1
|
Fan D, Wu R. Mechanisms of the septic heart: From inflammatory response to myocardial edema. J Mol Cell Cardiol 2024; 195:73-82. [PMID: 39142438 DOI: 10.1016/j.yjmcc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Sepsis-induced myocardial dysfunction (SIMD), also known as sepsis-induced cardiomyopathy (SICM), is linked to significantly increased mortality. Despite its clinical importance, effective therapies for SIMD remain elusive, largely due to an incomplete understanding of its pathogenesis. Over the past five decades, research involving both animal models and human studies has highlighted several pathogenic mechanisms of SICM, yet many aspects remain unexplored. Initially thought to be primarily driven by inflammatory cytokines, current research indicates that these alone are insufficient for the development of cardiac dysfunction. Recent studies have brought attention to additional mechanisms, including excessive nitric oxide production, mitochondrial dysfunction, and disturbances in calcium homeostasis, as contributing factors in SICM. Emerging clinical evidence has highlighted the significant role of myocardial edema in the pathogenesis of SICM, particularly its association with cardiac remodeling in septic shock patients. This review synthesizes our current understanding of SIMD/SICM, focusing on myocardial edema's contribution to cardiac dysfunction and the critical role of the bradykinin receptor B1 (B1R) in altering myocardial microvascular permeability, a potential key player in myocardial edema development during sepsis. Additionally, this review briefly summarizes existing therapeutic strategies and their challenges and explores future research directions. It emphasizes the need for a deeper understanding of SICM to develop more effective treatments.
Collapse
Affiliation(s)
- Dihan Fan
- Psychiatric Genetics Group, McGill University, Canada
| | - Rongxue Wu
- Department of Medicine, Section of Cariology, Biological Sciences Division, The University of Chicago, IL, United States.
| |
Collapse
|
2
|
Song J, Du J, Tan X, Chen H, Cong B. Bradykinin attenuates endothelial-mesenchymal transition following cardiac ischemia-reperfusion injury. Eur J Pharmacol 2024; 971:176556. [PMID: 38574840 DOI: 10.1016/j.ejphar.2024.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
AIMS Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined. MATERIALS AND METHODS Rats were subjected to ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5 μg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro. RESULTS Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor β1 (TGFβ1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition. CONCLUSION Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.
Collapse
Affiliation(s)
- Jinchao Song
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China; Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiankui Du
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China; Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Haiyan Chen
- Department of Anesthesiology, Shidong Hospital Affiliated to the University of Shanghai for Science and Technology, Shanghai, China
| | - Binhai Cong
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
3
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Thomaz MS, Sertorio MN, Gazarini ML, Ribeiro DA, Pisani LP, Nagaoka MR. Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet. Biomedicines 2023; 11:2199. [PMID: 37626696 PMCID: PMC10452290 DOI: 10.3390/biomedicines11082199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins' role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcia Regina Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil; (M.S.T.)
| |
Collapse
|
5
|
Eller-Borges R, Rodrigues EG, Teodoro ACS, Moraes MS, Arruda DC, Paschoalin T, Curcio MF, da Costa PE, Do Nascimento IR, Calixto LA, Stern A, Monteiro HP, Batista WL. Bradykinin promotes murine melanoma cell migration and invasion through endogenous production of superoxide and nitric oxide. Nitric Oxide 2023; 132:15-26. [PMID: 36736618 DOI: 10.1016/j.niox.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.
Collapse
Affiliation(s)
- Roberta Eller-Borges
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Caroline S Teodoro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miriam S Moraes
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor R Do Nascimento
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro A Calixto
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University Grossman School of Medicine, New York, NY, USA
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
6
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
7
|
Schieffer E, Schieffer B. The rationale for the treatment of long-Covid symptoms – A cardiologist's view. Front Cardiovasc Med 2022; 9:992686. [PMID: 36186977 PMCID: PMC9520195 DOI: 10.3389/fcvm.2022.992686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing coronavirus disease 2019 pandemic left us with thousands of patients suffering from neurological, cardiovascular, and psychiatric disorders named post-acute sequelae of COVID-19 or just long-Covid. In parallel, the vaccination campaigns against SARS-CoV-2 spike protein saved millions of lives worldwide but long-Covid symptoms also appeared rarely following vaccination with a strong overlap to the “canonical” long-Covid symptoms. A therapeutic strategy targeting both, post-VAC and post-SARS-CoV-2 long-Covid symptoms is warranted since exposure to the S-protein either by vaccination or SARS-CoV-2 infection may trigger identical immuno-inflammatory cascades resulting in long-Covid symptoms.
Collapse
|
8
|
Nagashima S, Dutra AA, Arantes MP, Zeni RC, Klein CK, de Oliveira FC, Piper GW, Brenny ID, Pereira MRC, Stocco RB, Martins APC, de Castro EM, Vaz de Paula CB, Amaral ANM, Machado-Souza C, Baena CP, Noronha L. COVID-19 and Lung Mast Cells: The Kallikrein-Kinin Activation Pathway. Int J Mol Sci 2022; 23:1714. [PMID: 35163636 PMCID: PMC8836064 DOI: 10.3390/ijms23031714] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mast cells (MCs) have relevant participation in inflammatory and vascular hyperpermeability events, responsible for the action of the kallikrein-kinin system (KKS), that affect patients inflicted by the severe form of COVID-19. Given a higher number of activated MCs present in COVID-19 patients and their association with vascular hyperpermeability events, we investigated the factors that lead to the activation and degranulation of these cells and their harmful effects on the alveolar septum environment provided by the action of its mediators. Therefore, the pyroptotic processes throughout caspase-1 (CASP-1) and alarmin interleukin-33 (IL-33) secretion were investigated, along with the immunoexpression of angiotensin-converting enzyme 2 (ACE2), bradykinin receptor B1 (B1R) and bradykinin receptor B2 (B2R) on post-mortem lung samples from 24 patients affected by COVID-19. The results were compared to 10 patients affected by H1N1pdm09 and 11 control patients. As a result of the inflammatory processes induced by SARS-CoV-2, the activation by immunoglobulin E (IgE) and degranulation of tryptase, as well as Toluidine Blue metachromatic (TB)-stained MCs of the interstitial and perivascular regions of the same groups were also counted. An increased immunoexpression of the tissue biomarkers CASP-1, IL-33, ACE2, B1R and B2R was observed in the alveolar septum of the COVID-19 patients, associated with a higher density of IgE+ MCs, tryptase+ MCs and TB-stained MCs, in addition to the presence of intra-alveolar edema. These findings suggest the direct correlation of MCs with vascular hyperpermeability, edema and diffuse alveolar damage (DAD) events that affect patients with a severe form of this disease. The role of KKS activation in events involving the exacerbated increase in vascular permeability and its direct link with the conditions that precede intra-alveolar edema, and the consequent DAD, is evidenced. Therapy with drugs that inhibit the activation/degranulation of MCs can prevent the worsening of the prognosis and provide a better outcome for the patient.
Collapse
Affiliation(s)
- Seigo Nagashima
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Anderson Azevedo Dutra
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Mayara Pezzini Arantes
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Rafaela Chiuco Zeni
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Carolline Konzen Klein
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Flávia Centenaro de Oliveira
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Giulia Werner Piper
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Isadora Drews Brenny
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Marcos Roberto Curcio Pereira
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Rebecca Benicio Stocco
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Ana Paula Camargo Martins
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Eduardo Morais de Castro
- Postgraduate Program in Biotechnology Applied in Health of Children and Adolescent, Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (E.M.d.C.); (C.M.-S.)
| | - Caroline Busatta Vaz de Paula
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Andréa Novaes Moreno Amaral
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| | - Cleber Machado-Souza
- Postgraduate Program in Biotechnology Applied in Health of Children and Adolescent, Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; (E.M.d.C.); (C.M.-S.)
| | - Cristina Pellegrino Baena
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
- Marcelino Champagnat Hospital, Curitiba 80020-110, Brazil
| | - Lucia Noronha
- Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80910-215, Brazil; (A.A.D.); (M.P.A.); (R.C.Z.); (C.K.K.); (F.C.d.O.); (G.W.P.); (I.D.B.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (A.N.M.A.); (C.P.B.)
| |
Collapse
|
9
|
Hillmeister P, Nagorka S, Gatzke N, Dülsner A, Li K, Dai M, Bondke Persson A, Lauxmann MA, Jaurigue J, Ritter O, Bramlage P, Buschmann E, Buschmann I. Angiotensin-converting enzyme inhibitors stimulate cerebral arteriogenesis. Acta Physiol (Oxf) 2022; 234:e13732. [PMID: 34555240 DOI: 10.1111/apha.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
AIM Arteriogenesis constitutes the most efficient endogenous rescue mechanism in cases of cerebral ischaemia. The aim of this work was to investigate whether angiotensin-converting enzyme inhibitors (ACEi) stimulates, and angiotensin II receptor type 1 blockers (ARB) inhibits cerebral collateral growth by applying a three-vessel occlusion (3-VO) model in rat. METHODS Cerebral collateral growth was measured post 3-VO (1) by assessing blood flow using the cerebrovascular reserve capacity (CVRC) technique, and (2) by assessing vessel diameters in the posterior cerebral artery (PCA) via the evaluation of latex angiographies. A stimulatory effect on arteriogenesis was investigated for ACEi administration ± bradykinin receptor 1 (B1R) and 2 (B2R) blockers, and an inhibitory effect was analysed for ARB administration. Results were validated by immunohistochemical analysis and mechanistic data were collected by human umbilical vein endothelial cell (HUVEC) viability or scratch assay and monocyte (THP-1) migration assay. RESULTS An inhibitory effect of ARB on arteriogenesis could not be demonstrated. However, collateral growth measurements demonstrated a significantly increased CVRC and PCA diameters in the ACEi group. ACEi stimulates cell viability and migration, which could be partially reduced by additional administration of bradykinin receptor 1 inhibitor (B1Ri). ACEi inhibits the degradation of pro-arteriogenic bradykinin derivatives, but combined ACEi + B1Ri + B1Ri (BRB) treatment did not reverse the stimulatory effect. Yet, co-administration of ACEi + BRB enhances arteriogenesis and cell migration. CONCLUSION We demonstrate a potent stimulatory effect of ACEi on cerebral arteriogenesis in rats, presumable via B1R. However, results imply a pleiotropic and compensatory effect of ACEi on bradykinin receptor-stimulated arteriogenesis.
Collapse
Affiliation(s)
- Philipp Hillmeister
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Faculty of Health Sciences (FGW) Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg the Brandenburg Medical School Theodor Fontane (MHB) University of Potsdam Brandenburg an der Havel Germany
| | | | - Nora Gatzke
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
| | | | - Kangbo Li
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Charité Universitätsmedizin Berlin Berlin Germany
| | - Mengjun Dai
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Charité Universitätsmedizin Berlin Berlin Germany
| | | | - Martin A. Lauxmann
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Brandenburg Medical School Theodor Fontane (MHB) Brandenburg Medical School (MHB) Theodor Fontane Institute for Biochemistry & Clinic for Nephrology Brandenburg an der Havel Germany
| | - Jonnel Jaurigue
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
| | - Oliver Ritter
- Brandenburg Medical School Theodor Fontane (MHB) Brandenburg Medical School (MHB) Theodor Fontane Institute for Biochemistry & Clinic for Nephrology Brandenburg an der Havel Germany
- Brandenburg Medical School Theodor Fontane (MHB) Department for Cardiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine Cloppenburg Germany
| | - Eva Buschmann
- Department of Cardiology University Clinic Graz Graz Austria
| | - Ivo Buschmann
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Faculty of Health Sciences (FGW) Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg the Brandenburg Medical School Theodor Fontane (MHB) University of Potsdam Brandenburg an der Havel Germany
| |
Collapse
|
10
|
Munoz Pinto MF, Campbell SJ, Simoglou Karali C, Johanssen VA, Bristow C, Cheng VWT, Zarghami N, Larkin JR, Pannell M, Hearn A, Chui C, Brinquis Nunez B, Bokma E, Holgate R, Anthony DC, Sibson NR. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein. Neuro Oncol 2022; 24:52-63. [PMID: 34297105 PMCID: PMC8730757 DOI: 10.1093/neuonc/noab177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner. Here, to enable clinical translation, we have developed a TNFR1-selective agonist variant of human TNF that induces BBB permeabilization, while minimizing potential toxicity. METHODS A library of human TNF muteins (mutTNF) was generated and assessed for binding specificity to mouse and human TNFR1/2, endothelial permeabilizing activity in vitro, potential immunogenicity, and circulatory half-life. The permeabilizing ability of the most promising variant was assessed in vivo in a model of brain metastasis. RESULTS The primary mutTNF variant showed similar affinity for human TNFR1 than wild-type human TNF, similar affinity for mouse TNFR1 as wild-type mouse TNF, undetectable binding to human/mouse TNFR2, low potential immunogenicity, and permeabilization of an endothelial monolayer. Circulatory half-life was similar to mouse/human TNF and BBB permeabilization was induced selectively at sites of micrometastases in vivo, with a time window of ≥24 hours and enabling delivery of agents within a therapeutically relevant range (0.5-150 kDa), including the clinically approved therapy, trastuzumab. CONCLUSIONS We have developed a clinically translatable mutTNF that selectively opens the BBB at micrometastatic sites, while leaving the rest of the cerebrovasculature intact. This approach will open a window for brain metastasis treatment that currently does not exist.
Collapse
Affiliation(s)
- Mario F Munoz Pinto
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra J Campbell
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Vanessa A Johanssen
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Claire Bristow
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Vinton W T Cheng
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Niloufar Zarghami
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - James R Larkin
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Maria Pannell
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- OxSonics Ltd., The Magdalen Centre, Oxford Science Park, Oxford, UK
| | - Arron Hearn
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Cherry Chui
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | | | - Evert Bokma
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Robert Holgate
- Abzena Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | | | - Nicola R Sibson
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Farahani M, Niknam Z, Mohammadi Amirabad L, Amiri-Dashatan N, Koushki M, Nemati M, Danesh Pouya F, Rezaei-Tavirani M, Rasmi Y, Tayebi L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2022; 145:112420. [PMID: 34801852 PMCID: PMC8585639 DOI: 10.1016/j.biopha.2021.112420] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/08/2023] Open
Abstract
Deciphering the molecular downstream consequences of severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 infection is important for a greater understanding of the disease and treatment planning. Furthermore, greater understanding of the underlying mechanisms of diagnostic and therapeutic strategies can help in the development of vaccines and drugs against COVID-19. At present, the molecular mechanisms of SARS-CoV-2 in the host cells are not sufficiently comprehended. Some of the mechanisms are proposed considering the existing similarities between SARS-CoV-2 and the other members of the β-CoVs, and others are explained based on studies advanced in the structure and function of SARS-CoV-2. In this review, we endeavored to map the possible mechanisms of the host response following SARS-CoV-2 infection and surveyed current research conducted by in vitro, in vivo and human observations, as well as existing suggestions. We addressed the specific signaling events that can cause cytokine storm and demonstrated three forms of cell death signaling following virus infection, including apoptosis, pyroptosis, and necroptosis. Given the elicited signaling pathways, we introduced possible pathway-based therapeutic targets; ADAM17 was especially highlighted as one of the most important elements of several signaling pathways involved in the immunopathogenesis of COVID-19. We also provided the possible drug candidates against these targets. Moreover, the cytokine-cytokine receptor interaction pathway was found as one of the important cross-talk pathways through a pathway-pathway interaction analysis for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Amiri-Dashatan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
12
|
Oliveira LCG, Cruz NAN, Ricelli B, Tedesco-Silva H, Medina-Pestana JO, Casarini DE. Interactions amongst inflammation, renin-angiotensin-aldosterone and kallikrein-kinin systems: suggestive approaches for COVID-19 therapy. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200181. [PMID: 34925477 PMCID: PMC8651214 DOI: 10.1590/1678-9199-jvatitd-2020-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapid-spread infectious disease caused by the SARS-CoV-2 virus, which can culminate in the renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) systems imbalance, and in serious consequences for infected patients. This scoping review of published research exploring the RAAS and KKS was undertaken in order to trace the history of the discovery of both systems and their multiple interactions, discuss some aspects of the viral-cell interaction, including inflammation and the system imbalance triggered by SARS-CoV-2 infection, and their consequent disorders. Furthermore, we correlate the effects of continued use of the RAAS blockers in chronic diseases therapies with the virulence and physiopathology of COVID-19. We also approach the RAAS and KKS-related proposed potential therapies for treatment of COVID-19. In this way, we reinforce the importance of exploring both systems and the application of their components or their blockers in the treatment of coronavirus disease.
Collapse
Affiliation(s)
| | | | - Bruna Ricelli
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - José Osmar Medina-Pestana
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| |
Collapse
|
13
|
Song J, Du J, Tan X, Wu Z, Yuan J, Cong B. Dexmedetomidine protects the heart against ischemia reperfusion injury via regulation of the bradykinin receptors. Eur J Pharmacol 2021; 911:174493. [PMID: 34506777 DOI: 10.1016/j.ejphar.2021.174493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dexmedetomidine (DEX) has been reported to protect the heart against ischemia reperfusion (I/R) injury. However, the exact mechanisms are still not fully understood. METHODS AND RESULTS A rat cardiac I/R injury model was induced by ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion for 2 h, and DEX was administered intravenously 30 min before ischemia. We confirmed that DEX treatment mitigated cardiac I/R injury. Interestingly, we found that DEX regulated the expression of bradykinin (BK) receptors (B1R and B2R) in rat hearts during I/R injury and enhanced the protective action of BK administered during reperfusion. Moreover, in vitro hypoxia reoxygenation (H/R) injury was induced in neonatal rat cardiomyocytes (CMs), and DEX was administered 1 h before hypoxia. The in vitro findings were consistent with the in vivo experiments. We found that an α2-adrenoceptor (α2-AR) antagonist (yohimbine) completely aborted DEX-induced B1R and B2R regulation; an adenylyl cyclase (AC) agonist (forskolin) blocked B1R downregulation, while a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) blocked B2R upregulation. The above findings indicated that DEX interacted with α2-AR in cardiomyocytes, inhibited B1R expression via suppression of AC, and stimulated B2R expression via activation of PI3K. CONCLUSIONS DEX regulates BK receptor expression and potentiates the protection of BK in cardiac I/R injury, which suggests that modulating endogenous cardioprotective factors may play an important role in DEX-induced cardioprotection.
Collapse
Affiliation(s)
- Jinchao Song
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China.
| | - Jiankui Du
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xing Tan
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhaotang Wu
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Jihong Yuan
- Department of Nephropathy, Shanghai Seventh People's Hospital, Shanghai, 200137, China
| | - Binhai Cong
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
14
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
15
|
Khodabakhsh P, Asgari Taei A, Mohseni M, Bahrami Zanjanbar D, Khalili H, Masoumi K, Haji Abbas Shirazi A, Dargahi L. Vasoactive Peptides: Role in COVID-19 Pathogenesis and Potential Use as Biomarkers and Therapeutic Targets. Arch Med Res 2021; 52:777-787. [PMID: 34134920 PMCID: PMC8179120 DOI: 10.1016/j.arcmed.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/28/2021] [Accepted: 05/27/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND The ongoing outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the latest threat to global health, causes overwhelming effects for the public healthcare systems worldwide. Of note, in addition to the respiratory complications, some patients with coronavirus disease 2019 (COVID-19) also develop serious cardiovascular injuries. Vasoactive peptides play an important role in a wide range of physiological and pathological conditions. AIM With the urgent need for exploring the specific therapeutic targets and biomarkers for the emerging COVID-19, the general aim of this review is to discuss the potentials of the vasoactive peptides including Angiotensin II (Ang II), vasoactive intestinal peptide (VIP), endothelin-1 (ET-1), calcitonin gene-related peptide (CGRP), natriuretic peptides, substance P (SP) and bradykinin (BK) as therapeutic targets and/or prognostic indicators for the COVID-19 pandemic. CONCLUSION Based on various observations some authors conclude that the assessment of vasoactive peptides shall be considered a routine part of COVID-19 patient monitoring, and they can serve as potential therapeutic targets for the disease management.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Mohseni
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Dorsa Bahrami Zanjanbar
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Khalili
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kimia Masoumi
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zhang Q, Tan J, Wan L, Chen C, Wu B, Ke X, Wu R, Ran X. Increase in Blood-Brain Barrier Permeability is Modulated by Tissue Kallikrein via Activation of Bradykinin B1 and B2 Receptor-Mediated Signaling. J Inflamm Res 2021; 14:4283-4297. [PMID: 34511968 PMCID: PMC8417820 DOI: 10.2147/jir.s322225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Aim Disruption of the blood–brain barrier (BBB) is a critical pathological feature after stroke. Although tissue kallikrein (TK) has used in the treatment of stroke in China, the role of TK in modulating BBB permeability is not clear. Methods We investigated the effect of different doses of TK on BBB by in vivo assessments of Evans blue (EB) and sodium-fluorescein isothiocyanate (FITC) leakage and in vitro assessments of the integrity of BBB and monolayers of microvascular endothelial cells (BMVECs). The expression of zonula occludens-1 (ZO-1) and bradykinin receptor-mediated signaling in BMVECs was detected. Results A significant increase in BBB permeability was observed in the mice treated with high dose of TK. However, standard and medium doses of TK could only enable sodium-FITC to enter the brain. The result of in vitro study indicated that high-doses of TK, but not standard and medium-dose of TK, reduced normal BBB integrity accompanied by a decreased expression of zonula occludens-1 (ZO-1), upregulated the mRNA levels of bradykinin 2 receptor (B2R) and endothelial nitric oxide synthase (eNOS) and the abundance of B2R. Moreover, standard-dose of TK exacerbated lipopolysaccharide-induced BBB hyperpermeability, upregulated the mRNA levels of bradykinin 1 receptor (B1R) and inducible nitric oxide synthase (iNOS), increased the abundance of B1R and reduced the abundance of ZO-1; these effects were inhibited by TK inhibitor. Conclusion TK can disrupt tight junctions and increase normal BBB permeability via B2R-dependent eNOS signaling pathway, aggravate impairment of BBB via B1R-dependent iNOS signaling pathway, and consequently serve as a useful adjunctive treatment for enhancing the efficacy of other neurotherapeutics.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Juan Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Chao Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Bin Wu
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Xijian Ke
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Rongxue Wu
- Department of Biological Sciences Division/ Cardiology, University of Chicago, Chicago, IL, 60637, USA
| | - Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| |
Collapse
|
17
|
Li K, Zemmrich C, Bramlage P, Persson AB, Sacirovic M, Ritter O, Buschmann E, Buschmann I, Hillmeister P. Effect of ACEI and ARB treatment on nitric oxide-dependent endothelial function. VASA 2021; 50:413-422. [PMID: 34428929 DOI: 10.1024/0301-1526/a000971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Angiotensin-converting-enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) are widely used as a first-line therapy for the treatment of cardiovascular disease. Here, ACEI modulate the bradykinin receptor (BDKRB1 and BDKRB2) system and NO-dependent endothelial function, thus determining cardiovascular health and regenerative arteriogenesis. The current study aims at evaluating nitric oxide-dependent endothelial function, and gene expression of bradykinin receptors in peripheral blood mononuclear cells (PBMC) from patients with ACEI or ARB treatment. Patients and methods: The WalkByLab has been established to screen cardiovascular patients for peripheral artery disease and coronary artery disease. In total 177 patients from WalkByLab with heterogenous disease and risk status were randomly selected, divided according to their medication history into the following groups: 1. ACEI group, 2. ARB group or 3. non-ACE/ARB group. Total plasma nitrite/nitrate (NO) levels were measured, endothelial function was evaluated by assessing flow meditated dilation (FMD). PBMC were isolated from peripheral whole blood, and gene expression (qRT-PCR) of bradykinin receptors and angiotensin converting enzyme were assessed. Results: Plasma total NO concentration in the ACEI group (24.66±16.28, µmol/l) was increased as compared to the ARB group (18.57±11.58, µmol/l, P=0.0046) and non-ACE/ARB group (16.83±8.64, µmol/l, P=0.0127) in patients between 40 to 90 years of age. However, FMD values (%) in the ACEI group (7.07±2.40, %) were similar as compared to the ARB (6.35±2.13, %) and non-ACE/ARB group (6.51±2.15, %), but significantly negatively correlated with age. Interestingly, BDKRB1 mRNA level was significantly higher and BDKRB2 mRNA level lower in the ACEI group (BDKRB1 3.88-fold±1.05, BDKRB2 0.22-fold±0.04) as compared to the non-ACE/ARB group (BDKRB1 1.00-fold±0.39, P<0.0001, BDKRB2 1.00-fold±0.45, P=0.0136). Conclusions: ACEI treatment enhances total nitrite/nitrate concentration, furthermore, upregulates BDKRB1 in PBMC, but downregulates BDKRB2 mRNA expression. FMD is a strong determinant of vascular aging and is sensitive to underlying heterogenous cardiovascular diseases.
Collapse
Affiliation(s)
- Kangbo Li
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Claudia Zemmrich
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Mesud Sacirovic
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany
| | - Oliver Ritter
- Department for Cardiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg Medical School Theodor Fontane, Germany
| | - Eva Buschmann
- Department of Cardiology, University Clinic Graz, Austria
| | - Ivo Buschmann
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg Medical School Theodor Fontane, Germany
| | - Philipp Hillmeister
- Department for Angiology, Center for Internal Medicine I, Brandenburg Medical School Theodor Fontane, Campus University Clinic Brandenburg, Deutsches Angiologie Zentrum Brandenburg-Berlin (DAZB), Brandenburg an der Havel, Germany.,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg Medical School Theodor Fontane, Germany
| |
Collapse
|
18
|
Othman R, Cagnone G, Joyal JS, Vaucher E, Couture R. Kinins and Their Receptors as Potential Therapeutic Targets in Retinal Pathologies. Cells 2021; 10:1913. [PMID: 34440682 PMCID: PMC8391508 DOI: 10.3390/cells10081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gael Cagnone
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Jean-Sébastien Joyal
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
19
|
Ran X, Zhang Q, Li S, Yu Z, Wan L, Wu B, Wu R, Li S. Tissue Kallikrein Exacerbating Sepsis-Induced Endothelial Hyperpermeability is Highly Predictive of Severity and Mortality in Sepsis. J Inflamm Res 2021; 14:3321-3333. [PMID: 34290517 PMCID: PMC8289368 DOI: 10.2147/jir.s317874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022] Open
Abstract
Aim Sepsis, an acute, life-threatening dysregulated response to infection, affects practically all aspects of endothelial function. Tissue kallikrein (TK) is a key enzyme in the kallikrein–kinin system (KKS) which has been implicated in endothelial permeability. Thus, we aimed to establish a potentially novel association among TK, endothelial permeability, and sepsis demonstrated by clinical investigation and in vitro studies. Methods We performed a clinical investigation with the participation of a total of 76 controls, 42 systemic inflammatory response syndrome (SIRS) patients, and 150 patients with sepsis, who were followed-up for 28 days. Circulating TK levels were measured with an enzyme-linked immunosorbent assay. Then, the effect of TK on sepsis-induced endothelial hyperpermeability was evaluated by in vitro study. Results Data showed a gradual increase in TK level among controls and the patients with SIRS, sepsis, and septic shock (0.288±0.097 mg/l vs 0.335±0.149 vs 0.495±0.170 vs 0.531±0.188 mg/l, respectively, P <0.001). Further analysis revealed that plasma TK level was positively associated with the severity and mortality of sepsis and negatively associated with event-free survival during 28 days of follow-up (relative risk, 3.333; 95% CI, 2.255–4.925; p < 0.001). With a septic model of TK and kallistatin in vitro, we found that TK exacerbated sepsis-induced endothelial hyperpermeability by downregulating zonula occluden-1 (ZO-1) and vascular endothelial (VE)-cadherin, and these could be reversed by kallistatin, an inhibitor of TK. Conclusion TK can be used in the diagnosis of sepsis and assessment of severity and prognosis of disease. Inhibition of TK may be a novel therapeutic target for sepsis through increasing ZO-1 and VE-cadherin, as well as downregulating endothelial permeability.
Collapse
Affiliation(s)
- Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Qin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Shaoping Li
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhen Yu
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Bin Wu
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Rongxue Wu
- Department of Biological Sciences Division/Cardiology, University of Chicago, Chicago, IL, 60637, USA
| | - Shusheng Li
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| |
Collapse
|
20
|
Wang Y, Zhang B, Huang Y, Yao W, Tao F, Chen Y. Novel Bradykinin Receptor Inhibitors Inhibit Proliferation and Promote the Apoptosis of Hepatocellular Carcinoma Cells by Inhibiting the ERK Pathway. Molecules 2021; 26:molecules26133915. [PMID: 34206871 PMCID: PMC8272207 DOI: 10.3390/molecules26133915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Studies have shown that bradykinin (BK) is highly expressed in liver cancer. We designed the novel BK receptor inhibitors J051-71 and J051-105, which reduced the viability of liver cancer cells and inhibited the formation of cancer cell colonies. J051-71 and J051-105 reduced cell proliferation and induced apoptosis in HepG2 and BEL-7402 cells, which may be due to the inhibition of the extracellular regulated protein kinase (ERK) signaling pathway. In addition, these BK receptor inhibitors reversed the cell proliferation induced by BK in HepG2 and BEL-7402 cells by downregulating B1 receptor expression. Inhibiting B1 receptor expression decreased the protein levels of p-ERK and reduced the malignant progression of HCC, providing a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yiou Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
| | - Bingxue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
| | - Wenjun Yao
- Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd., Jiangyin 214437, China; (W.Y.); (F.T.)
| | - Fei Tao
- Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd., Jiangyin 214437, China; (W.Y.); (F.T.)
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (B.Z.); (Y.H.)
- Jiangsu ProteLight Pharmaceutical & Biotechnology Co., Ltd., Jiangyin 214437, China; (W.Y.); (F.T.)
- Correspondence: ; Tel.: +86-431-8515-5200
| |
Collapse
|
21
|
Visniauskas B, Perry JC, Gomes GN, Nogueira-Pedro A, Paredes-Gamero EJ, Tufik S, Chagas JR. Intermittent hypoxia changes the interaction of the kinin-VEGF system and impairs myocardial angiogenesis in the hypertrophic heart. Physiol Rep 2021; 9:e14863. [PMID: 33991464 PMCID: PMC8123545 DOI: 10.14814/phy2.14863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) is a feature of obstructive sleep apnea (OSA), a condition highly associated with hypertension-related cardiovascular diseases. Repeated episodes of IH contribute to imbalance of angiogenic growth factors in the hypertrophic heart, which is key in the progression of cardiovascular complications. In particular, the interaction between vascular endothelial growth factor (VEGF) and the kallikrein-kinin system (KKS) is essential for promoting angiogenesis. However, researchers have yet to investigate experimental models of IH that reproduce OSA, myocardial angiogenesis, and expression of KKS components. We examined temporal changes in cardiac angiogenesis in a mouse IH model. Adult male C57BI/6 J mice were implanted with Matrigel plugs and subjected to IH for 1-5 weeks with subsequent weekly histological evaluation of vascularization. Expression of VEGF and KKS components was also evaluated. After 3 weeks, in vivo myocardial angiogenesis and capillary density were decreased, accompanied by a late increase of VEGF and its type 2 receptor. Furthermore, IH increased left ventricular myocardium expression of the B2 bradykinin receptor, while reducing mRNA levels of B1 receptor. These results suggest that in IH, an unexpected response of the VEGF and KKS systems could explain the reduced capillary density and impaired angiogenesis in the hypoxic heart, with potential implications in hypertrophic heart malfunction.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana C Perry
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Guiomar N Gomes
- Departmento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair R Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Coelho SVA, Rust NM, Vellasco L, Papa MP, Pereira ASG, da Silva Palazzo MF, Juliano MA, Costa SM, Alves AMB, Cordeiro MT, Marques ETA, Scharfstein J, de Arruda LB. Contact System Activation in Plasma from Dengue Patients Might Harness Endothelial Virus Replication through the Signaling of Bradykinin Receptors. Pharmaceuticals (Basel) 2021; 14:ph14010056. [PMID: 33445640 PMCID: PMC7827195 DOI: 10.3390/ph14010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Since exacerbated inflammation and microvascular leakage are hallmarks of dengue virus (DENV) infection, here we interrogated whether systemic activation of the contact/kallikrein-kinin system (KKS) might hamper endothelial function. In vitro assays showed that dextran sulfate, a potent contact activator, failed to generate appreciable levels of activated plasma kallikrein (PKa) in the large majority of samples from a dengue cohort (n = 70), irrespective of severity of clinical symptoms. Impaired formation of PKa in dengue-plasmas correlated with the presence of cleaved Factor XII and high molecular weight kininogen (HK), suggesting that the prothrombogenic contact system is frequently triggered during the course of infection. Using two pathogenic arboviruses, DENV or Zika virus (ZIKV), we then asked whether exogenous BK could influence the outcome of infection of human brain microvascular endothelial cells (HBMECs). Unlike the unresponsive phenotype of Zika-infected HBMECs, we found that BK, acting via B2R, vigorously stimulated DENV-2 replication by reverting nitric oxide-driven apoptosis of endothelial cells. Using the mouse model of cerebral dengue infection, we next demonstrated that B2R targeting by icatibant decreased viral load in brain tissues. In summary, our study suggests that contact/KKS activation followed by BK-induced enhancement of DENV replication in the endothelium may underlie microvascular pathology in dengue.
Collapse
Affiliation(s)
- Sharton V. A. Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
| | - Naiara M. Rust
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
| | - Lucas Vellasco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
| | - Michelle P. Papa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
| | - Aline S. G. Pereira
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
| | - Matheus Ferreira da Silva Palazzo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Simone M. Costa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (S.M.C.); (A.M.B.A.)
| | - Ada M. B. Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (S.M.C.); (A.M.B.A.)
| | - Marli T. Cordeiro
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Recife 50740-465, Brazil; (M.T.C.); (E.T.A.M.)
| | - Ernesto T. A. Marques
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Recife 50740-465, Brazil; (M.T.C.); (E.T.A.M.)
- Department of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Júlio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
- Correspondence: (J.S.); (L.B.d.A.)
| | - Luciana B. de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
- Correspondence: (J.S.); (L.B.d.A.)
| |
Collapse
|
23
|
Abassi Z, Skorecki K, Hamo-Giladi DB, Kruzel-Davila E, Heyman SN. Kinins and chymase: the forgotten components of the renin-angiotensin system and their implications in COVID-19 disease. Am J Physiol Lung Cell Mol Physiol 2021; 320:L422-L429. [PMID: 33404363 PMCID: PMC7938643 DOI: 10.1152/ajplung.00548.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The unique clinical features of COVID-19 disease present a formidable challenge in the understanding of its pathogenesis. Within a very short time, our knowledge regarding basic physiological pathways that participate in SARS-CoV-2 invasion and subsequent organ damage have been dramatically expanded. In particular, we now better understand the complexity of the renin-angiotensin-aldosterone system (RAAS) and the important role of angiotensin converting enzyme (ACE)-2 in viral binding. Furthermore, the critical role of its major product, angiotensin (Ang)-(1-7), in maintaining microcirculatory balance and in the control of activated proinflammatory and procoagulant pathways, generated in this disease, have been largely clarified. The kallikrein-bradykinin (BK) system and chymase are intensively interwoven with RAAS through many pathways with complex reciprocal interactions. Yet, so far, very little attention has been paid to a possible role of these physiological pathways in the pathogenesis of COVID-19 disease, even though BK and chymase exert many physiological changes characteristic to this disorder. Herein, we outline the current knowledge regarding the reciprocal interactions of RAAS, BK, and chymase that are probably turned-on in COVID-19 disease and participate in its clinical features. Interventions affecting these systems, such as the inhibition of chymase or blocking BKB1R/BKB2R, might be explored as potential novel therapeutic strategies in this devastating disorder.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Karl Skorecki
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dalit B Hamo-Giladi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Etty Kruzel-Davila
- Department of Nephrology, Rambam Health Care Campus, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
24
|
Carvalho PRD, Sirois P, Fernandes PD. The role of kallikrein-kinin and renin-angiotensin systems in COVID-19 infection. Peptides 2021; 135:170428. [PMID: 33065209 PMCID: PMC7553876 DOI: 10.1016/j.peptides.2020.170428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
In November 2019 the first cases of a novel acute respiratory syndrome has been reported in Wuhan province, China. Soon after, in January 2020 the World Health Organization declared a pandemic state due to the dissemination of a virus named SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the cause of coronavirus disease 2019 (COVID-19). Being an unknown disease, it is essential to assess not only its main characteristic features and overall clinical symptomatology but also its patient infection mode and propagation to design appropriate clinical interventions and treatments. In this review the pathophysiology of SARS-CoV-2 infection and how the virus enters the cells and activates the immune system are described. The role of three systems involved in the SARS- CoV-2 infection (renin-angiotensin, kinin and coagulation systems) is discussed with the objectives to identify and try to explain several of the events observed during the evolution of the disease and to suggest possible targets for therapeutic interventions.
Collapse
Affiliation(s)
- Patricia Ribeiro de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | | | - Patricia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Rudraraju M, Narayanan SP, Somanath PR. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol Res 2020; 161:105115. [PMID: 32750417 PMCID: PMC7755666 DOI: 10.1016/j.phrs.2020.105115] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Loss of the blood-retinal barrier (BRB) integrity and subsequent damage to the neurovascular unit in the retina are the underlying reasons for diabetic retinopathy (DR). Damage to BRB eventually leads to severe visual impairment in the absence of prompt intervention. Diabetic macular edema and proliferative DR are the advanced stages of the disease where BRB integrity is altered. Primary mechanisms contributing to BRB dysfunction include loss of cell-cell barrier junctions, vascular endothelial growth factor, advanced glycation end products-induced damage, and oxidative stress. Although much is known about the involvement of adherens and tight-junction proteins in the regulation of vascular permeability in various diseases, there is a significant gap in our knowledge on the junctional proteins expressed in the BRB and how BRB function is modulated in the diabetic retina. In this review article, we present our current understanding of the molecular composition of BRB, the changes in the BRB junctional protein turnover in DR, and how BRB functional modulation affects vascular permeability and macular edema in the diabetic retina.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, United States
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
26
|
Gouda AS, Mégarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID-19? Drug Dev Res 2020; 82:38-48. [PMID: 32761647 PMCID: PMC7436322 DOI: 10.1002/ddr.21732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus‐2 (SARS‐COV‐2), a novel coronavirus responsible for the recent infectious pandemic, is known to downregulate angiotensin‐converting enzyme‐2 (ACE2). Most current investigations focused on SARS‐COV‐2‐related effects on the renin–angiotensin system and especially the resultant increase in angiotensin II, neglecting its effects on the kinin–kallikrein system. SARS‐COV‐2‐induced ACE2 inhibition leads to the augmentation of bradykinin 1‐receptor effects, as ACE2 inactivates des‐Arg9‐bradykinin, a bradykinin metabolite. SARS‐COV‐2 also decreases bradykinin 2‐receptor effects as it affects bradykinin synthesis by inhibiting cathepsin L, a kininogenase present at the site of infection and involved in bradykinin production. The physiologies of both the renin–angiotensin and kinin–kallikrein system are functionally related suggesting that any intervention aiming to treat SARS‐COV‐2‐infected patients by triggering one system but ignoring the other may not be adequately effective. Interestingly, the snake‐derived bradykinin‐potentiating peptide (BPP‐10c) acts on both systems. BPP‐10c strongly decreases angiotensin II by inhibiting ACE, increasing bradykinin‐related effects on the bradykinin 2‐receptor and increasing nitric oxide‐mediated effects. Based on a narrative review of the literature, we suggest that BPP‐10c could be an optimally effective option to consider when aiming at developing an anti‐SARS‐COV‐2 drug.
Collapse
Affiliation(s)
- Ahmed S Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, University of Cairo, Cairo, Egypt
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
27
|
Colarusso C, Terlizzi M, Pinto A, Sorrentino R. A lesson from a saboteur: High-MW kininogen impact in coronavirus-induced disease 2019. Br J Pharmacol 2020; 177:4866-4872. [PMID: 32497257 PMCID: PMC7300552 DOI: 10.1111/bph.15154] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
The newly identified coronavirus SARS-CoV-2 that spread from China is causing the pandemic COVID-19 with a fatality rate from 5-15%. It causes fever, cough, myalgia, fatigue up to dyspnoea, responsible for hospitalization and artificial oxygenation. SARS-CoV-2 infects human cells using ACE2, the transmembrane protease serine 2 (TMPRSS2) and the SARS-CoV-2 main protease (Mpro ). Once bound to ACE2 and the other two proteases in concert they allow the virus replication and spread throughout the body. Our attention has been focused on the role of ACE2 as its binding to by the virus increases bradykinin and its metabolites, which facilitate inflammation in the lung (causing cough and fever), coagulation and the complement system. These three systems are involved in angioedema, cardiovascular dysfunction and sepsis, pathologies which occur in COVID-19 patients. Thus, we propose that blocking the kallikrein-kinin system with lanadelumab, approved for hereditary angioedema, will prevent facilitation of these 3 systems. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,ImmunePharma S.r.l., University of Salerno, Fisciano, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,ImmunePharma S.r.l., University of Salerno, Fisciano, Italy
| | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,ImmunePharma S.r.l., University of Salerno, Fisciano, Italy
| |
Collapse
|
28
|
Nicolau LAD, Magalhães PJC, Vale ML. What would Sérgio Ferreira say to your physician in this war against COVID-19: How about kallikrein/kinin system? Med Hypotheses 2020; 143:109886. [PMID: 32504925 PMCID: PMC7261103 DOI: 10.1016/j.mehy.2020.109886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease with fast spreading all over the world caused by the SARS-CoV-2 virus which can culminate in a severe acute respiratory syndrome by the injury caused in the lungs. However, other organs can be also damaged. SARS-CoV-2 enter into the host cells using the angiotensin-converting enzyme 2 (ACE2) as receptor, like its ancestor SARS-CoV. ACE2 is then downregulated in lung tissues with augmented serum levels of ACE2 in SARS-CoV-2 patients. Interestingly, ACE2+ organs reveal the symptomatic repercussions, which are signals of the infection such as dry cough, shortness of breath, heart failure, liver and kidney damage, anosmia or hyposmia, and diarrhea. ACE2 exerts a chief role in the renin-angiotensin system (RAS) by converting angiotensin II to angiotensin-(1-7) that activates Mas receptor, inhibits ACE1, and modulates bradykinin (BK) receptor sensitivity, especially the BK type 2 receptor (BKB2R). ACE2 also hydrolizes des-Arg9-bradykinin (DABK), an active BK metabolite, agonist at BK type 1 receptors (BKB1R), which is upregulated by inflammation. In this opinion article, we conjecture a dialogue by the figure of Sérgio Ferreira which brought together basic science of classical pharmacology and clinical repercussions in COVID-19, then we propose that in the course of SARS-CoV-2 infection: i) downregulation of ACE2 impairs the angiotensin II and DABK inactivation; ii) BK and its metabolite DABK seems to be in elevated levels in tissues by interferences in kallikrein/kinin system; iii) BK1 receptor contributes to the outbreak and maintenance of the inflammatory response; iv) kallikrein/kinin system crosstalks to RAS and coagulation system, linking inflammation to thrombosis and organ injury. We hypothesize that targeting the kallikrein/kinin system and BKB1R pathway may be beneficial in SARS-CoV-2 infection, especially on early stages. This route of inference should be experimentally verified by SARS-CoV-2 infected mice.
Collapse
Affiliation(s)
- Lucas A D Nicolau
- Biotechnology and Biodiversity Center Research, Federal University of Parnaíba Delta, Parnaíba, Brazil
| | - Pedro J C Magalhães
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Mariana L Vale
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
29
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
30
|
Ancion A, Tridetti J, Nguyen Trung ML, Oury C, Lancellotti P. A Review of the Role of Bradykinin and Nitric Oxide in the Cardioprotective Action of Angiotensin-Converting Enzyme Inhibitors: Focus on Perindopril. Cardiol Ther 2019; 8:179-191. [PMID: 31578675 PMCID: PMC6828891 DOI: 10.1007/s40119-019-00150-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
The functional integrity of the endothelium is essential for vascular health. In addition to maintaining a delicate balance between vasodilation and vasoconstriction, the endothelium has numerous other complex roles involved in the maintenance of vascular homeostasis. Chronic exposure to cardiovascular risk factors and oxidative stress results in an imbalance in these functions, creating an environment that favors reduced vasodilation and a proinflammatory and prothrombic state. The involvement of endothelial dysfunction in all stages of the cardiovascular continuum makes it an important target for treatment. One of the major endothelial-derived factors involved in the maintenance of endothelial function is nitric oxide (NO). Angiotensin-converting enzyme (ACE) inhibitors increase NO production both directly and indirectly by preventing production of angiotensin II (which diminishes NO production) and inhibiting the degradation of bradykinin (which stimulates local release of NO). Among the ACE inhibitors, perindopril appears to have the greatest effects on bradykinin and has demonstrated efficacy in a number of markers of endothelial dysfunction including arterial stiffness and progression of atherosclerosis. There is also strong evidence supporting the use of perindopril-based therapy for the treatment of hypertension and for reducing the risk of cardiovascular morbidity and mortality in a wide range of patients across the cardiovascular continuum.Funding: The journal's Rapid Service Fee was funded by Servier.
Collapse
Affiliation(s)
- Arnaud Ancion
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Julien Tridetti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Mai-Linh Nguyen Trung
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Cécile Oury
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Division of Cardiology, Acute Care Unit, Heart Failure Clinic, CHU Sart Tilman, Liège, Belgium.
| |
Collapse
|
31
|
Brondani LA, Crispim D, Pisco J, Guimarães JA, Berger M. The G Allele of the rs12050217 Polymorphism in the BDKRB1 Gene Is Associated with Protection for Diabetic Retinopathy. Curr Eye Res 2019; 44:994-999. [PMID: 31017477 DOI: 10.1080/02713683.2019.1610178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purpose: The plasma kallikrein-kinin system is activated during vascular injury caused by diabetic retinopathy (DR), being involved in hyperpermeability and inflammation. Bradykinin B1 receptor (B1R) is expressed in human retina, and its levels are increased in murine models of diabetes. Experimental studies reveal that B1R antagonists ameliorate retinal injury caused by diabetes in rodents. Thus, the aim of this study was to investigate the association between the rs12050217A/G polymorphism in the BDKRB1 gene, the gene that codifies B1R, and DR in type 2 diabetes mellitus (T2DM) patients. Methods: We analyzed 636 T2DM patients and 443 non-diabetic subjects. T2DM patients were categorized by the presence of non-proliferative DR (NPDR, n = 267), proliferative DR (PDR, n = 197), and absence of DR (n = 172). The BDKRB1 rs12050217A/G polymorphism was genotyped by real-time PCR using TaqMan MGB probes. Results: The genotype frequencies of the BDKRB1 rs12050217A/G polymorphism are in Hardy-Weinberg equilibrium and did not differ between T2DM patients and non-diabetic subjects (P > 0.05). The presence of the genotypes containing the rs12050217 G allele was less frequent in patients with PDR when compared to patients with NPDR and without DR (32.0%, 41.9%, and 43.0%, P = 0.045, respectively). Interestingly, the presence of G allele was associated with ~40% protection for PDR, which was confirmed after correction for the presence of hypertension, ethnicity, age, HDL, and gender (odds ratio = 0.616, 95% confidence interval 0.385-0.986, P = 0.043). Conclusion: For the first time, we showed that BDKRB1 rs12050217 G allele is associated with protection for the advanced stage of DR in T2DM patients; however, further studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Leticia A Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Medical Science: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Medical Science: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Julia Pisco
- Endocrine Division, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil
| | - Jorge A Guimarães
- Biochemical Pharmacology Lab, Center for Experimental Research, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Cell and Molecular Biology, Center of Biotechnology, Instituto de Biociências, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| | - Markus Berger
- Biochemical Pharmacology Lab, Center for Experimental Research, Hospital de Clínicas de Porto Alegre , Porto Alegre , Rio Grande do Sul , Brazil.,Postgraduate Program in Health Sciences: Gynecology and Obstetrics, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul , Porto Alegre , Rio Grande do Sul , Brazil
| |
Collapse
|
32
|
Del Giacco SR, Firinu D, Minciullo PL, Barca MP, Manconi PE, Tartarisco G, Cristani M, Saija A, Gangemi S. Oxidative stress markers in patients with hereditary angioedema. Arch Med Sci 2019; 15:92-98. [PMID: 30697258 PMCID: PMC6348350 DOI: 10.5114/aoms.2017.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Hereditary angioedema due to C1-INH deficiency (C1-INH-HAE) or with normal C1-INH is characterized by recurrent swellings due to uncontrolled production of vasoactive mediators, among which bradykinin (BK) is crucial. Through the binding and activation of the two human BK-receptors, kinins may have dual beneficial and deleterious effects in vascular and inflammation physiopathology by inducing oxidative stress. We aimed to assess the serum concentrations of advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) in patients affected by HAE. MATERIAL AND METHODS Blood samples were collected to measure the serum concentrations of AGEs and AOPPs by spectrofluorimetric and spectrophotometric methods in patients affected by C1-INH-HAE and FXII-HAE during the remission state. RESULTS We showed that the circulating levels of AOPPs observed on control group (0.94 (0.36) nmol/mg) were significantly lower than those observed on the C1-INH-HAE group (1.68 (0.47) nmol/mg; p = 0.002) and FXII-HAE (1.50 (0.27) nmol/mg; p = 0.001). Moreover, the circulating levels of AGEs were significantly higher in C1-INH-HAE group (211.58 (151.05) AU/g; p = 0.02) than the FXII group (141.48 (89.59) AU/g), thus demonstrating a state of heightened oxidative stress. CONCLUSIONS Our observations show additional underlying events involved in HAE and are of central importance for further investigations of differences in bradykinin receptors signaling among the two disease subgroups.
Collapse
Affiliation(s)
| | - Davide Firinu
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paola Lucia Minciullo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Pina Barca
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paolo Emilio Manconi
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR) – Institute of Applied Science and Intelligent System (ISASI), Messina Unit, Messina, Italy
| | - Mariateresa Cristani
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is one of the most common complications in diabetes mellitus and accounts for a large proportion of clinical nephrology practice. Studies have shown that the kallikrein-kinin system (KKS) may be involved in several pathogenic mechanisms that contribute to DKD, including oxidative stress, inflammatory cytokines, and profibrotic autacoids. This review focuses on recent research advance on the potential role of the KKS in the development of DKD and its clinical relevance. RECENT FINDINGS A number of recent studies support the idea that there is a protective role of the KKS in diabetes. For example, agents that activate the KKS have shown strong renal protective effects that might highlight its potential to change the clinical practice. In addition, diabetic mice lacking both bradykinin B2 and B1 receptors have worse kidney lesions as compared with wild-type diabetic mice. SUMMARY Current basic research has demonstrated that pharmacological activation of the KKS improves renal outcomes in diabetes. These findings suggest that this system may be a therapeutic target in preventing and treating DKD.
Collapse
|
34
|
Prestes AP, Machado WM, Oliveira JG, Olchanheski LR, Santos FA, Alves GF, Prudente AS, Otuki MF, Paludo KS, Sordi R, Fernandes D. Experimental periodontitis in rats potentiates inflammation at a distant site: Role of B 1 kinin receptor. Life Sci 2018; 194:40-48. [DOI: 10.1016/j.lfs.2017.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
|
35
|
Oliveira-Paula GH, Pinheiro LC, Ferreira GC, Garcia WNP, Lacchini R, Garcia LV, Tanus-Santos JE. Angiotensin converting enzyme inhibitors enhance the hypotensive effects of propofol by increasing nitric oxide production. Free Radic Biol Med 2018; 115:10-17. [PMID: 29138017 DOI: 10.1016/j.freeradbiomed.2017.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Propofol anesthesia is usually accompanied by hypotension. Studies have shown that the hypotensive effects of propofol increase in patients treated with angiotensin-converting enzyme inhibitors (ACEi). Given that both propofol and ACEi affect nitric oxide (NO) signaling, the present study tested the hypothesis that ACEi treatment induces pronounced hypotensive responses to propofol by increasing NO bioavailability. In this study we evaluated 65 patients, divided into three groups: hypertensive patients chronically treated with ACEi (HT-ACEi; n = 21), hypertensive patients treated with other antihypertensive drugs instead of ACEi, such as angiotensin II receptor blockers, β-blockers or diuretics (HT; n = 21) and healthy normotensive subjects (NT; n = 23). Venous blood samples were collected at baseline and after 10min of anesthesia with propofol 2mg/kg administrated intravenously by bolus injection. Hemodynamic parameters were recorded at each blood sample collection. Nitrite levels were determined by using an ozone-based chemiluminescence assay, while NOx (nitrites+nitrates) levels were measured by using the Griess reaction. Additionally, experimental approaches were used to validate our clinical findings. Higher decreases in blood pressure after propofol anesthesia were observed in HT-ACEi group as compared with those found in NT and HT groups. Consistently, rats treated with the ACEi enalapril showed more intense hypotensive responses to propofol. The hypotensive effects of propofol were associated with increased NO production in both clinical and experimental approaches. Enhanced increases in nitrite levels after propofol anesthesia were observed in HT-ACEi patients compared with NT and HT groups. Accordingly, rats treated with enalapril showed increased vascular NO formation after propofol anesthesia compared with rats receiving vehicle. Our data show that ACEi enhance the hypotensive responses to propofol anesthesia and increase nitrite concentrations. These findings suggest that increased NO bioavailability may account for the enhanced hypotensive effects of propofol in ACEi-treated patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Waynice N P Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luis V Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
36
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
37
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
38
|
Haddad Y, Couture R. Localization and Interaction between Kinin B1 Receptor and NADPH Oxidase in the Vascular System of Diabetic Rats. Front Physiol 2017; 8:861. [PMID: 29163205 PMCID: PMC5671568 DOI: 10.3389/fphys.2017.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Kinin B1 receptor (B1R) enhanced superoxide anion (O2•-) production in the vasculature of diabetic rats. This study investigates the induction and distribution of B1R in diabetic blood vessels and addresses the hypothesis that B1R is co-localized with NADPH oxidase (NOX1 and NOX2) and produces its activation via protein kinase C (PKC). Diabetes was induced in rats with streptozotocin (STZ 65 mg.kg−1, i.p.). Two weeks later, the production of O2•- was measured in aorta rings in response to the B1R agonist (Sar[D-Phe8]-des-Arg9-BK, 20 μM) by the method of lucigenin-enhanced chemiluminescence. Various inhibitors were added (10 μM) to block PKCtotal (Ro-31-8220), PKCβ1/2 (LY333531), or NADPH oxidase (Diphenyleneiodonium). The cellular localization of B1R was studied in the aorta, popliteal artery, and renal glomerulus/arteries by immunofluorescence and confocal microscopy with markers of endothelial cells (anti-RECA-1), macrophages (anti-CD11), vascular smooth muscle cells (anti-SMA), and NADPH oxidase (anti-NOX1 and NOX2). Although B1R was largely distributed in resistant vessels, it was sparsely expressed in the aorta's endothelium. The greater basal production of O2•- in STZ-diabetic aorta was significantly enhanced by the B1R agonist (15–45 min). The peak response to the agonist (30 min) was inhibited by all inhibitors. Immunofluorescent staining for B1R, NOX1, and NOX2 was significantly increased in endothelial cells, vascular smooth muscle cells, and macrophages of STZ-diabetic aorta on which they were found co-localized. Data showed that B1R enhanced O2•- by activating vascular NADPH oxidase through PKCβ1/2. This was substantiated by the cellular co-localization of B1R with NOX1 and NOX2 and opens the possibility that B1R-enhanced oxidative stress is derived from vascular and infiltrating immune cells in diabetes.
Collapse
Affiliation(s)
- Youssef Haddad
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
39
|
Liu T, Liu H, Feng L, Xiao B. Kinin B1 receptor as a novel, prognostic progression biomarker for carotid atherosclerotic plaques. Mol Med Rep 2017; 16:8930-8936. [PMID: 28990089 PMCID: PMC5779976 DOI: 10.3892/mmr.2017.7694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Stroke caused by atherosclerosis remains a leading cause of morbidity and mortality worldwide, associated with carotid plaque rupture and inflammation progression. However, the inflammatory biomarkers which aid in predicting the future course of plaques are less detailed. The present study investigated the association between plaque vulnerable and inflammatory biomarkers using blood and plaque specimens. Carotid plaque specimens were obtained from 80 patients following stroke, 14 patients suffering from transient ischaemic attack and 17 asymptomatic patients that underwent carotid endarterectomy. To assess changes in plaque characteristics at histological levels, plaques were categorized by the time between the latest ischemic stroke and surgical intervention within 30, 30‑90, 90‑180 and over 180 days following stroke. Serum levels of inflammatory biomarkers interleukin (IL)‑6, IL‑10 and kinin B1 receptor (B1R) were measured by ELISA. Histological assessment of plaque was used to evaluate the plaque stability, progression and the inflammatory biomarker levels. Comparisons of histological characteristics demonstrated that plaques revealed an unstable phenotype following stroke within 30, 30‑90 days and then remodeled into more stable plaques following stroke at 90‑180 and over 180 days. By comparing the serum levels of inflammatory biomarkers, it was observed that IL‑6 and B1R levels tended to decline whereas IL‑10 levels increased in stroke patients from <30 days to over 180 days. Immunohistochemical analysis of IL‑6, IL‑10 and B1R demonstrated similar alterations in serum levels. Correlation analyses revealed that only B1R serum level was significantly correlated with histological level in patients with carotid atherosclerosis. The findings revealed that serum B1R levels may provide prognostic information and currently act as potential indicators for progression in atherosclerosis.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hengfang Liu
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
40
|
Haddad Y, Couture R. Kininase 1 As a Preclinical Therapeutic Target for Kinin B 1 Receptor in Insulin Resistance. Front Pharmacol 2017; 8:509. [PMID: 28824433 PMCID: PMC5539221 DOI: 10.3389/fphar.2017.00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022] Open
Abstract
Kinin B1 receptor (B1R) contributes to insulin resistance, an early event in type 2 diabetes, through the upregulation and activation of the inducible form of nitric oxide synthase (iNOS), pro-inflammatory cytokines and the oxidative stress. This study addresses the hypothesis that inhibition of kininase 1 (carboxypeptidase M, CPM), the key enzyme involved in the biosynthesis of B1R agonists, could exert the same beneficial effects to B1R antagonism in insulin resistance. Male Sprague-Dawley rats were made insulin resistant with a drinking solution containing 10% D-glucose for a period of 9 weeks. Control rats received tap water. During the last week, kininase 1 was blocked with Mergetpa (1 mg kg-1 twice daily, s.c.) and the impact was determined on insulin resistance (HOMA index), metabolic hormone levels, oxidative stress and the expression of several markers of inflammation by western blot and qRT-PCR. Glucose-fed rats displayed hyperglycemia, hyperinsulinemia, hyperleptinemia, insulin resistance, hypertension, positive body weight gain, and enhanced expression of B1R, CPM, iNOS, and IL-1β in renal cortex, aorta and liver. Markers of oxidative stress (superoxide anion and nitrotyrosine expression) were also enhanced in aorta and renal cortex. Mergetpa reversed and normalized most of those alterations, but failed to affect leptin levels and hypertension. Pharmacological blockade of kininase 1 (CPM) exerted similar beneficial effects to a 1-week treatment with a B1R antagonist (SSR240612) or an iNOS inhibitor (1,400 W). These data reinforce the detrimental role of B1R in insulin resistance and recommend CPM as a new therapeutic target.
Collapse
Affiliation(s)
- Youssef Haddad
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréal, QC, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
41
|
Mossberg M, Ståhl AL, Kahn R, Kristoffersson AC, Tati R, Heijl C, Segelmark M, Leeb-Lundberg LMF, Karpman D. C1-Inhibitor Decreases the Release of Vasculitis-Like Chemotactic Endothelial Microvesicles. J Am Soc Nephrol 2017; 28:2472-2481. [PMID: 28289183 DOI: 10.1681/asn.2016060637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/15/2017] [Indexed: 11/03/2022] Open
Abstract
The kinin system is activated during vasculitis and may contribute to chronic inflammation. C1-inhibitor is the main inhibitor of the kinin system. In this study, we investigated the presence of the kinin B1 receptor on endothelial microvesicles and its contribution to the inflammatory process. Compared with controls (n=15), patients with acute vasculitis (n=12) had markedly higher levels of circulating endothelial microvesicles, identified by flow cytometry analysis, and significantly more microvesicles that were positive for the kinin B1 receptor (P<0.001). Compared with microvesicles from wild-type cells, B1 receptor-positive microvesicles derived from transfected human embryonic kidney cells induced a significant neutrophil chemotactic effect, and a B1 receptor antagonist blocked this effect. Likewise, patient plasma induced neutrophil chemotaxis, an effect decreased by reduction of microvesicle levels and by blocking the B1 receptor. We used a perfusion system to study the effect of patient plasma (n=6) and control plasma (n=6) on the release of microvesicles from glomerular endothelial cells. Patient samples induced the release of significantly more B1 receptor-positive endothelial microvesicles than control samples, an effect abrogated by reduction of the microvesicles in the perfused samples. Perfusion of C1-inhibitor-depleted plasma over glomerular endothelial cells promoted excessive release of B1 receptor-positive endothelial microvesicles compared with normal plasma, an effect significantly decreased by addition of C1-inhibitor or B1 receptor-antagonist. Thus, B1 receptor-positive endothelial microvesicles may contribute to chronic inflammation by inducing neutrophil chemotaxis, and the reduction of these microvesicles by C1-inhibitor should be explored as a potential treatment for neutrophil-induced inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mårten Segelmark
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - L M Fredrik Leeb-Lundberg
- Unit of Drug Target Discovery, Division of Pharmacology and Structural Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden; and
| | | |
Collapse
|
42
|
Ghimire K, Altmann HM, Straub AC, Isenberg JS. Nitric oxide: what's new to NO? Am J Physiol Cell Physiol 2016; 312:C254-C262. [PMID: 27974299 PMCID: PMC5401944 DOI: 10.1152/ajpcell.00315.2016] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is one of the critical components of the vasculature, regulating key signaling pathways in health. In macrovessels, NO functions to suppress cell inflammation as well as adhesion. In this way, it inhibits thrombosis and promotes blood flow. It also functions to limit vessel constriction and vessel wall remodeling. In microvessels and particularly capillaries, NO, along with growth factors, is important in promoting new vessel formation, a process termed angiogenesis. With age and cardiovascular disease, animal and human studies confirm that NO is dysregulated at multiple levels including decreased production, decreased tissue half-life, and decreased potency. NO has also been implicated in diseases that are related to neurotransmission and cancer although it is likely that these processes involve NO at higher concentrations and from nonvascular cell sources. Conversely, NO and drugs that directly or indirectly increase NO signaling have found clinical applications in both age-related diseases and in younger individuals. This focused review considers recently reported advances being made in the field of NO signaling regulation at several levels including enzymatic production, receptor function, interacting partners, localization of signaling, matrix-cellular and cell-to-cell cross talk, as well as the possible impact these newly described mechanisms have on health and disease.
Collapse
Affiliation(s)
- Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Helene M Altmann
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Aztatzi-Aguilar OG, Uribe-Ramírez M, Narváez-Morales J, De Vizcaya-Ruiz A, Barbier O. Early kidney damage induced by subchronic exposure to PM 2.5 in rats. Part Fibre Toxicol 2016; 13:68. [PMID: 27955691 PMCID: PMC5154051 DOI: 10.1186/s12989-016-0179-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Particulate matter exposure is associated with respiratory and cardiovascular system dysfunction. Recently, we demonstrated that fine particles, also named PM2.5, modify the expression of some components of the angiotensin and bradykinin systems, which are involved in lung, cardiac and renal regulation. The endocrine kidney function is associated with the regulation of angiotensin and bradykinin, and it can suffer damage even as a consequence of minor alterations of these systems. We hypothesized that exposure to PM2.5 can contribute to early kidney damage as a consequence of an angiotensin/bradykinin system imbalance, oxidative stress and/or inflammation. RESULTS After acute and subchronic exposure to PM2.5, lung damage was confirmed by increased bronchoalveolar lavage fluid (BALF) differential cell counts and a decrease of surfactant protein-A levels. We observed a statistically significant increment in median blood pressure, urine volume and water consumption after PM2.5 exposure. Moreover, increases in the levels of early kidney damage markers were observed after subchronic PM2.5 exposure: the most sensitive markers, β-2-microglobulin and cystatin-C, increased during the first, second, sixth and eighth weeks of exposure. In addition, a reduction in the levels of specific cytokines (IL-1β, IL-6, TNF-α, IL-4, IL-10, INF-γ, IL-17a, MIP-2 and RANTES), and up-regulated angiotensin and bradykinin system markers and indicators of a depleted antioxidant response, were also observed. All of these effects are in concurrence with the presence of renal histological lesions and an early pro-fibrotic state. CONCLUSION Subchronic exposure to PM2.5 induced an early kidney damage response that involved the angiotensin/bradykinin systems as well as antioxidant and immune imbalance. Our study demonstrates that PM2.5 can induce a systemic imbalance that not only affects the cardiovascular system, but also affects the kidney, which may also overall contribute to PM-related diseases.
Collapse
Affiliation(s)
- O G Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, No. 2508, Col San Pedro Zacatenco, Ciudad de Mexico, C.P. 07360, Mexico
| | - M Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, No. 2508, Col San Pedro Zacatenco, Ciudad de Mexico, C.P. 07360, Mexico
| | - J Narváez-Morales
- Departamento de Toxicología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, No. 2508, Col San Pedro Zacatenco, Ciudad de Mexico, C.P. 07360, Mexico
| | - A De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, No. 2508, Col San Pedro Zacatenco, Ciudad de Mexico, C.P. 07360, Mexico.
| | - O Barbier
- Departamento de Toxicología, Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, No. 2508, Col San Pedro Zacatenco, Ciudad de Mexico, C.P. 07360, Mexico
| |
Collapse
|
44
|
Xiang W, Hu ZL, He XJ, Dang XQ. Intravenous transfusion of endothelial progenitor cells that overexpress vitamin D receptor inhibits atherosclerosis in apoE-deficient mice. Biomed Pharmacother 2016; 84:1233-1242. [PMID: 27810779 DOI: 10.1016/j.biopha.2016.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are widely used for angiogenic therapies, as well as predictive biomarkers to assess cardiovascular disease risk. However, it is unknown that whether overexpressed vitamin D receptor (VDR) in EPCs could help EPCs counteracting atherosclerotic risks. Here, we study intravenous transplantation of genetically modified EPCs over-expressing VDR in regulating endothelial dysfunction and spontaneously arising atherosclerotic plaques of ApoE-deficient mice. Firstly, we found that over-expression of VDR in EPCs could reduce atherosclerotic plaque formation in transplanted ApoE-/- mice. In addition, the concentration of serum HDL-C in ovVDR-EPCs group was much higher than that in control groups (ApoE-/- mice without injection or injected with fresh medium or adenovirus vector). While concentrations of serum total cholesterol, LDL-C, apoB and Lp (a) were negatively correlated with the expression level of VDR. What's more, improved serum concentration of NO and elevated serum and vessel wall expression of eNOS were observed in ovVDR-EPCs group. Furthermore, reduced expression and activity of MMP2, and elevated expression and activity of TIMP2 were detected in ovVDR-EPCs group. Taken together, intravenous transfusion of EPCs that overexpress VDR significantly inhibited atherosclerosis in ApoE-deficient mice and could be used as a potential method for angiogenic therapy.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Pediatrics, Hainan Provincial Maternal Hospital, Hainan province, 570006, China
| | - Zhi-Lan Hu
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Hunan province, 410000, China
| | - Xiao-Jie He
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Hunan province, 410000, China.
| | - Xi-Qiang Dang
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Hunan province, 410000, China
| |
Collapse
|
45
|
Abstract
Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling.
Collapse
Affiliation(s)
- Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - L Bortolotto
- Heart Institute-Hypertension Unit, Medical School University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Chen S, Zhang L, Xu R, Ti Y, Zhao Y, Zhou L, Zhao J. BDKRB2 +9/-9 bp polymorphisms influence BDKRB2 expression levels and NO production in knee osteoarthritis. Exp Biol Med (Maywood) 2016; 242:422-428. [PMID: 26764266 DOI: 10.1177/1535370215625471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bradykinin B2 receptor (BDKRB2) plays a key role in the inflammation process of osteoarthritis. Nitric oxide has also long been considered to be a catabolic factor that contributes to inflammatory response and the osteoarthritis disease pathology. Several studies have reported that the BDKRB2 +9/-9 bp polymorphisms are associated with transcription of the receptor. However, the roles of BDKRB2 polymorphisms in inflammation in osteoarthritis remain unclear. This study enrolled 156 subjects with primary knee osteoarthritis and 58 healthy volunteers. BDKRB2 polymorphisms were genotyped, and the mRNA and protein levels of BDKRB2 in synovial tissues from osteoarthritis patients were measured by quantitative real-time polymerase chain reaction and western blot analysis, respectively. Nitric oxide production in serum from patients with osteoarthritis was measured using a nitric oxide assay kit. We found that the mean BDKRB2 mRNA levels were significantly higher in Kallgren-Lawrence grade-4 osteoarthritis patients than patients with lower grade osteoarthritis. The +9/-9 bp polymorphisms significantly affected the BDKRB2 mRNA and protein expression levels in synovial tissues from osteoarthritis subjects. Osteoarthritis patients with +9/-9 and -9/-9 genotypes had higher BDKRB2 expression levels in synovial tissue and nitric oxide production in serum. Moreover, positive correlation was found between the BDKRB2 levels in synovial tissue and nitric oxide production. Compared with health controls, significant increases of nitric oxide production in osteoarthritis were detected which were associated with increasing severity of osteoarthritis. Multiple linear regression analysis (adjusted for gender and age) showed serum nitric oxide level was positively associated with BDKRB2 polymorphism and Kallgren-Lawrence grade and was inversely associated with obesity. Our findings showed that the BDKRB2 +9/-9 bp polymorphisms affected the gene expression and nitric oxide production, which were associated with radiographic severity of osteoarthritis, suggesting that the BDKRB2 +9/ -9 bp polymorphisms may act as a genetic modulator of osteoarthritis, and play an essential role in inflammatory process in osteoarthritis.
Collapse
Affiliation(s)
- Shuo Chen
- 1 Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Lei Zhang
- 1 Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ruonan Xu
- 2 Offices of Health Care, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yunfan Ti
- 1 Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yunlong Zhao
- 3 Department of Orthopedics, School of Clinical Medicine, Nanjing University, Nanjing 210000, China The first two authors contributed equally to this work
| | - Liwu Zhou
- 1 Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianning Zhao
- 1 Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| |
Collapse
|
47
|
Loffredo S, Bova M, Suffritti C, Borriello F, Zanichelli A, Petraroli A, Varricchi G, Triggiani M, Cicardi M, Marone G. Elevated plasma levels of vascular permeability factors in C1 inhibitor-deficient hereditary angioedema. Allergy 2016; 71:989-96. [PMID: 26873113 DOI: 10.1111/all.12862] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hereditary angioedema with C1 inhibitor deficiency (C1-INH-HAE) is a rare inherited genetic disease characterized by recurrent swelling episodes of the skin, gastrointestinal tract, and upper airways. Angioedema attacks result from increased vascular permeability due to the release of bradykinin from high molecular weight kininogen. Currently, there are no biomarkers predicting the frequency of angioedema attacks. Vascular permeability is modulated by several factors, including vascular endothelial growth factors (VEGFs) and angiopoietins (Angs). As increased circulating levels of VEGFs and Angs have been observed in diseases associated with higher vascular permeability (e.g., systemic capillary leak syndrome and sepsis), we sought to analyze plasma concentrations of VEGFs and Angs in patients with C1-INH-HAE. METHODS Sixty-eight healthy controls and 128 patients with C1-INH-HAE were studied. Concentrations of angiogenic (VEGF-A, Ang1, Ang2), anti-angiogenic (VEGF-A165b ) and lymphangiogenic (VEGF-C) factors were evaluated by ELISA. C1-INH functional activity was assessed by EIA. RESULTS Plasma concentrations of VEGF-A, VEGF-C, Ang1, and Ang2 were higher in patients with C1-INH-HAE in remission than in healthy controls. Concentration of VEGF-A was further increased in patients with lower C1-INH functional activity. Patients with C1-INH-HAE experiencing more than 12 angioedema attacks per year were characterized by higher plasma levels of VEGF-A, VEGF-C, and Ang2 compared with the other patients. CONCLUSIONS We hypothesize that VEGFs and Angs induce a state of 'vascular preconditioning' that may predispose to angioedema attacks. In addition, the identification of increased plasma levels of VEGFs and Angs in patients with C1-INH-HAE may prompt the investigation of VEGFs and Angs as biomarkers of C1-INH-HAE severity.
Collapse
Affiliation(s)
- S. Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - M. Bova
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - C. Suffritti
- Department of Biomedical and Clinical Sciences Luigi Sacco; Luigi Sacco Hospital Milan; University of Milan; Milan Italy
| | - F. Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - A. Zanichelli
- Department of Biomedical and Clinical Sciences Luigi Sacco; Luigi Sacco Hospital Milan; University of Milan; Milan Italy
| | - A. Petraroli
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - G. Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - M. Triggiani
- Division of Allergy and Clinical Immunology; University of Salerno; Salerno Italy
| | - M. Cicardi
- Department of Biomedical and Clinical Sciences Luigi Sacco; Luigi Sacco Hospital Milan; University of Milan; Milan Italy
| | - G. Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
- CNR Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’; Naples Italy
| |
Collapse
|
48
|
Lin X, Bernloehr C, Hildebrandt T, Stadler FJ, Doods H, Wu D. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats. Toxicol Appl Pharmacol 2016; 305:153-160. [PMID: 27288733 DOI: 10.1016/j.taap.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. METHODS AND RESULTS Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (±dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. CONCLUSION The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor.
Collapse
Affiliation(s)
- Xinchun Lin
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | | | | | - Florian J Stadler
- Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060, PR China.
| | - Henri Doods
- Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dongmei Wu
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; Department of BIN Convergence Technology, Chonbuk National University, South Korea.
| |
Collapse
|
49
|
Haddad Y, Couture R. Interplay between the kinin B1 receptor and inducible nitric oxide synthase in insulin resistance. Br J Pharmacol 2016; 173:1988-2000. [PMID: 27059924 DOI: 10.1111/bph.13491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/23/2016] [Accepted: 03/26/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Kinins are vasoactive and pro-inflammatory peptides whose biological effects are mediated by two GPCRs, named B1 and B2 receptors. While the B2 receptor plays a protective role in the cardiovascular system via the activation of endothelial NOS, the B1 receptor is associated with vascular inflammation, insulin resistance and diabetic complications. Because the B1 receptor is a potent activator of the inducible form of NOS (iNOS), this study has addressed the role of iNOS in the deleterious effects of B1 receptors in insulin resistance. EXPERIMENTAL APPROACH Male Sprague-Dawley rats (50-75 g) had free access to a drinking solution containing 10% d-glucose or tap water (control) for 9 weeks. During the last week, a selective iNOS inhibitor (1400W, 1 mg·kg(-1) twice daily) or its vehicle was administered s.c. KEY RESULTS Prolonged glucose treatment caused insulin resistance and several hallmarks of type 2 diabetes. Whereas the treatment with 1400W had no impact on the elevated systolic blood pressure and leptin levels in glucose-fed rats, it significantly reversed or attenuated hyperglycaemia, hyperinsulinaemia, insulin resistance (HOMA index), body weight gain, peroxynitrite formation (nitrotyrosine expression) and the up-regulation of biomarkers of inflammation (B1 receptor, carboxypeptidase M, iNOS and IL-1β) in renal cortex and aorta and to some extent in the liver. CONCLUSIONS AND IMPLICATIONS Pharmacological blockade of iNOS prevents the formation of peroxynitrite, which amplifies the pro-inflammatory effects of B1 receptors through a positive feedback mechanism. Hence, targeting iNOS can prevent the deleterious effects of B1 receptors in insulin resistance and peripheral inflammation.
Collapse
Affiliation(s)
- Youssef Haddad
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
50
|
Filippou PS, Karagiannis GS, Musrap N, Diamandis EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci 2016; 53:277-91. [PMID: 26886390 DOI: 10.3109/10408363.2016.1154643] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The kallikrein-related peptidases (KLKs) represent the largest family of serine proteases within the human genome and are expressed in various tissues. Although they regulate several important physiological functions, KLKs have also been implicated in numerous pathophysiological processes, including cancer. Growing evidence describing the deregulation of KLK expression and secretion, as well as activation in various malignancies, has uncovered their potential as mediators of cancer progression, biomarkers of disease and as candidate therapeutic targets. The diversity of signalling pathways and proteolytic cascades involving KLKs and their downstream targets appears to affect cancer biology through multiple mechanisms, including those related to the hallmarks of cancer. The aim of this review is to provide an update on the importance of KLK-driven molecular pathways in relation to cancer cell traits associated with the hallmarks of cancer and to highlight their potential in personalized therapeutics.
Collapse
Affiliation(s)
- Panagiota S Filippou
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - George S Karagiannis
- b Department of Anatomy & Structural Biology , Albert Einstein College of Medicine, Yeshiva University Bronx , New York , NY , USA
| | - Natasha Musrap
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Eleftherios P Diamandis
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada .,c Department of Clinical Biochemistry , University Health Network , Toronto , ON , Canada , and.,d Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada
| |
Collapse
|