1
|
Grove JCR, Gray LA, La Santa Medina N, Sivakumar N, Ahn JS, Corpuz TV, Berke JD, Kreitzer AC, Knight ZA. Dopamine subsystems that track internal states. Nature 2022; 608:374-380. [PMID: 35831501 PMCID: PMC9365689 DOI: 10.1038/s41586-022-04954-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Jamie S Ahn
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | | | - Joshua D Berke
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anatol C Kreitzer
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Giacomini JL, Geiduschek E, Selleck RA, Sadeghian K, Baldo BA. Dissociable control of μ-opioid-driven hyperphagia vs. food impulsivity across subregions of medial prefrontal, orbitofrontal, and insular cortex. Neuropsychopharmacology 2021; 46:1981-1989. [PMID: 34226656 PMCID: PMC8429588 DOI: 10.1038/s41386-021-01068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats. The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL), medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake) interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long, uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL) task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs. consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs in modulating inhibitory control.
Collapse
Affiliation(s)
- Juliana L. Giacomini
- grid.14003.360000 0001 2167 3675Graduate Program in Cellular and Molecular Biology, Physiology Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Emma Geiduschek
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan A. Selleck
- grid.252000.50000 0001 0728 549XDepartment of Psychological Science, Albion College, Albion, MI USA
| | - Ken Sadeghian
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brian A. Baldo
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
3
|
Reconsolidation of a post-ingestive nutrient memory requires mTOR in the central amygdala. Mol Psychiatry 2021; 26:2820-2836. [PMID: 32873898 DOI: 10.1038/s41380-020-00874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023]
Abstract
The central control of feeding behavior and metabolic homeostasis has been proposed to involve a form of post-ingestive nutrient learning independent of the gustatory value of food. However, after such learning, it is unknown which brain regions or circuits are activated to retrieve the stored memory and whether this memory undergoes reconsolidation that depends on protein synthesis after its reactivation through retrieval. In the present study, using a conditioned-flavor-preference paradigm by associating flavors with intra-gastric infusion of glucose to minimize the evaluation of the taste of food, we show that retrieval of the post-ingestive nutrient-conditioned flavor memory stimulates multiple brain regions in mice, including the central nucleus of the amygdala (CeA). Moreover, memory retrieval activated the mammalian target of rapamycin complex 1 (mTORC1) in the CeA, while site-specific or systemic inhibition of mTORC1 immediately after retrieval prevented the subsequent expression of the post-ingestive nutrient-associated flavor memory, leading to a long-lasting suppression of reinstatement. Taken together, our findings suggest that the reconsolidation process of a post-ingestive nutrient memory modulates food preferences.
Collapse
|
4
|
Expósito AN, Morillas E, Gómez-Chacón B, Gallo M. Prefrontal cortex activity patterns during taste neophobia habituation in adult and aged rats. Behav Brain Res 2020; 392:112717. [PMID: 32479848 DOI: 10.1016/j.bbr.2020.112717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
Age-related memory decline has been associated with changes in the medial prefrontal cortex (mPFC) function. In order to explore the role of mPFC in taste recognition memory, we have assessed mPFC c-Fos immunoreactivity in adult (5-month-old) and aged (24-month-old) male Wistar rats during the first (Novel), second (Familiar I), and sixth (Familiar II) exposure to a cider vinegar solution. Adult brains showed higher c-Fos expression in the ventral but not the dorsal region of mPFC during the second taste exposure. Interestingly, old brains exhibited an altered activity pattern selectively in the dorsal peduncular cortex (DP) which can be associated with a delayed attenuation of vinegar neophobia in this group. These results support the involvement of this area in the formation of safe taste memory. Further research is needed for understanding the role of DP in taste recognition memory and the impact of aging on it.
Collapse
Affiliation(s)
- A N Expósito
- Dept. of Psychobiology. Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain.
| | - E Morillas
- Dept. of Psychobiology. Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - B Gómez-Chacón
- Dept. of Psychobiology. Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - M Gallo
- Dept. of Psychobiology. Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| |
Collapse
|
5
|
Sex and region-specific effects of high fat diet on PNNs in obesity susceptible rats. Physiol Behav 2020; 222:112963. [PMID: 32416158 DOI: 10.1016/j.physbeh.2020.112963] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that primarily surround fast-spiking parvalbumin (PV)-containing interneurons within the PFC. They regulate PV neuron function and plasticity to maintain cortical excitatory/inhibitory balance. For example, reductions in PNN intensity are associated with reduced local inhibition and enhanced pyramidal neuron firing. We previously found that exposure to dietary high fat reduced PNN intensity within the PFC of male Sprague-Dawley (SD) rats. However, how high fat affects PNNs in the PFC of females or in obesity-vulnerable vs. -resistant models is unknown. Therefore, we gave male and female SD, selectively bred obesity-prone (OP), and obesity-resistant rats (OR) free access to standard lab chow or 60% high fat for 21 days. We then measured the number of PNN positive cells and PNN intensity (determined by Wisteria floribunda agglutinin [WFA] staining) as well as the number of PV positive neurons using immunohistochemistry. We found sex and region-specific effects of dietary high fat on PNN intensity, in the absence of robust changes in cell number. Effects were comparable in SD and OP but differed in OR rats. Specifically, high fat reduced PNN intensities in male SD and OP rats but increased PNN intensities in female SD and OP rats. In contrast, effects in ORs were opposite, with males showing increases in PNN intensity and females showing a reduction in intensity. Finally, these effects were also region specific, with diet-induced reductions in PNN intensity found in the prelimbic PFC (PL-PFC) and ventral medial orbital frontal cortex (vmOFC) of SD and OP males in the absence of changes in the infralimbic PFC (IL-PFC), and increases in PNN intensity in the IL-PFC of SD and OP females in the absence of changes in other regions. These results are discussed in light of roles PNNs may play in influencing PFC neuronal activity and the differential role of these sub-regions in food-seeking and motivation.
Collapse
|
6
|
Forty-eight hour conditioning produces a robust long lasting flavor preference in rats. Appetite 2019; 139:159-163. [PMID: 31047937 DOI: 10.1016/j.appet.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 11/23/2022]
Abstract
Conditioned flavor preference (CFP) learning is a form of associative learning in ingestive behavior. CFP Learning can be rapid and produces preferences of varying strengths that can be exceptionally persistent. We sought to establish a method to produce a robust long-lasting CFP in rats. Rats were given 48-h access (conditioning) to a CS+ flavor (grape or cherry 0.05% Kool-Aid, counterbalanced) mixed with 8% glucose and 0.05% saccharin. In order to determine the strength of conditioning rats were given 14 consecutive days of 24-h access to CS+ and CS- flavors mixed only with 0.05% Kool-Aid and 0.05% saccharin (extinction), then further tested 34 days after the last extinction test (48 days post conditioning) for 2 consecutive days with the CS+ and CS-. We found that not only did the learned CFP fail to extinguish over 14 days of testing, but it also persisted for at least 48 days after conditioning. These data provide a method to produce a robust, long lasting and persistent CFP for use in future ingestive behavior research.
Collapse
|
7
|
Berta B, Péczely L, Kertes E, Petykó Z, Ollmann T, László K, Kállai V, Kovács A, Zagorácz O, Gálosi R, Karádi Z, Lénárd L. Iontophoretic microlesions with kainate or 6-hydroxidopamine in ventromedial prefrontal cortex result in deficit in conditioned taste avoidance to palatable tastants. Brain Res Bull 2018; 143:106-115. [PMID: 30347263 DOI: 10.1016/j.brainresbull.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Effects of kainate or 6-hydroxidopamine (6-OHDA) lesions in the ventromedial prefrontal cortex (vmPFC) on taste-related learning and memory processes were examined. Neurotoxins were applied by iontophoretic method to minimize the extent of lesion and the side effects. Acquisition and retention of conditioned taste avoidance (CTA) was tested to different taste stimuli (0.05 M NaCl, 0.01 M saccharin, 0.01 M citrate and 0.00025 M quinine). In the first experiment, palatability index of taste solutions with these concentrations has been determined as strongly palatable (NaCl, saccharin), weakly palatable (citrate) and weakly unpalatable (quinine) taste stimuli. In two other experiments vmPFC lesions were performed before CTA (acquisition) or after CTA (retrieval). Our results showed that both kainate and 6-OHDA microlesions of vmPFC resulted in deficit of CTA acquisition (to NaCl, saccharin and citrate) and retrieval (to NaCl and saccharin). Deficits were specific to palatable tastants, particularly those that are strongly palatable, and did not occur for unpalatable stimulus. The present data provide evidence for the important role of vmPFC neurons and catecholaminergic innervation of the vmPFC in taste related learning and memory processes.
Collapse
Affiliation(s)
- Beáta Berta
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, Pécs University, Pécs Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary.
| |
Collapse
|
8
|
The convergence of psychology and neurobiology in flavor-nutrient learning. Appetite 2018; 122:36-43. [DOI: 10.1016/j.appet.2017.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
|
9
|
Hsu TM, McCutcheon JE, Roitman MF. Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Front Psychiatry 2018; 9:410. [PMID: 30233430 PMCID: PMC6129766 DOI: 10.3389/fpsyt.2018.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Motivated behaviors are often initiated in response to perturbations of homeostasis. Indeed, animals and humans have fundamental drives to procure (appetitive behaviors) and eventually ingest (consummatory behaviors) substances based on deficits in body fluid (e.g., thirst) and energy balance (e.g., hunger). Consumption, in turn, reinforces motivated behavior and is therefore considered rewarding. Over the years, the constructs of homeostatic (within the purview of the hypothalamus) and reward (within the purview of mesolimbic circuitry) have been used to describe need-based vs. need-free consumption. However, many experiments have demonstrated that mesolimbic circuits and "higher-order" brain regions are also profoundly influenced by changes to physiological state, which in turn generate behaviors that are poised to maintain homeostasis. Mesolimbic pathways, particularly dopamine neurons of the ventral tegmental area (VTA) and their projections to nucleus accumbens (NAc), can be robustly modulated by a variety of energy balance signals, including post-ingestive feedback relaying nutrient content and hormonal signals reflecting hunger and satiety. Moreover, physiological states can also impact VTA-NAc responses to non-nutritive rewards, such as drugs of abuse. Coupled with recent evidence showing hypothalamic structures are modulated in anticipation of replenished need, classic boundaries between circuits that convey perturbations in homeostasis and those that drive motivated behavior are being questioned. In the current review, we examine data that have revealed the importance of mesolimbic dopamine neurons and their downstream pathways as a dynamic neurobiological mechanism that provides an interface between physiological state, perturbations to homeostasis, and reward-seeking behaviors.
Collapse
Affiliation(s)
- Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - James E McCutcheon
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, United Kingdom
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder. Physiol Behav 2017; 180:78-90. [PMID: 28821448 DOI: 10.1016/j.physbeh.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.
Collapse
|
11
|
Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2016; 122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College and the Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States.
| |
Collapse
|
12
|
NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2016; 148:76-83. [DOI: 10.1016/j.pbb.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
13
|
Dela Cruz JAD, Coke T, Bodnar RJ. Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats. J Vis Exp 2016:53897. [PMID: 27583636 PMCID: PMC5091945 DOI: 10.3791/53897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents.
Collapse
Affiliation(s)
- Julie A D Dela Cruz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, CUNY, New York, NY
| | - Tricia Coke
- Department of Psychology, Queens College, CUNY, Flushing, NY
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, Flushing, NY; Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, CUNY, Flushing, NY;
| |
Collapse
|
14
|
Wald HS, Myers KP. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet. Physiol Behav 2015; 151:102-10. [PMID: 26150317 DOI: 10.1016/j.physbeh.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 07/02/2015] [Indexed: 12/11/2022]
Abstract
Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity.
Collapse
Affiliation(s)
- Hallie S Wald
- Program in Neuroscience, Bucknell University, Lewisburg, PA, USA
| | - Kevin P Myers
- Department of Psychology, Bucknell University, Lewisburg, PA, USA; Program in Neuroscience, Bucknell University, Lewisburg, PA, USA; Program in Animal Behavior, Bucknell University, Lewisburg, PA, USA.
| |
Collapse
|
15
|
Gálosi R, Hajnal A, Petykó Z, Hartmann G, Karádi Z, Lénárd L. The role of catecholamine innervation in the medial prefrontal cortex on the regulation of body weight and food intake. Behav Brain Res 2015; 286:318-27. [DOI: 10.1016/j.bbr.2015.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
|
16
|
McCutcheon JE. The role of dopamine in the pursuit of nutritional value. Physiol Behav 2015; 152:408-15. [PMID: 25957911 DOI: 10.1016/j.physbeh.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 01/16/2023]
Abstract
Acquiring enough food to meet energy expenditure is fundamental for all organisms. Thus, mechanisms have evolved to allow foods with high nutritional value to be readily detected, consumed, and remembered. Although taste is often involved in these processes, there is a wealth of evidence supporting the existence of taste-independent nutrient sensing. In particular, post-ingestive mechanisms arising from the arrival of nutrients in the gut are able to drive food intake and behavioural conditioning. The physiological mechanisms underlying these effects are complex but are believed to converge on mesolimbic dopamine signalling to translate post-ingestive sensing of nutrients into reward and reinforcement value. Discerning the role of nutrition is often difficult because food stimulates sensory systems and post-ingestive pathways in concert. In this mini-review, I discuss the various methods that may be used to study post-ingestive processes in isolation including sham-feeding, non-nutritive sweeteners, post-ingestive infusions, and pharmacological and genetic methods. Using this structure, I present the evidence that dopamine is sensitive to nutritional value of certain foods and examine how this affects learning about food, the role of taste, and the implications for human obesity.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Dept. of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
17
|
Dela Cruz J, Coke T, Karagiorgis T, Sampson C, Icaza-Cukali D, Kest K, Ranaldi R, Bodnar R. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats. Brain Res Bull 2015; 111:9-19. [DOI: 10.1016/j.brainresbull.2014.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 11/27/2022]
|
18
|
Malkusz DC, Yenko I, Rotella FM, Banakos T, Olsson K, Dindyal T, Vig V, Bodnar RJ. Dopamine receptor signaling in the medial orbital frontal cortex and the acquisition and expression of fructose-conditioned flavor preferences in rats. Brain Res 2014; 1596:116-25. [PMID: 25446441 DOI: 10.1016/j.brainres.2014.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked fructose-conditioned flavor preference (CFP) acquisition and expression. Fructose-CFP acquisition was eliminated by medial prefrontal cortex (mPFC) SCH and mPFC or amygdala (AMY) RAC. Fructose-CFP expression was reduced following SCH or RAC in AMY or nucleus accumbens (NAc). The present study examined fructose-CFP acquisition and expression following SCH and RAC in the medial orbital frontal cortex (MOFC), another ventral tegmental area DA target. For fructose-CFP acquisition, five groups of rats received vehicle, SCH (24 or 48 nmol) or RAC (24 or 48 nmol) in the MOFC 0.5h prior to 8 training sessions with one flavor (CS+/Fs) mixed in 8% fructose and 0.2% saccharin, and another flavor (CS-/s) mixed in 0.2% saccharin. In six 2-bottle choice tests in 0.2% saccharin, similar fructose-CFP preferences occurred in groups trained with vehicle (76-77%), SCH24 (69-78%), SCH48 (70-74%) and RAC48 (85-92%). RAC24-trained rats displayed significant CS+ preferences during the first (79%) and third (71%), but not second (58%) test pair. For fructose-CFP expression, rats similarly trained with CS+/Fs and CS- solutions received 2-bottle choice tests following MOFC injections of SCH or RAC (12-48 nmol). CS+ preference expression was significantly reduced by RAC (48 nmol: 58%), but not SCH relative to vehicle (78%). A control group receiving RAC in the dorsolateral prefrontal cortex displayed fructose-CFP expression similar to vehicle. These data demonstrate differential frontal cortical DA mediation of fructose-CFP with mPFC D1 and D2 signaling exclusively mediating acquisition, and MOFC D2 signaling primarily mediating expression.
Collapse
Affiliation(s)
- Danielle C Malkusz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Ira Yenko
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Francis M Rotella
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Theodore Banakos
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Kerstin Olsson
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Trisha Dindyal
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Vishal Vig
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States; Department of Psychology, Queens College, City University of New York, New York, NY, United States.
| |
Collapse
|
19
|
Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2014; 54:1-24. [PMID: 25296886 PMCID: PMC4303703 DOI: 10.1007/s00394-014-0776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
Background Substantial increases in dietary sugar intake together with the increasing prevalence of obesity worldwide, as well as the parallels found between sugar overconsumption and drug abuse, have motivated research on the adverse effects of sugars on health and eating behaviour. Given that the gut–brain axis depends on multiple interactions between peripheral and central signals, and because these signals are interdependent, it is crucial to have a holistic view about dietary sugar effects on health. Methods Recent data on the effects of dietary sugars (i.e. sucrose, glucose, and fructose) at both peripheral and central levels and their interactions will be critically discussed in order to improve our understanding of the effects of sugars on health and diseases. This will contribute to the development of more efficient strategies for the prevention and treatment for obesity and associated co-morbidities. Results This review highlights opposing effects of glucose and fructose on metabolism and eating behaviour. Peripheral glucose and fructose sensing may influence eating behaviour by sweet-tasting mechanisms in the mouth and gut, and by glucose-sensing mechanisms in the gut. Glucose may impact brain reward regions and eating behaviour directly by crossing the blood–brain barrier, and indirectly by peripheral neural input and by oral and intestinal sweet taste/sugar-sensing mechanisms, whereas those promoted by fructose orally ingested seem to rely only on these indirect mechanisms. Conclusions Given the discrepancies between studies regarding the metabolic effects of sugars, more studies using physiological experimental conditions and in animal models closer to humans are needed. Additional studies directly comparing the effects of sucrose, glucose, and fructose should be performed to elucidate possible differences between these sugars on the reward circuitry.
Collapse
|
20
|
Self-regulatory depletion in dogs: insulin release is not necessary for the replenishment of persistence. Behav Processes 2014; 110:22-6. [PMID: 25264236 DOI: 10.1016/j.beproc.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022]
Abstract
It has been hypothesized that self-control is constrained by a limited energy resource that can be depleted through exertion. Once depleted, this resource can be replenished by the consumption or even the taste of glucose. For example, the need to inhibit reduces subsequent persistence at problem solving by humans and dogs, an effect that is not observed when a glucose drink (but not a placebo) is administered following initial inhibition. The mechanism for replenishment by glucose is currently unknown. Energy transfer is not necessary, although insulin secretion may be involved. This possibility was investigated in the current study by having dogs exert self-control (sit-stay) and subsequently giving them (1) glucose that causes the release of insulin, (2) fructose that does not result in the release of insulin nor does it affect glucose levels (but it is a carbohydrate), or (3) a calorie-free drink. Persistence measures indicated that both glucose and fructose replenished canine persistence, whereas the calorie-free drink did not. These results indicate that insulin release is probably not necessary for the replenishment that is presumed to be responsible for the increase in persistence. This article is part of a Special Issue entitled: Canine Behavior.
Collapse
|
21
|
Dela Cruz JAD, Coke T, Icaza-Cukali D, Khalifa N, Bodnar RJ. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats. Neurobiol Learn Mem 2014; 114:223-30. [PMID: 25065714 DOI: 10.1016/j.nlm.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/02/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was followed by six 2-bottle CS+ vs. CS- tests in 2% glucose conducted without injections. The significant and persistent CS+ preferences observed in the VEH (94-98%) group was significantly reduced by rats receiving SCH23390 at 400 nmol/kg (65-73%), raclopride at 200 or 400 nmol/kg (76-82%) or MK-801 at 100 μg/kg (68-69%). Thus, systemic DA D1 and DA D2 receptor antagonism produced smaller reductions in the expression of oral glucose-CFP relative to fructose-CFP or IG-glucose-CFP. Correspondingly, systemic DA D1, DA D2 and NMDA receptor antagonism also produced smaller reductions in the acquisition of oral glucose-CFP relative to fructose-CFP or IG-glucose-CFP. These data suggest, but do not prove, that the magnitude and persistence of these receptor antagonist effects upon sugar-CFP might depend upon the individual or combined engagement of flavor-flavor and flavor-nutrient processes.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, United States
| | - T Coke
- Department of Psychology, Queens College, City University of New York, United States
| | - D Icaza-Cukali
- Department of Psychology, Queens College, City University of New York, United States
| | - N Khalifa
- Department of Psychology, Queens College, City University of New York, United States
| | - R J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, United States; Department of Psychology, Queens College, City University of New York, United States.
| |
Collapse
|
22
|
David O, Barrera I, Chinnakkaruppan A, Kaphzan H, Nakazawa T, Yamamoto T, Rosenblum K. Dopamine-induced tyrosine phosphorylation of NR2B (Tyr1472) is essential for ERK1/2 activation and processing of novel taste information. Front Mol Neurosci 2014; 7:66. [PMID: 25100942 PMCID: PMC4103512 DOI: 10.3389/fnmol.2014.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023] Open
Abstract
Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and it is known to converge on extracellular signal-regulated kinase (ERK)-MAPK signaling in neurons. Previous studies suggest that dopamine induces N-methyl-D-aspartate (NMDA) receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.
Collapse
Affiliation(s)
- Orit David
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | | | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Takanobu Nakazawa
- Division of Oncology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Tadashi Yamamoto
- Division of Oncology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel
| |
Collapse
|
23
|
Dembrow N, Johnston D. Subcircuit-specific neuromodulation in the prefrontal cortex. Front Neural Circuits 2014; 8:54. [PMID: 24926234 PMCID: PMC4046580 DOI: 10.3389/fncir.2014.00054] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 11/13/2022] Open
Abstract
During goal-directed behavior, the prefrontal cortex (PFC) exerts top-down control over numerous cortical and subcortical regions. PFC dysfunction has been linked to many disorders that involve deficits in cognitive performance, attention, motivation, and/or impulse control. A common theme among these disorders is that neuromodulation of the PFC is disrupted. Anatomically, the PFC is reciprocally connected with virtually all neuromodulatory centers. Recent studies of PFC neurons, both in vivo and ex vivo, have found that subpopulations of prefrontal projection neurons can be segregated into distinct subcircuits based on their long-range projection targets. These subpopulations differ in their connectivity, intrinsic properties, and responses to neuromodulators. In this review we outline the evidence for subcircuit-specific neuromodulation in the PFC, and describe some of the functional consequences of selective neuromodulation on behavioral states during goal-directed behavior.
Collapse
Affiliation(s)
- Nikolai Dembrow
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
24
|
Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol Behav 2014; 133:92-8. [PMID: 24811140 DOI: 10.1016/j.physbeh.2014.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
Abstract
Mice adapted to drink a flavored saccharin solution (CS-) paired with intragastric (IG) self-infusions of water rapidly increase their intake of a new flavored solution (CS+) that is paired with IG glucose self-infusions. The present study extends this method to examine post-oral glucose appetition in rats. Food-restricted rats were trained to consume a CS- flavor (e.g., grape saccharin) paired with IG water in 5 daily 1-h tests. In the next 3 tests, they drank a CS+ (e.g., cherry saccharin) paired with IG glucose. Rats infused with 8% glucose increased intake significantly on CS+ Test 1, but those infused with 16% glucose showed only a small increase in intake, which may reflect a counteracting satiating effect. Both groups further increased CS+ intakes in Tests 2 and 3, and preferred (81%) the CS+ to the CS- in a two-bottle test without infusions. A second experiment investigated rats' responses to IG alpha-methyl-d-glucopyranoside (MDG), a non-metabolizable sugar analog which stimulates CS+ intake and preference in mice. The rats reduced their intake of the MDG-paired CS+ flavor over sessions, and preferred the CS- to the CS+ in the choice test. The glucose data show that rats, like mice, rapidly detect the sugar's positive post-oral effects that can stimulate intake within the first hour of exposure. The MDG avoidance may indicate a greater sensitivity to its post-oral inhibitory effects in rats than in mice, or perhaps slower clearance of MDG in rats. The test protocol described here can be used to investigate the peripheral and central processes involved in stimulation of intake by post-oral nutrients in rats.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
25
|
Role of NMDA, opioid and dopamine D1 and D2 receptor signaling in the acquisition of a quinine-conditioned flavor avoidance in rats. Physiol Behav 2014; 128:133-40. [DOI: 10.1016/j.physbeh.2014.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 11/04/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022]
|
26
|
Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats. Neurosci Lett 2014; 564:94-8. [DOI: 10.1016/j.neulet.2014.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
|
27
|
Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, Grimaldi DM, Sarhan M, Guarnieri DJ, Deisseroth K, Aghajanian GK, DiLeone RJ. Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci 2014; 17:248-53. [PMID: 24441680 PMCID: PMC3968853 DOI: 10.1038/nn.3625] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Although the prefrontal cortex influences motivated behavior, its role in food intake remains unclear. Here, we demonstrate a role for D1-type dopamine receptor-expressing neurons in the medial prefrontal cortex (mPFC) in the regulation of feeding. Food intake increases activity in D1 neurons of the mPFC in mice, and optogenetic photostimulation of D1 neurons increases feeding. Conversely, inhibition of D1 neurons decreases intake. Stimulation-based mapping of prefrontal D1 neuron projections implicates the medial basolateral amygdala (mBLA) as a downstream target of these afferents. mBLA neurons activated by prefrontal D1 stimulation are CaMKII positive and closely juxtaposed to prefrontal D1 axon terminals. Finally, photostimulating these axons in the mBLA is sufficient to increase feeding, recapitulating the effects of mPFC D1 stimulation. These data describe a new circuit for top-down control of food intake.
Collapse
Affiliation(s)
- Benjamin B Land
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nandakumar S Narayanan
- 1] Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rong-Jian Liu
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carol A Gianessi
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Catherine E Brayton
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David M Grimaldi
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maysa Sarhan
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Douglas J Guarnieri
- 1] Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Present address: Department of Biology, Colgate University, Hamilton, New York, USA
| | - Karl Deisseroth
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - George K Aghajanian
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ralph J DiLeone
- Department of Psychiatry and Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
There is no sweet escape from social pain: Glucose does not attenuate the effects of ostracism. Physiol Behav 2014; 124:8-14. [DOI: 10.1016/j.physbeh.2013.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
|
29
|
Amador NJ, Rotella FM, Bernal SY, Malkusz D, Cruz JAD, Badalia A, Duenas SM, Hossain M, Gerges M, Kandov S, Touzani K, Sclafani A, Bodnar RJ. Effect of dopamine D1 and D2 receptor antagonism in the lateral hypothalamus on the expression and acquisition of fructose-conditioned flavor preference in rats. Brain Res 2013; 1542:70-8. [PMID: 24211237 DOI: 10.1016/j.brainres.2013.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
The attraction to sugar-rich foods is influenced by conditioned flavor preferences (CFP) produced by the sweet taste of sugar (flavor-flavor learning) and the sugar's post-oral actions (flavor-nutrient) learning. Brain dopamine (DA) circuits are involved in both types of flavor learning, but to different degrees. This study investigated the role of DA receptors in the lateral hypothalamus (LH) on the flavor-flavor learning produced the sweet taste of fructose. In an acquisition study, food-restricted rats received bilateral LH injections of a DA D1 receptor antagonist (SCH23390), a D2 antagonist (RAC, raclopride) or vehicle prior to 1-bottle training sessions with a flavored 8% fructose+0.2% saccharin solution (CS+/F) and a less-preferred flavored 0.2% saccharin solution (CS-). Drug-free 2-bottle tests were then conducted with the CS+ and CS- flavors presented in saccharin. The fructose-CFP did not differ among groups given vehicle (76%), 12 nmol SCH (78%), 24 nmol (82%) or 24 nmol RAC (90%) during training. In an expression study with rats trained drug-free, LH injections of 12 or 24 nmol SCH or 12-48 nmol RAC prior to 2-bottle tests did not alter CS+ preferences (77-90%) relative to vehicle injection (86%). Only a 48 nmol SCH dose suppressed the CS+ preference (61%). The minimal effect of LH DA receptor antagonism upon fructose flavor-flavor conditioning differs with the ability of LH SCH injections to block the acquisition of glucose flavor-nutrient learning.
Collapse
Affiliation(s)
- Nicole J Amador
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Francis M Rotella
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Sonia Y Bernal
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Danielle Malkusz
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Julie A Dela Cruz
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Arzman Badalia
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Sean M Duenas
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Maruf Hossain
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Meri Gerges
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Salomon Kandov
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, NY, NY, United States
| | - Anthony Sclafani
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States; Cognition, Brain and Behavior Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States; Department of Psychology, Brooklyn College, City University of New York, NY, NY, United States
| | - Richard J Bodnar
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States; Department of Psychology, Queens College, City University of New York, NY, NY, United States.
| |
Collapse
|
30
|
Miller HC, Bourrasseau C, Blampain J. Can you enhance executive control without glucose? The effects of fructose on problem solving. J Psychopharmacol 2013; 27:645-50. [PMID: 23325373 DOI: 10.1177/0269881112473790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The consumption of glucose can enhance executive control by increasing blood glucose and providing energy for brain processes. However, a glucose mouth rinse also positively affects executive control in the absence of an effect on blood glucose. This observation suggests that glucose can enhance executive control via another mechanism, perhaps by increasing cortical activation in motivational reward pathways. This hypothesis was examined in the current study by having participants consume fructose, glucose or a placebo 10 minutes before solving word anagrams. Fructose was used because it does not affect blood glucose levels, inhibits cortical responding, and cannot entrain a taste preference post-ingestion. The latter evidences that fructose differs from glucose in its ability to elicit activation in motivational reward pathways. It was observed that consuming fructose and glucose resulted in the resolution of more anagrams than the placebo. These results suggest that at least some of the effects of glucose and fructose on problem solving operate through a common peripheral mechanism that is independent of motivational reward pathways.
Collapse
|
31
|
Dela Cruz JAD, Bae VS, Icaza-Cukali D, Sampson C, Bamshad D, Samra A, Singh S, Khalifa N, Touzani K, Sclafani A, Bodnar RJ. Critical role of NMDA but not opioid receptors in the acquisition of fat-conditioned flavor preferences in rats. Neurobiol Learn Mem 2012; 98:341-7. [PMID: 23103774 DOI: 10.1016/j.nlm.2012.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 01/08/2023]
Abstract
Animals learn to prefer flavors associated with the intake of dietary fats such as corn oil (CO) solutions. We previously reported that fat-conditioned flavor preferences in rats were relatively unaffected by systemic treatment with dopamine D1 and D2 antagonsits. The present study examined whether systemic opioid (naltrexone, NTX) or NMDA (MK-801) receptor antagonists altered the acquisition and/or expression of CO-CFP. The CFP was produced by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in a 3.5% CO solution and another flavor (CS-, e.g., grape) in a 0.9% CO solution. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 d. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 0.9% CO solutions occurred 0.5h after systemic administration of vehicle (VEH), NTX (0.1-5 mg/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (85-88%) which was significantly though moderately attenuated by NTX (69-70%). The lower doses of MK-801 slightly reduced the CS+ preference; the high dose blocked the CS+ preference (49%) but also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH or NTX (0.1, 0.5, 1mg/kg) or MK-801 (100 μg/kg) 0.5h prior to 1-bottle training trials with CS+/3.5% CO and CS-/0.9% CO training solutions. Additional Limited VEH groups were trained with intakes limited to that of the NTX and MK-801 groups. Subsequent two-bottle CS+ vs. CS- tests were conducted without injections. Significant and persistent CS+ preferences were observed in VEH (77-84%) and Limited VEH (88%) groups. NTX treatment during training failed to block the acquisition of CO-CFP although the magnitude of the CS+ preference was reduced by 0.5 (70%) and 1.0 (72%) mg/kg doses relative to the Limited VEH treatment (88%). In contrast, MK-801 (100 μg/kg) treatment during training blocked the acquisition of the CO-CFP. These data suggest a critical role for NMDA, but not opioid receptor signaling in the acquisition of a fat conditioned flavor preferences, and at best limited involvement of NMDA and opioid receptors in the expression of a previously learned preference.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Double-dissociation of D1 and opioid receptor antagonism effects on the acquisition of sucrose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2012; 103:26-32. [PMID: 22967990 DOI: 10.1016/j.pbb.2012.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/03/2012] [Accepted: 07/31/2012] [Indexed: 11/23/2022]
Abstract
Sugar appetite is influenced by unlearned attractions to sweet taste and learned responses to sugars' taste and post-ingestive actions. In rats, sugar-conditioned flavor preferences (CFP) are attenuated by dopamine D1 (SCH23390: SCH), but not by opioid (naltrexone: NTX), receptor antagonism. Sucrose-CFP occurs in BALB/c and SWR inbred mice that differ in their suppressive effects of SCH and NTX on sucrose intake. The present study examined whether SCH and NTX altered expression of previously learned sucrose-CFP and acquisition (learning) of sucrose-CFP in these strains. In Experiment 1, food-restricted mice were trained (10 one-bottle sessions) to drink a more-preferred flavored (e.g., cherry) 16% sucrose solution (CS+/Sucrose) on odd-numbered days, and a less-preferred flavored (e.g., grape) 0.05% saccharin solution (CS-/Saccharin) on even-numbered days. Two-bottle tests with the flavors mixed in 0.2% saccharin occurred 30 min following vehicle (Veh), SCH (50-800 nmol/kg) or NTX (1-5mg/kg) assessing preference expression. CS+ preference expression in BALB/c and SWR mice following Veh were significantly reduced by SCH and NTX. In Experiment 2, separate groups of BALB/c and SWR mice received Veh, SCH (50 nmol/kg) or NTX (1mg/kg) injections 30 min prior to daily one-bottle training sessions with the CS+/Sucrose and CS-/Saccharin solutions assessing preference acquisition. Subsequent two-bottle tests with the CS+ vs. CS- solutions were conducted without injections. CS+/Sucrose training intakes were reduced by SCH in both strains and by NTX in BALB/c mice. In the initial two-bottle test, sucrose-CFP acquisition was significantly reduced in BALB NTX (54%), but not in BALB SCH (77%) groups relative to the BALB Veh group (85%). In contrast, sucrose-CFP acquisition was significantly reduced in SWR SCH (61%), but not in SWR NTX (83%) groups relative to the SWR Veh group (86%). DA D1 and opioid receptor signaling modulate acquisition and/or expression of sucrose-CFP in mice with significant strain differences observed.
Collapse
|
33
|
Sclafani A. Gut-brain nutrient signaling. Appetition vs. satiation. Appetite 2012; 71:454-8. [PMID: 22664300 DOI: 10.1016/j.appet.2012.05.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 01/09/2023]
Abstract
Multiple hormonal and neural signals are generated by ingested nutrients that limit meal size and suppress postmeal eating. However, the availability of sugar-rich and fat-rich foods can override these satiation/satiety signals and lead to overeating and obesity. The palatable flavor of these foods is one factor that promotes overeating, but sugar and fat also have postoral actions that can stimulate eating and increase food preferences. This is revealed in conditioning studies in which rodents consume flavored solutions paired with intragastric sugar or fat infusions. The significant flavor preferences and increased intake produced by the nutrient infusions appear to involve stimulatory gut-brain signals, referred to here as appetition signals, that are distinct from the satiation signals that suppress feeding. Newly developed rapid conditioning protocols may facilitate the study of postoral appetition processes.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate School, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| |
Collapse
|
34
|
Clouard C, Jouhanneau M, Meunier-Salaün MC, Malbert CH, Val-Laillet D. Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs. PLoS One 2012; 7:e37968. [PMID: 22685528 PMCID: PMC3368353 DOI: 10.1371/journal.pone.0037968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d.) infusions of 15% glucose (F(Glu)), lithium chloride (F(LiCl)), or saline (control treatment, F(NaCl)). One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three (18)FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the F(LiCl) than the F(NaCl) or F(Glu) meals. During the two-choice tests performed one and five weeks later, the F(NaCl) and F(Glu) foods were significantly preferred over the F(LICl) food even in the absence of i.d. infusions. Surprisingly, the F(NaCl) food was also preferred over the F(Glu) food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake.
Collapse
Affiliation(s)
- Caroline Clouard
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
- INRA, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Saint Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Rennes, France
| | - Mélanie Jouhanneau
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
- INRA, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Saint Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Rennes, France
| | - Marie-Christine Meunier-Salaün
- INRA, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Saint Gilles, France
- Agrocampus Ouest, UMR1348 PEGASE (Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage), Rennes, France
| | - Charles-Henri Malbert
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
| | - David Val-Laillet
- INRA, UR1341 ADNC (Alimentation & Adaptations Digestives, Nerveuses et Comportementales), Saint Gilles, France
| |
Collapse
|
35
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
36
|
Dopamine signaling in the medial prefrontal cortex and amygdala is required for the acquisition of fructose-conditioned flavor preferences in rats. Behav Brain Res 2012; 233:500-7. [PMID: 22579970 DOI: 10.1016/j.bbr.2012.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/04/2023]
Abstract
Systemic administration of dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked both acquisition and expression of fructose-conditioned flavor preferences (CFP). It is unclear what brain circuits are involved in mediating these effects. The present study investigated DA signaling within the nucleus accumbens shell (NAcS), amygdala (AMY) and medial prefrontal cortex (mPFC) in the acquisition and expression of fructose-CFP. In Experiment 1, separate groups of rats were injected daily in the NAcS or AMY with saline, SCH (24 nmol) or RAC (24 nmol) prior to training sessions with a flavor (CS+) mixed with 8% fructose and 0.2% saccharin (CS+/F) and a different flavor (CS-) mixed with only 0.2% saccharin. In the two-bottle choice tests with 0.2% saccharin, only rats injected with RAC in the AMY failed to acquire a CS+ preference (45-54%). In Experiment 2, new rats were identically trained, but saline, SCH and RAC were injected in the mPFC. In subsequent two-bottle choice tests, SCH- and RAC-treated rats failed to exhibit a CS+ preference (50-56%). In Experiment 3, new rats were trained with CS+/F and CS- without injections. Subsequent two-bottle choice tests were then conducted following bilateral injections of SCH or RAC in the mPFC at total doses of 0, 12, 24 and 48 nmol. Expression of the CS+ preference failed to be affected by either antagonist, indicating that the mPFC is not involved in the maintenance of this preference. These data indicate that the acquisition of fructose-CFP is dependent on DA signaling in the mPFC and AMY.
Collapse
|
37
|
Dela Cruz JAD, Icaza-Cukali D, Tayabali H, Sampson C, Galanopoulos V, Bamshad D, Touzani K, Sclafani A, Bodnar RJ. Roles of dopamine D1 and D2 receptors in the acquisition and expression of fat-conditioned flavor preferences in rats. Neurobiol Learn Mem 2012; 97:332-7. [PMID: 22390857 DOI: 10.1016/j.nlm.2012.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/08/2011] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Abstract
Sugars and fats elicit innate and learned flavor preferences with the latter mediated by flavor-flavor (orosensory) and flavor-nutrient (post-ingestive) processes. Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC), but not opioid antagonists blocked the acquisition and expression of flavor-flavor preferences conditioned by sugars. In addition, systemic D1, but not D2 or opioid antagonists blocked the acquisition of flavor-nutrient preferences conditioned by intragastric (IG) sugar infusions. Given that DA antagonists reduce fat intake, the present study examined whether systemic D1 or D2 antagonists altered the acquisition and/or expression of conditioned flavor preferences (CFP) produced by pairing one novel flavor (CS+, e.g., cherry) with a 3.5% corn oil (CO: fat) solution relative to another flavor (CS-, e.g., grape) paired with a 0.9% CO solution. In an expression study, food-restricted rats were trained to drink either flavored 3.5% or 0.9% CO solutions on alternate days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 0.9% CO solutions occurred 0.5h after systemic administration of vehicle (VEH), SCH (50-800 nmol/kg) or RAC (50-800 nmol/kg). The rats displayed a robust CS+ preference following VEH treatment (87-88%) the expression of which was attenuated by treatment with moderate doses of RAC, and to a lesser degree, SCH. In an acquisition study, six groups of rats received VEH, SCH (25, 50, 200 nmol/kg) or RAC (50, 200 nmol/kg) 0.5 h prior to 1-bottle training trials with CS+ flavored 3.5% and CS- flavored 0.9% (CS-) CO solutions. A seventh Limited VEH group was trained with its training intakes limited to that of the SCH and RAC groups. Subsequent two-bottle tests were conducted with the CS+ and CS- flavors presented in 0.9% CO without injections. Significant and persistent CS+ preferences were observed in VEH (75-82%), Limited VEH (70-88%), SCH25 (75-84%), SCH50 (64-87%), SCH200 (78-91%) and RAC200 (74-91%) groups. In contrast, the group trained with RAC50 displayed a significant initial CS+ preference (76%) which declined over testing to 61%. These data indicate limited DA D1 and D2 receptor signaling involvement in the expression and acquisition of a fat-CFP relative to previous robust effects for sugar-CFP.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nagy B, Szabó I, Papp S, Takács G, Szalay C, Karádi Z. Glucose-monitoring neurons in the mediodorsal prefrontal cortex. Brain Res 2012; 1444:38-44. [PMID: 22330723 DOI: 10.1016/j.brainres.2012.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022]
Abstract
The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control.
Collapse
Affiliation(s)
- Bernadett Nagy
- Pécs University, Medical School, Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences,Pécs, Hungary.
| | | | | | | | | | | |
Collapse
|
39
|
The CS-US delay gradient in flavor preference conditioning with intragastric carbohydrate infusions. Physiol Behav 2011; 105:168-74. [PMID: 21840327 DOI: 10.1016/j.physbeh.2011.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
Rats are able to associate a flavor with the delayed presentation of food, but the obtained flavor preferences are often weak. The present studies evaluated the effect of delay between a flavor CS and a post-oral nutrient US on the expression of conditioned flavor preferences. In Experiment 1, rats were trained with two CS flavors: one was followed after a delay by intragastric infusion of 8% glucose, and the other was followed after the same delay by intragastric water. Rats trained with 2.5, 10, and 30-min delays expressed significant (84-68%) preferences for the glucose-paired flavor whereas rats trained with 60-min delays were indifferent (51%). Experiment 2 examined flavor conditioning over a 60-min delay using 8 or 16% Polycose based on findings that orally consumed Polycose conditions preferences at this delay interval. The 8 and 16% Polycose infusions produced significant preferences which peaked at 62% and 73%, respectively. The ability to bridge these delays may allow animals to learn about slowly digested foods.
Collapse
|
40
|
An assessment of liking for sugars using the estimated daily intake scale. Appetite 2011; 56:713-8. [DOI: 10.1016/j.appet.2011.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/06/2011] [Accepted: 02/10/2011] [Indexed: 11/21/2022]
|
41
|
Sclafani A, Touzani K, Bodnar RJ. Dopamine and learned food preferences. Physiol Behav 2011; 104:64-8. [PMID: 21549727 DOI: 10.1016/j.physbeh.2011.04.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 01/11/2023]
Abstract
An early study performed in Bart Hoebel's laboratory suggested that dopamine (DA) signaling in the nucleus accumbens was involved in learned flavor preferences produced by post-oral nutritive feedback. This paper summarizes our studies investigating the role of DA in flavor preference conditioning using selective DA receptor antagonists. Food-restricted rats were trained to prefer a flavored saccharin solution (CS+) paired with intragastric (IG) sugar infusions over a flavored saccharin solution (CS-) paired with water infusions. Systemic injections of a D1-like receptor antagonist (SCH23390), but not a D2-like receptor antagonist (raclopride) during training blocked flavor preference learning. Neither drug prevented the expression of an already learned preference except at high doses that greatly suppressed total intakes. Central sites of action were examined by local microinjections of SCH23390 (12 nmol) during flavor training or testing. Drug infusions in the nucleus accumbens, amygdala, medial prefrontal cortex, or lateral hypothalamus during training blocked or attenuated CS+ flavor conditioning by IG glucose infusions. The same drug dose did not suppress the expression of a learned CS+ preference. The findings suggest that DA signaling within different components of a distributed brain network is involved in sugar-based flavor preferences. A possible role of DA in conditioned increases in flavor acceptance is discussed.
Collapse
Affiliation(s)
- Anthony Sclafani
- Cognition, Brain and Behavior Doctoral Subprogram, Graduate Center, City University of New York, NY, United States.
| | | | | |
Collapse
|