1
|
Gu L, Du Y, Liang F. Meta-Analysis and Network Analysis Differentially Detect Various Pro-Inflammatory Mediators and Risk Factors for Type 2 Diabetes in the Elderly. Horm Metab Res 2024; 56:727-736. [PMID: 38195796 DOI: 10.1055/a-2241-5281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Type 2 diabetes (T2D) has a pathophysiological component that includes inflammation. Inflammation-sensitive marker measurement may be helpful in determining the risk of complications for both older T2D patients and the public. This study aimed to investigate the association between blood pro-inflammatory mediators and the characteristics of elderly patients with T2D using meta and network analyses. The Web of Science, Scopus, PubMed, and Cochrane Library databases were selected as study methodology. The Quality in Prognosis Studies (QUIPS) tool in the meta-analysis assessed the studies' methodological quality. The selected studies were statistically analyzed using the META-MAR tool based on the standardized mean difference (SMD). The selected studies included nine examinations involving 6399 old people [+>+55 years old, 65.9+±+4.09 (mean+±+SD)]. The meta-analysis showed that pro-inflammatory mediators (SMD 0.82) and patient-related variables [risk factors (SMD 0.71)] were significantly associated with T2D (p+<+0.05). Subgroup analysis revealed that tumor necrosis factor alpha (TNF-α; SMD 1.08), body mass index (SMD 0.64), high-density lipoprotein (HDL; SMD -0.61), body weight (SMD 0.50), and blood pressure (SMD 1.11) were factors significantly associated with T2D (p+<+0.05). Network analysis revealed that among patient characteristics, diastolic blood pressure and, among inflammatory mediators, leptin were the most closely associated factors with T2D in older adults. Moreover, network analysis showed that TNF-α and systolic blood pressure were most closely associated with leptin. Overall, alternate techniques, such as meta-analysis and network analysis, might identify different markers for T2D in older people. A therapeutic decision-making process needs to consider these differences in advance.
Collapse
Affiliation(s)
- Linlin Gu
- Endocrine Metabolism Department and Geriatric Department, 7th People's Hospital of Chengdu, Chengdu, China
| | - Yue Du
- Endocrine Metabolism Department and Geriatric Department, 7th People's Hospital of Chengdu, Chengdu, China
| | - Fang Liang
- General Medicine Department, 7th People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
2
|
Jeong H, Maatouk CM, Russell MW, Singh RP. Associations between lipid abnormalities and diabetic retinopathy across a large United States national database. Eye (Lond) 2024; 38:1870-1875. [PMID: 38521836 PMCID: PMC11226450 DOI: 10.1038/s41433-024-03022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND/OBJECTIVES While dyslipidaemia has been suggested as a potential risk factor for diabetic retinopathy (DR), previous studies have reported conflicting findings. This study aimed to better characterize the relationship between abnormal serum levels of various lipid markers and the risk of the development and progression of DR. SUBJECTS/METHODS This retrospective cohort study utilized a United States national database of electronic medical records. Adults with a history of type 2 diabetes mellitus without type 1 diabetes mellitus were divided into cohorts based on the presence of abnormal serum levels of various lipid markers. Propensity score matching was performed to match cohorts with abnormal lipid levels to those with normal lipid levels on covariates. The cohorts were then compared to evaluate the hazard ratios (HR) of receiving a new DR diagnosis, pars plana vitrectomy, panretinal photocoagulation, vitreous haemorrhage, proliferative diabetic retinopathy, diabetic macular oedema (DMO), and traction retinal detachment. RESULTS The database contained 1,126,231 eligible patients (mean age: 60.8 [14.2] years; 46.0% female). Among patients without prior DR, low HDL (HR = 0.94, CI = 0.90-0.98), total cholesterol (HR = 0.88, CI = 0.85-0.91), and high triglyceride (HR = 0.91, CI = 0.86-0.97) levels were associated with a decreased risk of receiving a DR diagnosis. Among patients with preexisting DR, high LDL levels was associated with an increased risk of DMO (HR = 1.42, CI = 1.15-1.75), whereas low HDL levels was associated with a marginally decreased risk (HR = 0.92, CI = 0.85-0.99). CONCLUSIONS Elevated levels of markers of dyslipidaemia are inversely associated with the risk of receiving a DR diagnosis, but this relationship is blunted after the onset of DR.
Collapse
Affiliation(s)
- Hejin Jeong
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher M Maatouk
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Martin Health, Cleveland Clinic Florida, Stuart, FL, USA.
| |
Collapse
|
3
|
Mahrooz A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv Clin Chem 2024; 121:132-171. [PMID: 38797541 DOI: 10.1016/bs.acc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High density lipoprotein (HDL) functions are mostly mediated through a complex proteome, particularly its enzymes. HDL can provide a scaffold for the assembly of several proteins that affect each other's function. HDL particles, particularly small, dense HDL3, are rich in paraoxonase 1 (PON1), which is an important enzyme in the functionality of HDL, so the antioxidant and antiatherogenic properties of HDL are largely attributed to this enzyme. There is an increasing need to represent a valid, reproducible, and reliable method to assay HDL function in routine clinical laboratories. In this context, HDL-associated proteins may be key players; notably PON1 activity (its arylesterase activity) may be a proper candidate because its decreased activity can be considered an important risk factor for HDL dysfunctionality. Of note, automated methods have been developed for the measurement of serum PON1 activity that facilitates its assay in large sample numbers. Arylesterase activity is proposed as a preferred activity among the different activities of PON1 for its assay in epidemiological studies. The binding of PON1 to HDL is critical for the maintenance of its activity and it appears apolipoprotein A-I plays an important role in HDL-PON1 interaction as well as in the biochemical and enzymatic properties of PON1. The interrelationships between HDL, PON1, and HDL's other components are complex and incompletely understood. The purpose of this review is to discuss biochemical and clinical evidence considering the interactions of PON1 with HDL and the role of this enzyme as an appropriate biomarker for HDL function as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Jakubiak GK, Cieślar G, Stanek A. Nitrotyrosine, Nitrated Lipoproteins, and Cardiovascular Dysfunction in Patients with Type 2 Diabetes: What Do We Know and What Remains to Be Explained? Antioxidants (Basel) 2022; 11:antiox11050856. [PMID: 35624720 PMCID: PMC9137700 DOI: 10.3390/antiox11050856] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a strong risk factor for the development of cardiovascular diseases (CVDs), which are the most important cause of morbidity and mortality in the population of patients living with DM. DM is associated with lipid metabolism disorders characterized by a decrease in the high-density lipoprotein blood concentration, an increase in the triglyceride blood concentration, and the presence of modified lipoproteins not routinely measured in clinical practice. Nitrated lipoproteins are produced by the nitration of the tyrosyl residues of apolipoproteins by myeloperoxidase. There is some evidence from the research conducted showing that nitrated lipoproteins may play a role in the development of cardiovascular dysfunction, but this issue requires further investigation. It was found that the nitration of HDL particles was associated with a decrease in caspase-3 and paraoxonase-1 activity, as well as a decrease in the activity of cholesterol transport via ABCA1, which reduces the protective effect of HDL particles on the cardiovascular system. Less information has been collected about the role of nitrated LDL particles. Thus far, much more information has been obtained on the relationship of nitrotyrosine expression with the presence of cardiovascular risk factors and the development of cardiovascular dysfunction. The purpose of this paper is to provide an extensive review of the literature and to present the most important information on the current state of knowledge on the association between nitrotyrosine and nitrated lipoproteins with dysfunction of the cardiovascular system, especially in patients living with DM. Moreover, directions for future research in this area were discussed.
Collapse
|
5
|
Lang MG, Vinagre CG, Bonfa E, Freitas FR, Pasoto SG, Brito TS, Seguro LP, Maranhão RC, Borba EF. Hydroxychloroquine increased cholesterol transfer to high-density lipoprotein in systemic lupus erythematosus: A possible mechanism for the reversal of atherosclerosis in the disease. Lupus 2022; 31:659-665. [PMID: 35332823 DOI: 10.1177/09612033221090127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The beneficial effect of hydroxychloroquine (HCQ) in decreasing LDL levels on Systemic Lupus Erythematosus (SLE) is well defined. The influence of this drug on HDL levels is still under debate and information about its effect on cholesterol reverse transport is lacking. OBJECTIVE To evaluate the effects of HCQ on HDL levels and the transfer of lipids to this lipoprotein in SLE. METHODS Nineteen SLE patients using only HCQ (SLE WITH HCQ), 19 SLE patients without any therapy (SLE WITHOUT THERAPY), and 19 healthy controls (CONTROL) were included. All three groups were premenopausal women age- and gender-matched. Serum lipids and apolipoproteins were determined by commercial kits. An in vitro transfer of four lipids (14C-Phospolipid, 3H-Cholesteryl ester, 3H-Triglyceride, and 14C-Unesterified cholesterol) from a radioactively labeled nanoemulsion donor to HDL was performed in all participants. RESULTS Groups had comparable mean age, weight, height, BMI(body mass index), and waist circumference (p > .05). Mean HDL levels were higher in SLE WITH HCQ group compared to SLE WITHOUT THERAPY(58.37 ± 14.04 vs 49.79 ± 8.0 mg/dL; p < .05) but lower than CONTROL (58.37 ± 14.04 vs 68.58 ± 9.99 mg/dL; p < .05). Total cholesterol (TC) and LDL levels were also significantly lower in SLE WITH HCQ compared SLE WITHOUT THERAPY(148.16 ± 16.43 vs 167.11 ± 30.18 mg/dL; p < .05, 75.05 ± 22.52 vs 96.05 ± 25.63 mg/dL; p < .05) and CONTROL (148.16 ± 16.43 vs 174.11 ± 23.70 mg/dL; p < .05, 75.05 ± 22.52 vs 88.53 ± 20.24 mg/dL; p < .05). The in vitro lipid transfer to HDL study revealed a significant difference among the three groups (p = .002) with a higher transfer of unesterified cholesterol(UC) in SLE WITH HCQ compared to SLE WITHOUT THERAPY(5.40 ± 1.05% vs. 4.44 ± 1.05%; p < .05). The latter was significantly decreased compared to CONTROL (5.40 ± 1.05% vs. 5.99 ± 1.71%; p < .05).The percentages of transfer of triacylglycerol (4.93 ± 0.69% vs. 4.50 ± 0.69% vs. 5.14 ± 1.01%; p = .054), esterified cholesterol (5.24 ± 0.70% vs. 4.96 ± 0.89% vs. 5.69 ± 1.27%; p = .079), and phospholipid (15.67 ± 1.03% vs. 15.34 ± 1.44% vs. 16.47 ± 1.89%; p = .066) were similar among groups. CONCLUSION The present study is the first to demonstrate that HCQ promoted a higher transfer of unesterified cholesterol which may account for the increased HDL levels in lupus patients under HCQ. This desirable effect may underlie the reported reduced atherosclerosis in SLE.
Collapse
Affiliation(s)
- Maria G Lang
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carmen Gc Vinagre
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil.,Universidade Santo Amaro (UNISA), Sao Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra G Pasoto
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tatiane S Brito
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil.,Universidade Santo Amaro (UNISA), Sao Paulo, Brazil
| | - Luciana Pc Seguro
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil.,Faculdade de Ciencias Farmaceuticas, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eduardo F Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, 117265Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Ismail T, Hegazi E, Nassef E, Shehab El-Din MT, Dawood MAO, Abdo SE, Gewaily MS. Gut immune-related gene expression, histomorphometry and hematoimmunological assays in Nile tilapia (Oreochromis niloticus) fed Aspergillus oryzae fermented olive cake. FISH & SHELLFISH IMMUNOLOGY 2021; 117:299-310. [PMID: 34274421 DOI: 10.1016/j.fsi.2021.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Fermentation strategy is well documented to improve the nutritional value of agricultural waste by-products such olive cake (OC), which, in turn, provides healthy, safe, and affordable feedstuff. This study assessed the combined impact of Aspergillus oryzae-fermented OC (AFOC) on the growth performance, intestinal morphometry, blood biochemistry, lysozyme activity, gut immune-related genes, and flesh quality of Nile tilapia. We divided 225 fish into five groups and further subdivided into three replicates (n = 15 each) and fed them five diets (Control, AFOC5, AFOC10, AFOC15, AFOC20) to determine AFOC nutritional value and its optimized incorporation level in the diet. The trial continued for 3 months. The crude protein content of OC improved by 7.77% after A. oryzae fermentation, while lipid content decreased by 14.19%. In addition, growth and feed utilization significantly improved at (10.8-11.2) % AFOC dietary level. High-density lipoprotein (HDL) significantly improved, and the serum lysozyme level was significantly higher in the AFOC10 group compared to other groups. Interestingly, gut-related inflammatory cytokines tumor necrosis factor alpha (TNF- α) and interleukin 1 beta (IL-1β) revealed higher relative mRNA expression in the AFOC10 group compared to other groups. The histomorphometric parameters was greatly influenced by the AFOC incorporation level (10%-20%). These findings suggested that A. orzae fermentation modifies the nutritional quality of OC, as seen through its positive impact on the growth performance, local and systemic immunity, and intestinal absorptive capacity of Nile tilapia. The recommended dose for dietary AFOC was around 11.
Collapse
Affiliation(s)
- Taha Ismail
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Central Diagnostic and Research Laboratory, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Elsayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed T Shehab El-Din
- Department of Fish Health, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, Abbassa, Agriculture Research Center, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Safaa E Abdo
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
7
|
Sata M, Kakino A, Hirata A, Iida M, Usami Y, Harada S, Fujita Y, Kohsaka S, Izawa Y, Sawano M, Oki K, Sugiyama D, Takahashi S, Takebayashi T, Sawamura T, Okamura T. Serum modified high-density lipoprotein and risk of atherosclerotic cardiovascular disease in a Japanese community-based nested case-control study. Eur J Prev Cardiol 2021; 29:e193-e195. [PMID: 34472612 DOI: 10.1093/eurjpc/zwab142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Mizuki Sata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.,Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Miho Iida
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshiko Fujita
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsuaki Sawano
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichi Oki
- Department of Neurology, Tokyo Saiseikai Central Hospital, 1-4-17 Mita, Minato, Tokyo 108-0073, Japan
| | - Daisuke Sugiyama
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Faculty of Nursing and Medical Care, Keio University, 4411 Endo, Fujisawa, Kanagawa 252-0883, Japan
| | - Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.,Institute for Biomedical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Trp Fluorescence Redshift during HDL Apolipoprotein Denaturation Is Increased in Patients with Coronary Syndrome in Acute Phase: A New Assay to Evaluate HDL Stability. Int J Mol Sci 2021; 22:ijms22157819. [PMID: 34360583 PMCID: PMC8345965 DOI: 10.3390/ijms22157819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
High-density lipoproteins' (HDL) stability is a determinant of their residence times in plasma and consequently an important parameter that influences the beneficial properties of these lipoproteins. Since there are no accessible procedures for this purpose, here, we describe the methodological conditions to assess the stability of the HDL based on the redshift of the fluorescence spectrum of tryptophans contained in the structure of HDL-apolipoproteins during incubation with urea 8M. Along the HDL denaturation kinetics, the main variations of fluorescence were observed at the wavelengths of 330, 344, and 365 nm at room temperature. Therefore, HDL denaturation was estimated using the tryptophan (Trp)-ratio of fluorescence intensity (rfi) at such wavelengths. By setting 100% of the measurable denaturation at 26 h, HDL reached 50% after 8 h of incubation with urea. Then, for further analyses we determined the percentage of HDL denaturation at 8 h as an estimation of the stability of these lipoproteins. To explore the potential usefulness of this test, we analyzed the stability of HDL isolated from the plasma of 24 patients diagnosed with acute coronary syndrome (ACS). These HDL presented significantly higher percentages of denaturation (64.9% (58.7-78.4)) than HDLs of healthy individuals (23.3% (20.3-27.0)). These results indicate that HDL in ACS are less stable than in control subjects. Moreover, the percentage of denaturation of HDL correlated with body mass index and aspartate transaminase plasma activity. Furthermore, apo-I, HDL-cholesterol, HDL-triglycerides, and apo A-I-to-triglycerides ratio correlated with the percentage of HDL denaturation, suggesting that the lipoprotein composition is a main determinant of HDL stability. Finally, the percentage of HDL denaturation is the parameter that predicted the presence of ACS as determined by a machine learning procedure and logistic regression analysis. In conclusion, we established the methodological conditions to assess the stability of HDL by a fluorescence-based method that merits exploration in prospective studies for evaluating the coronary artery disease risk.
Collapse
|
9
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
10
|
Cho KH, Kim JR, Lee IC, Kwon HJ. Native High-Density Lipoproteins (HDL) with Higher Paraoxonase Exerts a Potent Antiviral Effect against SARS-CoV-2 (COVID-19), While Glycated HDL Lost the Antiviral Activity. Antioxidants (Basel) 2021; 10:209. [PMID: 33535459 PMCID: PMC7912765 DOI: 10.3390/antiox10020209] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Human high-density lipoproteins (HDL) show a broad spectrum of antiviral activity in terms of anti-infection. Although many reports have pointed out a correlation between a lower serum HDL-C and a higher risk of COVID-19 infection and progression, the in vitro antiviral activity of HDL against SARS-CoV-2 has not been reported. HDL functionality, such as antioxidant and anti-infection, can be impaired by oxidation and glycation and a change to pro-inflammatory properties. This study compared the antiviral activity of native HDL with glycated HDL via fructosylation and native low-density lipoproteins (LDL). After 72 h of fructosylation, glycated HDL showed a typical multimerized protein pattern with an elevation of yellowish fluorescence. Glycated HDL showed a smaller particle size with an ambiguous shape and a loss of paraoxonase activity up to 51% compared to native HDL. The phagocytosis of acetylated LDL was accelerated 1.3-fold by glycated HDL than native HDL. Native HDL showed 1.7 times higher cell viability and 3.6 times higher cytopathic effect (CPE) inhibition activity against SARS-CoV-2 than that of glycated HDL under 60 μg/mL (approximately final 2.2 μM) in a Vero E6 cell. Native HDL showed EC50 = 52.1 ± 1.1 μg/mL (approximately final 1.8 μM) for the CPE and CC50 = 79.4 ± 1.5 μg/mL (around 2.8 μM). The selective index (SI) of native HDL was calculated to be 1.52. In conclusion, native HDL shows potent antiviral activity against SARS-CoV-2 without cytotoxicity, while the glycation of HDL impairs its antiviral activity. These results may explain why patients with diabetes mellitus or hypertension are more sensitive to a COVID-19 infection and have a higher risk of mortality.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Medical Innovation Complex, Korea Research Institute of Lipoproteins, Daegu 41061, Korea
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea;
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea;
| | - In-Chul Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (I.-C.L.); (H.-J.K.)
| | - Hyung-Jun Kwon
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (I.-C.L.); (H.-J.K.)
| |
Collapse
|
11
|
Chroni A, Rallidis L, Vassou D, Gkolfinopoulou C, Papakosta P, Zervou MI, Goulielmos GN, Kiouri E, Pappa D, Eliopoulos E, Kardassis D. Identification and characterization of a rare variant in apolipoprotein A-IV, p.(V336M), and evaluation of HDL functionality in a Greek cohort with extreme HDL cholesterol levels. Arch Biochem Biophys 2020; 696:108655. [PMID: 33130088 DOI: 10.1016/j.abb.2020.108655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
High-Density Lipoprotein cholesterol (HDL-C) levels do not correlate well with Coronary Artery Disease (CAD) risk, while HDL functionality affects atherogenesis and is a better prognostic marker for CAD. Often, the extreme HDL-C levels have a multigenic origin. Here, we searched for single-nucleotide polymorphisms (SNPs) in ten genes of HDL metabolism in a Greek cohort with very low (<10th percentile, n = 13) or very high (>90th percentile, n = 21) HDL-C. We also evaluated the association between HDL-C levels, HDL functionality (anti-oxidant capacity) and CAD in the subjects of this cohort. Individuals with low HDL-C levels had higher triglyceride levels, lower apoA-I levels, decreased HDL anti-oxidant capacity and higher incidence of CAD compared with individuals with control or high HDL-C levels. With next generation sequencing we identified 18 exonic SNPs in 6 genes of HDL metabolism and for selected amino acid changes we performed computer-aided structural analysis and modeling. A previously uncharacterized rare apolipoprotein A-IV variant, apoA-IV [V336M], present in a subject with low HDL-C (14 mg/dL) and CAD, was expressed in recombinant form and structurally and functionally characterized. ApoA-IV [V336M] had similar α-helical content to WT apoA-IV but displayed a small thermodynamic stabilization by chemical unfolding analysis. ApoA-IV [V336M] was able to associate with phospholipids but presented reduced kinetics compared to WT apoA-IV. Overall, we identified a rare apoA-IV variant in a subject with low HDL levels and CAD with altered biophysical and phospholipid binding properties and showed that subjects with very low HDL-C presented with HDL dysfunction and higher incidence of CAD in a Greek cohort.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Loukianos Rallidis
- Second Department of Cardiology, "Attikon" Hospital, and School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Paraskevi Papakosta
- Department of Basic Medical Sciences, University of Crete Medical School, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Estela Kiouri
- Second Department of Cardiology, "Attikon" Hospital, and School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Danae Pappa
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitris Kardassis
- Department of Basic Medical Sciences, University of Crete Medical School, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| |
Collapse
|
12
|
Hirata A, Kakino A, Okamura T, Usami Y, Fujita Y, Kadota A, Fujiyoshi A, Hisamatsu T, Kondo K, Segawa H, Sawamura T, Miura K, Ueshima H. The relationship between serum levels of LOX-1 ligand containing ApoAI as a novel marker of dysfunctional HDL and coronary artery calcification in middle-aged Japanese men. Atherosclerosis 2020; 313:20-25. [PMID: 33011550 DOI: 10.1016/j.atherosclerosis.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Dysfunctional high-density lipoprotein (HDL) is a risk factor for cardiovascular disease (CVD) beyond HDL concentrations. Recently, a novel method has been introduced to measure LOX-1 ligand containing apolipoprotein AI (LAA), which is an indicator of various types of modified HDL with binding capacity to LOX-1 and related to impaired anti-atherogenic functions of HDL. This study aimed to examine the relationship between LAA as a novel marker of dysfunctional HDL and coronary artery calcification (CAC). METHODS We selected 910 community-dwelling Japanese men aged 40-79 years without a history of CVD. The odds ratios per 1SD of LAA for the presence of CAC (Agatston score >10) were estimated using logistic regression model adjusted for confounders, including HDL-C or HDL particle (HDL-P) concentration. In addition, we performed further analysis stratified by age (<65 and ≥ 65 years). RESULTS The mean age of the participants was 63.6 years, and the median LAA was 187.0 ng/mL. The prevalent CAC was 46.2%. The multivariable adjusted odds ratio (95% confidence interval) per 1SD of LAA for CAC was 1.14 (0.96-1.36) for all participants. After stratification by age, multivariable adjusted odds ratios per 1SD of LAA were 1.34 (1.02-1.76) and 0.97 (0.77-1.23) in men aged <65 and ≥ 65 years, respectively. CONCLUSIONS The present study showed that LAA was associated with CAC independent of HDL-C or HDL-P in middle-aged Japanese men. This finding suggests that LAA might be an early marker for CVD events. Future longitudinal studies are warranted.
Collapse
Affiliation(s)
- Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan.
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan; Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, Nagano, Japan
| | - Yoshiko Fujita
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Nagano, Japan
| | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Akira Fujiyoshi
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Department of Hygiene, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Hisamatsu
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Department of Public Health, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, University Faculty of Medicine, Okayama, Japan
| | - Keiko Kondo
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Hiroyoshi Segawa
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Katsuyuki Miura
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| | - Hirotsugu Ueshima
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
13
|
Anti-Atherosclerotic Activity of (3 R)-5-Hydroxymellein from an Endophytic Fungus Neofusicoccum parvum JS-0968 Derived from Vitex rotundifolia through the Inhibition of Lipoproteins Oxidation and Foam Cell Formation. Biomolecules 2020; 10:biom10050715. [PMID: 32380666 PMCID: PMC7277969 DOI: 10.3390/biom10050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/02/2023] Open
Abstract
An endophytic fungus, Neofusicoccum parvum JS-0968, was isolated from a plant, Vitex rotundifolia. The chemical investigation of its cultures led to the isolation of a secondary metabolite, (3R)-5-hydroxymellein. It has been reported to have antifungal, antibacterial, and antioxidant activity, but there have been no previous reports on the effects of (3R)-5-hydroxymellein on atherosclerosis. The oxidation of lipoproteins and foam cell formation have been known to be significant in the development of atherosclerosis. Therefore, we investigated the inhibitory effects of (3R)-5-hydroxymellein on atherosclerosis through low-density lipoprotein (LDL) and high-density lipoprotein (HDL) oxidation and macrophage foam cell formation. LDL and HDL oxidation were determined by measuring the production of conjugated dienes and malondialdehyde, the amount of hyperchromicity and carbonyl content, conformational changes, and anti-LDL oxidation. In addition, the inhibition of foam cell formation was measured by Oil red O staining. As a result, (3R)-5-hydroxymellein suppressed the oxidation of LDL and HDL through the inhibition of lipid peroxidation, the decrease of negative charges, the reduction of hyperchromicity and carbonyl contents, and the prevention of apolipoprotein A-I (ApoA-I) aggregation and apoB-100 fragmentation. Furthermore, (3R)-5-hydroxymellein significantly reduced foam cell formation induced by oxidized LDL (oxLDL). Taken together, our data show that (3R)-5-hydroxymellein could be a potential preventive agent for atherosclerosis via obvious anti-LDL and HDL oxidation and the inhibition of foam cell formation.
Collapse
|
14
|
Soria-Florido MT, Castañer O, Lassale C, Estruch R, Salas-Salvadó J, Martínez-González MÁ, Corella D, Ros E, Arós F, Elosua R, Lapetra J, Fiol M, Alonso-Gómez A, Gómez-Gracia E, Serra-Majem L, Pintó X, Bulló M, Ruiz-Canela M, Sorlí JV, Hernáez Á, Fitó M. Dysfunctional High-Density Lipoproteins Are Associated With a Greater Incidence of Acute Coronary Syndrome in a Population at High Cardiovascular Risk: A Nested Case-Control Study. Circulation 2020; 141:444-453. [PMID: 31941372 DOI: 10.1161/circulationaha.119.041658] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies have failed to establish a clear link between high-density lipoprotein (HDL) cholesterol and cardiovascular disease, leading to the hypothesis that the atheroprotective role of HDL lies in its biological activity rather than in its cholesterol content. However, to date, the association between HDL functional characteristics and acute coronary syndrome has not been investigated comprehensively. METHODS We conducted a case-control study nested within the PREDIMED (Prevención con Dieta Mediterránea) cohort, originally a randomized trial in which participants followed a Mediterranean or low-fat diet. Incident acute coronary syndrome cases (N=167) were individually matched (1:2) to control patients by sex, age, intervention group, body mass index, and follow-up time. We investigated 2 individual manifestations (myocardial infarction, unstable angina) as secondary outcomes. We measured the following functional characteristics: HDL cholesterol concentration (in plasma); cholesterol efflux capacity; antioxidant ability, measured by the HDL oxidative-inflammatory index; phospholipase A2 activity; and sphingosine-1-phosphate, apolipoproteins A-I and A-IV, serum amyloid A, and complement 3 protein (in apolipoprotein B-depleted plasma). We used conditional logistic regression models adjusted for HDL cholesterol levels and cardiovascular risk factors to estimate odds ratios (ORs) between 1-SD increments in HDL functional characteristics and clinical outcomes. RESULTS Low values of cholesterol efflux capacity (OR1SD, 0.58; 95% CI, 0.40-0.83) and low levels of sphingosine-1-phosphate (OR1SD, 0.70; 95% CI, 0.52-0.92) and apolipoprotein A-I (OR1SD, 0.58; 95% CI, 0.42-0.79) were associated with higher odds of acute coronary syndrome. Higher HDL oxidative inflammatory index values were marginally linked to acute coronary syndrome risk (OR1SD, 1.27; 95% CI, 0.99-1.63). Low values of cholesterol efflux capacity (OR1SD, 0.33; 95% CI, 0.18-0.61), sphingosine-1-phosphate (OR1SD: 0.60; 95% CI: 0.40-0.89), and apolipoprotein A-I (OR1SD, 0.59; 95% CI, 0.37-0.93) were particularly linked to myocardial infarction, whereas high HDL oxidative-inflammatory index values (OR1SD, 1.53; 95% CI, 1.01-2.33) and low apolipoprotein A-I levels (OR1SD, 0.52; 95% CI, 0.31-0.88) were associated with unstable angina. CONCLUSIONS Low cholesterol efflux capacity values, pro-oxidant/proinflammatory HDL particles, and low HDL levels of sphingosine-1-phosphate and apolipoprotein A-I were associated with increased odds of acute coronary syndrome and its manifestations in individuals at high cardiovascular risk. CLINICAL TRIAL REGISTRATION URL: https://www.controlled-trials.com/ISRCTN35739639. Unique identifier: ISRCTN35739639.
Collapse
Affiliation(s)
- María Trinidad Soria-Florido
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,Universitat de Barcelona, Spain (M.T.S.-F.)
| | - Olga Castañer
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó)
| | - Camille Lassale
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó)
| | - Ramon Estruch
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Clínic, Barcelona, Spain (R. Estruch, E.R.).,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (R. Estruch, A.H.)
| | - Jordi Salas-Salvadó
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universitat Rovira i Virgili, Reus, Spain (J.S.-S., M.B.).,Hospital Universitari Sant Joan, Reus, Spain (J.S.-S., M.B.).,Pere Virgili Institute (IISPV), Reus, Spain (J.S.-S., M.B.)
| | - Miguel Ángel Martínez-González
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Navarra, Pamplona, Spain (M.Á.M.-G., M.R.-C.).,Harvard TH Chan School of Public Health, Boston, MA (M.Á.M.-G.)
| | - Dolores Corella
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Valencia, Spain (D.C., J.V.S.)
| | - Emilio Ros
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó)
| | - Fernando Arós
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Universitario de Álava, Vitoria, Spain (F.A., A.A.G.)
| | - Roberto Elosua
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain (R. Elosua)
| | - José Lapetra
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Distrito Sanitario Atención Primaria Sevilla, Spain (J.L.)
| | - Miquel Fiol
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Balearic Islands Health Research Institute, Hospital Son Espases, Palma de Mallorca, Spain (M.Fiol)
| | - Angel Alonso-Gómez
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Universitario de Álava, Vitoria, Spain (F.A., A.A.G.)
| | - Enrique Gómez-Gracia
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Málaga, Spain (E.G.-G.)
| | - Lluís Serra-Majem
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain (L.S.-M.)
| | - Xavier Pintó
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain (X.P.)
| | - Mònica Bulló
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universitat Rovira i Virgili, Reus, Spain (J.S.-S., M.B.).,Hospital Universitari Sant Joan, Reus, Spain (J.S.-S., M.B.).,Pere Virgili Institute (IISPV), Reus, Spain (J.S.-S., M.B.)
| | - Miguel Ruiz-Canela
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Navarra, Pamplona, Spain (M.Á.M.-G., M.R.-C.)
| | - Jose V Sorlí
- CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,Universidad de Valencia, Spain (D.C., J.V.S.)
| | - Álvaro Hernáez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó).,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain (R. Estruch, A.H.)
| | - Montserrat Fitó
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain (M.T.S.-F., O.C., C.L., R. Elosua, A.H., M.Fitó).,CIBER (Centro de Investigación Biomédica en Red) of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (O.C., R. Estruch, J.S.-S., M.Á.M.-G., D.C., E.R., F.A., J.L., M.Fiol, A.A.-G., E.G.-G., L.S.-M., X.P., M.B., M.R.-C., J.V.S., A.H., M.Fitó)
| |
Collapse
|
15
|
LDL and HDL Oxidative Modification and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:157-169. [PMID: 32705599 DOI: 10.1007/978-981-15-6082-8_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are two kinds of common lipoproteins in plasma. The level of LDL cholesterol in plasma is positively correlated with atherosclerosis (AS), which is related to the complex macromolecular components, especially the easy oxygenation of protein and lipid components. However, the plasma HDL cholesterol level is negatively correlated with AS, but the results of recent studies show that the oxidative modified HDL in pathological state will not reduce and may aggravate the occurrence and development of AS. Therefore, the oxidative modification of lipoproteins is closely related to vascular homeostasis, which has become a hot research area for a long time.
Collapse
|
16
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: the role of HDL. Curr Opin Lipidol 2019; 30:462-469. [PMID: 31577612 DOI: 10.1097/mol.0000000000000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Cellular cholesterol content influences the structure and function of lipid rafts, plasma membrane microdomains essential for cell signaling and activation. HDL modulate cellular cholesterol efflux, thus limiting cholesterol accumulation and controlling immune cell activation. Aim of this review is to discuss the link between HDL and cellular cholesterol metabolism in immune cells and the therapeutic potential of targeting cholesterol removal from cell membranes. RECENT FINDINGS The inverse relationship between HDL-cholesterol (HDL-C) levels and the risk of cardiovascular disease has been recently challenged by observations linking elevated levels of HDL-C with increased risk of all-cause mortality, infections and autoimmune diseases, paralleled by the failure of clinical trials with HDL-C-raising therapies. These findings suggest that improving HDL function might be more important than merely raising HDL-C levels. New approaches aimed at increasing the ability of HDL to remove cellular cholesterol have been assessed for their effect on immune cells, and the results have suggested that this could be a new effective approach. SUMMARY Cholesterol removal from plasma membrane by different means affects the activity of immune cells, suggesting that approaches aimed at increasing the ability of HDL to mobilize cholesterol from cells would represent the next step in HDL biology.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital
- IRCCS MultiMedica, Milan, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- IRCCS MultiMedica, Milan, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- Center for the Study of Atherosclerosis, E. Bassini Hospital
| |
Collapse
|
17
|
Association of serum total fatty acids with type 2 diabetes. Clin Chim Acta 2019; 500:59-68. [PMID: 31655056 DOI: 10.1016/j.cca.2019.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D), a typical metabolic disease, is closely associated with serum free fatty acids. But the association between serum total fatty acids (TFAs, free fatty acids plus esterified fatty acids) and T2D has not been reported. METHODS Serum esterified fatty acids were hydrolyzed under alkaline conditions, and serum TFAs were extracted after acidizing. Fourteen of serum TFAs in 1,828 serum samples, including 543 controls, 655 prediabetes, and 630 T2D patients, were simultaneously quantified based on the calibration curves of 8 fatty acids using matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS). RESULTS Correlation analysis revealed strong correlations among serum TFAs and ratios of the TFAs in T2D patients compared with controls or prediabetes both in males and females. Receiver operating characteristic analysis indicated that a panel including fasting plasma glucose, glycosylated hemoglobin type A1c, gamma-glutamyltransferase, triglyceride, C18:1, and C20:3, has a good capability to distinguish prediabetes from T2D, with the sensitivity of 87.0%, the specificity of 91.0%, and the area under curve (AUC) of 0.96. CONCLUSIONS In this study, rapid, absolute, and simultaneous quantification of serum TFAs was performed using MALDI-FTICR MS. C18:1 and C20:3 were significantly correlated with prediabetes and T2D.
Collapse
|
18
|
Phospholipid packing defects and oxysterols in atherosclerosis: Dietary prevention and the French paradox. Biochimie 2019; 167:145-151. [PMID: 31586653 DOI: 10.1016/j.biochi.2019.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
The research literature on atherosclerosis includes findings investigating the atherosclerotic effect of oxysterols, which are the oxidation products of cholesterol; and the literature on oxysterols refers to mechanisms by which oxysterols cause phospholipid packing defects in cell membranes. This review synthesizes these two bodies of research findings to describe how oxysterols cause phospholipid packing defects within the membranes of vascular endothelial cells, potentially increasing cell permeability of low-density lipoprotein cholesterol which may lead to atheroma formation. Exogenous sources of oxysterols are provided by dietary intake of animal-based foods that contain cholesterol oxidation products. This review proposes an explanation for the anti-atherosclerotic effect of plant-based dietary patterns, which is attributed to restriction or avoidance of dietary oxysterol intake from animal-based foods. Furthermore, raw-milk cheeses play an important role in the traditional French diet-low oxysterol content in these unheated foods may contribute to the French paradox, in which reduced coronary heart disease is associated with a diet high in saturated fat and cholesterol.
Collapse
|
19
|
Arnao V, Tuttolomondo A, Daidone M, Pinto A. Lipoproteins in Atherosclerosis Process. Curr Med Chem 2019; 26:1525-1543. [PMID: 31096892 DOI: 10.2174/0929867326666190516103953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/17/2017] [Accepted: 12/10/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Dyslipidaemias is a recognized risk factor for atherosclerosis, however, new evidence brought to light by trials investigating therapies to enhance HDLcholesterol have suggested an increased atherosclerotic risk when HDL-C is high. RESULTS Several studies highlight the central role in atherosclerotic disease of dysfunctional lipoproteins; oxidised LDL-cholesterol is an important feature, according to "oxidation hypothesis", of atherosclerotic lesion, however, there is today a growing interest for dysfunctional HDL-cholesterol. The target of our paper is to review the functions of modified and dysfunctional lipoproteins in atherogenesis. CONCLUSION Taking into account the central role recognized to dysfunctional lipoproteins, measurements of functional features of lipoproteins, instead of conventional routine serum evaluation of lipoproteins, could offer a valid contribution in experimental studies as in clinical practice to stratify atherosclerotic risk.
Collapse
Affiliation(s)
- Valentina Arnao
- BioNeC Dipartimento di BioMedicina Sperimentale e Neuroscienze Cliniche, Universita degli Studi di Palermo, Palermo, Italy.,PhD School of: Medicina Clinica e Scienze del Comportamento-Biomedical Department of Internal and Specialistic Medicine. (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, (PROMISE), University of Palermo, Palermo, Italy
| | - Mario Daidone
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, (PROMISE), University of Palermo, Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Pirillo A, Catapano AL, Norata GD. Biological Consequences of Dysfunctional HDL. Curr Med Chem 2019; 26:1644-1664. [PMID: 29848265 DOI: 10.2174/0929867325666180530110543] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have suggested an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular disease. HDLs promote reverse cholesterol transport (RCT) and possess several putative atheroprotective functions, associated to the anti-inflammatory, anti-thrombotic and anti-oxidant properties as well as to the ability to support endothelial physiology. The assumption that increasing HDL-C levels would be beneficial on cardiovascular disease (CVD), however, has been questioned as, in most clinical trials, HDL-C-raising therapies did not result in improved cardiovascular outcomes. These findings, together with the observations from Mendelian randomization studies showing that polymorphisms mainly or solely associated with increased HDL-C levels did not decrease the risk of myocardial infarction, shift the focus from HDL-C levels toward HDL functional properties. Indeed, HDL from atherosclerotic patients not only exhibit impaired atheroprotective functions but also acquire pro-atherogenic properties and are referred to as "dysfunctional" HDL; this occurs even in the presence of normal or elevated HDL-C levels. Pharmacological approaches aimed at restoring HDL functions may therefore impact more significantly on CVD outcome than drugs used so far to increase HDL-C levels. The aim of this review is to discuss the pathological conditions leading to the formation of dysfunctional HDL and their role in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,IRCCS Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| |
Collapse
|
21
|
May-Zhang LS, Yermalitsky V, Huang J, Pleasent T, Borja MS, Oda MN, Jerome WG, Yancey PG, Linton MF, Davies SS. Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function. J Biol Chem 2018; 293:9176-9187. [PMID: 29712723 DOI: 10.1074/jbc.ra117.001099] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/30/2018] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular disease risk depends on high-density lipoprotein (HDL) function, not HDL-cholesterol. Isolevuglandins (IsoLGs) are lipid dicarbonyls that react with lysine residues of proteins and phosphatidylethanolamine. IsoLG adducts are elevated in atherosclerosis. The consequences of IsoLG modification of HDL have not been studied. We hypothesized that IsoLG modification of apoA-I deleteriously alters HDL function. We determined the effect of IsoLG on HDL structure-function and whether pentylpyridoxamine (PPM), a dicarbonyl scavenger, can preserve HDL function. IsoLG adducts in HDL derived from patients with familial hypercholesterolemia (n = 10, 233.4 ± 158.3 ng/mg) were found to be significantly higher than in healthy controls (n = 7, 90.1 ± 33.4 pg/mg protein). Further, HDL exposed to myeloperoxidase had elevated IsoLG-lysine adducts (5.7 ng/mg protein) compared with unexposed HDL (0.5 ng/mg protein). Preincubation with PPM reduced IsoLG-lysine adducts by 67%, whereas its inactive analogue pentylpyridoxine did not. The addition of IsoLG produced apoA-I and apoA-II cross-links beginning at 0.3 molar eq of IsoLG/mol of apoA-I (0.3 eq), whereas succinylaldehyde and 4-hydroxynonenal required 10 and 30 eq. IsoLG increased HDL size, generating a subpopulation of 16-23 nm. 1 eq of IsoLG decreased HDL-mediated [3H]cholesterol efflux from macrophages via ABCA1, which corresponded to a decrease in HDL-apoA-I exchange from 47.4% to only 24.8%. This suggests that IsoLG inhibits apoA-I from disassociating from HDL to interact with ABCA1. The addition of 0.3 eq of IsoLG ablated HDL's ability to inhibit LPS-stimulated cytokine expression by macrophages and increased IL-1β expression by 3.5-fold. The structural-functional effects were partially rescued with PPM scavenging.
Collapse
Affiliation(s)
- Linda S May-Zhang
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Valery Yermalitsky
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Jiansheng Huang
- the Division of Cardiovascular Medicine, Department of Medicine, and
| | | | - Mark S Borja
- the Department of Chemistry and Biochemistry, California State University East Bay, Hayward, California 94542, and
| | - Michael N Oda
- the Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - W Gray Jerome
- the Department of Pathology, Vanderbilt Medical Center, Nashville, Tennessee 37232
| | - Patricia G Yancey
- the Division of Cardiovascular Medicine, Department of Medicine, and
| | - MacRae F Linton
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602.,the Division of Cardiovascular Medicine, Department of Medicine, and
| | - Sean S Davies
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602,
| |
Collapse
|
22
|
In vitro oxidized HDL and HDL from type 2 diabetes patients have reduced ability to efflux oxysterols from THP-1 macrophages. Biochimie 2018; 153:232-237. [PMID: 29704538 DOI: 10.1016/j.biochi.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023]
Abstract
Oxidized LDL (OxLDL) that are enriched in products of lipid peroxidation including oxysterols have been shown to induce cellular oxidative stress and cytotoxicity therefore accelerating atheroma plaque formation. Upon oxLDL exposure of THP-1 macrophages, intracellular oxidation of LDL derived-cholesterol as well as endogenous cholesterol was increased. The oxysterols intracellularly produced were efficiently exported to HDL whereas apolipoprotein A1 was inefficient. These findings prompted us to investigate the consequences of modification of HDL by oxidation and glycation as observed in type 2 diabetes with respect to oxysterol and cholesterol efflux. We show that efflux of oxysterols was significantly impaired after in vitro oxidation and glycoxidation of HDL whereas glycation alone had no impact. Cholesterol efflux was only slightly decreased by oxHDL or glycoxidized HDL and not changed with glycated HDL. The defect of HDL towards oxysterol efflux was also observed with HDL isolated from diabetic subjects as compared to healthy controls. These findings support a deleterious cellular retention of oxysterols due to dysfunctional HDL in type 2 diabetes.
Collapse
|
23
|
Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis 2017; 16:207. [PMID: 29084567 PMCID: PMC5663054 DOI: 10.1186/s12944-017-0594-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a major public health problem which prevalence is constantly raising, particularly in low- and middle-income countries. Both diabetes mellitus types (DMT1 and DMT2) are associated with high risk of developing chronic complications, such as retinopathy, nephropathy, neuropathy, endothelial dysfunction, and atherosclerosis. METHODS This is a review of available articles concerning HDL subfractions profile in diabetes mellitus and the related cardiovascular risk. In this review, HDL dysfunction in diabetes, the impact of HDL alterations on the risk diabetes development as well as the association between disturbed HDL particle in DM and cardiovascular risk is discussed. RESULTS Changes in the amount of circulation lipids, including triglycerides and LDL cholesterol as well as the HDL are frequent also in the course of DMT1 and DMT2. In normal state HDL exerts various antiatherogenic properties, including reverse cholesterol transport, antioxidative and anti-inflammatory capacities. However, it has been suggested that in pathological state HDL becomes "dysfunctional" which means that relative composition of lipids and proteins in HDL, as well as enzymatic activities associated to HDL, such as paraoxonase 1 (PON1) and lipoprotein-associated phospholipase 11 (Lp-PLA2) are altered. HDL properties are compromised in patients with diabetes mellitus (DM), due to oxidative modification and glycation of the HDL protein as well as the transformation of the HDL proteome into a proinflammatory protein. Numerous studies confirm that the ability of HDL to suppress inflammatory signals is significantly reduced in this group of patients. However, the exact underlying mechanisms remains to be unravelled in vivo. CONCLUSIONS The understanding of pathological mechanisms underlying HDL dysfunction may enable the development of therapies targeted at specific subpopulations and focusing at the diminishing of cardiovascular risk.
Collapse
Affiliation(s)
- Marek Femlak
- 105 Military Hospital with Outpatient Clinic in Żary, Domańskiego 2, 68-200, Żary, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, WAM Teaching Hospital of Lodz, Żeromskiego 113, Łódź, 90-549, Poland.
| | | | - Jacek Rysz
- Department of Nephrology Hypertension and Family Medicine, Medical University of Lodz, Żeromskiego 113, Łódź, 90-549, Poland
| |
Collapse
|
24
|
Karami A, Romano N, Galloway T, Hamzah H. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus). ENVIRONMENTAL RESEARCH 2016; 151:58-70. [PMID: 27451000 DOI: 10.1016/j.envres.2016.07.024] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 05/20/2023]
Abstract
Despite the ubiquity of microplastics (MPs) in aquatic environments and their proven ability to carry a wide variety of chemicals, very little is known about the impacts of virgin or contaminant-loaded MPs on organisms. The primary aim of this study was to investigate the impacts of virgin or phenanthrene (Phe)-loaded low-density polyethylene (LDPE) fragments on a suite of biomarker responses in juvenile African catfish (Clarias gariepinus). Virgin LDPE (50 or 500µg/L) were preloaded with one of two nominal Phe concentrations (10 or 100µg/L) and were exposed to the fish for 96h. Our findings showed one or both Phe treatments significantly increased the degree of tissue change (DTC) in the liver while decreased the transcription levels of forkhead box L2 (foxl2) and tryptophan hydroxylase2 (tph2) in the brain of C. gariepinus. Exposure to either levels of virgin MPs increased the DTC in the liver and plasma albumin: globulin ratio while decreased the transcription levels of tph2. Moreover, MPs modulated (interacted with) the impact of Phe on the DTC in the gill, plasma concentrations of cholesterol, high-density lipoprotein (HDL), total protein (TP), albumin, and globulin, and the transcription levels of fushi tarazu-factor 1 (ftz-f1), gonadotropin-releasing hormone (GnRH), 11 β-hydroxysteroid dehydrogenase type 2 (11β-hsd2), and liver glycogen stores. Results of this study highlight the ability of virgin LDPE fragments to cause toxicity and to modulate the adverse impacts of Phe in C. gariepinus. Due to the wide distribution of MPs and other classes of contaminants in aquatic environments, further studies are urgently needed to elucidate the toxicity of virgin or contaminant-loaded MPs on organisms.
Collapse
Affiliation(s)
- Ali Karami
- Laboratory of Aquatic Toxicology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | - Nicholas Romano
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Tamara Galloway
- Department of Biosciences, University of Exeter, College of Life and Environmental Sciences, Exeter, UK
| | - Hazilawati Hamzah
- Haematology & Clinical Biochemistry Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| |
Collapse
|
25
|
Kopecky C, Ebtehaj S, Genser B, Drechsler C, Krane V, Antlanger M, Kovarik JJ, Kaltenecker CC, Parvizi M, Wanner C, Weichhart T, Säemann MD, Tietge UJF. HDL Cholesterol Efflux Does Not Predict Cardiovascular Risk in Hemodialysis Patients. J Am Soc Nephrol 2016; 28:769-775. [PMID: 27612996 DOI: 10.1681/asn.2016030262] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/17/2016] [Indexed: 01/09/2023] Open
Abstract
The cardioprotective effect of HDL is thought to be largely determined by its cholesterol efflux capacity, which was shown to inversely correlate with atherosclerotic cardiovascular disease in populations with normal kidney function. Patients with ESRD suffer an exceptionally high cardiovascular risk not fully explained by traditional risk factors. Here, in a post hoc analysis in 1147 patients with type 2 diabetes mellitus on hemodialysis who participated in the German Diabetes Dialysis Study (4D Study), we investigated whether the HDL cholesterol efflux capacity is predictive for cardiovascular risk. Efflux capacity was quantified by incubating human macrophage foam cells with apoB-depleted serum. During a median follow-up of 4.1 years, 423 patients reached the combined primary end point (composite of cardiac death, nonfatal myocardial infarction, and stroke), 410 patients experienced cardiac events, and 561 patients died. Notably, in Cox regression analyses, we found no association of efflux capacity with the combined primary end point (hazard ratio [HR], 0.96; 95% confidence interval [95% CI], 0.88 to 1.06; P=0.42), cardiac events (HR, 0.92; 95% CI, 0.83 to 1.02; P=0.11), or all-cause mortality (HR, 0.96; 95% CI, 0.88 to 1.05; P=0.39). In conclusion, HDL cholesterol efflux capacity is not a prognostic cardiovascular risk marker in this cohort of patients with diabetes on hemodialysis.
Collapse
Affiliation(s)
- Chantal Kopecky
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | - Sanam Ebtehaj
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases and
| | - Bernd Genser
- BGStats Consulting, Vienna, Austria.,Mannheim Institute of Public Health, Social and Preventive Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Institute of Public Health, Federal University of Bahia, Salvador, Brazil; and
| | - Christiane Drechsler
- Division of Nephrology, Department of Medicine 1 and.,Comprehensive Heart Failure Centre, University of Würzburg, Wurzburg, Germany
| | - Vera Krane
- Division of Nephrology, Department of Medicine 1 and.,Comprehensive Heart Failure Centre, University of Würzburg, Wurzburg, Germany
| | - Marlies Antlanger
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | - Johannes J Kovarik
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | | | - Mojtaba Parvizi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christoph Wanner
- Division of Nephrology, Department of Medicine 1 and.,Comprehensive Heart Failure Centre, University of Würzburg, Wurzburg, Germany
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Marcus D Säemann
- Department of Internal Medicine III, Division of Nephrology and Dialysis and
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases and
| |
Collapse
|
26
|
Karami A, Romano N, Hamzah H, Simpson SL, Yap CK. Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:155-165. [PMID: 26845363 DOI: 10.1016/j.envpol.2016.01.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
Collapse
Affiliation(s)
- Ali Karami
- Laboratory of Aquatic Toxicology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | - Nicholas Romano
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Hazilawati Hamzah
- Haematology & Clinical Biochemistry Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2234, Australia
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| |
Collapse
|
27
|
Huang X, He D, Ming J, He Y, Zhou C, Ren H, He X, Wang C, Jin J, Ji L, Willard B, Pan B, Zheng L. High-density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation. Breast Cancer Res Treat 2016; 155:441-55. [PMID: 26872904 DOI: 10.1007/s10549-016-3696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis. This work indicates a prospective utilization of HDL-based strategies in the treatment of breast cancer patients with type 2 diabetes.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Operating Room, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Jia Ming
- Department of Operating Room, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Yubin He
- The Military General Hospital of Beijing, Beijing, 100700, China
| | - Champion Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Ren
- Auckland Bioengineering Institute, The University of Auckland, Auckland, 1142, New Zealand
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Nuclear Medicine, Institution of Radiation Medicine, Beijing Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenguang Wang
- Tianjin Key Laboratory of Radiation Medicine and Nuclear Medicine, Institution of Radiation Medicine, Beijing Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingru Jin
- The Military General Hospital of Beijing, Beijing, 100700, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Belinda Willard
- Proteomics Core Laboratory, Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
28
|
Abstract
During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.
Collapse
|
29
|
Pozzi FS, Maranhão RC, Guedes LK, Borba EF, Laurindo IMM, Bonfa E, Vinagre CG. Plasma kinetics of an LDL-like non-protein nanoemulsion and transfer of lipids to high-density lipoprotein (HDL) in patients with rheumatoid arthritis. J Clin Lipidol 2014; 9:72-80. [PMID: 25670363 DOI: 10.1016/j.jacl.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic inflammatory disease associated with cardiovascular risk, but with normal plasma lipids. OBJECTIVE The aim was to investigate low-density lipoprotein (LDL) and high-density lipoprotein (HDL) metabolism in RA patients using radioactive nanoemulsions resembling an LDL lipid structure (LDE) as metabolic probes. METHODS Thirty patients with RA, 16 in remission and 14 in high activity, and 30 healthy controls were studied. LDE labeled with (14)C-cholesteryl ester ((14)C-CE) and (3)H-unesterified cholesterol ((3)H-UC) was intravenously injected followed by 24-hour plasma sampling. Fractional clearance rates (FCR, h(-1)) were calculated by compartmental analysis. Lipid transfers to HDL were assayed by incubating plasma samples with a donor nanoemulsion labeled with radioactive lipids; % lipids transferred to HDL were quantified after chemical precipitation. RESULTS LDL cholesterol, triglycerides, unesterified cholesterol, and oxidized LDL were equal in RA and controls, and HDL cholesterol was even higher in RA. Compared with controls, apolipoprotein B was lower, apolipoprotein A1 was equal, and apolipoprotein E was higher in RA. Decay curves of LDE labels were faster in RA patients than in controls ((14)C-CE: 0.072 ± 0.066 and 0.038 ± 0.027, P = .0115; (3)H-UC: 0.066 ± 0.042 and 0.035 ± 0.039; P < .0044). FCRs were equal in 2 RA subgroups. Transfer of UC, triglycerides, and phospholipids to HDL was equal between RA and controls, but CE transfer was lower in RA. HDL size was smaller in RA patients than in controls (8.5 ± 0.5 nm; 9.2 ± 0.8 nm, P < .0001). CONCLUSION RA patients were more efficient in removing atherogenic LDL from plasma, as indicated by higher CE and UC FCR, with in lower apolipoprotein B. This was unexpected because of the higher cardiovascular risk in RA.
Collapse
Affiliation(s)
- Fernanda S Pozzi
- Lipid Metabolism Laboratory, Heart Institute, Medical School Hospital of the University of São Paulo, São Paulo, Brazil
| | - Raul C Maranhão
- Lipid Metabolism Laboratory, Heart Institute, Medical School Hospital of the University of São Paulo, São Paulo, Brazil; Department of Clinical Biochemistry, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Lissiane K Guedes
- Division of Rheumatology, Medical School Hospital of the University of São Paulo, São Paulo, Brazil
| | - Eduardo F Borba
- Division of Rheumatology, Medical School Hospital of the University of São Paulo, São Paulo, Brazil
| | - Ieda M M Laurindo
- Division of Rheumatology, Medical School Hospital of the University of São Paulo, São Paulo, Brazil
| | - Eloisa Bonfa
- Division of Rheumatology, Medical School Hospital of the University of São Paulo, São Paulo, Brazil
| | - Carmen G Vinagre
- Lipid Metabolism Laboratory, Heart Institute, Medical School Hospital of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med 2014; 70:117-28. [PMID: 24561578 PMCID: PMC4006317 DOI: 10.1016/j.freeradbiomed.2014.02.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 02/02/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) induces endothelial cell death through the activation of NF-κB and AP-1 pathways. TRAF3IP2 is a redox-sensitive cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we show that oxLDL-induced death in human primary coronary artery endothelial cells (ECs) was markedly attenuated by the knockdown of TRAF3IP2 or the lectin-like oxLDL receptor 1 (LOX-1). Further, oxLDL induced Nox2/superoxide-dependent TRAF3IP2 expression, IKK/p65 and JNK/c-Jun activation, and LOX-1 upregulation, suggesting a reinforcing mechanism. Similarly, the lysolipids present in oxLDL (16:0-LPC and 18:0-LPC) and minimally modified LDL also upregulated TRAF3IP2 expression. Notably, whereas native HDL3 reversed oxLDL-induced TRAF3IP2 expression and cell death, 15-lipoxygenase-modified HDL3 potentiated its proapoptotic effects. The activators of the AMPK/Akt pathway, adiponectin, AICAR, and metformin, attenuated superoxide generation, TRAF3IP2 expression, and oxLDL/TRAF3IP2-mediated EC death. Further, both HDL3 and adiponectin reversed oxLDL/TRAF3IP2-dependent monocyte adhesion to endothelial cells in vitro. Importantly, TRAF3IP2 gene deletion and the AMPK activators reversed oxLDL-induced impaired vasorelaxation ex vivo. These results indicate that oxLDL-induced endothelial cell death and dysfunction are mediated via TRAF3IP2 and that native HDL3 and the AMPK activators inhibit this response. Targeting TRAF3IP2 could potentially inhibit progression of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Anthony J Valente
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Anand M Irimpen
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
31
|
Cutuli L, Pirillo A, Uboldi P, Kuehn H, Catapano AL. 15-lipoxygenase-mediated modification of HDL3 impairs eNOS activation in human endothelial cells. Lipids 2014; 49:317-26. [PMID: 24570151 DOI: 10.1007/s11745-014-3888-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/12/2014] [Indexed: 01/08/2023]
Abstract
Caveolae are cholesterol and glycosphingolipids-enriched microdomains of plasma membranes. Caveolin-1 represents the major structural protein of caveolae, that also contain receptors and molecules involved in signal transduction pathways. Caveolae are particularly abundant in endothelial cells, where they play important physiological and pathological roles in regulating endothelial cell functions. Several molecules with relevant functions in endothelial cells are localized in caveolae, including endothelial nitric oxide synthase (eNOS), which regulates the production of nitric oxide, and scavenger receptor class B type I (SR-BI), which plays a key role in the induction of eNOS activity mediated by high density lipoproteins (HDL). HDL have several atheroprotective functions, including a positive effect on endothelial cells, as it is a potent agonist of eNOS through the interaction with SR-BI. However, the oxidative modification of HDL may impair their protective role. In the present study we evaluated the effect of 15-lipoxygenase-mediated modification of HDL3 on the expression and/or activity of some proteins localized in endothelial caveolae and involved in the nitric oxide generation pathway. We found that after modification, HDL3 failed to activate eNOS and to induce NO production, due to both a reduced ability to interact with its own receptor SR-BI and to a reduced expression of SR-BI in cells exposed to modified HDL. These findings suggest that modification of HDL may reduce its endothelial-protective role also by interfering with vasodilatory function of HDL.
Collapse
Affiliation(s)
- Lucia Cutuli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
32
|
Lezcano EJ, Iñigo P, Larraga AM, Barranquero C, Gimenez I, Osada J. Caloric restriction or telmisartan control dyslipidemia and nephropathy in obese diabetic Zücker rats. Diabetol Metab Syndr 2014; 6:10. [PMID: 24468233 PMCID: PMC3906927 DOI: 10.1186/1758-5996-6-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/23/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The obese Zücker diabetic fatty male rat (ZDF:Gmi™-fa) is an animal model of type II diabetes associated with obesity and related metabolic disturbances like dyslipidaemia and diabetic nephropathy. In addition, diabetic dyslipidaemia has been linked to vascular and glomerular damage too. Dietary fat restriction is a current strategy to tackle obesity and, telmisartan, as a renoprotective agent, may mediate cholesterol efflux by activating PPARγ. To test the hypothesis that both therapeutical alternatives may influence dyslipidaemia and nephropathy in the ZDF rat, we studied their effect on development of diabetes. METHODS Male Zücker Diabetic Fatty (ZDF) rats received a low-calorie diet, vehicle or telmisartan for 9 weeks. Blood samples were obtained for analyses of lipids and lipoproteins, LDL-oxidisability, HDL structural and functional properties. Urinalysis was carried out to estimate albumin loss. At the end of the experimental period, rats were sacrificed, liver extracted and APOA1 mRNA quantified. RESULTS Results indicated that low-calorie diet and telmisartan can slower the onset of overt hyperglycaemia and renal damage assessed as albuminuria. Both interventions decreased the oxidative susceptibility of LDL and hepatic APOA1 mRNA expression but only dietary restriction lowered hyperlipidaemia. CONCLUSION Either a dietary or pharmacologic interventions with telmisartan have important beneficial effects in terms of LDL oxidative susceptibility and progression of albuminuria in obesity related type II diabetes.
Collapse
Affiliation(s)
- Eduardo J Lezcano
- Servicio de Cardiología, Hospital de San Pedro, Logroño, Calle Piqueras, 98 26006 Logroño, La Rioja, Spain
| | - Pablo Iñigo
- Departamento de Medicina. Facultad de Medicina. Servicio de Nefrología, Hospital Clínico Universitario “Lozano Blesa”, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana M Larraga
- Departamento de Medicina. Facultad de Medicina. Servicio de Nefrología, Hospital Clínico Universitario “Lozano Blesa”, Universidad de Zaragoza, Zaragoza, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón - Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Gimenez
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón - Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Pirillo A, Norata GD, Catapano AL. High-density lipoprotein subfractions--what the clinicians need to know. Cardiology 2013; 124:116-25. [PMID: 23428644 DOI: 10.1159/000346463] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022]
Abstract
Although the inverse relationship between plasma levels of high-density lipoprotein (HDL) and cardiovascular disease has been largely demonstrated, many observations have suggested that the assessment of HDL functionality might be more informative than a simple measurement of HDL-cholesterol plasma levels. HDLs are a class of structurally and functionally heterogeneous particles; in atherosclerosis-related diseases, changes in HDL subfraction levels and functions are frequently observed. Circulating levels of large HDL particles are decreased in dyslipidaemic conditions, while levels of small dense HDL particles are increased in patients with coronary heart disease. Furthermore, specific genetic defects in proteins involved in HDL metabolism significantly impact the distribution of HDL subpopulations. Finally, many drugs used for dyslipidaemia induce changes in HDL subfractions strictly related to cardiovascular disease. Although several methods exist to evaluate HDL subclass levels, most of them are not easily applicable in clinical practice, due to the costs and high variability. However, the possibility to measure the levels of specific HDL subfractions in patients with atherosclerosis-related diseases might help to better define their cardiovascular risk.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | | | | |
Collapse
|
34
|
Pirillo A, Uboldi P, Ferri N, Corsini A, Kuhn H, Catapano AL. Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins. Biochem Biophys Res Commun 2012; 428:230-3. [PMID: 23073138 DOI: 10.1016/j.bbrc.2012.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023]
Abstract
Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) is the main endothelial receptor for oxidized low density lipoprotein (OxLDL). LOX-1 is highly expressed in endothelial cells of atherosclerotic lesions, but also in macrophages and smooth muscle cells. LOX-1 expression is upregulated by several inflammatory cytokines (such as TNF-α), by oxidative stress, and by pathological conditions, such as dyslipidemia, hypertension, and diabetes. High density lipoprotein (HDL) possess several atheroprotective properties; however under pathological conditions associated with inflammation and oxidative stress, HDL become dysfunctional and exhibit pro-inflammatory properties. In vitro, HDL can be modified by 15-lipoxygenase, an enzyme overexpressed in the atherosclerotic lesions. Here we report that, after modification with 15-lipoxygenase, HDL(3) lose their ability to inhibit TNFα-induced LOX-1 expression in endothelial cells; in addition, 15LO-modified HDL(3) induce LOX-1 mRNA and protein expression and bind to LOX-1 with increased affinity compared to native HDL(3). Altogether these findings confirm that 15LO-modified HDL(3) possess a pro-atherogenic role.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
HDL is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. These functions include cholesterol efflux and reverse cholesterol transport, antioxidative and anti-inflammatory activities. However, HDL has been shown to undergo a loss of function in several pathophysiological states, as in the acute phase response, obesity and chronic inflammatory diseases. Some of these diseases were also shown to be associated with increased risk for cardiovascular disease. One such disease that is associated with HDL dysfunction and accelerated atherosclerosis is diabetes mellitus, a disease in which the HDL particle undergoes diverse structural modifications that result in significant changes in its function. This review will summarize the changes that occur in HDL in diabetes mellitus and how these changes lead to HDL dysfunction. Possible treatments for HDL dysfunction are also briefly described.
Collapse
Affiliation(s)
- Dan Farbstein
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
36
|
Pan B, Ren H, He Y, Lv X, Ma Y, Li J, Huang L, Yu B, Kong J, Niu C, Zhang Y, Sun WB, Zheng L. HDL of patients with type 2 diabetes mellitus elevates the capability of promoting breast cancer metastasis. Clin Cancer Res 2012; 18:1246-56. [PMID: 22261802 DOI: 10.1158/1078-0432.ccr-11-0817] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Epidemiologic studies suggested complicated associations between type 2 diabetes mellitus and breast cancer. High-density lipoprotein (HDL) is inversely associated with the risk and mortality of breast cancer. Our study is to determine the different effects of normal and diabetic HDL on breast cancer cell metastasis. EXPERIMENTAL DESIGN MDA-MB-231 and MCF7 cells were treated with N-HDL, D-HDL, G-HDL, and Ox-HDL. Cell metastasis potency was examined using a tail-vein injection model, and cell adhesion abilities to human umbilical vein endothelial cells (HUVEC) and extracellular matrix (ECM) were determined in vitro. Integrin expression and protein kinase C (PKC) activity were evaluated, and PKC inhibitor was applied. RESULTS D-HDL dramatically promoted cell pulmonary metastasis (103.6% increase at P < 0.001 for MDA-MB-231 with 1 × 10(5) cell injection; 157.1% increase at P < 0.05 for MCF7 with 4 × 10(5) cell injection) and hepatic metastasis (18.1-fold increase at P < 0.001 for MCF7 with 4 × 10(5) cell injection), and stimulated higher TC-HUVECs adhesion (21.9% increase at P < 0.001 for MDA-MB-231; 23.6% increase at P < 0.05 for MCF7) and TC-ECM attachment (59.9% and 47.9% increase, respectively, for MDA-MB-231 and MCF7, both at P < 0.01) compared with N-HDL. D-HDL stimulated higher integrin (β1, β2, β3, and αν) expression on cell surface and induced higher PKC activity. Increased TC-HUVECs and TC-ECM adhesion induced by D-HDL, G-HDL, and Ox-HDL could be inhibited by staurosporine. CONCLUSIONS Our study showed that glycation and oxidation of HDL in diabetic patients could lead to abnormal actions on breast cancer cell adhesion to HUVECs and ECM, thereby promoting metastasis progression of breast cancer. This will largely draw the attention of HDL-based treatments in the diabetes patients with breast cancer.
Collapse
Affiliation(s)
- Bing Pan
- The Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Corsetti JP, Ryan D, Moss AJ, McCarthy J, Goldenberg I, Zareba W, Sparks CE. Thrombospondin-4 polymorphism (A387P) predicts cardiovascular risk in postinfarction patients with high HDL cholesterol and C-reactive protein levels. Thromb Haemost 2011; 106:1170-8. [PMID: 22011848 DOI: 10.1160/th11-03-0206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/24/2011] [Indexed: 11/05/2022]
Abstract
Few studies are available in human populations investigating involvement of vascular inflammation and oxidative stress-related dysfunctional transformation of high-density lipoprotein (HDL) in establishing cardiovascular disease (CVD) risk. To this end, the current work investigated a subgroup of post-infarction patients at high-risk for recurrent events defined by high levels of HDL cholesterol (HDL-C) and concurrently high levels of C-reactive protein (CRP). Thrombospondin-4 (TSP-4), a matricellular protein of vessel walls associated with inflammation, was investigated in terms of CVD risk using multivariable modelling with a well-characterised functional genetic polymorphism of THBS4 (A387P, rs1866389) along with previously demonstrated risk-related functional genetic polymorphisms of CYBA (C242T, rs4673) and CETP (TaqIB, rs708272), and a set of blood markers. Results revealed risk-association for the gain-of-function P-allele of the THBS4 polymorphism (hazard ratio 2.00, 95% confidence interval 1.10-3.65, p=0.024). Additionally, von Willebrand factor was associated with D-dimer levels in the higher-risk P allele patients suggestive of a connection between endothelial dysfunction and thrombogenesis. In conclusion, TSP-4, a matricellular protein involved in regulating vascular inflammation, plays a role in establishing recurrent coronary risk in post-infarction patients with high levels of HDL-C and CRP. Further studies should focus on additional effects of vascular inflammatory processes on anti-atherogenic functionality of HDL particles.
Collapse
Affiliation(s)
- James P Corsetti
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Panzoldo NB, Urban A, Parra ES, Oliveira R, Zago VS, da Silva LR, de Faria EC. Differences and similarities of postprandial lipemia in rodents and humans. Lipids Health Dis 2011; 10:86. [PMID: 21605416 PMCID: PMC3125350 DOI: 10.1186/1476-511x-10-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/23/2011] [Indexed: 01/28/2023] Open
Abstract
Background The rat has been a mainstay of physiological and metabolic research, and more recently mice. This study aimed at characterizing the postprandial triglyceride profile of two members of the Muridae family: the Wistar rats (Rattus norvegicus albinus) and C57BL/6 mice (Mus musculus) plus comparing them to the profile obtained in humans. Methods Thirty-one male and twelve female Wistar rats, ten C57BL/6 male and nine female mice received a liquid meal containing fat (17%), protein (4%) and carbohydrates (4%), providing 2 g fat/Kg. Thirty-one men and twenty-nine women received a standardized liquid meal containing fat (25%), dextromaltose (55%), protein (14%), and vitamins and minerals (6%), and providing 40 g of fat per square meter of body surface. Serial blood samples were collected at 2, 4, 6, 8 and 10 h after the ingestion in rats, at 1, 2, 3, 4, 5 and 6 h in mice and in humans at 2, 4, 6 and 8 h. Wilcoxon and Mann-Whitney tests were used. Results/Discussion The triglyceride responses were evaluated after the oral fat loads. Fasting and postprandial triglyceridemia were determined sequentially in blood sample. AUC, AUIC, AR, RR and late peaks were determined. Conclusions Rats are prone to respond in a pro-atherogenic manner. The responses in mice were closer to the ones in healthy men. This study presents striking differences in postprandial triglycerides patterns between rats and mice not correlated to baseline triglycerides, the animal baseline body weight or fat load in all animal groups.
Collapse
Affiliation(s)
- Natalia B Panzoldo
- Department of Clinical Pathology, Lipid Laboratory and Center for Medicine and Experimental Surgery, Faculty of Medical Sciences, Rua Tessália Vieira de Camargo, University of Campinas, Campinas 13084-971, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Azevedo CHM, Wajngarten M, Prete ACL, Diament J, Maranhão RC. Simultaneous transfer of cholesterol, triglycerides, and phospholipids to high-density lipoprotein in aging subjects with or without coronary artery disease. Clinics (Sao Paulo) 2011; 66:1543-8. [PMID: 22179156 PMCID: PMC3164401 DOI: 10.1590/s1807-59322011000900006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To verify whether the capacity of high-density lipoprotein (HDL) to simultaneously receive nonesterified cholesterol, triglycerides, cholesteryl esters, and phospholipids changes with aging and the presence of coronary artery disease. DESIGN Cross-sectional study with biochemical analyses. SUBJECTS Eleven elderly patients with coronary artery disease (74 ± 5 years) were compared with the following groups of non-coronary artery disease subjects (referred to as "healthy"): 25 young (25 ± 5 years), 25 middle-aged (42 ± 6 years), and 25 elderly subjects (75 ± 8 years). METHODS Plasma samples were incubated with a nanoemulsion labeled with radioactive lipids; the transfer of the lipids from the nanoemulsion to the HDL was measured in chemically precipitated HDL. HDL size and paraoxonase-1 activity were also determined. RESULTS The transfer of cholesteryl esters and phospholipids to high-density lipoprotein was significantly greater (p<0.001) in healthy elderly subjects than in the middle-aged and younger subjects. Non-esterified cholesterol and triglyceride transfer was not different among these three groups. The HDL size was significantly greater (p<0.001) in healthy elderly subjects than in the middle-aged and younger subjects. The paraoxonase-1 activity was similar among the groups. Compared with healthy elderly subjects, coronary artery disease elderly subjects had significantly less (p<0.05) transfer of non-esterified cholesterol, triglycerides, and cholesteryl esters to the HDL and a significantly smaller (p<0.05) HDL size. CONCLUSION Because lipid transfer is enhanced in healthy elderly subjects but not in those with coronary artery disease, increasing lipid transfer to HDL may be a protective mechanism against the disease.
Collapse
Affiliation(s)
- Carolina H M Azevedo
- Lipid Metabolism Laboratory, Heart Institute, Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
40
|
Mandraffino G, Sardo MA, Riggio S, D'Ascola A, Loddo S, Alibrandi A, Saitta C, Imbalzano E, Mandraffino R, Venza M, Mormina EM, David A, Saitta A. Smoke exposure and circulating progenitor cells: evidence for modulation of antioxidant enzymes and cell count. Clin Biochem 2010; 43:1436-42. [PMID: 20888331 DOI: 10.1016/j.clinbiochem.2010.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cigarette smoking is involved in vascular inflammation and impairment of circulating progenitor cells (CPCs), including endothelial progenitor cells (EPCs). The study aim was to evaluate the redox balance of these cells in relation to smoking exposure. METHODS Circulating cells from 36 healthy smokers and 26 controls were isolated and identified by flow cytometry. ROS generation, mRNA and protein cell expression, and enzymatic activity of MnSOD, catalase, and GPx-1 were evaluated. RESULTS Smokers showed higher levels of CRP and fibrinogen and lower levels of HDL-C. ROS and MnSOD were higher (p<0.001), while catalase and GPx-1 were lower (p<0.001) as was EPC number (p<0.001) in smokers. CPC and EPC correlated with HDL-C, CRP, ROS and enzyme expression and activity. CONCLUSIONS Our data suggest that smoking exposure involves antioxidant enzymes in CPCs and EPCs and that the inflammatory response in smokers plays an important role in impairing cells and their antioxidant functions.
Collapse
Affiliation(s)
- Giuseppe Mandraffino
- Department of Internal Medicine and Medical Therapy, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2010; 50:115-31. [PMID: 20970452 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|
42
|
Succurro E, Arturi F, Grembiale A, Iorio F, Laino I, Andreozzi F, Sciacqua A, Hribal ML, Perticone F, Sesti G. Positive association between plasma IGF1 and high-density lipoprotein cholesterol levels in adult nondiabetic subjects. Eur J Endocrinol 2010; 163:75-80. [PMID: 20356932 DOI: 10.1530/eje-10-0113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIMS Low IGF1 levels have been associated with an increased cardiovascular risk. It is unknown however whether IGF1 mediates the atherosclerotic process by modulating high-density lipoprotein cholesterol (HDL-C) independently from confounders. To address this issue, we evaluated the association between IGF1 levels and HDL-C in nondiabetic subjects. METHODS A cross-sectional analysis was used in the context of the CAtanzaro MEtabolic RIsk factors Study. One thousand and four participants (aged 20-69 years), for whom HDL-C and IGF1 measurements were available, were eligible for the study. RESULTS After adjusting for gender and age, IGF1 levels were positively correlated with HDL-C, and negatively correlated with body mass index (BMI), waist circumference, blood pressure (BP), triglyceride, fasting insulin, and homeostasis model assessment (HOMA). In a logistic regression model adjusted for age and gender, IGF1 in the lowest tertile (<125 ng/ml) was associated with an increased risk of having low HDL-C (odds ratio (OR) 2.14, 95% confidence interval (CI) 1.4-3.0; P=4x10(-5)) compared with the highest tertile (>186 ng/ml). When BMI, waist circumference, total cholesterol, triglyceride, and HOMA index were added to the model, IGF1 remained significantly associated with increased risk of low HDL-C (OR 1.52, 95% CI 1.01-2.31; P=0.04). A stepwise multivariate regression analysis in a model including age, gender, BMI, total cholesterol, triglycerides, IGF1, HOMA, and BP showed that the variables significantly associated with HDL-C were gender (P<0.0001), triglycerides (P<0.0001), total cholesterol (P<0.0001), BMI (P<0.0001), IGF1 levels (P<0.0001), and HOMA (P=0.001), accounting for 32.6% of its variation. CONCLUSIONS These data provide evidence that IGF1 may be an independent modulator for HDL-C in nondiabetic individuals.
Collapse
Affiliation(s)
- Elena Succurro
- Department of Experimental and Clinical Medicine, University Magna-Graecia of Catanzaro, Via Europa, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Corsetti JP, Gansevoort RT, Sparks CE, Dullaart RPF. Inflammation reduces HDL protection against primary cardiac risk. Eur J Clin Invest 2010; 40:483-9. [PMID: 20412290 DOI: 10.1111/j.1365-2362.2010.02287.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND We recently reported high high-density lipoprotein (HDL) cholesterol as a predictor of recurrent risk in a subgroup of postinfarction patients defined by hypercholesterolemia and high C-reactive protein (CRP) levels. We investigated whether a similar high-risk subgroup might exist for incident cardiovascular disease. MATERIAL AND METHODS A graphical exploratory data analysis tool was used to identify high-risk subgroups in a male population-based cohort (n = 3405) from the prevention of renal and vascular end-stage disease study by generating 3-dimensional mappings of risk over the HDL-cholesterol/CRP domain with subsequent use of Kaplan-Meier analysis to verify high-risk. Within-subgroup risk was assessed using Cox proportional hazards regression and Kaplan-Meier analysis. RESULTS Mappings revealed two high-risk subgroups: a low HDL-cholesterol/high CRP subgroup and a high HDL-cholesterol/high CRP subgroup. The low HDL-cholesterol subgroup demonstrated a pattern of metabolic syndrome dyslipidemia contrasted with a predominantly unremarkable biomarker pattern for the high HDL-cholesterol subgroup. However, in the high HDL-cholesterol subgroup, CRP levels were higher than the low HDL-cholesterol subgroup; and within the high HDL-cholesterol subgroup, CRP predicted risk. Moreover, in the high HDL-cholesterol subgroup, risk was associated with lower triglyceride levels in conjunction with presumptively larger HDL particles. CONCLUSIONS High HDL-cholesterol and high CRP levels define a subgroup of men at high-risk for incident cardiovascular disease. High HDL cholesterol-associated risk likely relates to impaired HDL particle remodelling in the setting of inflammation. This approach may facilitate identification of additional inflammation-related mechanisms underlying high HDL cholesterol-associated risk; and potentially influence management of such patients.
Collapse
Affiliation(s)
- James P Corsetti
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
44
|
Corsetti JP, Ryan D, Rainwater DL, Moss AJ, Zareba W, Sparks CE. Cholesteryl ester transfer protein polymorphism (TaqIB) associates with risk in postinfarction patients with high C-reactive protein and high-density lipoprotein cholesterol levels. Arterioscler Thromb Vasc Biol 2010; 30:1657-64. [PMID: 20489166 DOI: 10.1161/atvbaha.110.207977] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the roles of inflammation and a cholesteryl ester transfer protein (CETP) polymorphism potentially related to recent findings demonstrating coronary risk with increasing high-density lipoprotein cholesterol (HDL-C) level. METHODS AND RESULTS A novel graphical exploratory data analysis tool allowed the examination of coronary risk in postinfarction patients relating to HDL-C and C-reactive protein levels. Results demonstrated a high-risk subgroup, defined by high HDL-C and C-reactive protein levels, exhibiting larger HDL particles and lower lipoprotein-associated phospholipaseA(2) levels than lower-risk patients. Subgroup CETP-associated risk was probed using a functional CETP polymorphism (TaqIB, rs708272). In the high-risk subgroup, multivariable modeling revealed greater risk for B2 allele carriers (less CETP activity) versus B1 homozygotes (hazard ratio, 2.41; 95% CI, 1.04 to 5.60; P=0.04). Within the high-risk subgroup, B2 allele carriers had higher serum amyloid A levels than B1 homozygotes. Evidence also demonstrates that CETP genotypic differences in HDL subfraction distributions regarding non-HDL-C and lipoprotein-associated phospholipaseA(2) may potentially relate to impaired HDL remodeling. CONCLUSIONS Postinfarction patients with high HDL-C and C-reactive protein levels demonstrate increased risk for recurrent events. Future studies should aim at characterizing altered HDL particles from such patients and at elucidating the mechanistic details related to inflammation and HDL particle remodeling. Such patients should be considered in drug trials involving an increase in HDL-C level.
Collapse
Affiliation(s)
- James P Corsetti
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Synthetic high-density lipoprotein (HDL) and apolipoprotein (apo) A-I mimetic peptides emulate many of the atheroprotective biological functions attributed to HDL and can modify atherosclerotic disease processes. Administration of these agents as HDL replacement or modifying therapy has tremendous potential of providing new treatments for cardiovascular disease. Progress in the understanding of these agents is discussed in this review. RECENT FINDINGS Prospective, observational, and interventional studies have convincingly demonstrated that elevated serum levels of high-density lipoprotein-cholesterol (HDL-C) are associated with reduced risk for coronary heart disease (CHD). Although traditional pharmacological agents have shown modest utility in raising HDL levels and reducing CHD risk, use of HDL and apo A-I mimetics provides novel therapies to not only increase HDL levels, but to also influence HDL functionality. Evidence developed over the last several years has identified a number of pathways affected by synthetic HDL and apoA-I mimetic peptides, including enhancing reverse cholesterol transport and reducing oxidation and inflammation that directly influence the progression and regression of atherosclerotic disease. SUMMARY Clinical trials of relatively short-term synthetic HDL infusion into patients with CHD demonstrate beneficial effects. Use of apo A-I mimetic peptides could potentially overcome some of the limitations associated with use of the intact apo. Studies to establish the most efficacious peptides, optimal dosing regimens, and routes of administration are needed. Use of apo A-I mimetic peptides shows great promise as a therapeutic modality for HDL replacement and enhancing HDL function in treatment of patients with CHD.
Collapse
Affiliation(s)
- Armando J Mendez
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
46
|
Haas MJ, Mooradian AD. Regulation of high-density lipoprotein by inflammatory cytokines: establishing links between immune dysfunction and cardiovascular disease. Diabetes Metab Res Rev 2010; 26:90-9. [PMID: 20047197 DOI: 10.1002/dmrr.1057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronary artery disease is a primary co-morbidity in metabolic diseases such as metabolic syndrome, diabetes and obesity. One contributing risk factor for coronary artery disease is low high-density lipoprotein-cholesterol (HDLc). Several factors influence steady-state HDLc levels, including diet, genetics and environment. Perhaps more important to coronary artery disease is factors that attribute to the dynamics of reverse cholesterol transport, storage, and excretion of excess cholesterol. HDLc biogenesis, clearance and innate ability to serve as a cholesterol acceptor and transporter all contribute to HDLc's function as a negative regulator of cardiovascular disease. With the recent failure of torcetrapid, focus is being placed on HDLc biology and its role in various metabolic diseases. Low HDLc levels are often associated with an increased state of background inflammation. Recently, several syndromes with clear pro-inflammatory components have been shown to be inversely correlated with low HDLc levels in the absence of obesity, diabetes and metabolic syndrome. Early studies with HDLc during the acute-phase response suggest that HDLc is substantially physically modified during acute infection and sepsis, and recent studies show that HDLc is physically modified by chronic pro-inflammatory disease. In this review, several of these connections are described and cytokine signalling related to HDLc is examined.
Collapse
Affiliation(s)
- Michael J Haas
- Department of Medicine, University of Florida College of Medicine, 653-1 West Eighth Street, Jacksonville, FL 32209, USA.
| | | |
Collapse
|
47
|
In Vitro Simultaneous Transfer of Lipids to HDL in Coronary Artery Disease and in Statin Treatment. Lipids 2009; 44:917-24. [DOI: 10.1007/s11745-009-3342-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/01/2009] [Indexed: 12/13/2022]
|
48
|
Sagud M, Mihaljevic-Peles A, Pivac N, Jakovljevic M, Muck-Seler D. Lipid levels in female patients with affective disorders. Psychiatry Res 2009; 168:218-21. [PMID: 19560828 DOI: 10.1016/j.psychres.2008.06.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 12/19/2007] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
The role of serum lipids [total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG)] in the pathophysiology of mood disorders is not clear. The aim of this study was to determine lipid profiles in patients with affective disorders. The study included medication-free female subjects (41 patients with bipolar disorder, 22 in a manic and 19 in a depressive phase), 34 patients with major depression, and 50 healthy controls. Serum lipid levels were determined using standard laboratory tests. All patients had significantly lower HDL-C values than control subjects. Increased TG levels were found in patients with bipolar disorder compared with healthy subjects. The changes in lipid profiles persisted when data were adjusted for age, smoking and menopausal status. The results revealed no differences in cholesterol and LDL-C levels and body mass index, but significant differences in the ratios of cholesterol/HDL-C and LDL-C/HDL-C (atherogenic index) among groups. Our results suggest that low HDL-C levels and a high atherogenic index might be a hallmark of affective disorders. Since low HDL-C levels could be a risk factor for the development of coronary heart disease, further investigation of lipid metabolism in affective disorders is warranted.
Collapse
Affiliation(s)
- Marina Sagud
- University Hospital Centre Zagreb, Department of Psychiatry, Kispaticeva 12, 10 000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
49
|
Moriarty PM. Association of ApoE and HDL-C with cardiovascular and cerebrovascular disease: potential benefits of LDL-apheresis therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Escolà-Gil JC, Rotllan N, Julve J, Blanco-Vaca F. In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis 2009; 206:321-7. [PMID: 19362310 DOI: 10.1016/j.atherosclerosis.2008.12.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 12/12/2022]
Abstract
The beneficial therapeutic effects of raising HDL cholesterol are proving difficult to confirm in humans. The evaluation of antiatherogenic functions of HDL is an important area of research which includes the role of HDL in reverse cholesterol transport (RCT), especially macrophage-specific RCT, and its antioxidant and antiinflammatory roles. The antioxidant and antiinflammatory functions of HDL can be assessed using cell-free and cell-based assays. Also, a new approach was developed to measure RCT from labeled-cholesterol macrophages to liver and feces of mice. Studies in genetically engineered animals indicate that these major HDL antiatherogenic functions are better predictors of atherosclerosis susceptibility than HDL cholesterol or total RCT. Thus, functional testing of the antiatherogenic functions of HDL in experimental animal models may facilitate the development of new strategies for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain.
| | | | | | | |
Collapse
|