1
|
McNee A, Kannan A, Jull P, Shankar S. Expanding Human Breg for Cellular Therapy in Transplantation: Time for Translation. Transplantation 2024:00007890-990000000-00920. [PMID: 39439021 DOI: 10.1097/tp.0000000000005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Regulatory B cells (Breg) are instrumental in protecting allografts in transplantation. Breg signatures are identified in operationally tolerant human kidney transplant recipients and can predict organ survival and acute rejection. Animal models of transplantation and autoimmunity support the use of Breg as an adoptive cellular therapy. Detailed mechanistic studies have identified multiple signaling pathways utilized by Breg in their induction, expansion, and downstream function. These preclinical studies provide the guiding principles, which will inform protocols by which to expand this crucial immunoregulatory population before clinical use. There is an urgent need for novel therapies to improve long-term transplant outcomes and to minimize immunosuppression-related morbidity including life-threatening infection and cancer. Systematic evaluation of the signals, which drive Breg expansion, will be key to transforming the as of yet unharnessed potential of this potent immunoregulatory cell. In this review, we explore the potential avenues of translating Breg subsets from cell culture at the laboratory bench to cell therapy at the patient's bedside. We will discuss the standardization of Breg phenotypes to aid in precursor population selection and quality control of a Breg-cell therapy product. We will evaluate avenues by which to optimize protocols to drive human Breg expansion to levels sufficient for cellular therapy. Finally, we will examine the steps required in process development including scalable culture systems and quality control measures to deliver a viable Breg-cell therapy product for administration to a transplant recipient.
Collapse
Affiliation(s)
- Adam McNee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Ananya Kannan
- Oxford University Medical School, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Patrick Jull
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
2
|
Ali A, DiPersio JF. ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights. Front Immunol 2024; 15:1432799. [PMID: 39301026 PMCID: PMC11410633 DOI: 10.3389/fimmu.2024.1432799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, offering remarkable remission rates in otherwise refractory conditions. However, its expansion into broader oncological applications faces significant hurdles, including limited efficacy in solid tumors, safety concerns related to toxicity, and logistical challenges in manufacturing and scalability. This review critically examines the latest advancements aimed at overcoming these obstacles, highlighting innovations in CAR T-cell engineering, novel antigen targeting strategies, and improvements in delivery and persistence within the tumor microenvironment. We also discuss the development of allogeneic CAR T cells as off-the-shelf therapies, strategies to mitigate adverse effects, and the integration of CAR T cells with other therapeutic modalities. This comprehensive analysis underscores the synergistic potential of these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell therapies, providing a forward-looking perspective on their evolutionary trajectory in cancer treatment.
Collapse
Affiliation(s)
- Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - John F DiPersio
- Center for Gene and Cellular Immunotherapy, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
3
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
4
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Ghorai SK, Pearson AN. Current Strategies to Improve Chimeric Antigen Receptor T (CAR-T) Cell Persistence. Cureus 2024; 16:e65291. [PMID: 39184661 PMCID: PMC11343441 DOI: 10.7759/cureus.65291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has transformed the field of immunology by redirecting T lymphocytes toward tumor antigens. Despite successes in attaining high remission rates as high as 90%, the performance of CAR therapy is limited by the survival of T cells. T cell persistence is crucial as it sustains immune response against malignancies, playing a critical role in cancer treatment outcomes. This review explores various approaches to improve CAR-T cell persistence, focusing on the choice between autologous and allogeneic cell sources, optimization of culture conditions for T cell subsets, metabolite adjustments to modify T cell metabolism, the use of oncolytic viruses (OVs), and advancements in CAR design. Autologous CAR-T cells generally exhibit longer persistence but are less accessible and cost-effective than their allogeneic counterparts. Optimizing culture conditions by promoting TSCM and TCM cell differentiation has also demonstrated increased persistence, as seen with the use of cytokine combinations like IL-7 and IL-15. Metabolic adjustments, such as using 2-deoxy-D-glucose (2-DG) and L-arginine, have enhanced the formation of memory T cells, leading to improved antitumor activity. OVs, when combined with CAR-T therapy, can amplify CAR-T cell penetration and persistence in solid tumors, although further clinical validation is needed. Advances in CAR design from second to fifth generations have progressively improved T cell activation and survival, with fifth-generation CARs demonstrating strong cytokine-mediated signaling and long-lasting persistence. Understanding the underlying mechanisms behind these strategies is essential for maximizing the potential of CAR-T therapy in treating cancer. Further research is needed to improve safety and efficacy and seamlessly integrate the discussed strategies into the manufacturing process.
Collapse
Affiliation(s)
| | - Ashley N Pearson
- Biomedical Sciences, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
6
|
Cappabianca D, Pham D, Forsberg MH, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji QH, Skala MC, Capitini CM, Saha K. Metabolic priming of GD2 TRAC-CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. Mol Ther Methods Clin Dev 2024; 32:101249. [PMID: 38699288 PMCID: PMC11063605 DOI: 10.1016/j.omtm.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Manufacturing chimeric antigen receptor (CAR) T cell therapies is complex, with limited understanding of how medium composition impacts T cell phenotypes. CRISPR-Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant (TRAC) gene resulting in TRAC-CAR T cells with an enriched stem cell memory T cell population, a process that could be further optimized through modifications to the medium composition. In this study we generated anti-GD2 TRAC-CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine-low medium and then expanded in glucose/glutamine-high medium. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro, and potency against human GD2+ xenograft neuroblastoma models in vivo. Compared with standard TRAC-CAR T cells, MP TRAC-CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity, and reduced IFN-γ, IL-2, IP-10, IL-1β, IL-17, and TGF-β production at the end of manufacturing ex vivo, with increased central memory CAR T cells and better persistence observed in vivo. MP with medium during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo, which could lead to better responses against solid tumors in vivo.
Collapse
Affiliation(s)
- Dan Cappabianca
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dan Pham
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Madison Bugel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | - Brookelyn Hrdlicka
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alexandria McHale
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Quaovi H. Sodji
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Goto A, Moriya Y, Nakayama M, Iwasaki S, Yamamoto S. DMPK perspective on quantitative model analysis for chimeric antigen receptor cell therapy: Advances and challenges. Drug Metab Pharmacokinet 2024; 56:101003. [PMID: 38843652 DOI: 10.1016/j.dmpk.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects in vitro and in vivo nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of in vitro models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients' lives through efficient CAR cell therapies.
Collapse
Affiliation(s)
- Akihiko Goto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shinji Iwasaki
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan.
| |
Collapse
|
8
|
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024; 64:40. [PMID: 38390935 PMCID: PMC10919759 DOI: 10.3892/ijo.2024.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5‑year survival rate markedly low. Recently, chimeric antigen receptor T (CAR‑T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR‑T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR‑T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T‑cell therapy for OS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
9
|
Cappabianca D, Pham D, Forsberg MH, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji Q, Skala MC, Capitini CM, Saha K. Metabolic priming of GD2 TRAC -CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.575774. [PMID: 38562720 PMCID: PMC10983869 DOI: 10.1101/2024.01.31.575774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Manufacturing Chimeric Antigen Receptor (CAR) T cell therapies is complex, with limited understanding of how media composition impact T-cell phenotypes. CRISPR/Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant ( TRAC ) gene resulting in TRAC -CAR T cells with an enriched stem cell memory T-cell population, a process that could be further optimized through modifications to the media composition. In this study we generated anti-GD2 TRAC -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine low media and then expanded in glucose/glutamine high media. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro and potency against human GD2+ xenograft neuroblastoma models in vivo . Compared to standard TRAC -CAR T cells, MP TRAC -CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity and reduced IFN-γ, IL-2, IP-10, IL-1β, IL-17, and TGFβ production at the end of manufacturing ex vivo , with increased central memory CAR T cells and better persistence observed in vivo . Metabolic priming with media during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo , which could lead to better responses against solid tumors in vivo .
Collapse
|
10
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
11
|
Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, Zamora AE. Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1310002. [PMID: 39086435 PMCID: PMC11285593 DOI: 10.3389/fmmed.2024.1310002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 08/02/2024]
Abstract
Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
Collapse
Affiliation(s)
- Alfredo S. Colina
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Viren Shah
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Scott Terhune
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Hoelzer D, Bassan R, Boissel N, Roddie C, Ribera JM, Jerkeman M. ESMO Clinical Practice Guideline interim update on the use of targeted therapy in acute lymphoblastic leukaemia. Ann Oncol 2024; 35:15-28. [PMID: 37832649 DOI: 10.1016/j.annonc.2023.09.3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Affiliation(s)
- D Hoelzer
- ONKOLOGIKUM Frankfurt am Museumsufer, Frankfurt, Germany
| | - R Bassan
- Hematology Unit, Ospedale dell'Angelo e Ospedale SS, Giovanni e Paolo, Mestre-Venezia, Italy
| | - N Boissel
- Hematology Department, Saint-Louis Hospital, APHP, Institut de Recherche Saint-Louis, Université de Paris Cité, Paris, France
| | - C Roddie
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | - J M Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Jose Carreras Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - M Jerkeman
- Department of Oncology, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
13
|
Bäckel N, Hort S, Kis T, Nettleton DF, Egan JR, Jacobs JJL, Grunert D, Schmitt RH. Elaborating the potential of Artificial Intelligence in automated CAR-T cell manufacturing. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1250508. [PMID: 39086671 PMCID: PMC11285580 DOI: 10.3389/fmmed.2023.1250508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 08/02/2024]
Abstract
This paper discusses the challenges of producing CAR-T cells for cancer treatment and the potential for Artificial Intelligence (AI) for its improvement. CAR-T cell therapy was approved in 2018 as the first Advanced Therapy Medicinal Product (ATMP) for treating acute leukemia and lymphoma. ATMPs are cell- and gene-based therapies that show great promise for treating various cancers and hereditary diseases. While some new ATMPs have been approved, ongoing clinical trials are expected to lead to the approval of many more. However, the production of CAR-T cells presents a significant challenge due to the high costs associated with the manufacturing process, making the therapy very expensive (approx. $400,000). Furthermore, autologous CAR-T therapy is limited to a make-to-order approach, which makes scaling economical production difficult. First attempts are being made to automate this multi-step manufacturing process, which will not only directly reduce the high manufacturing costs but will also enable comprehensive data collection. AI technologies have the ability to analyze this data and convert it into knowledge and insights. In order to exploit these opportunities, this paper analyses the data potential in the automated CAR-T production process and creates a mapping to the capabilities of AI applications. The paper explores the possible use of AI in analyzing the data generated during the automated process and its capabilities to further improve the efficiency and cost-effectiveness of CAR-T cell production.
Collapse
Affiliation(s)
- Niklas Bäckel
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Simon Hort
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Tamás Kis
- Institute for Computer Science and Control, Hungarian Research Network, Budapest, Hungary
| | | | - Joseph R. Egan
- Department of Biochemical Engineering, Mathematical Modelling of Cell and Gene Therapies, University College London, London, United Kingdom
| | | | - Dennis Grunert
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Robert H. Schmitt
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
- Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
15
|
Vavassori V, Ferrari S, Beretta S, Asperti C, Albano L, Annoni A, Gaddoni C, Varesi A, Soldi M, Cuomo A, Bonaldi T, Radrizzani M, Merelli I, Naldini L. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023; 142:812-826. [PMID: 37294917 PMCID: PMC10644071 DOI: 10.1182/blood.2022019333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Asperti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Soldi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cuomo
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Marina Radrizzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature 2023; 619:707-715. [PMID: 37495877 DOI: 10.1038/s41586-023-06243-w] [Citation(s) in RCA: 140] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 07/28/2023]
Abstract
Engineering a patient's own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.
Collapse
Affiliation(s)
- Daniel J Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Epstein
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Lopez E, Karattil R, Nannini F, Weng-Kit Cheung G, Denzler L, Galvez-Cancino F, Quezada S, Pule MA. Inhibition of lactate transport by MCT-1 blockade improves chimeric antigen receptor T-cell therapy against B-cell malignancies. J Immunother Cancer 2023; 11:e006287. [PMID: 37399358 DOI: 10.1136/jitc-2022-006287] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have shown remarkable results against B-cell malignancies, but only a minority of patients have long-term remission. The metabolic requirements of both tumor cells and activated T cells result in production of lactate. The export of lactate is facilitated by expression of monocarboxylate transporter (MCTs). CAR T cells express high levels of MCT-1 and MCT-4 on activation, while certain tumors predominantly express MCT-1. METHODS Here, we studied the combination of CD19-specific CAR T-cell therapy with pharmacological blockade of MCT-1 against B-cell lymphoma. RESULTS MCT-1 inhibition with small molecules AZD3965 or AR-C155858 induced CAR T-cell metabolic rewiring but their effector function and phenotype remained unchanged, suggesting CAR T cells are insensitive to MCT-1 inhibition. Moreover, improved cytotoxicity in vitro and antitumoral control on mouse models was found with the combination of CAR T cells and MCT-1 blockade. CONCLUSION This work highlights the potential of selective targeting of lactate metabolism via MCT-1 in combination with CAR T cells therapies against B-cell malignancies.
Collapse
Affiliation(s)
- Ernesto Lopez
- Haematology Department, Cancer Institute, University College London, London, UK
| | - Rajesh Karattil
- Haematology Department, Cancer Institute, University College London, London, UK
| | - Francesco Nannini
- Cancer Immunology Unit, Cancer Institute, University College London, London, UK
| | | | - Lilian Denzler
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Sergio Quezada
- Cancer Immunology Unit, Cancer Institute, University College London, London, UK
| | - Martin A Pule
- Haematology Department, Cancer Institute, University College London, London, UK
| |
Collapse
|
18
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Peng JJ, Wang L, Li Z, Ku CL, Ho PC. Metabolic challenges and interventions in CAR T cell therapy. Sci Immunol 2023; 8:eabq3016. [PMID: 37058548 DOI: 10.1126/sciimmunol.abq3016] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have achieved true clinical success in treating hematological malignancy patients, laying the foundation of CAR T cells as a new pillar of cancer therapy. Although these promising effects have generated strong interest in expanding the treatment of CAR T cells to solid tumors, reproducible demonstration of clinical efficacy in the setting of solid tumors has remained challenging to date. Here, we review how metabolic stress and signaling in the tumor microenvironment, including intrinsic determinants of response to CAR T cell therapy and extrinsic obstacles, restrict the efficacy of CAR T cell therapy in cancer treatment. In addition, we discuss the use of novel approaches to target and rewire metabolic programming for CAR T cell manufacturing. Last, we summarize strategies that aim to improve the metabolic adaptability of CAR T cells to enhance their potency in mounting antitumor responses and survival within the tumor microenvironment.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Limei Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Zhiyu Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Cheng-Lung Ku
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
20
|
Sanyanusin M, Tudsamran S, Thaiwong R, Tawinwung S, Nishio N, Takahashi Y, Hirankarn N, Suppipat K. Novel xeno-free and serum-free culturing condition to improve piggyBac transposon-based CD19 chimeric antigen receptor T-cell production and characteristics. Cytotherapy 2023; 25:397-406. [PMID: 36517366 DOI: 10.1016/j.jcyt.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T cell is a novel therapy for relapse and refractory hematologic malignancy. Characteristics of CAR T cells are associated with clinical efficacy and toxicity. The type of serum supplements used during cultivation affects the immunophenotype and function of viral-based CAR T cells. This study explores the effect of serum supplements on nonviral piggyBac transposon CAR T-cell production. METHODS PiggyBac CD19 CAR T cells were expanded in cultured conditions containing fetal bovine serum, human AB serum or xeno-free serum replacement. We evaluated the effect of different serum supplements on cell expansion, transduction efficiency, immunophenotypes and antitumor activity. RESULTS Xeno-free serum replacement exhibited comparable CAR surface expression, cell expansion and short-term antitumor activity compared with conventional serum supplements. However, CAR T cells cultivated with xeno-free serum replacement exhibited an increased naïve/stem cell memory population and better T-cell expansion after long-term co-culture as well as during the tumor rechallenge assay. CONCLUSIONS Our study supports the usage of xeno-free serum replacement as an alternative source of serum supplements for piggyBac-based CAR T-cell expansion.
Collapse
Affiliation(s)
- Mulita Sanyanusin
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suparat Tudsamran
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rattapoom Thaiwong
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Supannikar Tawinwung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nobuhiro Nishio
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
21
|
Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res 2023; 33:341-354. [PMID: 36882513 PMCID: PMC10156745 DOI: 10.1038/s41422-023-00789-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Tonic signaling of chimeric antigen receptor (CAR), i.e., the spontaneous CAR activation in the absence of tumor antigen stimulation, is considered to be a pivotal event controlling CAR-T efficacy. However, the molecular mechanism underlying the spontaneous CAR signals remains elusive. Here, we unveil that positively charged patches (PCPs) on the surface of the CAR antigen-binding domain mediate CAR clustering and result in CAR tonic signaling. For CARs with high tonic signaling (e.g., GD2.CAR and CSPG4.CAR), reducing PCPs on CARs or boosting ionic strength in the culture medium during ex vivo CAR-T cell expansion minimizes spontaneous CAR activation and alleviates CAR-T cell exhaustion. In contrast, introducing PCPs into the CAR with weak tonic signaling, such as CD19.CAR, results in improved in vivo persistence and superior antitumor function. These results demonstrate that CAR tonic signaling is induced and maintained by PCP-mediated CAR clustering. Notably, the mutations we generated to alter the PCPs maintain the antigen-binding affinity and specificity of the CAR. Therefore, our findings suggest that the rational tuning of PCPs to optimize tonic signaling and in vivo fitness of CAR-T cells is a promising design strategy for the next-generation CAR.
Collapse
|
22
|
Labuz D, Cacioppo J, Li K, Aubé J, Leung DT. Enhancing Mucosal-Associated Invariant T Cell Function and Expansion with Human Selective Serum. Immunohorizons 2023; 7:116-124. [PMID: 36651819 PMCID: PMC10026854 DOI: 10.4049/immunohorizons.2200082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/26/2022] [Indexed: 01/19/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are promising innate-like lymphocytes with potential for use in anti-tumor immunotherapy. Existing MAIT cell expansion protocols are associated with potentially decremental phenotypic changes, including increased frequency of CD4+ MAIT cells and higher inhibitory receptor expression. In this study, we compared the effect on expansion of human MAIT cells of a serum replacement, Physiologix XF SR (Phx), with traditional serum FBS for supplementing RPMI 1640 media. Using flow cytometry, we found that Phx supported a significantly higher proliferative capacity for MAIT cells and resulted in a lower frequency of CD4+ MAIT cells, which have been associated with reduced Th1 effector and cytolytic functions. We saw that culturing MAIT cells in Phx led to better survival of MAIT cells and lower frequency of PD-1+ MAIT cells than FBS-supplemented media. Functionally, we saw that Phx supplementation was associated with a higher frequency of IFN-γ+ MAIT cells after stimulation with Escherichia coli than FBS-supplemented RPMI. In conclusion, we show that MAIT cells cultured in Phx have higher proliferative capacity, lower expression of inhibitory receptors, and higher capacity to produce IFN-γ after E. coli stimulation than FBS-supplemented RPMI. This work shows that expanding MAIT cells with Phx compared with FBS-supplemented RPMI results in a more functionally desirable MAIT cell for future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Daniel Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Jackson Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel T. Leung
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
23
|
Razavi AS, Loskog A, Razi S, Rezaei N. The signaling and the metabolic differences of various CAR T cell designs. Int Immunopharmacol 2023; 114:109593. [PMID: 36700773 DOI: 10.1016/j.intimp.2022.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is introduced as an effective, rapidly evolving therapeutic to treat cancer, especially cancers derived from hematological cells, such as B cells. CAR T cell gene constructs combine a tumor-targeting device coupled to the T cell receptor (TCR) zeta chain domain with different signaling domains such as domains derived from CD28 or 4-1BB (CD137). The incorporation of each specific co-stimulatory domain targets the immunometabolic pathways of CAR T cells as well as other signaling pathways. Defining the immunometabolic and signaling pathways by which CAR T cells become and remain active, survive, and eliminate their targets may represent a huge step forward in this relatively young research field as the CAR gene can be tailored to gain optimal function also for solid tumors with elaborate immunosuppression and protective stroma. There is a close relationship between different signaling domains applied in CAR T cells, and difficult to evaluate the benefit from different tested CAR gene constructs. In this review, we attempt to collect the latest findings regarding the CAR T cell signaling pathways that affect immunometabolic pathways.
Collapse
Affiliation(s)
- Azadeh Sadat Razavi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 751 85, Uppsala, Sweden
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
24
|
Kretschmann S, Völkl S, Reimann H, Krönke G, Schett G, Achenbach S, Lutzny-Geier G, Müller F, Mougiakakos D, Dingfelder J, Flamann C, Hanssens L, Gary R, Mackensen A, Aigner M. Successful Generation of CD19 Chimeric Antigen Receptor T Cells from Patients with Advanced Systemic Lupus Erythematosus. Transplant Cell Ther 2023; 29:27-33. [PMID: 36241147 DOI: 10.1016/j.jtct.2022.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Although it has been shown that the production of functional chimeric antigen receptor T cells is feasible in patients with B-cell malignancies, it is currently unclear whether sufficient amounts of functional autologous CAR T cells can be generated from patients with autoimmune diseases. Intrinsic T-cell abnormalities and T-cell-targeted immune suppression in patients with autoimmunity may hamper the retrieval of sufficient T cells and their transduction and expansion into CAR T cells. Patients with active systemic lupus erythematosus (SLE) underwent leukapheresis after tapering glucocorticoids and stopping T-cell-suppressive drugs. This material was used as source for manufacturing anti-CD19 CAR T-cell products (CAR) in clinical scale. Cells were transduced with a lentiviral anti-CD19 CAR vector and expanded under good manufacturing practice (GMP) conditions using a closed, semi-automatic system. Functionality of these CAR T cells derived from autoimmune patient cells was tested in vitro. Six SLE patients were analyzed. Leukapheresis could be successfully performed in all patients yielding sufficient T-cell numbers for clinical scale CAR T-cell production. In addition, CAR T cells showed high expansion rates and viability, leading to CAR T cells in sufficient doses and quality for clinical use. CAR T cells from all patients showed specific cytotoxicity against CD19+ cell lines in vitro. GMP grade generation of CD19 CAR T-cell products suitable for clinical use is feasible in patients with autoimmune disease.
Collapse
Affiliation(s)
- S Kretschmann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - S Völkl
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - H Reimann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - G Krönke
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Erlangen, Germany
| | - G Schett
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital of Erlangen, Erlangen, Germany
| | - S Achenbach
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - G Lutzny-Geier
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - F Müller
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - D Mougiakakos
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Hematology and Oncology, University of Magdeburg, Magdeburg, Germany
| | - J Dingfelder
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - C Flamann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - L Hanssens
- Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - R Gary
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - A Mackensen
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - M Aigner
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
25
|
D’Accardo C, Porcelli G, Mangiapane LR, Modica C, Pantina VD, Roozafzay N, Di Franco S, Gaggianesi M, Veschi V, Lo Iacono M, Todaro M, Turdo A, Stassi G. Cancer cell targeting by CAR-T cells: A matter of stemness. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1055028. [PMID: 39086964 PMCID: PMC11285689 DOI: 10.3389/fmmed.2022.1055028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 08/02/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.
Collapse
Affiliation(s)
- Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Abstract
Significance: Immune cell therapy involves the administration of immune cells into patients, and it has emerged as one of the most common type of immunotherapy for cancer treatment. Knowledge on the biology and metabolism of the adoptively transferred immune cells and the metabolic requirements of different cell types in the tumor is fundamental for the development of immune cell therapy with higher efficacy. Recent Advances: Adoptive T cell therapy has been shown to be effective in limited types of cancer. Different types and generations of adoptive T cell therapies have evolved in the recent decade. This review covers the basic principles and development of these therapies in cancer treatment. Critical Issues: Our review provides an overview on the basic concepts on T cell metabolism and highlights the metabolic requirements of T and adoptively transferred T cells. Future Directions: Integrating the knowledge just cited will facilitate the development of strategies to maximize the expansion of adoptively transferred T cells ex vivo and in vivo and to promote their durability and antitumor effects. Antioxid. Redox Signal. 37, 1303-1324.
Collapse
Affiliation(s)
- Ge Hui Tan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Carmen Chak-Lui Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Oncology and Immunology, Hong Kong Science Park, Hong Kong, SAR, China
| |
Collapse
|
27
|
Liu Y, An L, Huang R, Xiong J, Yang H, Wang X, Zhang X. Strategies to enhance CAR-T persistence. Biomark Res 2022; 10:86. [PMID: 36419115 PMCID: PMC9685914 DOI: 10.1186/s40364-022-00434-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has significantly improved the life expectancy for patients with refractory or relapse B cell lymphoma. As for B cell acute lymphoblastic leukemia (B-ALL), although the primary response rate is promising, the high incidence of early relapse has caused modest long-term survival with CAR-T cell alone. One of the main challenges is the limited persistence of CAR-T cells. To further optimize the clinical effects of CAR-T cells, many studies have focused on modifying the CAR structure and regulating CAR-T cell differentiation. In this review, we focus on CAR-T cell persistence and summarize the latest progress and strategies adopted during the in vitro culture stage to optimize CAR-T immunotherapy by improving long-term persistence. Such strategies include choosing a suitable cell source, improving culture conditions, combining CAR-T cells with conventional drugs, and applying genetic manipulations, all of which may improve the survival of patients with hematologic malignancies by reducing the probability of recurrence after CAR-T cell infusion and provide clues for solid tumor CAR-T cell therapy development.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Haoyu Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China. .,Jinfeng Laboratory, 401329, Chongqing, China.
| |
Collapse
|
28
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
29
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
30
|
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) 2022; 14:5442. [PMID: 36358860 PMCID: PMC9658570 DOI: 10.3390/cancers14215442] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells hold enormous potential. However, a substantial proportion of patients receiving CAR T cells will not reach long-term full remission. One of the causes lies in their premature exhaustion, which also includes a metabolic anergy of adoptively transferred CAR T cells. T cell phenotypes that have been shown to be particularly well suited for CAR T cell therapy display certain metabolic characteristics; whereas T-stem cell memory (TSCM) cells, characterized by self-renewal and persistence, preferentially meet their energetic demands through oxidative phosphorylation (OXPHOS), effector T cells (TEFF) rely on glycolysis to support their cytotoxic function. Various parameters of CAR T cell design and manufacture co-determine the metabolic profile of the final cell product. A co-stimulatory 4-1BB domain promotes OXPHOS and formation of central memory T cells (TCM), while T cells expressing CARs with CD28 domains predominantly utilize aerobic glycolysis and differentiate into effector memory T cells (TEM). Therefore, modification of CAR co-stimulation represents one of the many strategies currently being investigated for improving CAR T cells' metabolic fitness and survivability within a hostile tumor microenvironment (TME). In this review, we will focus on the role of CAR T cell metabolism in therapeutic efficacy together with potential targets of intervention.
Collapse
Affiliation(s)
- Judit Rial Saborido
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Medical Center, Department of Hematology and Oncology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
31
|
Sudarsanam H, Buhmann R, Henschler R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 2022; 10:886637. [PMID: 35845425 PMCID: PMC9277485 DOI: 10.3389/fbioe.2022.886637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Collapse
Affiliation(s)
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
López-Cantillo G, Urueña C, Camacho BA, Ramírez-Segura C. CAR-T Cell Performance: How to Improve Their Persistence? Front Immunol 2022; 13:878209. [PMID: 35572525 PMCID: PMC9097681 DOI: 10.3389/fimmu.2022.878209] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.
Collapse
Affiliation(s)
- Gina López-Cantillo
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Cesar Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
- Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
33
|
Watanabe N, Mo F, McKenna MK. Impact of Manufacturing Procedures on CAR T Cell Functionality. Front Immunol 2022; 13:876339. [PMID: 35493513 PMCID: PMC9043864 DOI: 10.3389/fimmu.2022.876339] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
The field of chimeric antigen receptor (CAR) modified T cell therapy has rapidly expanded in the past few decades. As of today, there are six CAR T cell products that have been approved by the FDA: KYMRIAH (tisagenlecleucel, CD19 CAR T cells), YESCARTA (axicabtagene ciloleucel, CD19 CAR T cells), TECARTUS (brexucabtagene autoleucel, CD19 CAR T cells), BREYANZI (lisocabtagene maraleucel, CD19 CAR T cells), ABECMA (idecabtagene vicleucel, BCMA CAR T cells) and CARVYKTI (ciltacabtagene autoleucel, BCMA CAR T cells). With this clinical success, CAR T cell therapy has become one of the most promising treatment options to combat cancers. Current research efforts focus on further potentiating its efficacy in non-responding patients and solid tumor settings. To achieve this, recent evidence suggested that, apart from developing next-generation CAR T cells with additional genetic modifications, ex vivo culture conditions could significantly impact CAR T cell functionality - an often overlooked aspect during clinical translation. In this review, we focus on the ex vivo manufacturing process for CAR T cells and discuss how it impacts CAR T cell function.
Collapse
Affiliation(s)
- Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mary Kathryn McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
34
|
MacPherson S, Keyes S, Kilgour MK, Smazynski J, Chan V, Sudderth J, Turcotte T, Devlieger A, Yu J, Huggler KS, Cantor JR, DeBerardinis RJ, Siatskas C, Lum JJ. Clinically relevant T cell expansion media activate distinct metabolic programs uncoupled from cellular function. Mol Ther Methods Clin Dev 2022; 24:380-393. [PMID: 35284590 PMCID: PMC8897702 DOI: 10.1016/j.omtm.2022.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
Ex vivo expansion conditions used to generate T cells for immunotherapy are thought to adopt metabolic phenotypes that impede therapeutic efficacy in vivo. The comparison of five different culture media used for clinical T cell expansion revealed unique optima based on different output variables, including proliferation, differentiation, function, activation, and mitochondrial phenotypes. The extent of proliferation and function depended on the culture media rather than stimulation conditions. Moreover, the expanded T cell end products adapted their metabolism when switched to a different media formulation, as shown by glucose and glutamine uptake and patterns of glucose isotope labeling. However, adoption of these metabolic phenotypes was uncoupled to T cell function. Expanded T cell products cultured in ascites from ovarian cancer patients displayed suppressed mitochondrial activity and function irrespective of the ex vivo expansion media. Thus, ex vivo T cell expansion media have profound impacts on metabolism and function.
Collapse
Affiliation(s)
- Sarah MacPherson
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R6V5, Canada
| | - Sarah Keyes
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R6V5, Canada
| | - Marisa K Kilgour
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Julian Smazynski
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Vanessa Chan
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jessica Sudderth
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Jessie Yu
- Stemcell Technologies Canada Inc., Vancouver, BC, Canada
| | - Kimberly S Huggler
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason R Cantor
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R6V5, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
35
|
Durgin JS, Thokala R, Johnson L, Song E, Leferovich J, Bhoj V, Ghassemi S, Milone M, Binder Z, O'Rourke DM, O'Connor RS. Enhancing CAR T function with the engineered secretion of C. perfringens neuraminidase. Mol Ther 2022; 30:1201-1214. [PMID: 34813961 PMCID: PMC8899523 DOI: 10.1016/j.ymthe.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Prior to adoptive transfer, CAR T cells are activated, lentivirally infected with CAR transgenes, and expanded over 9 to 11 days. An unintended consequence of this process is the progressive differentiation of CAR T cells over time in culture. Differentiated T cells engraft poorly, which limits their ability to persist and provide sustained tumor control in hematologic as well as solid tumors. Solid tumors include other barriers to CAR T cell therapies, including immune and metabolic checkpoints that suppress effector function and durability. Sialic acids are ubiquitous surface molecules with known immune checkpoint functions. The enzyme C. perfringens neuraminidase (CpNA) removes sialic acid residues from target cells, with good activity at physiologic conditions. In combination with galactose oxidase (GO), NA has been found to stimulate T cell mitogenesis and cytotoxicity in vitro. Here we determine whether CpNA alone and in combination with GO promotes CAR T cell antitumor efficacy. We show that CpNA restrains CAR T cell differentiation during ex vivo culture, giving rise to progeny with enhanced therapeutic potential. CAR T cells expressing CpNA have superior effector function and cytotoxicity in vitro. In a Nalm-6 xenograft model of leukemia, CAR T cells expressing CpNA show enhanced antitumor efficacy. Arming CAR T cells with CpNA also enhanced tumor control in xenograft models of glioblastoma as well as a syngeneic model of melanoma. Given our findings, we hypothesize that charge repulsion via surface glycans is a regulatory parameter influencing differentiation. As T cells engage target cells within tumors and undergo constitutive activation through their CARs, critical thresholds of negative charge may impede cell-cell interactions underlying synapse formation and cytolysis. Removing the dense pool of negative cell-surface charge with CpNA is an effective approach to limit CAR T cell differentiation and enhance overall persistence and efficacy.
Collapse
Affiliation(s)
- Joseph S Durgin
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Thokala
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA
| | - Lexus Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Song
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay Bhoj
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zev Binder
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, SPE 8-105, Philadelphia, PA, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
37
|
Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021; 14:cancers14010183. [PMID: 35008348 PMCID: PMC8782435 DOI: 10.3390/cancers14010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer treatments are evolving at a very rapid pace. Some of the most novel anti-cancer medicines under development rely on the modification of immune cells in order to transform them into potent tumor-killing cells. However, the tumor microenvironment (TME) is competing for nutrients with these harnessed immune cells and therefore paralyzes their metabolic effective and active anti-cancer activities. Here we describe strategies to overcome these hurdles imposed on immune cell activity, which lead to therapeutic approaches to enhance metabolic fitness of the patient’s immune system with the objective to improve their anti-cancer capacity. Abstract Chimeric antigen receptor (CAR) T and CAR NK cell therapies opened new avenues for cancer treatment. Although original successes of CAR T and CAR NK cells for the treatment of hematological malignancies were extraordinary, several obstacles have since been revealed, in particular their use for the treatment of solid cancers. The tumor microenvironment (TME) is competing for nutrients with T and NK cells and their CAR-expressing counterparts, paralyzing their metabolic effective and active states. Consequently, this can lead to alterations in their anti-tumoral capacity and persistence in vivo. High glucose uptake and the depletion of key amino acids by the TME can deprive T and NK cells of energy and building blocks, which turns them into a state of anergy, where they are unable to exert cytotoxic activity against cancer cells. This is especially true in the context of an immune-suppressive TME. In order to re-invigorate the T, NK, CAR T and CAR NK cell-mediated antitumor response, the field is now attempting to understand how metabolic pathways might change T and NK responses and functions, as well as those from their CAR-expressing partners. This revealed ways to metabolically rewire these cells by using metabolic enhancers or optimizing pre-infusion in vitro cultures of these cells. Importantly, next-generation CAR T and CAR NK products might include in the future the necessary metabolic requirements by improving their design, manufacturing process and other parameters. This will allow the overcoming of current limitations due to their interaction with the suppressive TME. In a clinical setting, this might improve their anti-cancer effector activity in synergy with immunotherapies. In this review, we discuss how the tumor cells and TME interfere with T and NK cell metabolic requirements. This may potentially lead to therapeutic approaches that enhance the metabolic fitness of CAR T and CAR NK cells, with the objective to improve their anti-cancer capacity.
Collapse
|
38
|
Zhang M, Jin X, Sun R, Xiong X, Wang J, Xie D, Zhao M. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J Transl Med 2021; 19:499. [PMID: 34876185 PMCID: PMC8650271 DOI: 10.1186/s12967-021-03165-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy is a relatively new, effective, and rapidly evolving therapeutic for adoptive immunotherapies. Although it has achieved remarkable effect in hematological malignancies, there are some problems that remain to be resolved. For example, there are high recurrence rates and poor efficacy in solid tumors. In this review, we first briefly describe the metabolic re-editing of T cells and the changes in metabolism during the preparation of CAR-T cells. Furthermore, we summarize the latest developments and newest strategies to improve the metabolic adaptability and antitumor activity of CAR-T cells in vitro and in vivo.
Collapse
Affiliation(s)
- Meng Zhang
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Rui Sun
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xia Xiong
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Jiaxi Wang
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Danni Xie
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
39
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Optimizing the Clinical Impact of CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia: Looking Back While Moving Forward. Front Immunol 2021; 12:765097. [PMID: 34777381 PMCID: PMC8581403 DOI: 10.3389/fimmu.2021.765097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been successful in creating extraordinary clinical outcomes in the treatment of hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). With several FDA approvals, CAR-T therapy is recognized as an alternative treatment option for particular patients with certain conditions of B-ALL, diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, or multiple myeloma. However, CAR-T therapy for B-ALL can be surrounded by challenges such as various adverse events including the life-threatening cytokine release syndrome (CRS) and neurotoxicity, B-cell aplasia-associated hypogammaglobulinemia and agammaglobulinemia, and the alloreactivity of allogeneic CAR-Ts. Furthermore, recent advances such as improvements in media design, the reduction of ex vivo culturing duration, and other phenotype-determining factors can still create room for a more effective CAR-T therapy in R/R B-ALL. Herein, we review preclinical and clinical strategies with a focus on novel studies aiming to address the mentioned hurdles and stepping further towards a milestone in CAR-T therapy of B-ALL.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Tu VY, Ayari A, O’Connor RS. Beyond the Lactate Paradox: How Lactate and Acidity Impact T Cell Therapies against Cancer. Antibodies (Basel) 2021; 10:25. [PMID: 34203136 PMCID: PMC8293081 DOI: 10.3390/antib10030025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
T cell therapies, including CAR T cells, have proven more effective in hematologic malignancies than solid tumors, where the local metabolic environment is distinctly immunosuppressive. In particular, the acidic and hypoxic features of the tumor microenvironment (TME) present a unique challenge for T cells. Local metabolism is an important consideration for activated T cells as they undergo bursts of migration, proliferation and differentiation in hostile soil. Tumor cells and activated T cells both produce lactic acid at high rates. The role of lactic acid in T cell biology is complex, as lactate is an often-neglected carbon source that can fuel TCA anaplerosis. Circulating lactate is also an important means to regulate redox balance. In hypoxic tumors, lactate is immune-suppressive. Here, we discuss how intrinsic- (T cells) as well as extrinsic (tumor cells and micro-environmental)-derived metabolic factors, including lactate, suppress the ability of antigen-specific T cells to eradicate tumors. Finally, we introduce recent discoveries that target the TME in order to potentiate T cell-based therapies against cancer.
Collapse
Affiliation(s)
- Violet Y. Tu
- Center for Cellular Immunotherapies, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Biological Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Asma Ayari
- Nucleus Biologics, LLC., San Diego, CA 92127, USA;
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
|
42
|
Jenkins Y, Zabkiewicz J, Ottmann O, Jones N. Tinkering under the Hood: Metabolic Optimisation of CAR-T Cell Therapy. Antibodies (Basel) 2021; 10:antib10020017. [PMID: 33925949 PMCID: PMC8167549 DOI: 10.3390/antib10020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells are one of the most exciting areas of immunotherapy to date. Clinically available CAR-T cells are used to treat advanced haematological B-cell malignancies with complete remission achieved at around 30-40%. Unfortunately, CAR-T cell success rates are even less impressive when considering a solid tumour. Reasons for this include the paucity of tumour specific targets and greater degree of co-expression on normal tissues. However, there is accumulating evidence that considerable competition for nutrients such as carbohydrates and amino acids within the tumour microenvironment (TME) coupled with immunosuppression result in mitochondrial dysfunction, exhaustion, and subsequent CAR-T cell depletion. In this review, we will examine research avenues being pursued to dissect the various mechanisms contributing to the immunosuppressive TME and outline in vitro strategies currently under investigation that focus on boosting the metabolic program of CAR-T cells as a mechanism to overcome the immunosuppressive TME. Various in vitro and in vivo techniques boost oxidative phosphorylation and mitochondrial fitness in CAR-T cells, resulting in an enhanced central memory T cell compartment and increased anti-tumoural immunity. These include intracellular metabolic enhancers and extracellular in vitro culture optimisation pre-infusion. It is likely that the next generation of CAR-T products will incorporate these elements of metabolic manipulation in CAR-T cell design and manufacture. Given the importance of immunometabolism and T cell function, it is critical that we identify ways to metabolically armour CAR-T cells to overcome the hostile TME and increase clinical efficacy.
Collapse
Affiliation(s)
- Yasmin Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| | - Joanna Zabkiewicz
- Experimental Cancer Medicine Center, Department of Haematology, Heath Hospital, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (J.Z.); (O.O.)
| | - Oliver Ottmann
- Experimental Cancer Medicine Center, Department of Haematology, Heath Hospital, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (J.Z.); (O.O.)
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
- Correspondence:
| |
Collapse
|
43
|
Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol 2021; 21:769-784. [PMID: 33879873 DOI: 10.1038/s41577-021-00539-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
The antitumour activity of endogenous or adoptively transferred tumour-specific T cells is highly dependent on their differentiation status. It is now apparent that less differentiated T cells compared with fully differentiated effector T cells have better antitumour therapeutic effects owing to their enhanced capacity to expand and their long-term persistence. In patients with cancer, the presence of endogenous or adoptively transferred T cells with stem-like memory or precursor phenotype correlates with improved therapeutic outcomes. Advances in our understanding of T cell differentiation states at the epigenetic and transcriptional levels have led to the development of novel methods to generate tumour-specific T cells - namely, chimeric antigen receptor T cells - that are more persistent and resistant to the development of dysfunction. These include the use of novel culture methods before infusion, modulation of transcriptional, metabolic and/or epigenetic programming, and strategies that fine-tune antigen receptor signalling. This Review discusses existing barriers and strategies to overcome them for successful T cell expansion and persistence in the context of adoptive T cell immunotherapy for solid cancers.
Collapse
|
44
|
Barro L, Burnouf PA, Chou ML, Nebie O, Wu YW, Chen MS, Radosevic M, Knutson F, Burnouf T. Human platelet lysates for human cell propagation. Platelets 2020; 32:152-162. [PMID: 33251940 DOI: 10.1080/09537104.2020.1849602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pathogen-free and standardized xeno-free supplement of growth media is required for the ex vivo propagation of human cells used as advanced therapeutic medicinal products and for clinical translation in regenerative medicine and cell therapies. Human platelet lysate (HPL) made from therapeutic-grade platelet concentrate (PC) is increasingly regarded as being an efficient xeno-free alternative growth medium supplement to fetal bovine serum (FBS) for clinical-grade isolation and/or propagation of human cells. Most experimental studies establishing the superiority of HPL over FBS were conducted using mesenchymal stromal cells (MSCs) from bone marrow or adipose tissues. Data almost unanimously concur that MSCs expanded in a media supplemented with HPL have improved proliferation, shorter doubling times, and preserved clonogenicity, immunophenotype, in vitro trilineage differentiation capacity, and T-cell immunosuppressive activity. HPL can also be substituted for FBS when propagating MSCs from various other tissue sources, including Wharton jelly, the umbilical cord, amniotic fluid, dental pulp, periodontal ligaments, and apical papillae. Interestingly, HPL xeno-free supplementation is also proving successful for expanding human-differentiated cells, including chondrocytes, corneal endothelium and corneal epithelium cells, and tenocytes, for transplantation and tissue-engineering applications. In addition, the most recent developments suggest the possibility of successfully expanding immune cells such as macrophages, dendritic cells, and chimeric antigen receptor-T cells in HPL, further broadening its use as a growth medium supplement. Therefore, strong scientific rationale supports the use of HPL as a universal growth medium supplement for isolating and propagating therapeutic human cells for transplantation and tissue engineering. Efforts are underway to ensure optimal standardization and pathogen safety of HPL to secure its reliability for clinical-grade cell-therapy and regenerative medicine products and tissue engineering.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan
| | - Pierre-Alain Burnouf
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,INSERM UMRS 938, CdR Saint-Antoine, Laboratory Immune System, Neuroinflammation and Neurodegenerative Diseases, Saint-Antoine Hospital, Paris, France
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Miryana Radosevic
- Technological Intelligence Department, Human Protein Process Sciences, Lille, France
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering,Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
45
|
Ayari A, O’Connor RS. Citius, Altius, Fortius: Performance in a Bottle for CAR T-Cells. JOURNAL OF CLINICAL HAEMATOLOGY 2020; 1:103-106. [PMID: 33554221 PMCID: PMC7861513 DOI: 10.33696/haematology.1.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Asma Ayari
- Nucleus Biologics, LLC, San Diego, CA, USA
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|