1
|
Wu J, Kwok SC, Wang H, Wang Z. Effects of post-learning nap in the recognition memory for faces in habitual nappers. Neurobiol Learn Mem 2024; 213:107957. [PMID: 38964599 DOI: 10.1016/j.nlm.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the effects of diurnal nap in the recognition memory for faces in habitual nappers. Thirty volunteers with habitual midday napping (assigned as the sleep group) and 28 non-nappers (assigned as the wake group) participated in this study. Participants were instructed to memorize faces, and subsequently to perform two recognition tasks before and after nap/wakefulness, i.e., an immediate recognition and a delayed recognition. There were three experimental conditions: same faces with the same view angle (S-S condition); same faces with a different view angle (22.5°) (S-D condition); and novel faces (NF condition). A mixed repeated-measures ANOVA revealed that the sleep group exhibited significantly longer reaction times (RT) following their nap compared to those of the wake group; no significant between-group differences were observed in accuracy or sensitivity (d'). Furthermore, both groups were more conservative in the delayed recognition task compared to the immediate recognition task, but the sleep group was more conservative after their nap (vs pre-nap), reflected by the criterion (β, Ohit/Ofalse alarm). Further stepwise regression analysis revealed a positive relationship between duration of stage N3 sleep and normalized RT difference before/after nap on the S-S condition. These findings suggest that an immediate nap following face learning is associated with memory reorganization during N3 sleep in habitual nappers, rendering the memories not readily accessible.
Collapse
Affiliation(s)
- Jue Wu
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Center for Psychological Health Education of College Students, Wuhan University, Wuhan, Hubei Province, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Zhaoxin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Brown A, Gervais NJ, Gravelsins L, O'Byrne J, Calvo N, Ramana S, Shao Z, Bernardini M, Jacobson M, Rajah MN, Einstein G. Effects of early midlife ovarian removal on sleep: Polysomnography-measured cortical arousal, homeostatic drive, and spindle characteristics. Horm Behav 2024; 165:105619. [PMID: 39178647 DOI: 10.1016/j.yhbeh.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) prior to age 48 is associated with elevated risk for both Alzheimer's disease (AD) and sleep disorders such as insomnia and sleep apnea. In early midlife, individuals with BSO show reduced hippocampal volume, function, and hippocampal-dependent verbal episodic memory performance associated with changes in sleep. It is unknown whether BSO affects fine-grained sleep measurements (sleep microarchitecture) and how these changes might relate to hippocampal-dependent memory. We recruited thirty-six early midlife participants with BSO. Seventeen of these participants were taking 17β-estradiol therapy (BSO+ET) and 19 had never taken ET (BSO). Twenty age-matched control participants with intact ovaries (AMC) were also included. Overnight at-home polysomnography recordings were collected, along with subjective sleep quality and hot flash frequency. Multivariate Partial Least Squares (PLS) analysis was used to assess how sleep varied between groups. Compared to AMC, BSO without ET was associated with significantly decreased time spent in non-rapid eye movement (NREM) stage 2 sleep as well as increased NREM stage 2 and 3 beta power, NREM stage 2 delta power, and spindle power and maximum amplitude. Increased spindle maximum amplitude was negatively correlated with verbal episodic memory performance. Decreased sleep latency, increased sleep efficiency, and increased time spent in rapid eye movement sleep were observed for BSO+ET. Findings suggest there is an association between ovarian hormone loss and sleep microarchitecture, which may contribute to poorer cognitive outcomes and be ameliorated by ET.
Collapse
Affiliation(s)
- Alana Brown
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9712 CP, the Netherlands.
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Jordan O'Byrne
- Psychology Department, University of Montreal, Montreal H3T 1J4, Canada; Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal H3G 1M8, Canada.
| | - Noelia Calvo
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Zhuo Shao
- Genetics Program, North York General Hospital, Toronto M2K 1E1, Canada; Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.
| | | | - Michelle Jacobson
- Princess Margaret Hospital, Toronto M5G 2C4, Canada; Women's College Hospital, Toronto M5S 1B2, Canada.
| | - M Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto M6A 2E1, Canada; Tema Genus, Linköping University, Linköping 581 83, Sweden.
| |
Collapse
|
3
|
Pun M, Guadagni V, Longman RS, Hanly PJ, Hill MD, Anderson TJ, Hogan DB, Rawling JM, Poulin M. Sex differences in the association of sleep spindle density and cognitive performance among community-dwelling middle-aged and older adults with obstructive sleep apnea. J Sleep Res 2024; 33:e14095. [PMID: 37963455 DOI: 10.1111/jsr.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Recent studies have found associations between obstructive sleep apnea and cognitive decline. The underlying mechanisms are still unclear. Here, we investigate the associations between changes in micro-architecture, specifically sleep spindles, and cognitive function in community-dwelling middle-aged and older adults, some with obstructive sleep apnea, with a focus on sex differences. A total of 125 voluntary participants (mean age 66.0 ± 6.4 years, 64 females) from a larger cohort (participants of the Brain in Motion Studies I and II) underwent 1 night of in-home polysomnography and a neuropsychological battery (sleep and cognitive testing were conducted within 2 weeks of each other). A semi-automatic computerized algorithm was used to score polysomnography data and detect spindle characteristics in non-rapid eye movement Stages 2 and 3 in both frontal and central electrodes. Based on their apnea-hypopnea index, participants were divided into those with no obstructive sleep apnea (apnea-hypopnea index < 5 per hr, n = 21), mild obstructive sleep apnea (5 ≥ apnea-hypopnea index < 15, n = 47), moderate obstructive sleep apnea (15 ≥ apnea-hypopnea index < 30, n = 34) and severe obstructive sleep apnea (apnea-hypopnea index ≥ 30, n = 23). There were no significant differences in spindle characteristics between the four obstructive sleep apnea severity groups. Spindle density and percentage of fast spindles were positively associated with some verbal fluency measures on the cognitive testing. Sex might be linked with these associations. Biological sex could play a role in the associations between spindle characteristics and some verbal fluency measures. Obstructive sleep apnea severity was not found to be a contributing factor in this non-clinical community-dwelling cohort.
Collapse
Affiliation(s)
- Matiram Pun
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Veronica Guadagni
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Stewart Longman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Psychology Service, Foothills Medical Centre, Alberta Health Service, Calgary, Alberta, Canada
| | - Patrick J Hanly
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Sleep Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Michael D Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David B Hogan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean M Rawling
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc Poulin
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Shibasaki S, Kishino T, Sei Y, Harashima K, Sakata K, Ohnishi H, Watanabe T. Sex-dependent impact of a short rest after lunch on hemodynamics as assessed by Doppler sonography. Eur J Appl Physiol 2024; 124:873-880. [PMID: 37755579 DOI: 10.1007/s00421-023-05316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Taking a short rest after lunch suppresses increases in blood flow to the digestive organs and maintains blood flow to the brain in the afternoon, possibly providing beneficial effects in preventing post-prandial drowsiness. The present study investigated sex-dependent influences on changes in hemodynamics produced by taking a short rest after lunch. METHODS Subjects comprised 20 healthy young adults (10 men, 10 women; mean age 21 ± 1 years). Doppler sonography was performed to measure blood flow in the superior mesenteric artery (SMA) and common carotid artery (CCA) before and after lunch every hour on each day, with and without a 15-min rest with eyes closed after lunch. Blood pressure and heart rate (HR) were also measured. RESULTS For both men and women, peak systolic velocity (PSV) in the SMA was suppressed by taking a rest. PSV in the CCA in men was increased at 0.5 h after lunch in the resting condition but was decreased in the non-resting condition (median 109%, interquartile range [IQR] 102-120% vs. median 98%, IQR 90-107%; P = 0.037). No such differences were observed in women. Although post-prandial increases in HR were observed in women, a similar increase was only found for men in the resting condition. CONCLUSION An increase in CCA blood flow was observed only in men. The present study suggests that a short rest after lunch could better promote the maintenance of blood flow to the brain in men than in women.
Collapse
Affiliation(s)
- Shohei Shibasaki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Tomonori Kishino
- Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
| | - Yoriko Sei
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Keiichiro Harashima
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Tokyo, Japan
| | - Konomi Sakata
- Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Department of Laboratory Medicine, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Alzueta E, Baker FC. The Menstrual Cycle and Sleep. Sleep Med Clin 2023; 18:399-413. [PMID: 38501513 PMCID: PMC11562818 DOI: 10.1016/j.jsmc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Aspects of sleep change across the menstrual cycle in some women. Poorer sleep quality in the premenstrual phase and menstruation is common in women with premenstrual symptoms or painful menstrual cramps. Although objective sleep continuity remains unchanged across the regular, asymptomatic menstrual cycle, activity in the sleep electroencephalogram varies, with a prominent increase in sleep spindle activity in the postovulatory luteal phase, when progesterone is present, relative to the follicular phase. Menstrual cycle phase, reproductive stage, and menstrual-related disorders should be considered when assessing women's sleep complaints.
Collapse
Affiliation(s)
- Elisabet Alzueta
- Human Sleep Research Program, SRI International, Menlo Park, CA, USA
| | - Fiona C Baker
- Human Sleep Research Program, SRI International, Menlo Park, CA, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Shuster AE, Simon KC, Zhang J, Sattari N, Pena A, Alzueta E, de Zambotti M, Baker FC, Mednick SC. Good sleep is a mood buffer for young women during menses. Sleep 2023; 46:zsad072. [PMID: 36951015 PMCID: PMC10566233 DOI: 10.1093/sleep/zsad072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
STUDY OBJECTIVES We sought to elucidate the interaction between sleep and mood considering menstrual cycle phase (menses and non-menses portions of the cycle) in 72 healthy young women (18-33 years) with natural, regular menstrual cycles and without menstrual-associated disorders. This work fills a gap in literature of examining mood in context of sleep and menstrual cycle jointly, rather than individually. METHODS Daily subjective measures of sleep and mood, and date of menses were remotely, digitally collected over a 2-month period. Each morning, participants rated their sleep on the previous night, and each evening participants rated the extent of positive and negative mood for that day. Objective sleep was tracked with a wearable (ŌURA ring) during month 2 of the study. Time-lag cross-correlation and mixed linear models were used to analyze the significance and directionality of the sleep-mood relationship, and how the interaction between menstrual cycle status and sleep impacted mood levels. RESULTS We found that menstrual status alone did not impact mood. However, subjective sleep quality and menstrual status interacted to impact positive mood (p < .05). After a night of perceived poor sleep quality, participants reported lower positive mood during menses compared to non-menses portions of the cycle, while after a night of perceived good sleep quality participants reported equivalent levels of positive mood across the cycle. CONCLUSIONS We suggest that the perception of good sleep quality acts as a mood equalizer, with good sleep providing a protective buffer to positive mood across the menstrual cycle.
Collapse
Affiliation(s)
- Alessandra E Shuster
- Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA, USA
| | - Katharine C Simon
- Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA, USA
| | - Jing Zhang
- Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA, USA
| | - Negin Sattari
- Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA, USA
| | - Andres Pena
- Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA, USA
| | - Elisabet Alzueta
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sara C Mednick
- Department of Cognitive Sciences, Sleep and Cognition Lab, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
8
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
9
|
Jensen A, Thériault K, Yilmaz E, Pon E, Davidson PSR. Mental rotation, episodic memory, and executive control: Possible effects of biological sex and oral contraceptive use. Neurobiol Learn Mem 2023; 198:107720. [PMID: 36621560 DOI: 10.1016/j.nlm.2023.107720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Oral contraceptives (OCs) are one of the most common forms of hormonal birth control. A small literature suggests that OC use may affect visuospatial ability, episodic memory, and executive control. However, previous studies have been criticized for small sample sizes and the use of different, single cognitive tests. We investigated the degree to which biological sex and OC use might affect individual mental rotation, episodic memory, and executive control in a large sample of healthy, young adults (N = 155, including 52 OC users, 53 naturally cycling females, and 50 males) tested individually over videoconference. To measure cognition, we used a set of neuropsychological tasks inspired by Glisky and colleagues' two-factor episodic memory and executive control battery, from which two composite scores (based on principal component analysis) were derived for each participant. Our pre-registered analysis revealed a clear female advantage in episodic memory, independent of OC use. In an exploratory analysis, gist memory was elevated in OC users. Interestingly, we found no significant sex-related differences nor effects of OC use on mental rotation or executive control. Duration of OC use was also not related to any of our cognitive measures. These results suggest that the use of combined, monophasic OCs does not lead to many significant changes in cognition in young adults, although young females overall may have better episodic memory than young males. Additional studies, including longitudinal designs and looking in more detail at the menstrual cycle and OC use history, will further clarify the effects of different types of OCs and their duration of use on different aspects of cognition.
Collapse
Affiliation(s)
- Adelaide Jensen
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada.
| | - Kim Thériault
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Ece Yilmaz
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Ethan Pon
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | | |
Collapse
|
10
|
Lim JYL, Boardman J, Dyche J, Anderson C, Dickinson DL, Drummond SPA. Sex moderates the effects of total sleep deprivation and sleep restriction on risk preference. Sleep 2022; 45:6603432. [PMID: 35667000 PMCID: PMC9453615 DOI: 10.1093/sleep/zsac120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep loss has been shown to alter risk preference during decision-making. However, research in this area has largely focussed on the effects of total sleep deprivation (TSD), while evidence on the effects of sleep restriction (SR) or the potentially moderating role of sex on risk preference remains scarce and unclear. The present study investigated risky decision-making in 47 healthy young adults who were assigned to either of two counterbalanced protocols: well-rested (WR) and TSD, or WR and SR. Participants were assessed on the Lottery Choice Task (LCT), which requires a series of choices between two risky gambles with varying risk levels. Analyses on the pooled dataset indicated across all sleep conditions, participants were generally more risk-seeking when trying to minimise financial loss (LOSSES) than while trying to maximise financial gain (GAINS). On GAINS trials, female participants were more risk-averse during TSD and SR, whereas male participants remained unchanged. On LOSSES trials, female participants remained unchanged during TSD and SR, whereas male participants became more risk-seeking during TSD. Our findings suggest the relationship between sleep loss and risk preference is moderated by sex, whereby changes in risk preference after TSD or SR differ in men and women depending on whether the decision is framed in terms of gains or losses.
Collapse
Affiliation(s)
- Jeryl Y L Lim
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - Johanna Boardman
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - Jeff Dyche
- Department of Psychology, James Madison University , Harrisonburg, VA , USA
| | - Clare Anderson
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| | - David L Dickinson
- Department of Economics and CERPA, Appalachian State University , Boone, NC , USA
- Economics Science Institute, Chapman University , Orange, CA , USA
- Institute of Labor Economics , Bonn , Germany
| | - Sean P A Drummond
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
11
|
Malerba P, Whitehurst L, Mednick SC. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold. Sleep 2022; 45:6603295. [PMID: 35666552 PMCID: PMC9366646 DOI: 10.1093/sleep/zsac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are important for sleep quality and cognitive functions, with their coordination with slow oscillations (SOs) potentially organizing cross-region reactivation of memory traces. Here, we describe the organization of spindles on the electrode manifold and their relation to SOs. We analyzed the sleep night EEG of 34 subjects and detected spindles and SOs separately at each electrode. We compared spindle properties (frequency, duration, and amplitude) in slow wave sleep (SWS) and Stage 2 sleep (S2); and in spindles that coordinate with SOs or are uncoupled. We identified different topographical spindle types using clustering analysis that grouped together spindles co-detected across electrodes within a short delay (±300 ms). We then analyzed the properties of spindles of each type, and coordination to SOs. We found that SWS spindles are shorter than S2 spindles, and spindles at frontal electrodes have higher frequencies in S2 compared to SWS. Furthermore, S2 spindles closely following an SO (about 10% of all spindles) show faster frequency, shorter duration, and larger amplitude than uncoupled ones. Clustering identified Global, Local, Posterior, Frontal-Right and Left spindle types. At centro-parietal locations, Posterior spindles show faster frequencies compared to other types. Furthermore, the infrequent SO-spindle complexes are preferentially recruiting Global SO waves coupled with fast Posterior spindles. Our results suggest a non-uniform participation of spindles to complexes, especially evident in S2. This suggests the possibility that different mechanisms could initiate an SO-spindle complex compared to SOs and spindles separately. This has implications for understanding the role of SOs-spindle complexes in memory reactivation.
Collapse
Affiliation(s)
- Paola Malerba
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital , Columbus, OH , USA
- School of Medicine, The Ohio State University , Columbus, OH , USA
| | - Lauren Whitehurst
- Department of Psychology, University of Kentucky , Lexington, KY , USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California Irvine , Irvine, CA , USA
| |
Collapse
|
12
|
Qian L, Ru T, He M, Li S, Zhou G. Effects of a brief afternoon nap on declarative and procedural memory. Neurobiol Learn Mem 2022; 194:107662. [PMID: 35870718 DOI: 10.1016/j.nlm.2022.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/27/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The relationship between sleep and memory consolidation has not been fully revealed. The current study aimed to investigate how a brief afternoon nap contributed to the consolidation of declarative and procedural memory by exploring the relationship between sleep characteristics (i.e., the durations of sleep stages and slow oscillation, slow-wave activity, and spindle activity extracted from sleep) and task performance and the relationship between delta, theta, alpha, and beta bands extracted from wake during task performance and task performance. Twenty-three healthy young adults underwent a paired associates learning task and a sequential finger-tapping task with easy and difficult levels and were tested for memory performance before and after the intervention (i.e., an about 30-min nap or stay awake). Electroencephalogram (EEG) signals were continously recorded during the whole experiment. Results revealed that a short afternoon nap improved movement speed for the procedural memory task, regardless of the task difficulty, but unaffected the performance on the declarative memory task. Besides, the improvement in movement speed for the easy procedural memory task was positively correlated with slow-wave activity (SWA) during non-rapid-eye-movement (NREM) sleep but negatively correlated with slow oscillation and spindle activity during sleep stage 2 and NREM sleep, and the improvement in the difficult procedural memory task correlated positively with SWA during NREM sleep. Moreover, performance on the easy declarative and procedural memory tasks was negatively correlated with the relative power of alpha or theta; whereas the alpha band was positively correlated with the difficult declarative memory performance. These findings suggested that a brief afternoon nap with NREM sleep would benefit procedural memory consolidation but not declarative memory; such contribution of napping to memory consolidation would be either explained by the sleep characteristics or physiological arousal during performing tasks; task difficulty would moderate the relationship between the declarative memory performance and EEGs during task performance.
Collapse
Affiliation(s)
- Liu Qian
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Taotao Ru
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Meiheng He
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Siyu Li
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
13
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
14
|
Baker FC, Lee KA. Menstrual Cycle Effects on Sleep. Sleep Med Clin 2022; 17:283-294. [DOI: 10.1016/j.jsmc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Cordi MJ, Rasch B. No evidence for intra-individual correlations between sleep-mediated declarative memory consolidation and slow-wave sleep. Sleep 2021; 44:zsab034. [PMID: 33590257 PMCID: PMC8361329 DOI: 10.1093/sleep/zsab034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
STUDY OBJECTIVES Memory consolidation benefits from a retention period filled with sleep. Several theoretical accounts assume that slow-wave sleep (SWS) contributes functionally to processes underlying the stabilization of declarative memories during sleep. However, reports on correlations between memory retention and the amount of SWS are mixed and typically rely on between-subject correlations and small sample sizes. Here we tested for the first time whether the amount of SWS during sleep predicts the effect of sleep on memory consolidation on an intra-individual level in a large sample. METHODS One hundred and fifty-nine healthy participants came to the lab twice and took a 90 min nap in both sessions. Sleep-mediated memory benefits were tested using the paired associates word-learning task in both sessions. RESULTS In contrast to the theoretical prediction, intra-individual differences in sleep-mediated memory benefits did not significantly correlate with differences in SWS or SWA between the two naps. Also between subjects, the amount of SWS did not correlate with memory retention across the nap. However, subjective ratings of sleep quality were significantly associated with the amount of SWS. CONCLUSION Our results question the notion that the amount of SWS per se is functionally related to processes of memory consolidation during sleep. While our results do not exclude an important role of SWS for memory, they suggest that "more SWS" does not necessarily imply better memory consolidation.
Collapse
Affiliation(s)
- Maren Jasmin Cordi
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Alonso A, Genzel L, Gomez A. Sex and Menstrual Phase Influences on Sleep and Memory. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-020-00201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Purposes of Review
This review highlights the effect of sex differences in sleep mediated memory consolidation and cognitive performance. In addition, the role of menstrual cycle and the fluctuating level of sexual hormones (mainly oestrogen and progesterone) are stressed.
Recent Findings
The literature indicates that sex hormones mediate and orchestrate the differences observed in performance of females in comparison with males in a variety of tasks and can also be related to how sleep benefits cognition. Although the exact mechanism of such influence is not clear, it most likely involves differential activation of brain areas, sensitivity to neuromodulators (mainly oestrogen), circadian regulation of sleep and temperature, as well as modification of strategies to solve tasks across the menstrual cycle.
Summary
With the evidence presented here, we hope to encourage researchers to develop appropriate paradigms to study the complex relationship between menstrual cycle, sleep (its regulation, architecture and electrophysiological hallmarks) and performance in memory and other cognitive tasks.
Collapse
|
17
|
Wagner IC, Konrad BN, Schuster P, Weisig S, Repantis D, Ohla K, Kühn S, Fernández G, Steiger A, Lamm C, Czisch M, Dresler M. Durable memories and efficient neural coding through mnemonic training using the method of loci. SCIENCE ADVANCES 2021; 7:7/10/eabc7606. [PMID: 33658191 PMCID: PMC7929507 DOI: 10.1126/sciadv.abc7606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Mnemonic techniques, such as the method of loci, can powerfully boost memory. We compared memory athletes ranked among the world's top 50 in memory sports to mnemonics-naïve controls. In a second study, participants completed a 6-week memory training, working memory training, or no intervention. Behaviorally, memory training enhanced durable, longer-lasting memories. Functional magnetic resonance imaging during encoding and recognition revealed task-based activation decreases in lateral prefrontal, as well as in parahippocampal and retrosplenial cortices in both memory athletes and participants after memory training, partly associated with better performance after 4 months. This was complemented by hippocampal-neocortical coupling during consolidation, which was stronger the more durable memories participants formed. Our findings advance knowledge on how mnemonic training boosts durable memory formation through decreased task-based activation and increased consolidation thereafter. This is in line with conceptual accounts of neural efficiency and highlights a complex interplay of neural processes critical for extraordinary memory.
Collapse
Affiliation(s)
- I C Wagner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands.
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - B N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - P Schuster
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - S Weisig
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - D Repantis
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - K Ohla
- Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - S Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - G Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands
| | - A Steiger
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - C Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - M Czisch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - M Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525 EZ, Netherlands
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
18
|
Plamberger CP, Van Wijk HE, Kerschbaum H, Pletzer BA, Gruber G, Oberascher K, Dresler M, Hahn MA, Hoedlmoser K. Impact of menstrual cycle phase and oral contraceptives on sleep and overnight memory consolidation. J Sleep Res 2020; 30:e13239. [PMID: 33348471 PMCID: PMC8365641 DOI: 10.1111/jsr.13239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Sleep spindles benefit declarative memory consolidation and are considered to be a biological marker for general cognitive abilities. However, the impact of sexual hormones and hormonal oral contraceptives (OCs) on these relationships are less clear. Thus, we here investigated the influence of endogenous progesterone levels of naturally cycling women and women using OCs on nocturnal sleep and overnight memory consolidation. Nineteen healthy women using OCs (MAge = 21.4, SD = 2.1 years) were compared to 43 healthy women with a natural menstrual cycle (follicular phase: n = 16, MAge = 21.4, SD = 3.1 years; luteal phase: n = 27, MAge = 22.5, SD = 3.6 years). Sleep spindle density and salivary progesterone were measured during an adaptation and an experimental night. A word pair association task preceding the experimental night followed by two recalls (pre‐sleep and post‐sleep) was performed to test declarative memory performance. We found that memory performance improved overnight in all women. Interestingly, women using OCs (characterized by a low endogenous progesterone level but with very potent synthetic progestins) and naturally cycling women during the luteal phase (characterized by a high endogenous progesterone level) had a higher fast sleep spindle density compared to naturally cycling women during the follicular phase (characterized by a low endogenous progesterone level). Furthermore, we observed a positive correlation between endogenous progesterone level and fast spindle density in women during the luteal phase. Results suggest that the use of OCs and the menstrual cycle phase affects sleep spindles and therefore should be considered in further studies investigating sleep spindles and cognitive performance.
Collapse
Affiliation(s)
| | - Helen Elisabeth Van Wijk
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.,Radboud University, Nijmegen, The Netherlands
| | - Hubert Kerschbaum
- Department of Cell Biology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Belinda Angela Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Karin Oberascher
- Department of Cell Biology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | | | - Michael Andreas Hahn
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
19
|
Brown AMC, Gervais NJ. Role of Ovarian Hormones in the Modulation of Sleep in Females Across the Adult Lifespan. Endocrinology 2020; 161:5879359. [PMID: 32735650 PMCID: PMC7450669 DOI: 10.1210/endocr/bqaa128] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ovarian hormones, including 17β-estradiol, are implicated in numerous physiological processes, including sleep. Beginning at puberty, girls report more sleep complaints than boys, which is maintained throughout the reproductive life stage. Sleep problems are exacerbated during the menopausal transition, evidenced by greater risk for sleep disorders. There is emerging evidence that menopause-associated hormone loss contributes to this elevated risk, but age is also an important factor. The extent to which menopause-associated sleep disturbance persists into postmenopause above and beyond the effects of age remains unknown. Untreated sleep disturbances have important implications for cognitive health, as they are emerging as risk factors for dementia. Given that sleep loss impairs memory, an important knowledge gap concerns the role played by menopause-associated hormone loss in exacerbating sleep disturbance and, ultimately, cognitive function in aging women. In this review, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining the sleep-wake cycle in younger and middle-aged females, with evidence implicating 17β-estradiol in supporting the memory-promoting effects of sleep. Sleep physiology is briefly reviewed before turning to behavioral and neural evidence from young females linking 17β-estradiol to sleep-wake cycle maintenance. Implications of menopause-associated 17β-estradiol loss is also reviewed before discussing how ovarian hormones may support the memory-promoting effects of sleep, and why menopause may exacerbate pathological aging via effects on sleep. While still in its infancy, this research area offers a new sex-based perspective on aging research, with a focus on a modifiable risk factor for pathological aging.
Collapse
Affiliation(s)
- Alana M C Brown
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Nicole J. Gervais, University of Toronto, Department of Psychology, 100 St. George Street, Toronto, ON, Canada M5S 3G3. E-mail:
| |
Collapse
|
20
|
Lacourse K, Yetton B, Mednick S, Warby SC. Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data. Sci Data 2020; 7:190. [PMID: 32561751 PMCID: PMC7305234 DOI: 10.1038/s41597-020-0533-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Spindle event detection is a key component in analyzing human sleep. However, detection of these oscillatory patterns by experts is time consuming and costly. Automated detection algorithms are cost efficient and reproducible but require robust datasets to be trained and validated. Using the MODA (Massive Online Data Annotation) platform, we used crowdsourcing to produce a large open-source dataset of high quality, human-scored sleep spindles (5342 spindles, from 180 subjects). We evaluated the performance of three subtype scorers: “experts, researchers and non-experts”, as well as 7 previously published spindle detection algorithms. Our findings show that only two algorithms had performance scores similar to human experts. Furthermore, the human scorers agreed on the average spindle characteristics (density, duration and amplitude), but there were significant age and sex differences (also observed in the set of detected spindles). This study demonstrates how the MODA platform can be used to generate a highly valid open source standardized dataset for researchers to train, validate and compare automated detectors of biological signals such as the EEG.
Collapse
Affiliation(s)
- Karine Lacourse
- Centre d'études avancées en médecine du sommeil, Montréal, Canada.
| | - Ben Yetton
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | - Sara Mednick
- Department of Cognitive Science, University of California, Irvine, CA, USA
| | - Simon C Warby
- Centre d'études avancées en médecine du sommeil, Montréal, Canada.,Department of Psychiatry, Université de Montréal, Montréal, Canada
| |
Collapse
|
21
|
Sleep Duration Change and Cognitive Function: A National Cohort Study of Chinese People Older than 45 Years. J Nerv Ment Dis 2020; 208:498-504. [PMID: 32187126 DOI: 10.1097/nmd.0000000000001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the relationship between sleep duration and cognitive function in Chinese people older than 45 years, using data from the China Health and Retirement Longitudinal Study. The baseline survey was conducted in 2011 and the second and third wave surveys were conducted in 2013 and 2015, respectively. Multiple linear regression models were used to evaluate all associations. A total of 5811 individuals were included. No significant associations were found between short or long sleep duration at baseline and cognitive function. Compared with no change in sleep duration, a decrease in sleep duration by 2 hours or more and an increase in sleep duration by 2 hours or more were associated with worse global cognitive function, with β (95% confidence intervals [CIs]) of -0.42 (-0.70 to -0.14) and -0.34 (-0.67 to -0.01), respectively. In men, an increase of 2 hours or more in sleep duration was associated with lower global cognitive score (β = -0.64; 95% CI, -1.19 to -0.08), whereas in women, a decrease of 2 hours or more in sleep duration was associated with lower global cognitive score (β = -0.42; 95% CI, -0.78 to -0.06). Our study demonstrated that longitudinal sleep duration change was associated with cognitive function. Our findings indicate the need to consider changes in sleep duration when estimating risk and suggest that targeted strategies should be put forward for routine sleep screening and to maintain regular sleep patterns.
Collapse
|
22
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
23
|
Naji M, Krishnan GP, McDevitt EA, Bazhenov M, Mednick SC. Timing between Cortical Slow Oscillations and Heart Rate Bursts during Sleep Predicts Temporal Processing Speed, but Not Offline Consolidation. J Cogn Neurosci 2019; 31:1484-1490. [PMID: 31180264 DOI: 10.1162/jocn_a_01432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Central and autonomic nervous system activities are coupled during sleep. Cortical slow oscillations (SOs; <1 Hz) coincide with brief bursts in heart rate (HR), but the functional consequence of this coupling in cognition remains elusive. We measured SO-HR temporal coupling (i.e., the peak-to-peak interval between downstate of SO event and HR burst) during a daytime nap and asked whether this SO-HR timing measure was associated with temporal processing speed and learning on a texture discrimination task by testing participants before and after a nap. The coherence of SO-HR events during sleep strongly correlated with an individual's temporal processing speed in the morning and evening test sessions, but not with their change in performance after the nap (i.e., consolidation). We confirmed this result in two additional experimental visits and also discovered that this association was visit-specific, indicating a state (not trait) marker. Thus, we introduce a novel physiological index that may be a useful marker of state-dependent processing speed of an individual.
Collapse
|
24
|
Lipinska G, Stuart B, Thomas KGF, Baldwin DS, Bolinger E. Preferential Consolidation of Emotional Memory During Sleep: A Meta-Analysis. Front Psychol 2019; 10:1014. [PMID: 31133940 PMCID: PMC6524658 DOI: 10.3389/fpsyg.2019.01014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
It is uncertain whether sleep preferentially consolidates emotional over neutral material. Some studies suggest that sleep enhances emotional memory (i.e., that there are large differences in strength of memory for valenced material compared to neutral material after a sleep-filled interval, but that this difference is smaller after a wake-filled interval). Others find no such effect. We attempted to resolve this uncertainty by conducting a meta-analysis that compared valenced to neutral material after both sleep- and wake-filled delays. Standard search strategies identified 31 studies (containing 36 separate datasets) that met our inclusion criteria. Using random effects modeling, we conducted separate analyses for datasets comparing (a) negative vs. neutral material, (b) positive vs. neutral material, or (c) combined negative and positive vs. neutral material. We then specified several subgroup analyses to investigate potential moderators of the relationship between sleep and emotional memory consolidation. Results showed no overall effect for preferential sleep-dependent consolidation of emotional over neutral material. However, moderation analyses provided evidence for stronger effects when (a) studies used free recall rather than recognition outcome measures, or (b) delayed recall or recognition outcomes were controlled for initial learning. Those analyses also suggested that other methodological features (e.g., whether participants experience a full night of sleep and a regular daytime waking control condition rather than a nap and a night-time sleep deprivation control condition) and sample characteristics (e.g. all-male or not, young adult or not) should be carefully addressed in future research in this field. These findings suggest that sleep does enhance emotional memory, but that in the laboratory the effect is only observed under particular methodological conditions. The conditions we identify as being critical to consider are consistent with general theories guiding scientific understanding of memory consolidation during sleep.
Collapse
Affiliation(s)
- Gosia Lipinska
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Beth Stuart
- Primary Care and Population Sciences, University of Southampton, Southampton, United Kingdom
| | - Kevin G F Thomas
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - David S Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Elaina Bolinger
- Institute of Medical Psychology and Behavioural Neurobiology, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Ferrarelli F, Kaskie R, Laxminarayan S, Ramakrishnan S, Reifman J, Germain A. An increase in sleep slow waves predicts better working memory performance in healthy individuals. Neuroimage 2019; 191:1-9. [DOI: 10.1016/j.neuroimage.2019.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
|
26
|
Hajali V, Andersen ML, Negah SS, Sheibani V. Sex differences in sleep and sleep loss-induced cognitive deficits: The influence of gonadal hormones. Horm Behav 2019; 108:50-61. [PMID: 30597139 DOI: 10.1016/j.yhbeh.2018.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/30/2022]
Abstract
Males and females can respond differentially to the same environmental stimuli and experimental conditions. Chronic sleep loss is a frequent and growing problem in many modern societies and has a broad variety of negative outcomes for health and well-being. While much has been done to explore the deleterious effects of sleep deprivation (SD) on cognition in both human and animal studies over the last few decades, very little attention has been paid to the part played by sex differences and gonadal steroids in respect of changes in cognitive functions caused by sleep loss. The effects of gonadal hormones on sleep regulation and cognitive performances are well established. Reduced gonadal function in menopausal women and elderly men is associated with sleep disturbances and cognitive decline as well as dementia, which suggests that sex steroids play a key role in modulating these conditions. Finding out whether there are sex differences in respect of the effect of insufficient sleep on cognition, and how neuroendocrine mediators influence cognitive impairment induced by SD could provide valuable insights into the best therapies for each sex. In this review, we aim to highlight the involvement of sex differences and gonadal hormone status on the severity of cognitive deficits induced by sleep deficiency in both human and animal studies.
Collapse
Affiliation(s)
- Vahid Hajali
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Sajad Sahab Negah
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Malerba P, Whitehurst LN, Simons SB, Mednick SC. Spatio-temporal structure of sleep slow oscillations on the electrode manifold and its relation to spindles. Sleep 2019; 42:5134206. [PMID: 30335179 PMCID: PMC6335956 DOI: 10.1093/sleep/zsy197] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/06/2018] [Indexed: 11/12/2022] Open
Abstract
Electrophysiological sleep rhythms have been shown to impact human waking cognition, but their spatio-temporal dynamics are not understood. We investigated how slow oscillations (SOs; 0.5-4 Hz) are organized during a night of polysomnographically-recorded sleep, focusing on the scalp electrode manifold. We detected troughs of SOs at all electrodes independently and analyzed the concurrent SO troughs found in every other electrode within ±400 ms. We used a k-clustering algorithm to categorize the spatial patterns of SO trough co-occurrence into three types (Global, Local or Frontal) depending on their footprint on the electrode manifold during the considered time window. When comparing the clusters across non-rapid eye movement (NREM) sleep stages, we found a relatively larger fraction of Local SOs in slow wave sleep (SWS) compared to stage 2, and larger fraction of Global SOs in stage 2 compared to SWS. The probability of SO detection in time between two electrodes showed that SO troughs of all types co-occurred at some nearby electrodes, but only Global troughs had traveling wave profiles, moving anteriorly to posteriorly. Global SOs also had larger amplitudes at frontal electrodes and stronger coupling with fast spindles (12.5-16 Hz). Indeed, SO-spindle complexes were more likely to be detected following a Global SO trough compared to SOs in other clusters. Also, the phase-amplitude modulation of SOs over spindles (modulation vector) was higher for Global SOs across the electrode manifold. Given the recent evidence of a link between thalamocortical coupling and cognition, our findings suggest stronger cognitive relevance of Global SOs as compared to other SO types in sleep memory processing. Clinical Trials No clinical trial is related to this study.
Collapse
Affiliation(s)
- Paola Malerba
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA
| | | | | | - Sara C Mednick
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA
| |
Collapse
|
28
|
Naji M, Krishnan GP, McDevitt EA, Bazhenov M, Mednick SC. Coupling of autonomic and central events during sleep benefits declarative memory consolidation. Neurobiol Learn Mem 2019; 157:139-150. [PMID: 30562589 PMCID: PMC6425961 DOI: 10.1016/j.nlm.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/24/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023]
Abstract
While anatomical pathways between forebrain cognitive and brainstem autonomic nervous centers are well-defined, autonomic-central interactions during sleep and their contribution to waking performance are not understood. Here, we analyzed simultaneous central activity via electroencephalography (EEG) and autonomic heart beat-to-beat intervals (RR intervals) from electrocardiography (ECG) during wake and daytime sleep. We identified bursts of ECG activity that lasted 4-5 s and predominated in non-rapid-eye-movement sleep (NREM). Using event-based analysis of NREM sleep, we found an increase in delta (0.5-4 Hz) and sigma (12-15 Hz) power and an elevated density of slow oscillations (0.5-1 Hz) about 5 s prior to peak of the heart rate burst, as well as a surge in vagal activity, assessed by high-frequency (HF) component of RR intervals. Using regression framework, we show that these Autonomic/Central Events (ACE) positively predicted post-nap improvement in a declarative memory task after controlling for the effects of spindles and slow oscillations from sleep periods without ACE. No such relation was found between memory performance and a control nap. Additionally, NREM ACE negatively correlated with REM sleep and learning in a non-declarative memory task. These results provide the first evidence that coordinated autonomic and central events play a significant role in declarative memory consolidation.
Collapse
Affiliation(s)
- Mohsen Naji
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Giri P Krishnan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Kuula L, Tamminen J, Makkonen T, Merikanto I, Räikkönen K, Pesonen AK. Higher sleep spindle activity is associated with fewer false memories in adolescent girls. Neurobiol Learn Mem 2018; 157:96-105. [PMID: 30553019 DOI: 10.1016/j.nlm.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sleep facilitates the extraction of semantic regularities amongst newly encoded memories, which may also lead to increased false memories. We investigated sleep stage proportions and sleep spindles in the recollection of adolescents' false memories, and their potential sex-specific differences. METHODS 196 adolescents (mean age 16.9 y; SD = 0.1, 61% girls) underwent the Deese, Roediger & McDermott (DRM) false memory procedure and overnight polysomnography, with free recall the following morning. Sleep was scored manually into stages 1, 2, 3 and REM. Stage 2 sleep spindle frequency, density, and peak amplitude were used as measures of spindle activity for slow (10-13 Hz) and fast (13-16 Hz) ranges. RESULTS In girls, a lower number of critical lures was associated with higher spindle frequency (p ≤ 0.01), density (p ≤ 0.01), and amplitude (p = 0.03). Additionally, girls' longer sleep duration was associated with more intrusion words (p = 0.03), but not with critical lures. These associations survived adjustment for age, pubertal status, and intelligence. No significant results emerged in boys. CONCLUSIONS In adolescent girls, higher spindle activity was associated with fewer critical lures being falsely recalled in the DRM paradigm. Unlike studies using adult participants, we did not observe any association between slow-wave sleep and false memory recollection.
Collapse
Affiliation(s)
- Liisa Kuula
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Tommi Makkonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilona Merikanto
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu-Katriina Pesonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Gao C, Terlizzese T, Scullin MK. Short sleep and late bedtimes are detrimental to educational learning and knowledge transfer: An investigation of individual differences in susceptibility. Chronobiol Int 2018; 36:307-318. [PMID: 30409040 DOI: 10.1080/07420528.2018.1539401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Good sleep hygiene practices, including consistent bedtimes and 7-9 h of sleep/night, are theorized to benefit educational learning. However, individuals differ in how much sleep they need, as well as in their chronotype preference. Therefore, some students may be more vulnerable to the cognitive effects of sleep loss, later bedtimes and nonpreferred times of learning than others. One prominent example is the debate regarding whether sleep loss and later bedtimes affect classroom learning more in female or male students. To inform this gender-and-sleep-loss debate, we developed a virtual college-level lecture to use in a controlled, laboratory setting. During Session 1, 78 undergraduate students were randomly assigned to take the lecture at 12:00 (noon condition) or 19:30 (evening condition). Then participants wore wristband actigraphy for 1 week to monitor average and intraindividual variability in sleep duration, bedtime and midpoint of sleep. During Session 2, participants completed a test at the same time of day as Session 1. The test included basic questions that were similar to trained concepts during the lecture (trained items) as well as integration questions that required application of learned concepts (knowledge-transfer items). Bayesian analyses supported the null hypothesis that time of learning did not affect test performance. Collapsed across time of testing, regression analyses showed that shorter sleep durations and later bedtimes explained 13% of the variance in test performance. Longer sleep durations and earlier bedtimes predicted better test performance primarily in females, younger students and morning-types. Interestingly, students with above-median fluid intelligence scores were resilient to short sleep and late bedtimes. Our findings indicate that both sleep and circadian factors should be addressed to optimize educational learning, particularly in the students who are most susceptible to sleep loss.
Collapse
Affiliation(s)
- Chenlu Gao
- a Department of Psychology and Neuroscience , Baylor University , Waco , USA
| | - Taylor Terlizzese
- a Department of Psychology and Neuroscience , Baylor University , Waco , USA
| | - Michael K Scullin
- a Department of Psychology and Neuroscience , Baylor University , Waco , USA
| |
Collapse
|
31
|
|
32
|
Coleman M, Offen K, Markant J. Exercise Similarly Facilitates Men and Women's Selective Attention Task Response Times but Differentially Affects Memory Task Performance. Front Psychol 2018; 9:1405. [PMID: 30150954 PMCID: PMC6100625 DOI: 10.3389/fpsyg.2018.01405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Previous research has found that acute, moderate-intensity physical exercise enhances selective attention and memory and that men and women show differential performance on tasks measuring these skills. Although exercise and participant sex have been examined separately, it remains unknown whether acute, moderate-intensity exercise differentially affects men and women’s selective attention and memory encoding and retrieval. Participants in the present study completed two 10-min sessions of either moderate-intensity exercise comprised of jumping rope alternating with walking in place or an active control protocol comprised of watching wellness videos alternating with walking in place. Each participant completed a selective attention task and a task assessing recognition and object location memory immediately after exercising. Exercise was related to overall faster performance during the selective attention task, with no differences in men and women’s performance. Women showed better recognition memory compared to men. Exercise specifically improved object location memory among men, but only among participants who completed the memory task second. These findings suggest that acute, moderate-intensity exercise differentially affects men and women’s memory, which may be related to complex interactions between exercise, sex hormones, and the neurotrophin BDNF.
Collapse
Affiliation(s)
- Matt Coleman
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Kelsey Offen
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Julie Markant
- Department of Psychology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
33
|
Xie W, Cappiello M, Meng M, Rosenthal R, Zhang W. ADRA2B deletion variant and enhanced cognitive processing of emotional information: A meta-analytical review. Neurosci Biobehav Rev 2018; 92:402-416. [PMID: 29751052 DOI: 10.1016/j.neubiorev.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/15/2018] [Accepted: 05/06/2018] [Indexed: 01/12/2023]
Abstract
This meta-analytical review examines whether a deletion variant in ADRA2B, a gene that encodes α2B adrenoceptor in the regulation of norepinephrine availability, influences cognitive processing of emotional information in human observers. Using a multilevel modeling approach, this meta-analysis of 16 published studies with a total of 2752 participants showed that ADRA2B deletion variant was significantly associated with enhanced perceptual and cognitive task performance for emotional stimuli. In contrast, this genetic effect did not manifest in overall task performance when non-emotional content was used. Furthermore, various study-level factors, such as targeted cognitive processes (memory vs. attention/perception) and task procedures (recall vs. recognition), could moderate the size of this genetic effect. Overall, with increased statistical power and standardized analytical procedures, this meta-analysis has established the contributions of ADRA2B to the interactions between emotion and cognition, adding to the growing literature on individual differences in attention, perception, and memory for emotional information in the general population.
Collapse
Affiliation(s)
- Weizhen Xie
- Department of Psychology, University of California, Riverside, United States.
| | - Marcus Cappiello
- Department of Psychology, University of California, Riverside, United States
| | - Ming Meng
- School of Psychology, South China Normal University, China
| | - Robert Rosenthal
- Department of Psychology, University of California, Riverside, United States
| | - Weiwei Zhang
- Department of Psychology, University of California, Riverside, United States
| |
Collapse
|
34
|
Yetton BD, McDevitt EA, Cellini N, Shelton C, Mednick SC. Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks. PLoS One 2018; 13:e0194604. [PMID: 29641599 PMCID: PMC5894981 DOI: 10.1371/journal.pone.0194604] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/06/2018] [Indexed: 01/19/2023] Open
Abstract
The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep.
Collapse
Affiliation(s)
- Benjamin D. Yetton
- Department of Psychology, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth A. McDevitt
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Nicola Cellini
- Department of Psychology, University of California, Irvine, Irvine, California, United States of America
- Department of General Psychology, University of Padova, Padova, Italy
| | - Christian Shelton
- Department of Computer Science, University of California, Riverside, Riverside, California, United States of America
| | - Sara C. Mednick
- Department of Psychology, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
35
|
Baker FC, Sattari N, de Zambotti M, Goldstone A, Alaynick WA, Mednick SC. Impact of sex steroids and reproductive stage on sleep-dependent memory consolidation in women. Neurobiol Learn Mem 2018; 160:118-131. [PMID: 29574082 DOI: 10.1016/j.nlm.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Age and sex are two of the three major risk factors for Alzheimer's disease (ApoE-e4 allele is the third), with women having a twofold greater risk for Alzheimer's disease after the age of 75 years. Sex differences have been shown across a wide range of cognitive skills in young and older adults, and evidence supports a role for sex steroids, especially estradiol, in protecting against the development of cognitive decline in women. Sleep may also be a protective factor against age-related cognitive decline, since specific electrophysiological sleep events (e.g. sleep spindle/slow oscillation coupling) are critical for offline memory consolidation. Furthermore, studies in young women have shown fluctuations in sleep events and sleep-dependent memory consolidation during different phases of the menstrual cycle that are associated with the levels of sex steroids. An under-appreciated possibility is that there may be an important interaction between these two protective factors (sex steroids and sleep) that may play a role in daily fluctuations in cognitive processing, in particular memory, across a woman's lifespan. Here, we summarize the current knowledge of sex steroid-dependent influences on sleep and cognition across the lifespan in women, with special emphasis on sleep-dependent memory processing. We further indicate gaps in knowledge that require further experimental examination in order to fully appreciate the complex and changing landscape of sex steroids and cognition. Lastly, we propose a series of testable predictions for how sex steroids impact sleep events and sleep-dependent cognition across the three major reproductive stages in women (reproductive years, menopause transition, and post-menopause).
Collapse
Affiliation(s)
- Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Negin Sattari
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA
| | | | - Aimee Goldstone
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | | | - Sara C Mednick
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA.
| |
Collapse
|