1
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
2
|
Zeng X, Ma S, Luo Y, Zhang Y, Wang Q, Zhang Z, Ke W, Ma Y, Hu H, Hartung T, Wei Y, Zhong X. Environmentally Relevant Concentrations of Tetrabromobisphenol A Exposure Impends Neurovascular Formation through Perturbing Mitochondrial Metabolism in Zebrafish Embryos and Human Primary Endothelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5267-5278. [PMID: 38478874 DOI: 10.1021/acs.est.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 μg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengtao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21230, United States
- University of Konstanz, Konstanz 78464, Germany
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Ma H, Yang W, Li Y, Li J, Yang X, Chen Y, Ma Y, Sun D, Sun H. Effects of sodium arsenite exposure on behavior, ultrastructure and gene expression of brain in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116107. [PMID: 38382348 DOI: 10.1016/j.ecoenv.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Arsenic, a common metal-like substance, has been demonstrated to pose potential health hazards and induce behavioral changes in humans and rodents. However, the chronic neurotoxic effects of arsenic on aquatic animals are still not fully understood. This study aimed to investigate the effects of arsenic exposure on adult zebrafish by subjecting 3-month-old zebrafish to three different sodium arsenite water concentrations: 0 μg/L (control group), 50 μg/L, and 500 μg/L, over a period of 30 days. To assess the risk associated with arsenic exposure in the aquatic environment, behavior analysis, transmission electron microscopy techniques, and quantitative real-time PCR were employed. The behavior of adult zebrafish was evaluated using six distinct tests: the mirror biting test, shoaling test, novel tank test, social preference test, social recognition test, and T maze. Following the behavioral tests, the brains of zebrafish were dissected and collected for ultrastructural examination and gene expression analysis. The results revealed that sodium arsenite exposure led to a significant reduction in aggression, cohesion, social ability, social cognition ability, learning, and memory capacity of zebrafish. Furthermore, ultrastructure and genes regulating behavior in the zebrafish brain were adversely affected by sodium arsenite exposure.
Collapse
Affiliation(s)
- Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China.
| | - Jing Li
- Department of Electron Microscopy Center, Faculty of Basic Medical Science, Harbin Medical University, Harbin, China.
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Yifan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
4
|
Lin J, Lou Y, Sun Z, Pan D, Lei L, Song Y, Huang C, Chen J. DDT and titanium dioxide nanoparticle coexposure induced neurobehavioral deficits in zebrafish. Neurotoxicol Teratol 2024; 102:107323. [PMID: 38278424 DOI: 10.1016/j.ntt.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Both dichlorodiphenyltrichloroethane (DDT) and titanium dioxide nanoparticle (TiO2 NP) have worldwide-scale commercial applications, resulting in their co-pollution in the ecosystems and posing combined health risks. However, there is a lack of toxicity studies for the interactions of DDT and TiO2 NP in the environmental relevant concentrations. In this study, we characterized the coexposures using a zebrafish waterborne exposure approach and evaluated the neurotoxicity response of the treated embryos or adults. Our results showed that DDT/TiO2 NP coexposure enhanced the DDT accumulation in vivo and increased the larval locomotor. The chronic DDT/TiO2 NP coexposure did not affect the overall survival rate, sex ratio and growth. However, DDT/TiO2 NP coexposure severely affected the adult locomotor activity, social contact, shoaling and aggressive behaviors compared to single treatment groups or controls. These adult behavioral deficits were accompanied by changes in neurotransmitter acetylcholine (ACH) level in the brain and muscle tissues, as well as neural development genes expression activation of growth-associated protein 43 (gap43) and synaptic vesicle glycoprotein 2 (sv2) in the brain. The significantly increased ACH level and the activated neural genes expression in the DDT/TiO2 NP co-exposed fish may account for the observed hyperactivity and social deficits.
Collapse
Affiliation(s)
- Jian Lin
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Yanqi Lou
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zhenkai Sun
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Dongliang Pan
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lei Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiangfei Chen
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public health, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
5
|
Bai C, Dong H, Tao J, Chen Y, Xu H, Lin J, Huang C, Dong Q. Lifetime exposure to benzophenone-3 at an environmentally relevant concentration leads to female-biased social behavior and cognition deficits in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159733. [PMID: 36306848 DOI: 10.1016/j.scitotenv.2022.159733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone-3 (BP3) is an organic UV filter widely used in the commercial formulations of various personal care products. It has been detected ubiquitously in the environment and human tissues. Recently, BP3-induced neurotoxicity has been identified as the main health risk to humans and aquatic organisms. However, most research has been focused on embryonic development, and few studies explore chronic lifetime exposure. In the present study, we evaluated the neurotoxicity of lifetime exposure to an environmentally relevant concentration of BP3 in zebrafish. Our findings revealed that continuous BP3 exposure at 10 μg/L (0.04 μM) from 6 h post fertilization (hpf) to adulthood at 5 months led to female-biased social behavioral deficits and learning and memory impairment. These neurobehavioral effects were characterized by decreased prosocial activities in the social preference test and mirror biting assay, and reduced learning and memory in a T-maze test. Furthermore, these effects were accompanied by female-specific decreases in brain weight and brain dopamine concentration, female-biased decrease of neurogenesis in the telencephalon as well as female-specific increases in apoptotic cells and expression levels of genes and proteins related to the apoptosis pathway in the brain. Our results suggest that BP3-induced social behavior and learning/memory deficits are correlated to the cell loss in the telencephalon region of the zebrafish brain.
Collapse
Affiliation(s)
- Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haojia Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junyan Tao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
6
|
Zhang Q, Wang S, Wang F, Guo M, Xu S. TBBPA induces inflammation, apoptosis, and necrosis of skeletal muscle in mice through the ROS/Nrf2/TNF-α signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120745. [PMID: 36442820 DOI: 10.1016/j.envpol.2022.120745] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/05/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is present in large quantities in the environment due to its widespread use. And TBBPA is capable of accumulating in animals, entering the ecological chain and causing widespread damage to organisms. TBBPA is capable of causing the onset of oxidative stress, which induces tissue damage and cell death, which in turn affects the physiological function of tissues. Skeletal muscle is a critical tissue for maintaining growth, movement, and health in the body. However, the mechanism of TBBPA-induced skeletal muscle injury remains unclear. In this study, we constructed mouse skeletal muscle models (10, 20, and 40 mg/kg TBBPA) and mouse myoblasts (C2C12) cell models (2,4, and 8 μg/L TBBPA) at different concentrations. The results of this experiment showed that under TBBPA treatment, the levels of reactive oxygen species (ROS) and Malondialdehyde (MDA) in mouse skeletal and C2C12 cells were increased significantly, but the activities of some antioxidant enzymes decreased. TBBPA can inhibit Nuclear factor E2-related factor 2 (Nrf2) entry into the nucleus, thus affecting the expression of the Nrf2 downstream factors. With the increase of TBBPA concentration, the expression levels of inflammatory factors were significantly increased, while the anti-apoptotic factors were significantly decreased. The expression of pro-apoptotic factors increased in a dose-dependent manner. Programmed necrosis-related factors were also significantly elevated. Our results suggest that TBBPA induces oxidative stress and inflammation, apoptosis, and necrosis in the skeletal muscle of mice by regulating Nrf2/ROS/TNF-α signaling pathway.
Collapse
Affiliation(s)
- Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fuhan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Lin W, Huang Z, Zhang W, Ren Y. Investigating the neurotoxicity of environmental pollutants using zebrafish as a model organism: A review and recommendations for future work. Neurotoxicology 2023; 94:235-244. [PMID: 36581008 DOI: 10.1016/j.neuro.2022.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022]
Abstract
With the continuous development of precise detection technology, more and more pollutants have been detected in the environment. Among them, neurotoxic pollutants have attracted extensive attention due to their serious threat to vertebrates, invertebrates, and the whole ecosystem. Compared with other model organisms, zebrafish (Danio rerio) have become an important aquatic model to study the neurotoxicity of environmental pollutants because of their excellent molecular/physiological characteristics. At present, the research on the toxicity of environmental pollutants to the zebrafish nervous system focuses on morphology and behavior regulation, oxidative stress, gene expression, synthesis and release of neurotransmitters, and neuron development. However, studies on epigenetic toxicity, blood-brain barrier damage, and regulation of the brain-gut-microbiota axis still require further research at the molecular and signaling levels to clarify the toxic mechanisms of pollutants. This paper reviews the research on the toxic effects of pollutants in the environment (heavy metals and organic compounds) on the nervous system of zebrafish, summarizes and comments on the main research findings. The discussion of the problems, hot spots in the current research, and the prospects of the contents to be further studied are also included in this paper.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhishan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, China.
| |
Collapse
|
8
|
Li S, Yang R, Yin N, Zhao M, Zhang S, Faiola F. Developmental toxicity assessments for TBBPA and its commonly used analogs with a human embryonic stem cell liver differentiation model. CHEMOSPHERE 2023; 310:136924. [PMID: 36272632 DOI: 10.1016/j.chemosphere.2022.136924] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is widely used in industrial production as a halogenated flame retardant (HFR). Its substitutes and derivatives are also commonly employed as HFRs. Consequently, they can be frequently detected in environmental and human samples. The potential developmental toxicity of TBBPA and its analogs, particularly to the human liver, is still controversial or not thoroughly assessed. Therefore, in this study, we focused on the early stages of human liver development to explore the toxic effects of those HFRs, by using a human embryonic stem cell liver differentiation model. We concluded that nanomolar treatments (1, 10, and 100 nM) of those pollutants may not exert significant interference to liver development and functions. However, at 5 μM doses, TBBPA and its analogs severely affected liver functions, such as glycogen storage, and caused lipid accumulation. Furthermore, TBBPA-bis(allyl ether) showed the most drastic effects among the six compounds tested. Taken together, our findings support the view that TBBPA can be used safely, provided its amounts are strictly controlled. Nonetheless, TBBPA alternatives or derivatives may exhibit stronger adverse effects than TBBPA itself, and may not be safer choices for manufacturing applications when utilized in a large and unrestricted way.
Collapse
Affiliation(s)
- Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Kim SS, Kim JL, Hwang KS, Park HC, Bae MA, Kim KT, Cho SH. Mechanism of action and neurotoxic effects of chronic exposure to bisphenol F in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158258. [PMID: 36030852 DOI: 10.1016/j.scitotenv.2022.158258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Although bisphenol F (BPF), the main replacement for bisphenol A, has been commonly used in polycarbonate production, its neurotoxicity and the underlying mechanisms remain poorly understood. To address this knowledge gap, this study aimed to assess the neurotoxicity caused by chronic exposure to BPF and to identify its underlying mechanisms. We exposed adult zebrafish chronically to BPF at environmentally relevant concentrations (0.001, 0.01, and 0.1 mg/L) for 4 weeks. The results revealed that with BPF crossing the blood-brain barrier and bioaccumulating in brain tissues, chronic exposure to BPF resulted in anxiety-like behaviors and disruptions in learning and memory function in adult zebrafish. Furthermore, BPF toxicity in the zebrafish brain involved the dysregulation of metabolic pathways for choline and kynurenine in neurotransmitter systems and for 17β-estradiol, cortisol, pregnenolone-sulfate, and Dehydroepiandrosterone (DHEA)-sulfate in neurosteroid systems. RNA-seq analysis revealed that BPF exposure affected metabolic pathways, calcium signaling pathways, neuroactive ligand-receptor interactions, tight junctions, gap junctions, and the gonadotropin-releasing hormone signaling pathway. Our results indicate that chronic exposure to BPF alters the neurochemical profile of the brain and causes neurobehavioral effects, such as anxiety and cognitive decline. Overall, the multimodal approach, including behavioral and neurochemical profiling technologies, has great potential for the comprehensive assessment of potential risks posed by environmental pollutants to human and ecosystem health.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jiwon L Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido 425-707, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
10
|
Wu Y, Wang A, Fu L, Liu M, Li K, Chian S, Yao W, Wang B, Wang J. Fentanyl Induces Novel Conditioned Place Preference in Adult Zebrafish, Disrupts Neurotransmitter Homeostasis, and Triggers Behavioral Changes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13533. [PMID: 36294112 PMCID: PMC9603063 DOI: 10.3390/ijerph192013533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Abuse of new psychoactive substances increases risk of addiction, which can lead to serious brain disorders. Fentanyl is a synthetic opioid commonly used in clinical practice, and behavioral changes resulting from fentanyl addiction have rarely been studied with zebrafish models. In this study, we evaluated the rewarding effects of intraperitoneal injections of fentanyl at concentrations of 10, 100, and 1000 mg/L on the group shoaling behavior in adult zebrafish. Additional behavioral tests on individual zebrafish, including novel tank, novel object exploration, mirror attack, social preference, and T-maze memory, were utilized to evaluate fentanyl-induced neuro-behavioral toxicity. The high doses of 1000 mg/L fentanyl produced significant reward effects in zebrafish and altered the neuro-behavioral profiles: reduced cohesion in shoaling behavior, decreased anxiety levels, reduced exploratory behavior, increased aggression behavior, affected social preference, and suppressed memory in an appetitive associative learning task. Behavioral changes in zebrafish were shown to be associated with altered neurotransmitters, such as elevated glutamine (Gln), gamma-aminobutyric acid (GABA), dopamine hydrochloride (DA), and 5-hydroxytryptamine (5-HT). This study identified potential fentanyl-induced neurotoxicity through multiple neurobehavioral assessments, which provided a method for assessing risk of addiction to new psychoactive substances.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lixiang Fu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou 310002, China
| | - Meng Liu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Kang Li
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Song Chian
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
11
|
Kim JL, Kim SS, Hwang KS, Park HC, Cho SH, Bae MA, Kim KT. Chronic exposure to butyl-paraben causes photosensitivity disruption and memory impairment in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106279. [PMID: 36044784 DOI: 10.1016/j.aquatox.2022.106279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Limited studies on neurotoxicity following chronic exposure to butyl‑paraben (BuP) have been conducted. In this study, neurobehavior in zebrafish adults was assessed using the novel tank test, photomotor response test, and T-maze test after exposure to BuP for 28 days at concentrations of 0, 0.01, 0.1, and 1.0 mg/L. To comprehensively understand the underlying molecular perturbations in the brain, alterations in transcripts, neurotransmitters, and neurosteroids were measured. We found that BuP penetrated the blood-brain barrier and impaired neurobehavior in photosensitivity at 1.0 mg/L and in memory at 0.1 and 1.0 mg/L. RNA-seq analysis showed that phototransduction, tight junctions, and neuroactive ligand receptor activity were significantly affected, which explains the observed abnormal neurobehaviors. Neurosteroid analysis revealed that BuP increased cortisol levels in a concentration-dependent manner and specifically reduced allopregnanolone levels at all tested concentrations, suggesting that cortisol and allopregnanolone are significant neurosteroid markers associated with photosensitivity and memory deficits. Collectively, we demonstrated that BuP can cross the blood-brain and modulate the levels of transcripts, associated with phototransduction and circadian rhythm, and neurosteroidal cortisol and allopregnanolone, resulting in abnormal neurobehavioral responses to light stimulation and learning and memory.
Collapse
Affiliation(s)
- Jiwon L Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Seong Soon Kim
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyu-Seok Hwang
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15355, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
12
|
Wang Z, Song L, Jin S, Ye N, Zhang F, Luo T, Wang DG. Dissolved organic matter heightens the toxicity of tetrabromobisphenol A to aquatic organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:725-734. [PMID: 35357622 DOI: 10.1007/s10646-022-02539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a new type of persistent organic pollutant, which causes environmental pollution and health problems, and has attracted the attention of the international research community. Once released into the environment, TBBPA can interact with dissolved organic matter (DOM), which affects its behavior. However, the effect of DOM on the biological toxicity of TBBPA remains unclear. The toxic effects of TBBPA on three model aquatic organisms (Chlorella pyrenoidosa, Daphnia magna, and Danio rerio), in the absence and presence of DOM were investigated. The order of acute toxicity of TBBPA to the three aquatic organisms was D. magna > D. rerio > C. pyrenoidosa. In the presence of DOM the median effect/lethal concentrations values of TBBPA to the three aquatic organisms decreased by at least 32 (C. pyrenoidosa), 52 (D. magna), and 6.6% (D. rerio), implying that DOM enhanced the acute toxicity of TBBPA to all the organisms. Moreover, the higher the concentration of DOM, the higher the acute toxicity of TBBPA. Furthermore, the presence of DOM increased total reactive oxygen species (ROS) induced by TBBPA in a concentration-dependent manner. A tracking analysis of total ROS in the three aquatic organisms also showed that the presence of DOM aggravated the accumulation of total ROS induced by TBBPA, indicating that oxidative stress is a characteristic mechanism of toxicity of TBBPA to aquatic organisms when DOM is present. In addition, the evaluated risk quotient indicated that the ecological risk of TBBPA to aquatic organisms can increase in environments rich in DOM.
Collapse
Affiliation(s)
- Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Lan Song
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Shiguang Jin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Nan Ye
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Fan Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Tianlie Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, 610059, Chengdu, China
| | - De-Gao Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| |
Collapse
|
13
|
Lin J, Xiao Y, Liu Y, Lei Y, Cai Y, Liang Q, Nie S, Jia Y, Chen S, Huang C, Chen J. Leachate from plastic food packaging induced reproductive and neurobehavioral toxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113189. [PMID: 35033875 DOI: 10.1016/j.ecoenv.2022.113189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The present study mimicked daily life exposure to plastic food package bags and evaluated its effects on the reproductive and neurobehavioral responses using zebrafish model. Gas chromatography-mass spectrometer (GC/MS) full scan analysis revealed that phthalic acid, isobutyl octyl ester (DEHP) and its metabolites were the main leachate from plastic bags. Our results demonstrated that during the eight weeks exposure, leaching from plastic bags treated with boiling water (P-high group) significantly affected the spawn egg production, embryo hatching and larval malformation rate. Cross-spawning trails between zebrafish collected from the controls and P-high group at the end of eight weeks showed that these adverse effects were more severe in the offspring derived from paternal exposure than those derived from the maternal exposure, suggesting leached chemicals may have a more pronounced effect in sperm than in eggs. In addition, P-high group male testis weight, sperm motility and sperm swimming velocities were decreased significantly. After eight weeks treatment, neurobehavioral tests demonstrated significant changes in the swimming speed during free swimming and light-dark stimulation in the adult zebrafish from P-high group, with the effects being more severe in the males than females. P-high group males also showed altered response in the light/dark explore and mirror attacks assays.
Collapse
Affiliation(s)
- Jian Lin
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanyan Xiao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuhang Lei
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yaojun Cai
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiuju Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Shangfei Nie
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinhang Jia
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Shan Chen
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Changjiang Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiangfei Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Dong M, Li Y, Zhu M, Li J, Qin Z. Tetrabromobisphenol A Disturbs Brain Development in Both Thyroid Hormone-Dependent and -Independent Manners in Xenopus laevis. Molecules 2021; 27:molecules27010249. [PMID: 35011481 PMCID: PMC8746619 DOI: 10.3390/molecules27010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Although tetrabromobisphenol A (TBBPA) has been well proven to disturb TH signaling in both in vitro and in vivo assays, it is still unclear whether TBBPA can affect brain development due to TH signaling disruption. Here, we employed the T3-induced Xenopus metamorphosis assay (TIXMA) and the spontaneous metamorphosis assay to address this issue. In the TIXMA, 5–500 nmol/L TBBPA affected T3-induced TH-response gene expression and T3-induced brain development (brain morphological changes, cell proliferation, and neurodifferentiation) at premetamorphic stages in a complicated biphasic concentration-response manner. Notably, 500 nmol/L TBBPA treatment alone exerted a stimulatory effect on tadpole growth and brain development at these stages, in parallel with a lack of TH signaling activation, suggesting the involvement of other signaling pathways. As expected, at the metamorphic climax, we observed inhibitory effects of 50–500 nmol/L TBBPA on metamorphic development and brain development, which was in agreement with the antagonistic effects of higher concentrations on T3-induced brain development at premetamorphic stages. Taken together, all results demonstrate that TBBPA can disturb TH signaling and subsequently interfere with TH-dependent brain development in Xenopus; meanwhile, other signaling pathways besides TH signaling could be involved in this process. Our study improves the understanding of the effects of TBBPA on vertebrate brain development.
Collapse
Affiliation(s)
- Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.D.); (Y.L.); (M.Z.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.D.); (Y.L.); (M.Z.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.D.); (Y.L.); (M.Z.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.D.); (Y.L.); (M.Z.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.D.); (Y.L.); (M.Z.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-62919177
| |
Collapse
|
15
|
Dong M, Li Y, Zhu M, Qin Z. Tetrabromobisphenol A: a neurotoxicant or not? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54466-54476. [PMID: 34420170 DOI: 10.1007/s11356-021-15166-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Although some regulatory agencies have claimed that consumer exposures to tetrabromobisphenol A (TBBPA) are not likely to cause adverse health effects in humans or the environment, the safety of tetrabromobisphenol A (TBBPA) has been questioned. Here, we summarize the literature concerning in vivo and in vitro neurotoxicity of TBBPA over the past decades. Most laboratory rodent studies reported that gavage administration of TBBPA at doses below 1000 mg/kg/day generally exerted no or limited effects on neuropathology and locomotor behaviors, but increased anxiety and auditory impairments were observed in several studies. In fish and amphibians, waterborne exposure to TBBPA was generally reported to disrupt neurodevelopment and lead to neurobehavioral alterations. Moreover, in vitro studies support the observations that TBBPA could exert neurotoxic effects in vertebrates. Thus, we suggest that TBBPA could have adverse effects on the nervous system in vertebrates. Given rapid excretion and low availability of TBBPA in laboratory rodents following single gavage administration, we speculate that single-daily gavage could result in an underestimation of the neurotoxic effects of TBBPA in rodents. Thus, we propose to employ multiple-daily administration routes (such as dermal, inhalation, and drinking water), to further assess the neurotoxic effects of TBBPA in mammals.
Collapse
Affiliation(s)
- Mengqi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Tian S, Yan S, Meng Z, Huang S, Sun W, Jia M, Teng M, Zhou Z, Zhu W. New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126100. [PMID: 34098260 DOI: 10.1016/j.jhazmat.2021.126100] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Bisphenols (BPs), as widely used plastic additives, penetrate into our daily lives. BPs are considered endocrine disruptors and could potentially induce obesity. In this study, the effects of bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) on food intake and lipid metabolism in zebrafish were determined. Moreover, the impact of BPA and TBBPA on the endocannabinoid system (ECS) of zebrafish was further explored by metabolomics, transcriptomics, and molecular docking analysis. Here we show that exposure to BPA and TBBPA at concentrations commonly found in the environment (20, 100, and 500 μg/L) led to hyperphagia and obesity in adult male zebrafish. Metabolomics and histopathological analysis revealed significant lipid accumulation in the liver of zebrafish exposed to BPA and TBBPA. The expression of ECS-related genes, in conjunction with RNA-Seq results, further indicated that BPA and TBBPA increased appetite and induced obesity by activating cannabinoid receptor type 1(CB1). Furthermore, molecular docking revealed that six representative BPs including BPA and TBBPA could bind to the CB1 receptor. Collectively, these findings indicate that CB1 may be a potential target for BPs to induce obesity.
Collapse
Affiliation(s)
- Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
18
|
Lu L, Hu J, Li G, An T. Low concentration Tetrabromobisphenol A (TBBPA) elevating overall metabolism by inducing activation of the Ras signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125797. [PMID: 33878653 DOI: 10.1016/j.jhazmat.2021.125797] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most common flame retardants, affects neurodevelopment, disrupts the endocrine system, and increases the possibility of tumorigenesis. This study investigates the cytotoxic effects, genetic effects, and metabolic effects from exposure to low concentration TBBPA. The cell exposure was measured by mimicking the residual TBBPA concentrations in human plasma, specifically in occupational populations. Our results revealed that long-term TBBPA exposure, especially at 1 nM concentration, significantly promoted the proliferation of HepG2 cells. Furthermore, long-term TBBPA exposure can double the levels of reactive oxygen species (ROS) released from mitochondria, thereby increasing Adenosine Monophosphate activated Protein kinase (AMPK) gene expression level to promote cellular proliferation. However, ROS can also mediate the apoptosis process through the mitochondrial membrane potential (MMP). The RNA-seq analysis confirmed that the Ras signaling pathway was activated by the growth factor to mediate cell detoxification mechanism, increasing lipid and vitamin metabolic rate. Our work uncovers a cellular mechanism by which long-term exposure to low concentration TBBPA can induce the activation of the Ras signaling pathway and demonstrates potential metabolic disorder in the human hepatic cells upon plasma TBBPA exposure.
Collapse
Affiliation(s)
- Lirong Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
19
|
Yu Y, Hou Y, Dang Y, Zhu X, Li Z, Chen H, Xiang M, Li Z, Hu G. Exposure of adult zebrafish (Danio rerio) to Tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125408. [PMID: 33647619 DOI: 10.1016/j.jhazmat.2021.125408] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and is universally detected in the environment. However, information related to its transgenerational toxicity is sparse. Using zebrafish as a study model, adult fish were exposed to TBBPA at different concentrations (0, 3, 30, or 300 μg/L) for 42 d and then, the exposed adults were spawned in TBBPA-free water. The neurobehavior of adults and larval offspring was evaluated, and the levels of thyroxine (T4), triiodothyronine (T3) and neurotransmitters (acetylcholine, dopamine and gamma-aminobutyric acid) were quantified in larvae and embryos. Our results showed that TBBPA was detected in embryo and the locomotor activity of larval offspring was significantly reduced, suggesting that TBBPA can transfer to offspring and result in neurotoxicity in larval offspring. Furthermore, a reduction in T3 levels was observed in both the larvae and embryos. We also found a significantly decreased content of dopamine in larval offspring, accompanied by downregulated mRNA expression of rdr2b and drd3. Our results demonstrated that TBBPA can be transferred to offspring embryos, and subsequently induce neurotoxicity in larval offspring by affecting the amount of T3 transferred from the parents to embryos and the production of dopamine in larvae.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
20
|
Li H, Cao W, Wang W, Huang Y, Xiang M, Wang C, Chen S, Si R, Huang M. Carbon nanotubes mediating nano α-FeOOH reduction by Shewanella putrefaciens CN32 to enhance tetrabromobisphenol A removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146183. [PMID: 33689900 DOI: 10.1016/j.scitotenv.2021.146183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes (CNTs) mediation of the reduction of nano goethite (α-FeOOH) by Shewanella putrefaciens CN32 to improve the removal efficiency of tetrabromobisphenol A (TBBPA) was investigated in this study. The results showed that CNTs effectively promoted the biological reduction of α-FeOOH by strengthening the electron transfer process between Shewanella putrefaciens CN32 and α-FeOOH. After α-FeOOH was reduced to Fe(II), the adsorbed Fe(II) accounted for approximately 69.07% of the total Fe(II). And the secondary mineral vivianite was formed during the reduction of α-FeOOH, which was determined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The vivianite (FeII3(PO4)2·8H2O) was formed by the reaction of PO43- and Fe(II). The degradation effect of TBBPA was the best at pH 8. CNT-α-FeOOH reduced the toxicity of TBBPA to CN32 and had good stability and reusability. The byproduct bisphenol A was detected which indicated that the degradation pathway of TBBPA involved reductive debromination. Electrochemical experiments and EPR analysis showed that the electron transfer capacities (ETC) of CNTs was an important factor in the removal of TBBPA, and it may greatly depend on semiquinone radicals (CO). This study provided a new method and theoretical support for the removal of TBBPA in the environment.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Wei Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chen Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuai Chen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Ruofan Si
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Maofang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
21
|
Zhou H, Yin N, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci (China) 2020; 97:54-66. [PMID: 32933740 DOI: 10.1016/j.jes.2020.04.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and is extensively used in electronic equipment, furniture, plastics, and textiles. It is frequently detected in water, soil, air, and organisms, including humans, and has raised concerns in the scientific community regarding its potential adverse health effects. Human exposure to TBBPA is mainly via diet, respiration, and skin contact. Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals, and potentially exert hepatic, renal, neural, cardiac, and reproductive toxicities. Nevertheless, other reports have claimed that TBBPA might be a safe chemical. In this review, we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity. We concluded that, although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population, particular attention should be paid to the potential effects of TBBPA on early developmental stages.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Abstract
The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints may not reflect the “full picture” of possible deleterious effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Therefore, assessing sublethal effects add relevant data covering different aspects of toxicity at different levels of analysis. The impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains—including anxiety, aggression, and exploration—can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. The effects of selected contaminants on these tests are reviewed, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.
Collapse
|
23
|
Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res 2020; 391:112625. [PMID: 32428631 DOI: 10.1016/j.bbr.2020.112625] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
Behavior phenotypes are a powerful means of uncovering subtle xenobiotic chemical impacts on vertebrate nervous system development. Rodents manifest complex and informative behavior phenotypes but are generally not practical models in which to screen large numbers of chemicals. Zebrafish recapitulate much of the behavioral complexity of higher vertebrates, develop externally and are amenable to assay automation. Short duration automated assays can be leveraged to screen large numbers of chemicals or comprehensive dose-response for fewer chemicals. Here we describe a series of mostly automated assays including larval photomotor response, strobe light response, blue color avoidance, shoaling and mirror stimulus-response performed on the ZebraBox (ViewPoint Behavior Technologies) instrument platform. To explore the sensitivity and uniqueness of each assay endpoint, larval cohorts from 5 to 28 days post fertilization were acutely exposed to several chemicals broadly understood to impact different neuro-activities. We highlight the throughput advantages of using the same instrument platform for multiple assays and the ability of different assays to detect unique phenotypes among different chemicals.
Collapse
|
24
|
Wang X, Wei L, Zhu J, He B, Kong B, Xue Z, Jin X, Fu Z. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages. CHEMOSPHERE 2019; 236:124413. [PMID: 31545206 DOI: 10.1016/j.chemosphere.2019.124413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
TBBPA is one of the main brominated flame retardants and is ubiquitous in the environment. TBBPA can directly encounter immune cells via the bloodstream, posing potential immunotoxicity. To understand the immunomodulating effect of TBBPA on macrophages, the murine macrophages, RAW 264.7, were exposed to TBBPA at environmentally relevant concentrations (1-100 nM). The results showed that TBBPA at the selected concentrations did not alter cell viability of RAW 264.7 cells with or without LPS stimulation. TBBPA upregulated the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, whereas it attenuated the LPS-stimulated expression of these pro-inflammatory cytokines, and the expression of anti-inflammatory cytokines, including IL-4, IL-10, and IL-13. In addition, TBBPA reduced the mRNA levels of antigen-presenting-related genes, including H2-K2, H2-Aa, Cd80, and Cd86. Moreover, TBBPA impaired the phagocytic activity of macrophages. Furthermore, exposure to TBBPA significantly elevated the protein levels of phosphorylated NF-κB p65 (p-p65), while it reduced LPS-stimulated p-p65 protein levels. DCFH-DA staining assays showed that TBBPA caused a slight but significant elevation in reactive oxygen species levels. The data obtained in the present study demonstrated that exposure to environmentally relevant concentrations of TBBPA posed immunotoxicity in macrophages and unveiled a potential health risk of TBBPA.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
25
|
Rock KD, Gillera SEA, Devarasetty P, Horman B, Knudsen G, Birnbaum LS, Fenton SE, Patisaul HB. Sex-specific behavioral effects following developmental exposure to tetrabromobisphenol A (TBBPA) in Wistar rats. Neurotoxicology 2019; 75:136-147. [PMID: 31541695 PMCID: PMC6935469 DOI: 10.1016/j.neuro.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA) has become a ubiquitous indoor contaminant due to its widespread use as an additive flame retardant in consumer products. Reported evidence of endocrine disruption and accumulation of TBBPA in brain tissue has raised concerns regarding its potential effects on neurodevelopment and behavior. The goal of the present study was to examine the impact of developmental TBBPA exposure, across a wide range of doses, on sexually dimorphic non-reproductive behaviors in male and female Wistar rats. We first ran a pilot study using a single TBBPA dose hypothesized to produce behavioral effects. Wistar rat dams were orally exposed using cookie treats to 0 or 0.1 mg TBBPA/kg bw daily from gestational day (GD) 9 to postnatal day (PND) 21 to assess offspring (both sexes) activity and anxiety-related behaviors. Significant effects were evident in females, with exposure increasing activity levels. Thus, this dose was used as the lowest TBBPA dose in a subsequent, larger study conducted as part of a comprehensive assessment of TBBPA toxicity. Animals were exposed to 0, 0.1, 25, or 250 mg TBBPA/kg bw daily by oral gavage starting on GD 6 through PND 90 (dosed dams GD 6 - PND 21, dosed offspring PND 22 - PND 90). Significant behavioral findings were observed for male offspring, with increased anxiety-like behavior as the primary phenotype. These findings demonstrate that exposure to environmental contaminants, like TBBPA, can have sex-specific effects on behavior highlighting the vulnerability of the developing brain.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Pratyush Devarasetty
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gabriel Knudsen
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Linda S Birnbaum
- Laboratory of Toxicokinetics, National Cancer Institute, Research Triangle Park, NC, 27709, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
26
|
Dang Z, Kienzler A. Changes in fish sex ratio as a basis for regulating endocrine disruptors. ENVIRONMENT INTERNATIONAL 2019; 130:104928. [PMID: 31277008 DOI: 10.1016/j.envint.2019.104928] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Fish sex ratio (SR) is an endpoint potentially indicating both endocrine activity and adversity, essential elements for identifying Endocrine Disrupting Chemicals (EDCs) as required by the EU regulations. Due to different protocols and methods in the literature studies, SR data vary greatly. This study analyses literature SR data and discusses important considerations for using SR data in the regulatory context for the hazard identification, classification, PBT (persistent, bioaccumulative and toxic) assessment, testing, and risk assessment. A total number of 106 studies were compiled for SR of zebrafish, medaka and fathead minnow exposed to 84 chemicals or mixtures. About 53% of literature studies determined SR by methods different from the standard histology method, leading to uncertainty of quantifying SR and differential sensitivity. SR was determined after depuration in 40 papers, which may lead to chemical-induced SR changes reversible to the control. SR was responsive to chemicals with EAS (estrogen, androgen, steoroidogenesis) activity and also to those with thyroid and progesterone activity. Besides, SR was influenced by non-chemical factors, e.g., inbreeding and temperature, leading to difficulty in data interpretation. The ECHA/EFSA/JRC Guidance suggests that SR and gonad histology data can be used for identifying EDCs. Due to reversibility, influence of confounding factors, and responsiveness to chemicals with endocrine activity other than EAS, this study suggests that SR/gonad histology should be combined with certain mode of action evidence for identifying EDCs. Important considerations for using SR data in the identification, classification, PBT assessment, testing, and risk assessment are discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, the Netherlands.
| | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| |
Collapse
|
27
|
Liang S, Liang S, Yin N, Hu B, Faiola F. Toxicogenomic analyses of the effects of BDE-47/209, TBBPA/S and TCBPA on early neural development with a human embryonic stem cell in vitro differentiation system. Toxicol Appl Pharmacol 2019; 379:114685. [DOI: 10.1016/j.taap.2019.114685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 01/02/2023]
|
28
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
29
|
Baumann L, Segner H, Ros A, Knapen D, Vergauwen L. Thyroid Hormone Disruptors Interfere with Molecular Pathways of Eye Development and Function in Zebrafish. Int J Mol Sci 2019; 20:E1543. [PMID: 30934780 PMCID: PMC6479403 DOI: 10.3390/ijms20071543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 02/04/2023] Open
Abstract
The effects of thyroid hormone disrupting chemicals (THDCs) on eye development of zebrafish were investigated. We expected THDC exposure to cause transcriptional changes of vision-related genes, which find their phenotypic anchoring in eye malformations and dysfunction, as observed in our previous studies. Zebrafish were exposed from 0 to 5 days post fertilization (dpf) to either propylthiouracil (PTU), a thyroid hormone synthesis inhibitor, or tetrabromobisphenol-A (TBBPA), which interacts with thyroid hormone receptors. Full genome microarray analyses of RNA isolated from eye tissue revealed that the number of affected transcripts was substantially higher in PTU- than in TBBPA-treated larvae. However, multiple components of phototransduction (e.g., phosphodiesterase, opsins) were responsive to both THDC exposures. Yet, the response pattern for the gene ontology (GO)-class "sensory perception" differed between treatments, with over 90% down-regulation in PTU-exposed fish, compared to over 80% up-regulation in TBBPA-exposed fish. Additionally, the reversibility of effects after recovery in clean water for three days was investigated. Transcriptional patterns in the eyes were still altered and partly overlapped between 5 and 8 dpf, showing that no full recovery occurred within the time period investigated. However, pathways involved in repair mechanisms were significantly upregulated, which indicates activation of regeneration processes.
Collapse
Affiliation(s)
- Lisa Baumann
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| | - Helmut Segner
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Albert Ros
- Fischereiforschungsstelle LAZBW, Argenweg 50/1, 88085 Langenargen, Germany.
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Universiteitsplein 1, 2160 Wilrijk, Belgium.
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Universiteitsplein 1, 2160 Wilrijk, Belgium.
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
30
|
Lefevre E, Redfern L, Cooper EM, Stapleton HM, Gunsch CK. Acetate promotes microbial reductive debromination of tetrabromobisphenol A during the startup phase of anaerobic wastewater sludge bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:959-968. [PMID: 30625682 PMCID: PMC6481660 DOI: 10.1016/j.scitotenv.2018.11.403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 05/15/2023]
Abstract
The detection of increasing concentrations of tetrabromobisphenol A (TBBPA) in wastewater treatment plants is raising concerns as TBBPA has been identified as a potentially toxic flame retardant. The objectives of this study were to evaluate the effect of acetate biostimulation on TBBPA microbial reductive debromination, and the response of anaerobic sludge associated microbial communities repeatedly exposed to TBBPA. Results indicate that the bulk of the microbial community did not experience significant shifts as a result of TBBPA exposure, and that only a small fraction of the community responded to the presence of TBBPA. Taxa most likely responsible for TBBPA transformation affiliated to Clostridiales and the wastewater sludge group Blvii28. The biostimulating effect of acetate was only observed during reactor startup, when acetogenesis was likely not yet occurring. However, when acetate likely started to be microbially generated in the reactor, acetate addition resulted in a slight but significant inhibiting effect on TBBPA transformation. A significant increase of hydrogenotrophic methanogens in the TBBPA-spiked reactor overtime implies that TBBPA degraders were not in direct competition with methanogens for H2. These results strongly suggest that TBBPA degrading taxa might have been primarily using acetate as an electron donor for the reductive debromination of TBBPA.
Collapse
Affiliation(s)
- Emilie Lefevre
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA
| | - Lauren Redfern
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| |
Collapse
|
31
|
Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol Res 2019; 141:602-608. [DOI: 10.1016/j.phrs.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
32
|
Liu F, Zaman WQ, Peng H, Li C, Cao X, Huang K, Cui C, Zhang W, Lin K, Luo Q. Ecotoxicity of Caenorhabditis elegans following a step and repeated chronic exposure to tetrabromobisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:273-281. [PMID: 30453175 DOI: 10.1016/j.ecoenv.2018.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
To better understand the toxicity of tetrabromobisphenol A (TBBPA), its effects on the model nematode Caenorhabditis elegans were investigated. Following a step and repeated chronic exposure from L4-larvae to day-10 adult, physiology endpoints (growth and locomotion behaviors including head thrashes, body bends and pumping rate), biochemical endpoints (reactive oxygen species, superoxide dismutase activity, catalase activity), and molecular stress-related gene expression were tested at environmentally relevant concentrations of TBBPA (0.01-100 µg/L). The results showed that concentrations of TBBPA greater than 10 µg/L, clearly influenced the physiology behaviors (growth and locomotion endpoints). Under repeated exposure, C. elegans exhibited adaptive responses in head thrashes and pumping rate. Compared to toxicity evaluation following repeated chronic exposure, a significantly greater response was induced at the same concentration following a step chronic exposure. Reactive oxygen species production was significantly enhanced following a step and repeated TBBPA exposure at the concentrations of 1 and 10 µg/L, respectively. qRT-PCR showed that ctl-1, ctl-2, ctl-3 and sod-3 expression significantly increased, which was obviously correlated with physiological and biochemical behaviors under both treatment conditions according to Pearson correlation test analysis. sod-3 and ctl-2 mutations were more sensitive than the wild-type N2 under a step chronic TBBPA exposure at a level of 10 µg/L. Thus, chronic exposure to TBBPA induces an oxidative stress response in C. elegans, with ctl-2 and sod-3 playing a vital role in TBBPA-induced toxicity in nematodes.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongjiang Peng
- Branch of Shanghai, Longking Environmental Protection Co., Ltd, Shanghai 200331, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai 200051, China.
| |
Collapse
|
33
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Friend AJ, Bao W, Alekseeva PA, Lakstygal AM, Meshalkina DA, Demin KA, de Abreu MS, Rosemberg DB, Kalueff AV. Understanding zebrafish aggressive behavior. Behav Processes 2019; 158:200-210. [DOI: 10.1016/j.beproc.2018.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
34
|
Chen J, Ma X, Tian L, Kong A, Wang N, Huang C, Yang D. Chronic co-exposure to low levels of brominated flame retardants and heavy metals induces reproductive toxicity in zebrafish. Toxicol Ind Health 2018; 34:631-639. [DOI: 10.1177/0748233718779478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brominated flame retardants (BFRs) and heavy metals (HMs) are two main types of pollutants in electronic waste recycling sites, which are also ubiquitously detectable in environmental media and human tissues. However, the adverse health effects of exposure to the mixture of these types of pollutants are unknown. In this study, we investigated the reproductive toxicity of a mixture of decabromodiphenyl ether (BDE-209), tetrabromobisphenol A, cadmium chloride, and lead acetate (PbAc) at the environmental relevant levels. Zebrafish were waterborne and exposed to chemical mixtures for one generation. The reproductive effects were evaluated for F0 adults and F1 offspring. Chemical residues were also analyzed in the exposed adults and their eggs at the end of exposure. Our findings demonstrated that exposure to the chemical mixture for 150 days had no effect on the survival rate of zebrafish, but it decreased body length and weight in females and increased body weight and condition factor in males. The mixture exposure resulted in a female-biased sex ratio in adults and decreased sperm density and motility in males and egg production in females. For the F1 offspring, decreased fertilization, delayed hatching, and increased malformation were found in all exposure groups. In conclusion, chronic co-exposure to BFRs and HMs at the environmental relevant levels not only affected growth, sex ratio, and sperm quantity/quality and egg production in adults but also reduced the reproductive success in the offspring, implying that multi-pollutants in the environmental media may pose a public health risk to other exposed organisms or human beings.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Xue Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Linjie Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Aijun Kong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Nengzhuang Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Dongren Yang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5459-5468. [PMID: 29608295 DOI: 10.1021/acs.est.8b00414] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as well as its alternatives Tetrabromobisphenol S (TBBPS) and Tetrachlorobisphenol A (TCBPA), are widely used halogenated flame retardants. Their high detection rates in human breast milk and umbilical cord serum have raised wide concerns about their adverse effects on human fetal development. In this study, we evaluated the cytotoxicity and neural developmental toxicity of TBBPA, TBBPS, and TCBPA with a mouse embryonic stem cell (mESC) system, at human body fluid and environmental relevant doses. All the three compounds showed similar trends in their cytotoxic effects. However, while TBBPA and TBBPS stimulated ESC neural differentiation, TCBPA significantly inhibited neurogenesis. Mechanistically, we demonstrated that, as far as the NOTCH (positive regulator) and WNT (negative regulator) pathways were concerned, TBBPA only partially and slightly disturbed them, whereas TBBPS significantly inhibited the WNT pathway, and TCBPA down-regulated the expression of NOTCH effectors but increased the WNT signaling, actions which both inhibited neural specification. In conclusion, our findings suggest that TBBPS and TCBPA may not be safe alternatives to TBBPA, and their toxicity need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Aifeng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Biomass Energy and Bioprocess Technology , Chinese Academy of Science , Qingdao 266101 , China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
36
|
Lefèvre E, Bossa N, Gardner CM, Gehrke GE, Cooper EM, Stapleton HM, Hsu-Kim H, Gunsch CK. Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A. WATER RESEARCH 2018; 128:102-110. [PMID: 29091801 PMCID: PMC5796758 DOI: 10.1016/j.watres.2017.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 05/13/2023]
Abstract
The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential environmental health impacts as it has been shown to cause various deleterious effects in humans. The fact that the highest concentrations of TBBPA have been reported in wastewater sludge is concerning as effluent discharge and biosolids land application are likely a route by which TBBPA can be further disbursed to the environment. Our objectives in this study were to evaluate the effect of biochar (BC) and activated carbon (AC) in promoting the biodegradation of TBBPA, and characterize the response of anaerobic sludge microbial communities following amendments. Both carbonaceous amendments were found to promote the reductive debromination of TBBPA. Nearly complete transformation of TBBPA to BPA was observed in the amended reactors ∼20 days earlier than in the control reactors. In particular, the transformation of diBBPA to monoBBPA, which appears to be the rate-limiting step, was accelerated in the presence of either amendment. Overall, microbial taxa responding to the amendments, i.e., 'sensitive responders', represented a small proportion of the community (i.e., 7.2%), and responded positively. However, although both amendments had a similar effect on TBBPA degradation, the taxonomic profile of the sensitive responders differed greatly from one amendment to the other. BC had a taxonomically broader and slightly more pronounced effect than AC. This work suggests that BC and AC show great potential to promote the biodegradation of TBBPA in anaerobic sludge, and their integration into wastewater treatment processes may be helpful for removing TBBPA and possibly other emerging hydrophobic contaminants.
Collapse
Affiliation(s)
- Emilie Lefèvre
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| | - Nathan Bossa
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| | - Gretchen E Gehrke
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA.
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA.
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Hudson Hall, Durham, NC 27708, USA.
| |
Collapse
|
37
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
38
|
Rico EP, Rosemberg DB, Berteli JFA, da Silveira Langoni A, Souto AA, Bogo MR, Bonan CD, Souza DO. Adenosine deaminase activity and gene expression patterns are altered after chronic ethanol exposure in zebrafish brain. Neurotoxicol Teratol 2017; 65:14-18. [PMID: 29122710 DOI: 10.1016/j.ntt.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 11/28/2022]
Abstract
Ethanol alters the homeostasis between excitatory and inhibitory neurotransmitters and its intoxication reveals adenosine as responsible to modify several responses including signal transduction. Zebrafish has been recently investigated for knowledge the prolonged effect of ethanol on behavioral and biochemical parameters. The aim of this study was to evaluate the soluble and membrane adenosine deaminase activities and gene expression in zebrafish brain. Animals were exposed to 0.5% ethanol for 7, 14, and 28days. There were no significant changes in ADA activity from soluble fraction after all treatments. However, we verified a decrease of ADA activity in membrane fraction after 28days (44%) of ethanol exposure. ADA1 was not altered whereas mRNA transcript levels for ADAL presented an increase after 28days of ethanol exposure (34%). ADA2-1 showed a decrease (26%) followed by an increase (17%) of transcripts after 14 and 28days of ethanol exposure, respectively. However, ADA2-1 truncated alternative splice isoform (ADA2-1/T) demonstrated a reduction after 28days (20%). ADA2-2 was decreased (22%) followed by an increase (109%) of transcripts after 14 and 18days of ethanol exposure, respectively. Altogether, the purine catabolism promoted by ADA may be an important target of the chronic toxicity induced for ethanol.
Collapse
Affiliation(s)
- Eduardo Pacheco Rico
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Sinalização Neural e Psicofarmacologia, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Bloco S, Sala 6, Bairro Universitário, Criciúma, SC, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil.
| | - Denis Broock Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900 Santa Maria, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil
| | - Jotele Fontana Agostini Berteli
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Sinalização Neural e Psicofarmacologia, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Bloco S, Sala 6, Bairro Universitário, Criciúma, SC, Brazil
| | - Andrei da Silveira Langoni
- Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Brazil
| | - André Arigony Souto
- Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Chen X, Dong Q, Chen Y, Zhang Z, Huang C, Zhu Y, Zhang Y. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:7-15. [PMID: 28288352 DOI: 10.1016/j.envpol.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Developmental neurobehavioral toxicity of Dechlorane Plus (DP) was investigated using the embryo-larval stages of zebrafish (Danio rerio). Normal fertilized embryos were waterborne exposed to DP at 15, 30, 60 μg/L beginning from 6 h post-fertilization (hpf). Larval teratology, motor activity, motoneuron axonal growth and muscle morphology were assessed at different developmental stages. Results showed that DP exposure significantly altered embryonic spontaneous movement, reduced touch-induced movement and free-swimming speed and decreased swimming speed of larvae in response to dark stimulation. These changes occurred at DP doses that resulted no significant teratogenesis in zebrafish. Interestingly, in accord with these behavioral anomalies, DP exposure significantly inhibited axonal growth of primary motoneuron and induced apoptotic cell death and lesions in the muscle fibers of zebrafish. Furthermore, DP exposure at 30 μg/L and 60 μg/L significantly increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation, as well as the mRNA transcript levels of apoptosis-related genes bax and caspase-3. Together, our data indicate that DP induced neurobehavioral deficits may result from combined effects of altered neuronal connectivity and muscle injuries.
Collapse
Affiliation(s)
- Xiangping Chen
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Zhenxuan Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
40
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|