Se-based direct detectors. Systematic investigations reveal that the high stability of the detector originates from the strong covalent bonds within the KTaO3 film, whereas the low detection limit is due to a lattice-gradient-driven built-in electric field and the high insulating property of KTaO3 film. This study unveils a new path toward the fabrication of green, stable, and low-dose X-ray detectors using oxide perovskite films, which have significant application potential in medical imaging and security operations.
Collapse
Affiliation(s)
- Liqi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuchao Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijun Zhang
- Center of Electron Microscope, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qian Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fei Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Menglu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruixue Zhu
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Lixiang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry, Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yangfan Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junhui Shi
- Research Center for Humanoid Sensing, Zhejianglab, Hangzhou, 311100, China
| | - Yongjun Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yanjun Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - He Tian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Center of Electron Microscope, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhaohui Ren
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Research Center for Humanoid Sensing, Zhejianglab, Hangzhou, 311100, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gaorong Han
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Ningbo Campus, Zhejiang University, Zhejiang, 315100, China
| |
Collapse
|
9
|
Fan Y, Chen Q, Li Z, Zhu T, Wu J, You S, Zhang S, Luo J, Ji C. Realization of Passive X-Ray Detection with a Low Detection Limit in Dion-Jacobson Halide Hybrid Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303814. [PMID: 37415552 DOI: 10.1002/smll.202303814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/09/2023] [Indexed: 07/08/2023]
Abstract
Halide hybrid perovskites are a kind of intriguing contenders for X-ray detection, and their low detection limits (LoDs) have played a crucial part in X-ray safety inspection and medical examination. However, there is still a significant challenge in manufacturing perovskite X-ray detectors with low LoDs. Herein, attributed to the bulk photovoltaic effect (BPVE) of a Dion-Jacobson (DJ) type 2D halide hybrid perovskite polar structure (3-methylaminopropylamine)PbBr4 (1), self-powered X-ray detection with low detection limit is successfully realized. Specifically, the crystal-based detector of 1 exhibits a low dark current at zero bias, which reduces the noise current (0.34 pA), leading to a low detection limit (58.3 nGyair s-1 ) which is two orders of magnitude lower than that of under external voltage bias. The combination of BPVE and LoDs of halide hybrid perovskite provides an efficient strategy to achieve passive X-ray detection with low doses.
Collapse
Affiliation(s)
- Yipeng Fan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qin Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhou Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shihai You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
| | - Junhua Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
10
|
Marshall NW, Vandenbroucke D, Cockmartin L, Wanninger F, Smet M, Feng Y, Ni Y, Bosmans H. Seven general radiography x-ray detectors with pixel sizes ranging from 175 to 76 μm: technical evaluation with the focus on orthopaedic imaging. Phys Med Biol 2023; 68:195007. [PMID: 37659394 DOI: 10.1088/1361-6560/acf642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
Aim. Flat panel detectors with small pixel sizes general can potentially improve imaging performance in radiography applications requiring fine detail resolution. This study evaluated the imaging performance of seven detectors, covering a wide range of pixel sizes, in the frame of orthopaedic applications.Material and methods. Pixel sizes ranged from 175 (detector A175) to 76μm (detector G76). Modulation transfer function (MTF) and detective quantum efficiency (DQE) were measured using International Electrotechnical Commission (IEC) RQA3 beam quality. Threshold contrast (CT) and a detectability index (d') were measured at three air kerma/image levels. Rabbit shoulder images acquired at 60 kV, over five air kerma levels, were evaluated in a visual grading study for anatomical sharpness, image noise and overall diagnostic image quality by four radiologists. The detectors were compared to detector E124.Results. The 10% point of the MTF ranged from 3.21 to 4.80 mm-1, in going from detector A175to detector G76. DQE(0.5 mm-1) measured at 2.38μGy/image was 0.50 ± 0.05 for six detectors, but was higher for F100at 0.62. High frequency DQE was superior for the smaller pixel detectors, howeverCTfor 0.25 mm discs correlated best with DQE(0.5 mm-1). Correlation betweenCTand the detectability model was good (R2= 0.964).CTfor 0.25 mm diameter discs was significantly higher for D150and F100compared to E124. The visual grading data revealed higher image quality ratings for detectors D125and F100compared to E124. An increase in air kerma was associated with improved perceived sharpness and overall quality score, independent of detector. Detectors B150, D125, F100and G76, performed well in specific tests, however only F100consistently outperformed the reference detector.Conclusion. Pixel size alone was not a reliable predictor of small detail detectability or even perceived sharpness in a visual grading analysis study.
Collapse
Affiliation(s)
- N W Marshall
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium
- Medical Imaging Research Center, Medical Physics and Quality Assessment, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
- Agfa N.V., Septestraat 27, B-2640 Mortsel, Belgium
| | | | - L Cockmartin
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium
| | - F Wanninger
- Agfa-Gevaert HealthCare GmbH, München, Germany
| | - M Smet
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium
| | - Y Feng
- Theragnostic Laboratory, Biomedical Group, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Y Ni
- Theragnostic Laboratory, Biomedical Group, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - H Bosmans
- UZ Gasthuisberg, Department of Radiology, Herestraat 49, B-3000 Leuven, Belgium
- Medical Imaging Research Center, Medical Physics and Quality Assessment, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
11
|
Geng X, Chen Y, Li Y, Ren J, Dun G, Qin K, Lin Z, Peng J, Tian H, Yang Y, Xie D, Ren T. Lead-Free Halide Perovskites for Direct X-Ray Detectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300256. [PMID: 37232232 PMCID: PMC10427383 DOI: 10.1002/advs.202300256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Lead halide perovskites have made remarkable progress in the field of radiation detection owing to the excellent and unique optoelectronic properties. However, the instability and the toxicity of lead-based perovskites have greatly hindered its practical applications. Alternatively, lead-free perovskites with high stability and environmental friendliness thus have fascinated significant research attention for direct X-ray detection. In this review, the current research progress of X-ray detectors based on lead-free halide perovskites is focused. First, the synthesis methods of lead-free perovskites including single crystals and films are discussed. In addition, the properties of these materials and the detectors, which can provide a better understanding and designing satisfactory devices are also presented. Finally, the challenge and outlook for developing high-performance lead-free perovskite X-ray detectors are also provided.
Collapse
Affiliation(s)
- Xiangshun Geng
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yu‐Ang Chen
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yuan‐Yuan Li
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Jun Ren
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Guan‐Hua Dun
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Ken Qin
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Zhu Lin
- Beijing National Research Center for Information Science and TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Jiali Peng
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - He Tian
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yi Yang
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Dan Xie
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Tian‐Ling Ren
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
12
|
Zhang L, Mei L, Wang K, Lv Y, Zhang S, Lian Y, Liu X, Ma Z, Xiao G, Liu Q, Zhai S, Zhang S, Liu G, Yuan L, Guo B, Chen Z, Wei K, Liu A, Yue S, Niu G, Pan X, Sun J, Hua Y, Wu WQ, Di D, Zhao B, Tian J, Wang Z, Yang Y, Chu L, Yuan M, Zeng H, Yip HL, Yan K, Xu W, Zhu L, Zhang W, Xing G, Gao F, Ding L. Advances in the Application of Perovskite Materials. NANO-MICRO LETTERS 2023; 15:177. [PMID: 37428261 PMCID: PMC10333173 DOI: 10.1007/s40820-023-01140-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023]
Abstract
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
Collapse
Affiliation(s)
- Lixiu Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Luyao Mei
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China
| | - Kaiyang Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, People's Republic of China
| | - Yinhua Lv
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shuai Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yaxiao Lian
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaoke Liu
- Department of Physics, Linköping University, 58183, Linköping, Sweden
| | - Zhiwei Ma
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Shuaibo Zhai
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Shengli Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Gengling Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ligang Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Bingbing Guo
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ziming Chen
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Keyu Wei
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Shizhong Yue
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Guangda Niu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiyan Pan
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Hua
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Wu-Qiang Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Dawei Di
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Baodan Zhao
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Yang Yang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liang Chu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Mingjian Yuan
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haibo Zeng
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Wentao Xu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Lu Zhu
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China.
| | - Wenhua Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, People's Republic of China.
| | - Feng Gao
- Department of Physics, Linköping University, 58183, Linköping, Sweden.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| |
Collapse
|
13
|
Wang Y, Zhao W, Guo Y, Hu W, Peng C, Li L, Wei Y, Wu Z, Xu W, Li X, Suh YD, Liu X, Huang W. Efficient X-ray luminescence imaging with ultrastable and eco-friendly copper(I)-iodide cluster microcubes. LIGHT, SCIENCE & APPLICATIONS 2023; 12:155. [PMID: 37357223 DOI: 10.1038/s41377-023-01208-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
The advancement of contemporary X-ray imaging heavily depends on discovering scintillators that possess high sensitivity, robust stability, low toxicity, and a uniform size distribution. Despite significant progress in this field, the discovery of a material that satisfies all of these criteria remains a challenge. In this study, we report the synthesis of monodisperse copper(I)-iodide cluster microcubes as a new class of X-ray scintillators. The as-prepared microcubes exhibit remarkable sensitivity to X-rays and exceptional stability under moisture and X-ray exposure. The uniform size distribution and high scintillation performance of the copper(I)-iodide cluster microcubes make them suitable for the fabrication of large-area, flexible scintillating films for X-ray imaging applications in both static and dynamic settings.
Collapse
Affiliation(s)
- Yanze Wang
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenjing Zhao
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yuanyuan Guo
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenbo Hu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chenxi Peng
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Lei Li
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory of Magnetic Materials Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuan Wei
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhongbin Wu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weidong Xu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Korea
| | - Xiaowang Liu
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| | - Wei Huang
- Frontiers Science Centre for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
14
|
Li A, Yang M, Tang P, Hao X, Wu L, Tian W, Yang D, Zhang J. Composition Engineering Growth of Cs 3Bi 2I 9 Single Crystals with Low Defect Density for X-ray Detectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23390-23401. [PMID: 37146248 DOI: 10.1021/acsami.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cs3Bi2I9 (CBI) single crystal (SC) is a promising material for a higher-performance direct X-ray detector. However, the composition of CBI SC prepared by the solution method usually deviates from the ideal stoichiometric ratio, which limits the detector performance. In this paper, based on the finite element analysis method, the growth model of the top-seed solution method has been established, and then the influence of precursor ratio, temperature field, and other parameters on the composition of CBI SC has been simulated. The simulation results were used to guide the growth of the CBI SCs. Finally, a high-quality CBI SC with a stoichiometric ratio of Cs/Bi/I = 2.87:2:8.95 has been successfully grown, and the defect density is as low as 1.03 × 109 cm-3, the carrier lifetime is as high as 16.7 ns, and the resistivity is as high as 1.44 × 1012 Ω·cm. The X-ray detector based on this SC has a sensitivity of 29386.2 μC·Gyair-1 cm-2 at an electric field of 40 V·mm-1, and a low detection limit of 0.36 nGyair·s-1, creating a record for the all-inorganic perovskite materials.
Collapse
Affiliation(s)
- Anfeng Li
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, P.R. China
| | - Manman Yang
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, P.R. China
| | - Peng Tang
- Chengdu Textile College, Chengdu 611731, P.R. China
| | - Xia Hao
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, P.R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P.R. China
| | - Lili Wu
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, P.R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P.R. China
| | - Wenbo Tian
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, P.R. China
| | - Dingyu Yang
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, P.R. China
| | - Jingquan Zhang
- College of Materials Science and Engineering & Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610064, P.R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P.R. China
| |
Collapse
|
15
|
Wu Y, Feng J, Yang Z, Liu Y, Liu S(F. Halide Perovskite: A Promising Candidate for Next-Generation X-Ray Detectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205536. [PMID: 36453564 PMCID: PMC9811474 DOI: 10.1002/advs.202205536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Indexed: 05/31/2023]
Abstract
In the past decade, metal halide perovskite (HP) has become a superstar semiconductor material due to its great application potential in the photovoltaic and photoelectric fields. In fact, HP initially attracted worldwide attention because of its excellent photovoltaic efficiency. However, HP and its derivatives also show great promise in X-ray detection due to their strong X-ray absorption, high bulk resistivity, suitable optical bandgap, and compatibility with integrated circuits. In this review, the basic working principles and modes of both the direct-type and the indirect-type X-ray detectors are first summarized before discussing the applicability of HP for these two types of detection based on the pros and cons of different perovskites. Furthermore, the authors expand their view to different preparation methods developed for HP including single crystals and polycrystalline materials. Upon systematically analyzing their potential for X-ray detection and photoelectronic characteristics on the basis of different structures and dimensions (0D, 2D, and 3D), recent progress of HPs (mainly polycrystalline) applied to flexible X-ray detection are reviewed, and their practicability and feasibility are discussed. Finally, by reviewing the current research on HP-based X-ray detection, the challenges in this field are identified, and the main directions and prospects of future research are suggested.
Collapse
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical EngineeringXi'an Shiyou UniversityXi'an710065China
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
- State Key Laboratory of CatalysisDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| |
Collapse
|
16
|
Liu W, Shi T, Zhu J, Zhang Z, Li D, He X, Fan X, Meng L, Wang J, He R, Ge Y, Liu Y, Chu PK, Yu X. PbI 2 -DMSO Assisted In Situ Growth of Perovskite Wafers for Sensitive Direct X-Ray Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204512. [PMID: 36372541 PMCID: PMC9811467 DOI: 10.1002/advs.202204512] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Although perovskite wafers with a scalable size and thickness are suitable for direct X-ray detection, polycrystalline perovskite wafers have drawbacks such as the high defect density, defective grain boundaries, and low crystallinity. Herein, PbI2 -DMSO powders are introduced into the MAPbI3 wafer to facilitate crystal growth. The PbI2 powders absorb a certain amount of DMSO to form the PbI2 -DMSO powders and PbI2 -DMSO is converted back into PbI2 under heating while releasing DMSO vapor. During isostatic pressing of the MAPbI3 wafer with the PbI2 -DMSO solid additive, the released DMSO vapor facilitates in situ growth in the MAPbI3 wafer with enhanced crystallinity and reduced defect density. A dense and compact MAPbI3 wafer with a high mobility-lifetime (µτ) product of 8.70 × 10-4 cm2 V-1 is produced. The MAPbI3 -based direct X-ray detector fabricated for demonstration shows a high sensitivity of 1.58 × 104 µC Gyair-1 cm-2 and a low detection limit of 410 nGyair s-1 .
Collapse
Affiliation(s)
- Wenjun Liu
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
| | - Tongyu Shi
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiongtao Zhu
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhenyu Zhang
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Dong Li
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Xingchen He
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Xiongsheng Fan
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Lingqiang Meng
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Jiahong Wang
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Rui He
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
| | - Yongshuai Ge
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yanliang Liu
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, KowloonHong KongChina
| | - Xue‐Feng Yu
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
17
|
Li L, Fang Y, Yang D. Interlayer-Assisted Growth of Si-Based All-Inorganic Perovskite Films via Chemical Vapor Deposition for Sensitive and Stable X-ray Detection. J Phys Chem Lett 2022; 13:5441-5450. [PMID: 35679535 DOI: 10.1021/acs.jpclett.2c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-inorganic perovskites are considered as preferred materials for next-generation X-ray detectors. However, preparing high-quality thick films by traditional solution-based methods remains challenging due to the low solubility of the precursors. In this work, chemical vapor deposition technology is employed to grow Si-based all-inorganic cesium-lead-bromide perovskite thick films. By introducing a SnO2 nanocrystal interlayer onto the Si substrate to facilitate the heterogeneous nucleation of the perovskite, we are able to grow high-quality films with a smooth surface and compact grains at a relatively low substrate temperature of 260 °C. The resultant X-ray detectors exhibit a decent sensitivity of 2930 μC Gyair-1 cm-2, a small dark current density of 1.5 nA cm-2, and a low detection limit of 120 nGyair s-1. Moreover, the devices show excellent biasing stability with a record small baseline drift of 4.6 × 10-9 nA cm-1 s-1 V-1 under a large electric field of 1100 V/cm among all perovskite polycrystalline film-based detectors ever reported.
Collapse
Affiliation(s)
- Liqi Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
18
|
Pang J, Zhao S, Du X, Wu H, Niu G, Tang J. Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. LIGHT, SCIENCE & APPLICATIONS 2022; 11:105. [PMID: 35449122 PMCID: PMC9023493 DOI: 10.1038/s41377-022-00791-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 05/12/2023]
Abstract
Multi-energy X-ray detection is sought after for a wide range of applications including medical imaging, security checking and industrial flaw inspection. Perovskite X-ray detectors are superior in terms of high sensitivity and low detection limit, which lays a foundation for multi-energy discrimination. However, the extended capability of the perovskite detector for multi-energy X-ray detection is challenging and has never been reported. Herein we report the design of vertical matrix perovskite X-ray detectors for multi-energy detection, based on the attenuation behavior of X-ray within the detector and machine learning algorithm. This platform is independent of the complex X-ray source components that constrain the energy discrimination capability. We show that the incident X-ray spectra could be accurately reconstructed from the conversion matrix and measured photocurrent response. Moreover, the detector could produce a set of images containing the density-graded information under single exposure, and locate the concealed position for all low-, medium- and high-density substances. Our findings suggest a new generation of X-ray detectors with features of multi-energy discrimination, density differentiation, and contrast-enhanced imaging.
Collapse
Affiliation(s)
- Jincong Pang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Shan Zhao
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xinyuan Du
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Haodi Wu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China.
- Optical Valley Laboratory, 430074, Wuhan, China.
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
- Optical Valley Laboratory, 430074, Wuhan, China
| |
Collapse
|
19
|
WITHDRAWN: Bulk lead-free perovskite crystal variants for X-ray detection. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Hu D, Bai X, Wang C, Zhang Z, Li X, Zhang G, Deng S, Chen J. Pixelated Vacuum Flat Panel Detector Using ZnS Photoconductor and ZnO Nanowires Cold Cathode. NANOMATERIALS 2022; 12:nano12050884. [PMID: 35269372 PMCID: PMC8912877 DOI: 10.3390/nano12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022]
Abstract
Vacuum flat panel detectors (VFPDs) using cold cathode have important applications in large-area photoelectric detection. Based on the electron-bombardment-induced photoconductivity (EBIPC) mechanism, the photoconductor-type VFPDs achieved high detection sensitivity. However, pixelated imaging devices have not yet been developed. In this paper, we fabricate a 4 × 7 pixel vacuum flat panel detector array made of ZnS photoconductor and ZnO nanowires cold cathode for an imaging application. The responsivity of the device and the pixel current uniformity are studied, and imaging of the patterned objects is achieved. Our results verify the feasibility of VFPDs for imaging.
Collapse
|
21
|
Lu L, Sun M, Wu T, Lu Q, Chen B, Huang B. All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. NANOSCALE ADVANCES 2022; 4:680-696. [PMID: 36131822 PMCID: PMC9417099 DOI: 10.1039/d1na00815c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 05/04/2023]
Abstract
With super strong penetrability, high-energy X-rays can be applied to probe the inner structure of target objects under nondestructive situations. Scintillation materials can down-convert X-rays into visible light, enabling the reception of photon signals and photoelectric conversion by common sensing arrays such as photomultiplier tubes and amorphous-Si photodiode matrixes. All-inorganic perovskite nanocrystals are emerging photovoltaic and scintillation materials, with tremendous light-conversion efficiency and tunable luminous properties, exhibiting great potential for high-quality X-ray imaging. Recent advancements in nanotechnology further accelerate the performance improvement of scintillation materials. In this review, we will provide a comprehensive overview of novel all-inorganic perovskite nano-scintillators in terms of potential applications in low-dose X-ray medical radiography. Compared with conventional scintillators, the merits/drawbacks, challenges, and scintillation performance control will be the focus of this article.
Collapse
Affiliation(s)
- Lu Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Baian Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
22
|
Song Y, Li L, Hao M, Bi W, Wang A, Kang Y, Li H, Li X, Fang Y, Yang D, Dong Q. Elimination of Interfacial-Electrochemical-Reaction-Induced Polarization in Perovskite Single Crystals for Ultrasensitive and Stable X-Ray Detector Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103078. [PMID: 34637161 DOI: 10.1002/adma.202103078] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Organic-inorganic halide perovskites have exhibited bright prospects in high-sensitivity X-ray detection. However, they generally suffer from the severe field-driven polarization issue that remarkably deteriorates the detection performance. Here, it is demonstrated that the interfacial electrochemical reaction between Au electrodes and halogen in MAPbI3 single crystals (SCs) is the major source of the dark current polarization in the metal-semiconductor-metal (MSM)-structured perovskite X-ray detectors at the initial stage of biasing. By introducing the p- and n-type charge transport layers to isolate the electrodes from contacting the SC surface, the polarization is fully eliminated under a large electric field up to 1000 V cm-1 . Moreover, the resultant lateral p-i-n heterojunction suppresses the dark current of the devices by nearly 3 orders of magnitude as compared to the MSM counterparts and therefore enables a high sensitivity of 5.2 × 106 µC Gy-1 air cm-2 and a record low X-ray detection limit down to 0.1 nGyair s-1 . The excellent biasing stability and sensitivity of the devices allow to prepare the linear detector arrays for X-ray imaging applications.
Collapse
Affiliation(s)
- Yilong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liqi Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mingwei Hao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Weihui Bi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Anran Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yifei Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hanming Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaohui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Canayaz M. C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet. CHAOS, SOLITONS, AND FRACTALS 2021; 151:111310. [PMID: 34376926 PMCID: PMC8339545 DOI: 10.1016/j.chaos.2021.111310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
COVID-19, one of the biggest diseases of our age, continues to spread rapidly around the world. Studies continue rapidly for the diagnosis and treatment of this disease. It is of great importance that individuals who are infected with this virus be isolated from the rest of the society so that the disease does not spread further. In addition to the tests performed in the detection process of the patients, X-ray and computed tomography are also used. In this study, a new hybrid model that can diagnose COVID-19 from computed tomography images created using EfficientNet, one of the current deep learning models, with a model consisting of attention blocks is proposed. In the first step of this new model, channel attention, spatial attention, and residual blocks are used to extract the most important features from the images. The extracted features are combined in accordance with the hyper-column technique. The combined features are given as input to the EfficientNet models in the second step of the model. The deep features obtained from this proposed hybrid model were classified with the Support Vector Machine classifier after feature selection. Principal Components Analysis was used for feature selection. The approach can accurately predict COVID-19 with a 99% accuracy rate. The first four versions of EfficientNet are used in the approach. In addition, Bayesian optimization was used in the hyper parameter estimation of the Support Vector Machine classifier. Comparative performance analysis of the approach with other approaches in the field is given.
Collapse
Affiliation(s)
- Murat Canayaz
- Department of Computer Engineering,Van Yuzuncu Yil University,65100,Van,Turkey
| |
Collapse
|
24
|
Moseley ODI, Doherty TAS, Parmee R, Anaya M, Stranks SD. Halide perovskites scintillators: unique promise and current limitations. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:11588-11604. [PMID: 34671480 PMCID: PMC8444306 DOI: 10.1039/d1tc01595h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 05/31/2023]
Abstract
The widespread use of X- and gamma-rays in a range of sectors including healthcare, security and industrial screening is underpinned by the efficient detection of the ionising radiation. Such detector applications are dominated by indirect detectors in which a scintillating material is combined with a photodetector. Halide perovskites have recently emerged as an interesting class of semiconductors, showing enormous promise in optoelectronic applications including solar cells, light-emitting diodes and photodetectors. Here, we discuss how the same superior semiconducting properties that have catalysed their rapid development in these optoelectronic devices, including high photon attenuation and fast and efficient emission properties, also make them promising scintillator materials. By outlining the key mechanisms of their operation as scintillators, we show why reports of remarkable performance have already emerged, and describe how further learning from other optoelectronic devices will propel forward their applications as scintillators. Finally, we outline where these materials can make the greatest impact in detector applications by maximally exploiting their unique properties, leading to dramatic improvements in existing detection systems or introducing entirely new functionality.
Collapse
Affiliation(s)
- Oliver D I Moseley
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Tiarnan A S Doherty
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Richard Parmee
- Cheyney Design and Development, Ltd., Litlington Cambridge SG8 0SS UK
| | - Miguel Anaya
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
25
|
Ma W, Jiang T, Yang Z, Zhang H, Su Y, Chen Z, Chen X, Ma Y, Zhu W, Yu X, Zhu H, Qiu J, Liu X, Xu X, Yang Y(M. Highly Resolved and Robust Dynamic X-Ray Imaging Using Perovskite Glass-Ceramic Scintillator with Reduced Light Scattering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003728. [PMID: 34075729 PMCID: PMC8336613 DOI: 10.1002/advs.202003728] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/31/2021] [Indexed: 05/02/2023]
Abstract
All-inorganic perovskite quantum dots (QDs) CsPbX3 (X = Cl, Br, and I) have recently emerged as a new promising class of X-ray scintillators. However, the instability of perovskite QDs and the strong optical scattering of the thick opaque QD scintillator film imped it to realize high-quality and robust X-ray image. Herein, the europium (Eu) doped CsPbBr3 QDs are in situ grown inside transparent amorphous matrix to form glass-ceramic (GC) scintillator with glass phase serving as both matrix and encapsulation for the perovskite QD scintillators. The small amount of Eu dopant optimizes the crystallization of CsPbBr3 QDs and makes their distribution more uniform in the glass matrix, which can significantly reduce the light scattering and also enhance the photoluminescence emission of CsPbBr3 QDs. As a result, a remarkably high spatial resolution of 15.0 lp mm-1 is realized thanks to the reduced light scattering, which is so far a record resolution for perovskite scintillator based X-ray imaging, and the scintillation stability is also significantly improved compared to the bare perovskite QD scintillators. Those results provide an effective platform particularly for the emerging perovskite nanocrystal scintillators to reduce light scattering and improve radiation hardness.
Collapse
Affiliation(s)
- Wenbo Ma
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Tingming Jiang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Ze Yang
- Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingYunnan650000China
| | - Hao Zhang
- Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingYunnan650000China
| | - Yirong Su
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Zeng Chen
- Center for Chemistry of High‐Performance and Novel Materials Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Xinya Chen
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Yaoguang Ma
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Wenjuan Zhu
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Xue Yu
- Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingYunnan650000China
| | - Haiming Zhu
- Center for Chemistry of High‐Performance and Novel Materials Department of ChemistryZhejiang UniversityHangzhouZhejiang310027China
| | - Jianbei Qiu
- Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingYunnan650000China
| | - Xu Liu
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| | - Xuhui Xu
- Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingYunnan650000China
| | - Yang (Michael) Yang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsKey Laboratory of Excited State Materials of Zhejiang ProvinceZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
26
|
Vasylchenko I, Grill R, Betušiak M, Belas E, Praus P, Moravec P, Höschl P. In and Al Schottky Contacts Comparison on P-Type Chlorine-Doped CdTe. SENSORS 2021; 21:s21082783. [PMID: 33920852 PMCID: PMC8071194 DOI: 10.3390/s21082783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
The performance of the CdTe radiation detectors heavily relies on the method of contact preparation. A convenient research method addressing this problem is the laser-induced transient current technique. In this paper, we compare the performance of two CdTe crystals which underwent different metallization processes. We showed that appropriately designed Au/Al contacts induce much less bulk polarization than commercial Pt/In electrodes under the same working conditions and can thus provide a convenient alternative to the industry standard. The comparison was based on the monitoring of the time-dependent sensor polarization measuring transient currents excited by above-bandgap laser illumination complemented by the Am 241 gamma spectroscopy. The theoretical analysis of current waveforms and radiation spectra enabled us to determine the charge carrier mobility, mobility-lifetime products of electrons and holes, and temporal and bias dependence of the space charge formation.
Collapse
|
27
|
Li W, Xin D, Tie S, Ren J, Dong S, Lei L, Zheng X, Zhao Y, Zhang WH. Zero-Dimensional Lead-Free FA 3Bi 2I 9 Single Crystals for High-Performance X-ray Detection. J Phys Chem Lett 2021; 12:1778-1785. [PMID: 33576232 DOI: 10.1021/acs.jpclett.1c00090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct X-ray detectors based on metal halide perovskites and their derivatives exhibit high sensitivity and low limit of detection (LoD). Compared with three-dimensional (3D) hybrid lead halide perovskites, low-dimensional A3Bi2I9 perovskite derivatives (A = Cs, Rb, NH4, CH3NH3(MA)) present better stability, greater environmental friendliness, and comparable X-ray detection performance. Here, we report FA3Bi2I9 (FA= CH(NH2)2) single crystals (SCs) as a new member of the A3Bi2I9 series for X-ray detection, which were prepared by the nucleation-controlled secondary solution constant temperature evaporation (SSCE) method. Centimeter-sized FA3Bi2I9 SCs show a full width at half-maximum (fwhm) of 0.0096°, which is superior to that of recently reported Cs3Bi2I9 (0.058°) and MA3Bi2I9 SCs (0.024°) obtained by inverse temperature crystallization (ITC). The as-grown FA3Bi2I9 SC shows a large resistivity of 7.8 × 1010 Ω cm and a high ion migration activation energy (Ea) of 0.56 eV, which can guarantee a low noise level and good operational stability under a large external bias. The FA3Bi2I9 SC detector exhibits a LoD of 0.2 μGyair s-1, a sensitivity of 598.1 μC Gyair -1 cm -2, and an X-ray detection efficiency of 33.5%, which are much better than those of the commercialized amorphous selenium detector. Results presented here will provide a new lead-free perovskite-type material to achieve green, sensitive, and stable X-ray detectors.
Collapse
Affiliation(s)
- Wei Li
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, 596 Yinhe Road, Shuangliu, Chengdu 610200, China
| | - Deyu Xin
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, 596 Yinhe Road, Shuangliu, Chengdu 610200, China
| | - Shujie Tie
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, 596 Yinhe Road, Shuangliu, Chengdu 610200, China
| | - Jiwei Ren
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Siyin Dong
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, 596 Yinhe Road, Shuangliu, Chengdu 610200, China
| | - Lin Lei
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Xiaojia Zheng
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, 596 Yinhe Road, Shuangliu, Chengdu 610200, China
| | - Yiying Zhao
- Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China
| | - Wen-Hua Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, 596 Yinhe Road, Shuangliu, Chengdu 610200, China
| |
Collapse
|
28
|
Bioinformatics for Image Processing. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Zhu W, Ma W, Su Y, Chen Z, Chen X, Ma Y, Bai L, Xiao W, Liu T, Zhu H, Liu X, Liu H, Liu X, Yang Y(M. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. LIGHT, SCIENCE & APPLICATIONS 2020; 9:112. [PMID: 32637079 PMCID: PMC7327019 DOI: 10.1038/s41377-020-00353-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
X-rays are widely used in probing inside information nondestructively, enabling broad applications in the medical radiography and electronic industries. X-ray imaging based on emerging lead halide perovskite scintillators has received extensive attention recently. However, the strong self-absorption, relatively low light yield and lead toxicity of these perovskites restrict their practical applications. Here, we report a series of nontoxic double-perovskite scintillators of Cs2Ag0.6Na0.4In1-yBiyCl6. By controlling the content of the heavy atom Bi3+, the X-ray absorption coefficient, radiative emission efficiency, light yield and light decay were manipulated to maximise the scintillator performance. A light yield of up to 39,000 ± 7000 photons/MeV for Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 was obtained, which is much higher than that for the previously reported lead halide perovskite colloidal CsPbBr3 (21,000 photons/MeV). The large Stokes shift between the radioluminescence (RL) and absorption spectra benefiting from self-trapped excitons (STEs) led to a negligible self-absorption effect. Given the high light output and fast light decay of this scintillator, static X-ray imaging was attained under an extremely low dose of ∼1 μGyair, and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low-dose rate of 47.2 μGyair s-1. After thermal treatment at 85 °C for 50 h followed by X-ray irradiation for 50 h in ambient air, the scintillator performance in terms of the RL intensity and X-ray image quality remained almost unchanged. Our results shed light on exploring highly competitive scintillators beyond the scope of lead halide perovskites, not only for avoiding toxicity but also for better performance.
Collapse
Affiliation(s)
- Wenjuan Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Wenbo Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Yirong Su
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Zeng Chen
- Center for Chemistry of High-Performance & Novel Materials, department of Chemistry, Zhejiang University, Hangzhou, Zhejiang China
| | - Xinya Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Yaoguang Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Lizhong Bai
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Wenge Xiao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Tianyu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Haiming Zhu
- Center for Chemistry of High-Performance & Novel Materials, department of Chemistry, Zhejiang University, Hangzhou, Zhejiang China
| | - Xiaofeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| | - Yang (Michael) Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
30
|
Lian L, Zheng M, Zhang W, Yin L, Du X, Zhang P, Zhang X, Gao J, Zhang D, Gao L, Niu G, Song H, Chen R, Lan X, Tang J, Zhang J. Efficient and Reabsorption-Free Radioluminescence in Cs 3Cu 2I 5 Nanocrystals with Self-Trapped Excitons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000195. [PMID: 32537419 PMCID: PMC7284214 DOI: 10.1002/advs.202000195] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 05/12/2023]
Abstract
Radioluminescent materials (scintillators) are widely applied in medical imaging, nondestructive testing, security inspection, nuclear and radiation industries, and scientific research. Recently, all-inorganic lead halide perovskite nanocrystal (NC) scintillators have attracted great attention due to their facile solution processability and ultrasensitive X-ray detection, which allows for large area and flexible X-ray imaging. However, the light yield of these perovskite NCs is relatively low because of the strong self-absorption that reduces the light out-coupling efficiency. Here, NCs with self-trapped excitons emission are demonstrated to be sensitive, reabsorption-free scintillators. Highly luminescent and stable Cs3Cu2I5 NCs with a photoluminescence quantum yields of 73.7%, which is a new record for blue emission lead-free perovskite or perovskite-like NCs, is produced with the assistance of InI3. The PL peak of the Cs3Cu2I5 NCs locates at 445 nm that matches with the response peak of a silicon photomultiplier. Thus, Cs3Cu2I5 NCs are demonstrated as efficient scintillators with zero self-absorption and extremely high light yield (≈79 279 photons per MeV). Both Cs3Cu2I5 NC colloidal solution and film exhibit strong radioluminescence under X-ray irradiation. The potential application of Cs3Cu2I5 NCs as reabsorption-free, low cost, large area, and flexible scintillators is demonstrated by a prototype X-ray imaging with a high spatial resolution.
Collapse
Affiliation(s)
- Linyuan Lian
- School of Optical and Electronic InformationHuazhong University of Science and Technology1037 Luoyu RoadWuhanHubei430074China
| | - Moyan Zheng
- School of Optical and Electronic InformationHuazhong University of Science and Technology1037 Luoyu RoadWuhanHubei430074China
| | - Weizhuo Zhang
- School of Optical and Electronic InformationHuazhong University of Science and Technology1037 Luoyu RoadWuhanHubei430074China
| | - Lixiao Yin
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinyuan Du
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Peng Zhang
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiuwen Zhang
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jianbo Gao
- Ultrafast Photophysics of Quantum DevicesDepartment of Physics and AstronomyClemson UniversityClemsonSC29634USA
| | - Daoli Zhang
- School of Optical and Electronic InformationHuazhong University of Science and Technology1037 Luoyu RoadWuhanHubei430074China
| | - Liang Gao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Guangda Niu
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Haisheng Song
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinzheng Lan
- School of Optical and Electronic InformationHuazhong University of Science and Technology1037 Luoyu RoadWuhanHubei430074China
| | - Jiang Tang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Jianbing Zhang
- School of Optical and Electronic InformationHuazhong University of Science and Technology1037 Luoyu RoadWuhanHubei430074China
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenGuangdong518057China
| |
Collapse
|
31
|
Liu J, Shabbir B, Wang C, Wan T, Ou Q, Yu P, Tadich A, Jiao X, Chu D, Qi D, Li D, Kan R, Huang Y, Dong Y, Jasieniak J, Zhang Y, Bao Q. Flexible, Printable Soft-X-Ray Detectors Based on All-Inorganic Perovskite Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901644. [PMID: 31169936 DOI: 10.1002/adma.201901644] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Indexed: 05/12/2023]
Abstract
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low-cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft-X-ray-induced photocurrent is demonstrated in both rigid and flexible detectors based on all-inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft-X-ray beamline, high sensitivities of up to 1450 µC Gyair -1 cm-2 are achieved under an X-ray dose rate of 0.0172 mGyair s-1 with only 0.1 V bias voltage, which is about 70-fold more sensitive than conventional α-Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large-scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X-rays and for large-area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.
Collapse
Affiliation(s)
- Jingying Liu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Babar Shabbir
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Chujie Wang
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Qingdong Ou
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Pei Yu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton Tadich
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Dongchen Qi
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Dabing Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Ruifeng Kan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Yamin Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yemin Dong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jacek Jasieniak
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yupeng Zhang
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
32
|
Abstract
Halide lead perovskites have attracted increasing attention in recent years for ionizing radiation detection due to their strong stopping power, defect-tolerance, large mobility-lifetime (μτ) product, tunable bandgap and simple single crystal growth from low-cost solution processes. In this review, we start with the requirement of material properties for high performance ionizing radiation detection based on direct detection mechanisms for applications in X-ray imaging and γ-ray energy spectroscopy. By comparing the performances of halide perovskites radiation detectors with current state-of-the-art ionizing radiation detectors, we show the promising features and challenges of halide perovskites as promising radiation detectors. Halide lead perovskites have emerged recently as possible candidates for high performance radiation detectors besides efficient solar cells. Here Wei et al. review the recent progress on perovskite based radiation detectors and suggest that they may compete with the conventional counterparts.
Collapse
|
33
|
|
34
|
Oliveira J, Correia V, Sowade E, Etxebarria I, Rodriguez RD, Mitra KY, Baumann RR, Lanceros-Mendez S. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12904-12912. [PMID: 29580050 DOI: 10.1021/acsami.8b00828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.
Collapse
Affiliation(s)
- Juliana Oliveira
- Centro de Física , Universidade do Minho , 4710-057 Braga , Portugal
- Algoritmi Research Center , Universidade do Minho , Campus de Azurém , 4800-058 Guimarães , Portugal
| | - Vitor Correia
- Centro de Física , Universidade do Minho , 4710-057 Braga , Portugal
- Algoritmi Research Center , Universidade do Minho , Campus de Azurém , 4800-058 Guimarães , Portugal
| | | | - Ikerne Etxebarria
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain
| | | | | | - Reinhard R Baumann
- Department Printed Functionalities , Fraunhofer Institute for Electronic Nano Systems (ENAS) , 09126 Chemnitz , Germany
| | - Senentxu Lanceros-Mendez
- Centro de Física , Universidade do Minho , 4710-057 Braga , Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
35
|
Ahmad M, Fahrig R, Pung L, Spahn M, Köster NS, Reitz S, Moore T, Choi JH, Hinshaw W, Xia Y, Müller K. Assessment of a photon-counting detector for a dual-energy C-arm angiographic system. Med Phys 2017; 44:5938-5948. [DOI: 10.1002/mp.12517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/18/2017] [Accepted: 08/05/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Moiz Ahmad
- The University of Texas McGovern Medical School; Houston TX USA
| | - Rebecca Fahrig
- Radiological Sciences Lab; Stanford University; Stanford CA USA
- Siemens Healthcare GmbH; Forchheim Germany
| | - Leland Pung
- Siemens Medical Solutions Inc.; Malvern PA USA
| | | | | | | | - Teri Moore
- Siemens Medical Solutions Inc.; Malvern PA USA
| | - Jang-Hwan Choi
- Radiological Sciences Lab; Stanford University; Stanford CA USA
- Division of Mechanical and Biomedical Engineering; Ewha Womans University; Seoul South Korea
| | - Waldo Hinshaw
- Radiological Sciences Lab; Stanford University; Stanford CA USA
| | - Yan Xia
- Radiological Sciences Lab; Stanford University; Stanford CA USA
| | - Kerstin Müller
- Radiological Sciences Lab; Stanford University; Stanford CA USA
- Siemens Healthcare GmbH; Forchheim Germany
| |
Collapse
|
36
|
Kinect-Based Correction of Overexposure Artifacts in Knee Imaging with C-Arm CT Systems. Int J Biomed Imaging 2016; 2016:2502486. [PMID: 27516772 PMCID: PMC4969567 DOI: 10.1155/2016/2502486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Objective. To demonstrate a novel approach of compensating overexposure artifacts in CT scans of the knees without attaching any supporting appliances to the patient. C-Arm CT systems offer the opportunity to perform weight-bearing knee scans on standing patients to diagnose diseases like osteoarthritis. However, one serious issue is overexposure of the detector in regions close to the patella, which can not be tackled with common techniques. Methods. A Kinect camera is used to algorithmically remove overexposure artifacts close to the knee surface. Overexposed near-surface knee regions are corrected by extrapolating the absorption values from more reliable projection data. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates. Results. Artifacts at both knee phantoms are reduced significantly in the reconstructed data and a major part of the truncated regions is restored. Conclusion. The results emphasize the feasibility of the proposed approach. The accuracy of the cross-calibration procedure can be increased to further improve correction results. Significance. The correction method can be extended to a multi-Kinect setup for use in real-world scenarios. Using depth cameras does not require prior scans and offers the possibility of a temporally synchronized correction of overexposure artifacts. To achieve this, we develop a cross-calibration procedure to transform surface points from the Kinect to CT voxel coordinates.
Collapse
|
37
|
Olamaei N, Cheriet F, Deschênes S, Sharafi A, Martel S. Three-dimensional reconstruction of a vascular network by dynamic tracking of magnetite nanoparticles. Med Phys 2015; 42:5702-10. [PMID: 26429244 DOI: 10.1118/1.4930055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Visualization of small blood vessels feeding tumor sites provides important information on the tumors and their microenvironment. This information plays an important role in targeted drug therapies using magnetic gradients. However, capabilities of current clinical imaging modalities may be insufficient to resolve complex microvascular networks. The purpose of this study is to map the vascular network, 3D, based on the magnetic susceptibility contrast. METHODS Magnetic particles induce an inhomogeneity in the MRI's magnetic field in an order much larger than their real size. This is an approach to compensate the spatial resolution insufficiency of a clinical MR scanner. Micron-sized agglomerations of magnetite nanoparticles were injected in a 3D phantom vascular network, and a fast multislice, multiacquisition MR sequence was applied to track the agglomerations along their trajectories. The experiment was performed twice for two different imaging planes: coronal and transversal. The susceptibility artifact in the images indicated the presence and the position of the agglomerations. The calculated positions through multiple images were assembled to build up the 3D distribution of the vascular network. RESULTS The calculated points were compared with the centerline of the channels, extracted from the 3D reference image, to determine the absolute measurement error. The mean error was measured to be approximately half of the pixel's size. It was found that the positioning error on the axis perpendicular to the imaging slice was nearly twice as high as on the imaging plane axes due to the slice thickness. In order to compensate for the lack of resolution on the perpendicular axis, the reconstruction was performed using a combination of coronal and transversal data. The combination of the coordinates led to a significant decrease in the mean measurement error at each segment in the vascular network (p < 0.001). CONCLUSIONS A method for 3D reconstruction of a microvascular network based on the susceptibility contrast in MRI and using a clinical scanner and a commercial receiver coil was proposed. The method presents a novel approach for reconstruction of vascular networks using the susceptibility effect. The proposed method may be applied to resolve vascular networks at a micrometric scale.
Collapse
Affiliation(s)
- Nina Olamaei
- NanoRobotics Laboratory, Ecole Polytechnique Montréal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada and Imaging and 4D Visualization Laboratory, Ecole Polytechnique Montréal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Farida Cheriet
- Imaging and 4D Visualization Laboratory, Ecole Polytechnique Montréal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Sylvain Deschênes
- Department of Medical Imaging, Centre Hospitalier Universitaire Sainte-Justine, 3175 Chemin de la Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - Azadeh Sharafi
- NanoRobotics Laboratory, Ecole Polytechnique Montréal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Sylvain Martel
- NanoRobotics Laboratory, Ecole Polytechnique Montréal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
38
|
Johnson JA, Leonard RL, Lubinsky AR, Schweizer S. Opportunities for Fluorochlorozirconate and Other Glass-Ceramic Detectors in Medical Imaging Devices. JOURNAL OF BIOMEDICAL TECHNOLOGY AND RESEARCH 2015; 2:10.19104/jbtr.2015.102. [PMID: 28890955 PMCID: PMC5589163 DOI: 10.19104/jbtr.2015.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article gives an overview of fluorochlorozirconate glass-ceramic scintillators and storage phosphor materials: how they are synthesized, what their properties are, and how they can be used in medical imaging. Such materials can enhance imaging in x-ray radiography, especially mammography and dental imaging, computed tomography, and positron emission tomography. Although focusing on fluorochlorozirconate materials, the reader will find the discussion is relevant to other luminescent glass and glass-ceramic systems.
Collapse
Affiliation(s)
- Jacqueline A. Johnson
- Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
| | - Russell L. Leonard
- Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
| | - AR Lubinsky
- Department of Radiology, SUNY, Stony Brook, NY 11794-8460, USA
| | - Stefan Schweizer
- Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Fraunhofer Application Center for Inorganic Phosphors, Lübecker Ring 2, 59494 Soest, Germany
| |
Collapse
|