1
|
Ritter MU, Nasri M, Dannenmann B, Mir P, Secker B, Amend D, Klimiankou M, Welte K, Skokowa J. Comparison of Gene-Editing Approaches for Severe Congenital Neutropenia-Causing Mutations in the ELANE Gene. CRISPR J 2024; 7:258-271. [PMID: 39436283 DOI: 10.1089/crispr.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Safety considerations for gene therapies of inherited preleukemia syndromes, including severe congenital neutropenia (CN), are paramount. We compared several strategies for CRISPR/Cas9 gene editing of autosomal-dominant ELANE mutations in CD34+ cells from two CN patients head-to-head. We tested universal and allele-specific ELANE knockout, ELANE mutation correction by homology-directed repair (HDR) with AAV6, and allele-specific HDR with ssODN. All strategies were not toxic, had at least 30% editing, and rescued granulopoiesis in vitro. In contrast to published data, allele-specific indels in the last exon of ELANE also restored granulopoiesis. Moreover, by implementing patient-derived induced pluripotent stem cells for GUIDE-Seq off-target analysis, we established a clinically relevant "personalized" assessment of off-target activity of gene editing on the background of the patient's genome. We found that allele-specific approaches had the most favorable off-target profiles. Taken together, a well-defined head-to-head comparison pipeline for selecting the appropriate gene therapy is essential for diseases, with several gene editing strategies available.
Collapse
Affiliation(s)
- Malte Ulrich Ritter
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Masoud Nasri
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Perihan Mir
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Secker
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Diana Amend
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Maksim Klimiankou
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, University Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
- Gene and RNA Therapy Center, Tübingen University, Tübingen, Germany
| |
Collapse
|
2
|
Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev 2024; 98:102321. [PMID: 38723752 DOI: 10.1016/j.arr.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. In AD, the binding of Aβ with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Dist-Birbhum, West Bengal, India
| | | | - Sunil Kumar
- Faculty of Pharmacy, P. K. University, Village, Thanra, District, Karera, Shivpuri, Madhya Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institue of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
3
|
Moiani A, Letort G, Lizot S, Chalumeau A, Foray C, Felix T, Le Clerre D, Temburni-Blake S, Hong P, Leduc S, Pinard N, Marechal A, Seclen E, Boyne A, Mayer L, Hong R, Pulicani S, Galetto R, Gouble A, Cavazzana M, Juillerat A, Miccio A, Duclert A, Duchateau P, Valton J. Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells. Nat Commun 2024; 15:4965. [PMID: 38862518 PMCID: PMC11166989 DOI: 10.1038/s41467-024-49353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing β-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.
Collapse
Affiliation(s)
| | - Gil Letort
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Sabrina Lizot
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Anne Chalumeau
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Chloe Foray
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Tristan Felix
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Patrick Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Sophie Leduc
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Noemie Pinard
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Alan Marechal
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | | | - Alex Boyne
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Louisa Mayer
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | - Robert Hong
- Cellectis Inc., 430 East 29th Street, New York, NY, USA
| | | | - Roman Galetto
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Agnès Gouble
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR1163, Paris Cité University, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | | | - Annarita Miccio
- Université Paris Cité, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | | | | | - Julien Valton
- Cellectis S.A., 8 Rue de la Croix Jarry, Paris, France.
| |
Collapse
|
4
|
Prasad K, Devaraju N, George A, Ravi NS, Paul J, Mahalingam G, Rajendiran V, Panigrahi L, Venkatesan V, Lakhotiya K, Periyasami Y, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Thangavel S, Velayudhan SR, Newby GA, Marepally S, Srivastava A, Mohankumar KM. Precise correction of a spectrum of β-thalassemia mutations in coding and non-coding regions by base editors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102205. [PMID: 38817682 PMCID: PMC11137594 DOI: 10.1016/j.omtn.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
β-thalassemia/HbE results from mutations in the β-globin locus that impede the production of functional adult hemoglobin. Base editors (BEs) could facilitate the correction of the point mutations with minimal or no indel creation, but its efficiency and bystander editing for the correction of β-thalassemia mutations in coding and non-coding regions remains unexplored. Here, we screened BE variants in HUDEP-2 cells for their ability to correct a spectrum of β-thalassemia mutations that were integrated into the genome as fragments of HBB. The identified targets were introduced into their endogenous genomic location using BEs and Cas9/homology-directed repair (HDR) to create cellular models with β-thalassemia/HbE. These β-thalassemia/HbE models were then used to assess the efficiency of correction in the native locus and functional β-globin restoration. Most bystander edits produced near target sites did not interfere with adult hemoglobin expression and are not predicted to be pathogenic. Further, the effectiveness of BE was validated for the correction of the pathogenic HbE variant in severe β0/βE-thalassaemia patient cells. Overall, our study establishes a novel platform to screen and select optimal BE tools for therapeutic genome editing by demonstrating the precise, efficient, and scarless correction of pathogenic point mutations spanning multiple regions of HBB including the promoter, intron, and exons.
Collapse
Affiliation(s)
- Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston MA 02111, USA
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 3050074, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Gregory A. Newby
- Departments of Genetic Medicine and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Kumarasamypet M. Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| |
Collapse
|
5
|
Seclen E, Jang JC, Lawal AO, Pulicani S, Boyne A, Tkach D, Juillerat A, Duchateau P, Valton J. TALEN-mediated intron editing of HSPCs enables transgene expression restricted to the myeloid lineage. Mol Ther 2024; 32:1643-1657. [PMID: 38582963 PMCID: PMC11184328 DOI: 10.1016/j.ymthe.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Gene therapy in hematopoietic stem and progenitor cells (HSPCs) shows great potential for the treatment of inborn metabolic diseases. Typical HSPC gene therapy approaches rely on constitutive promoters to express a therapeutic transgene, which is associated with multiple disadvantages. Here, we propose a novel promoterless intronic gene editing approach that triggers transgene expression only after cellular differentiation into the myeloid lineage. We integrated a splicing-competent eGFP cassette into the first intron of CD11b and observed expression of eGFP in the myeloid lineage but minimal to no expression in HSPCs or differentiated non-myeloid lineages. In vivo, edited HSPCs successfully engrafted in immunodeficient mice and displayed transgene expression in the myeloid compartment of multiple tissues. Using the same approach, we expressed alpha-L-iduronidase (IDUA), the defective enzyme in Mucopolysaccharidosis type I, and observed a 10-fold supraendogenous IDUA expression exclusively after myeloid differentiation. Edited cells efficiently populated bone marrow, blood, and spleen of immunodeficient mice, and retained the capacity to secrete IDUA ex vivo. Importantly, cells edited with the eGFP and IDUA transgenes were also found in the brain. This approach may unlock new therapeutic strategies for inborn metabolic and neurological diseases that require the delivery of therapeutics in brain.
Collapse
|
6
|
Nasri M, Ritter MU, Mir P, Dannenmann B, Kaufmann MM, Arreba-Tutusaus P, Xu Y, Borbaran-Bravo N, Klimiankou M, Lengerke C, Zeidler C, Cathomen T, Welte K, Skokowa J. CRISPR-Cas9n-mediated ELANE promoter editing for gene therapy of severe congenital neutropenia. Mol Ther 2024; 32:1628-1642. [PMID: 38556793 PMCID: PMC11184331 DOI: 10.1016/j.ymthe.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.
Collapse
Affiliation(s)
- Masoud Nasri
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Malte U Ritter
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Perihan Mir
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Masako M Kaufmann
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Patricia Arreba-Tutusaus
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Yun Xu
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Natalia Borbaran-Bravo
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Maksim Klimiankou
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Claudia Lengerke
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children`s Hospital, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Gene and RNA Therapy Center (GRTC), University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, DeRavin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024; 31:455-466.e4. [PMID: 38508195 PMCID: PMC10997443 DOI: 10.1016/j.stem.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea; Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea.
| | - Ashley Gin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Max Grice
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland Mortlock
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diana Abraham
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Aisha AlJanahi
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Sogun Hong
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
9
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, de Ravin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR-editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571396. [PMID: 38168153 PMCID: PMC10760194 DOI: 10.1101/2023.12.13.571396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) requires both sufficient HDR efficiency and protection of LT-HSC function and number. The impact of HDR on true LT-HSCs clonal dynamics in a relevant large animal model has not previously been studied. To track the HDR-edited cells, autologous rhesus macaque (RM) CD34 + cells were electroporated with the gRNA/Cas9 ribonucleoprotein (RNP) and HDR cassette barcode library structure and reinfused into RMs following myeloablation. For competitive model animals, fractionated CD34 + cells were transduced with a barcoded GFP-expressing lentiviral vector (LV) and electroporated via HDR machinery, respectively. CD33 knockout (KO) neutrophils were prevalent early following engraftment and then rapidly decreased, resulting in less than 1% total editing efficiency. Interestingly, in competitive animals, a higher concentration of i53 mRNA result in a less steep reduction in CD33 KO cells, presented a modest decrease in HDR rate (0.1-0.2%) and total indels (1.5-6.5%). In contrast, the drop off of LV-transduced GFP + cells stabilized at 20% after 2 months. We next retrieved embedded barcodes and revealed that various clones contributed to early hematopoietic reconstitution, then after dominant clones appeared at steady state throughout the animals. In conclusion, CRISPR/HDR edited cells disappeared rapidly after the autologous transplantation in RM despite substantial gene editing outcome, whereas LV-transduced cells were relatively well maintained. Clonality of HDR-edited cells drastically shrank at early stage and then relied on several dominant clones, which can be mildly mitigated by the introduction of i53 mRNA.
Collapse
|
10
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. Accessory-cell-free differentiation of hematopoietic stem and progenitor cells into mature red blood cells. Cytotherapy 2023; 25:1242-1248. [PMID: 37598334 DOI: 10.1016/j.jcyt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AIMS The culture and ex vivo engineering of red blood cells (RBCs) can help characterize genetic variants, model diseases, and may eventually spur the development of applications in transfusion medicine. In the last decade, improvements to the in vitro production of RBCs have enabled efficient erythroid progenitor proliferation and high enucleation levels from several sources of hematopoietic stem and progenitor cells (HSPCs). Despite these advances, there remains a need for refining the terminal step of in vitro human erythropoiesis, i.e., the terminal maturation of reticulocytes into erythrocytes, so that it can occur without feeder or accessory cells and animal-derived components. METHODS Here, we describe the near-complete erythroid differentiation of cultured RBCs (cRBCs) from adult HSPCs in accessory-cell-free and xeno-free conditions. RESULTS The approach improves post-enucleation cell integrity and cell survival, and it enables subsequent storage of cRBCs for up to 42 days in classical additive solution conditions without any specialized equipment. CONCLUSIONS We foresee that these improvements will facilitate the characterization of RBCs derived from gene-edited HSPCs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada; Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Josée Laganière
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada.
| |
Collapse
|
11
|
Abstract
β-Thalassemia and sickle cell disease are autosomal recessive disorders of red blood cells due to mutations in the adult β-globin gene, with a worldwide diffusion. The severe forms of hemoglobinopathies are fatal if untreated, and allogeneic bone marrow transplantation can be offered to a limited proportion of patients. The unmet clinical need and the disease incidence have promoted the development of new genetic therapies based on the engineering of autologous hematopoietic stem cells. Here, the steps of ex vivo gene therapy development are reviewed along with results from clinical trials and recent new approaches employing cutting edge gene editing tools.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy; and
| | - Samantha Scaramuzza
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy; and
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy; and
- University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
12
|
Vavassori V, Ferrari S, Beretta S, Asperti C, Albano L, Annoni A, Gaddoni C, Varesi A, Soldi M, Cuomo A, Bonaldi T, Radrizzani M, Merelli I, Naldini L. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023; 142:812-826. [PMID: 37294917 PMCID: PMC10644071 DOI: 10.1182/blood.2022019333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Asperti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Soldi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cuomo
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Marina Radrizzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
14
|
Becker HJ, Ishida R, Wilkinson AC, Kimura T, Lee MSJ, Coban C, Ota Y, Tanaka Y, Roskamp M, Sano T, Tojo A, Kent DG, Yamazaki S. Controlling genetic heterogeneity in gene-edited hematopoietic stem cells by single-cell expansion. Cell Stem Cell 2023; 30:987-1000.e8. [PMID: 37385251 PMCID: PMC10338855 DOI: 10.1016/j.stem.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Gene editing using engineered nucleases frequently produces unintended genetic lesions in hematopoietic stem cells (HSCs). Gene-edited HSC cultures thus contain heterogeneous populations, the majority of which either do not carry the desired edit or harbor unwanted mutations. In consequence, transplanting edited HSCs carries the risks of suboptimal efficiency and of unwanted mutations in the graft. Here, we present an approach for expanding gene-edited HSCs at clonal density, allowing for genetic profiling of individual clones before transplantation. We achieved this by developing a defined, polymer-based expansion system and identifying long-term expanding clones within the CD201+CD150+CD48-c-Kit+Sca-1+Lin- population of precultured HSCs. Using the Prkdcscid immunodeficiency model, we demonstrate that we can expand and profile edited HSC clones to check for desired and unintended modifications, including large deletions. Transplantation of Prkdc-corrected HSCs rescued the immunodeficient phenotype. Our ex vivo manipulation platform establishes a paradigm to control genetic heterogeneity in HSC gene editing and therapy.
Collapse
Affiliation(s)
- Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba 305-8577, Japan; Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | - Reiko Ishida
- Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Takaharu Kimura
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba 305-8577, Japan
| | - Michelle Sue Jann Lee
- Division of Malaria Immunology and International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology and International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City 860-0811, Japan
| | - Meike Roskamp
- Pharma Solutions, Nutrition & Health, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Tsubasa Sano
- Pharma Solutions, Nutrition & Health, BASF Japan Ltd, Tokyo 103-0022, Japan
| | - Arinobu Tojo
- Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Tsukuba 305-8577, Japan; Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
15
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
16
|
Everette KA, Newby GA, Levine RM, Mayberry K, Jang Y, Mayuranathan T, Nimmagadda N, Dempsey E, Li Y, Bhoopalan SV, Liu X, Davis JR, Nelson AT, Chen PJ, Sousa AA, Cheng Y, Tisdale JF, Weiss MJ, Yen JS, Liu DR. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 2023; 7:616-628. [PMID: 37069266 PMCID: PMC10195679 DOI: 10.1038/s41551-023-01026-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the β-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBBS) to wild type (HBBA) at frequencies of 15%-41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBBA levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBBA, exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBBA-derived adult haemoglobin at 28%-43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBBS to HBBA, does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks.
Collapse
Affiliation(s)
- Kelcee A Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Rachel M Levine
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoonjeong Jang
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Nikitha Nimmagadda
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin Dempsey
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xiong Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Andrew T Nelson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Alexander A Sousa
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Yong Cheng
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Allen D, Kalter N, Rosenberg M, Hendel A. Homology-Directed-Repair-Based Genome Editing in HSPCs for the Treatment of Inborn Errors of Immunity and Blood Disorders. Pharmaceutics 2023; 15:1329. [PMID: 37242571 PMCID: PMC10220672 DOI: 10.3390/pharmaceutics15051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34+ hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (D.A.); (N.K.); (M.R.)
| |
Collapse
|
18
|
Gundry M, Sankaran VG. Hacking hematopoiesis - emerging tools for examining variant effects. Dis Model Mech 2023; 16:dmm049857. [PMID: 36826849 PMCID: PMC9983777 DOI: 10.1242/dmm.049857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Hematopoiesis is a continuous process of blood and immune cell production. It is orchestrated by thousands of gene products that respond to extracellular signals by guiding cell fate decisions to meet the needs of the organism. Although much of our knowledge of this process comes from work in model systems, we have learned a great deal from studies on human genetic variation. Considerable insight has emerged from studies on presumed monogenic blood disorders, which continue to provide key insights into the mechanisms critical for hematopoiesis. Furthermore, the emergence of large-scale biobanks and cohorts has uncovered thousands of genomic loci associated with blood cell traits and diseases. Some of these blood cell trait-associated loci act as modifiers of what were once thought to be monogenic blood diseases. However, most of these loci await functional validation. Here, we discuss the validation bottleneck and emerging methods to more effectively connect variant to function. In particular, we highlight recent innovations in genome editing, which have paved the path forward for high-throughput functional assessment of loci. Finally, we discuss existing barriers to progress, including challenges in manipulating the genomes of primary hematopoietic cells.
Collapse
Affiliation(s)
- Michael Gundry
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
19
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
20
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
21
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
22
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
23
|
Liao J, Wu Y. Gene Editing in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:177-199. [PMID: 38228965 DOI: 10.1007/978-981-99-7471-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) can be isolated and collected from the body, genetically modified, and expanded ex vivo. The invention of innovative and powerful gene editing tools has provided researchers with great convenience in genetically modifying a wide range of cells, including hematopoietic stem and progenitor cells (HSPCs). In addition to being used to modify genes to study the functional role that specific genes play in the hematopoietic system, the application of gene editing platforms in HSCs is largely focused on the development of cell-based gene editing therapies to treat diseases such as immune deficiency disorders and inherited blood disorders. Here, we review the application of gene editing tools in HSPCs. In particular, we provide a broad overview of the development of gene editing tools, multiple strategies for the application of gene editing tools in HSPCs, and exciting clinical advances in HSPC gene editing therapies. We also outline the various challenges integral to clinical translation of HSPC gene editing and provide the possible corresponding solutions.
Collapse
Affiliation(s)
- Jiaoyang Liao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Abstract
CRISPR-associated (Cas) enzymes have revolutionized biology by enabling RNA-guided genome editing. Homology-directed repair (HDR) in the presence of donor templates is currently the most versatile method to introduce precise edits following CRISPR-Cas-induced double-stranded DNA cuts, but HDR efficiency is generally low relative to end-joining pathways that lead to insertions and deletions (indels). We tested the hypothesis that HDR could be increased using a Cas9 construct fused to PRDM9, a chromatin remodeling factor that deposits histone methylations H3K36me3 and H3K4me3 to mediate homologous recombination in human cells. Our results show that the fusion protein contacts chromatin specifically at the Cas9 cut site in the genome to increase the observed HDR efficiency by threefold and HDR:indel ratio by fivefold compared with that induced by unmodified Cas9. HDR enhancement occurred in multiple cell lines with no increase in off-target genome editing. These findings underscore the importance of chromatin features for the balance between DNA repair mechanisms during CRISPR-Cas genome editing and provide a strategy to increase HDR efficiency.
Collapse
|
25
|
Qiu HY, Ji RJ, Zhang Y. Current advances of CRISPR-Cas technology in cell therapy. CELL INSIGHT 2022; 1:100067. [PMID: 37193354 PMCID: PMC10120314 DOI: 10.1016/j.cellin.2022.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.
Collapse
Affiliation(s)
- Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
26
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
27
|
Ferrari S, Jacob A, Cesana D, Laugel M, Beretta S, Varesi A, Unali G, Conti A, Canarutto D, Albano L, Calabria A, Vavassori V, Cipriani C, Castiello MC, Esposito S, Brombin C, Cugnata F, Adjali O, Ayuso E, Merelli I, Villa A, Di Micco R, Kajaste-Rudnitski A, Montini E, Penaud-Budloo M, Naldini L. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 2022; 29:1428-1444.e9. [PMID: 36206730 PMCID: PMC9550218 DOI: 10.1016/j.stem.2022.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Cesana
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianne Laugel
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Stefano Beretta
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giulia Unali
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniele Canarutto
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luisa Albano
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Carlo Cipriani
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maria Carmina Castiello
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Simona Esposito
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate 20090, Italy
| | - Anna Villa
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Raffaella Di Micco
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Luigi Naldini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Corresponding author
| |
Collapse
|
28
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
29
|
Möller L, Aird EJ, Schröder MS, Kobel L, Kissling L, van de Venn L, Corn JE. Recursive Editing improves homology-directed repair through retargeting of undesired outcomes. Nat Commun 2022; 13:4550. [PMID: 35931681 PMCID: PMC9356142 DOI: 10.1038/s41467-022-31944-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/30/2022] Open
Abstract
CRISPR-Cas induced homology-directed repair (HDR) enables the installation of a broad range of precise genomic modifications from an exogenous donor template. However, applications of HDR in human cells are often hampered by poor efficiency, stemming from a preference for error-prone end joining pathways that yield short insertions and deletions. Here, we describe Recursive Editing, an HDR improvement strategy that selectively retargets undesired indel outcomes to create additional opportunities to produce the desired HDR allele. We introduce a software tool, named REtarget, that enables the rational design of Recursive Editing experiments. Using REtarget-designed guide RNAs in single editing reactions, Recursive Editing can simultaneously boost HDR efficiencies and reduce undesired indels. We also harness REtarget to generate databases for particularly effective Recursive Editing sites across the genome, to endogenously tag proteins, and to target pathogenic mutations. Recursive Editing constitutes an easy-to-use approach without potentially deleterious cell manipulations and little added experimental burden.
Collapse
Affiliation(s)
- Lukas Möller
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Eric J Aird
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Markus S Schröder
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lena Kobel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lucas Kissling
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lilly van de Venn
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Porteus MH, Pavel-Dinu M, Pai SY. A Curative DNA Code for Hematopoietic Defects: Novel Cell Therapies for Monogenic Diseases of the Blood and Immune System. Hematol Oncol Clin North Am 2022; 36:647-665. [PMID: 35773054 PMCID: PMC9365196 DOI: 10.1016/j.hoc.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3040B, MC 5462, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3045, MC 5175, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, 10 Center Drive, MSC 1102, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Pan X, Qu K, Yuan H, Xiang X, Anthon C, Pashkova L, Liang X, Han P, Corsi GI, Xu F, Liu P, Zhong J, Zhou Y, Ma T, Jiang H, Liu J, Wang J, Jessen N, Bolund L, Yang H, Xu X, Church GM, Gorodkin J, Lin L, Luo Y. Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nat Commun 2022; 13:4049. [PMID: 35831290 PMCID: PMC9279339 DOI: 10.1038/s41467-022-31543-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Methods for sensitive and high-throughput evaluation of CRISPR RNA-guided nucleases (RGNs) off-targets (OTs) are essential for advancing RGN-based gene therapies. Here we report SURRO-seq for simultaneously evaluating thousands of therapeutic RGN OTs in cells. SURRO-seq captures RGN-induced indels in cells by pooled lentiviral OTs libraries and deep sequencing, an approach comparable and complementary to OTs detection by T7 endonuclease 1, GUIDE-seq, and CIRCLE-seq. Application of SURRO-seq to 8150 OTs from 110 therapeutic RGNs identifies significantly detectable indels in 783 OTs, of which 37 OTs are found in cancer genes and 23 OTs are further validated in five human cell lines by targeted amplicon sequencing. Finally, SURRO-seq reveals that thermodynamically stable wobble base pair (rG•dT) and free binding energy strongly affect RGN specificity. Our study emphasizes the necessity of thoroughly evaluating therapeutic RGN OTs to minimize inevitable off-target effects.
Collapse
Affiliation(s)
- Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hao Yuan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Xiang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Liubov Pashkova
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Giulia I Corsi
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Research, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Jiayan Zhong
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tao Ma
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Hui Jiang
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- MGI, BGI-Shenzhen, Shenzhen, China
| | - Junnian Liu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jian Wang
- BGI-Research, BGI-Shenzhen, Shenzhen, China
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Huanming Yang
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xun Xu
- BGI-Research, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- BGI-Research, BGI-Shenzhen, Shenzhen, China.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
32
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
34
|
Magis W, DeWitt MA, Wyman SK, Vu JT, Heo SJ, Shao SJ, Hennig F, Romero ZG, Campo-Fernandez B, Said S, McNeill MS, Rettig GR, Sun Y, Wang Y, Behlke MA, Kohn DB, Boffelli D, Walters MC, Corn JE, Martin DI. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience 2022; 25:104374. [PMID: 35633935 PMCID: PMC9130532 DOI: 10.1016/j.isci.2022.104374] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022] Open
Abstract
Background A point mutation in sickle cell disease (SCD) alters one amino acid in the β-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction. Results An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one β-globin allele in more than 30% of long-term engrafting human HSCs. After adopting a high-fidelity Cas9 variant, efficient correction with minimal off-target events also was observed. In vivo erythroid differentiation markedly enriches for corrected β-globin alleles, indicating that erythroblasts carrying one or more corrected alleles have a survival advantage. Significance These findings indicate that the sickle mutation can be corrected in autologous HSCs with an optimized protocol suitable for clinical translation. The gene editing protocol corrects the sickle mutation in ∼30% of engrafting cells Random assortment of engrafting stem cell clones without clonal dominance was shown Corrected erythroid cells are preferentially enriched compared with unedited cells
Collapse
|
35
|
Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC. Gene Editing for Inherited Red Blood Cell Diseases. Front Physiol 2022; 13:848261. [PMID: 35418876 PMCID: PMC8995967 DOI: 10.3389/fphys.2022.848261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Today gene therapy is a real therapeutic option to address inherited hematological diseases that could be beneficial for thousands of patients worldwide. Currently, gene therapy is used to treat different monogenic hematological pathologies, including several red blood cell diseases such as β-thalassemia, sickle cell disease and pyruvate kinase deficiency. This approach is based on addition gene therapy, which consists of the correction of hematopoietic stem cells (HSCs) using lentiviral vectors, which integrate a corrected version of the altered gene. Lentivirally-corrected HSCs generate healthy cells that compensate for the deficiency caused by genetic mutations. Despite its successful results, this approach lacks both control of the integration of the transgene into the genome and endogenous regulation of the therapeutic gene, both of which are important aspects that might be a cause for concern. To overcome these limitations, gene editing is able to correct the altered gene through more precise and safer approaches. Cheap and easy-to-design gene editing tools, such as the CRISPR/Cas9 system, allow the specific correction of the altered gene without affecting the rest of the genome. Inherited erythroid diseases, such as thalassemia, sickle cell disease and Pyruvate Kinase Deficiency, have been the test bed for these gene editing strategies, and promising results are currently being seen. CRISPR/Cas9 system has been successfully used to manipulate globin regulation to re-activate fetal globin chains in adult red blood cells and to compensate for hemoglobin defects. Knock-in at the mutated locus to express the therapeutic gene under the endogenous gene regulatory region has also been accomplished successfully. Thanks to the lessons learned from previous lentiviral gene therapy research and trials, gene editing for red blood cell diseases is rapidly moving from its proof-of-concept to its first exciting results in the clinic. Indeed, patients suffering from β-thalassemia and sickle cell disease have already been successfully treated with gene editing, which will hopefully inspire the use of gene editing to cure erythroid disorders and many other inherited diseases in the near future.
Collapse
Affiliation(s)
- Oscar Quintana-Bustamante
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Sara Fañanas-Baquero
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Isabel Ojeda-Pérez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Jose-Carlos Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| |
Collapse
|
36
|
Karuppusamy KV, Demosthenes JP, Venkatesan V, Christopher AC, Babu P, Azhagiri MK, Jacob A, Ramalingam VV, Rangaraj S, Murugesan MK, Marepally SK, Varghese GM, Srivastava A, Kannangai R, Thangavel S. The CCR5 Gene Edited CD34+CD90+ Hematopoietic Stem Cell Population Serves as an Optimal Graft Source for HIV Gene Therapy. Front Immunol 2022; 13:792684. [PMID: 35359982 PMCID: PMC8963924 DOI: 10.3389/fimmu.2022.792684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Transplantation of allogenic hematopoietic stem and progenitor cells (HSPCs) with C-C chemokine receptor type 5 (CCR5) Δ32 genotype generates HIV-1 resistant immune cells. CCR5 gene edited autologous HSPCs can be a potential alternative to hematopoietic stem cell transplantation (HSCT) from HLA-matched CCR5 null donor. However, the clinical application of gene edited autologous HSPCs is critically limited by the quality of the graft, as HIV also infects the HSPCs. In this study, by using mobilized HSPCs from healthy donors, we show that the CD34+CD90+ hematopoietic stem cells (HSCs) express 7-fold lower CD4/CCR5 HIV receptors, higher levels of SAMHD1 anti-viral restriction factor, and possess lower susceptibility to HIV infection than the CD34+CD90- hematopoietic progenitor cells. Further, the treatment with small molecule cocktail of Resveratrol, UM729 and SR1(RUS) improved the in vivo engraftment potential of CD34+CD90+ HSCs. To demonstrate that CD34+CD90+ HSC population as an ideal graft for HIV gene therapy, we sort purified CD34+CD90+ HSCs, treated with RUS and then gene edited the CCR5 with single sgRNA. On transplantation, 100,000 CD34+CD90+ HSCs were sufficient for long-term repopulation of the entire bone marrow of NBSGW mice. Importantly, the gene editing efficiency of ~90% in the infused product was maintained in vivo, facilitating the generation of CCR5 null immune cells, resistant to HIV infection. Altogether, CCR5 gene editing of CD34+CD90+ HSCs provide an ideal gene manipulation strategy for autologous HSCT based gene therapy for HIV infection.
Collapse
Affiliation(s)
- Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Thiruvalluvar University, Vellore, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Manojkumar K. Azhagiri
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Annlin Jacob
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Sumathi Rangaraj
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
| | | | | | - George M. Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- Department of Hematology, Christian Medical College, Vellore, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Vellore, India
- *Correspondence: Saravanabhavan Thangavel,
| |
Collapse
|
37
|
Li L, Yi H, Liu Z, Long P, Pan T, Huang Y, Li Y, Li Q, Ma Y. Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Stem Cell Res Ther 2022; 13:102. [PMID: 35255977 PMCID: PMC8900422 DOI: 10.1186/s13287-022-02768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thalassemia is a genetic blood disorder characterized by decreased hemoglobin production. Severe anemia can damage organs and severe threat to life safety. Allogeneic transplantation of bone marrow-derived hematopoietic stem cell (HSCs) at present represents a promising therapeutic approach for thalassemia. However, immune rejection and lack of HLA-matched donors limited its clinical application. In recent years, human-induced pluripotent stem cells (hiPSCs) technology offers prospects for autologous cell-based therapy since it could avoid the immunological problems mentioned above. METHODS In the present study, we established a new hiPSCs line derived from amniotic cells of a fetus with a homozygous β41-42 (TCTT) deletion mutation in the HBB gene and a heterozygous Westmead mutation (C > G) in the HBA2 gene. We designed a CRISPR-Cas9 to target these casual mutations and corrected them. Gene-corrected off-target analysis was performed by whole-exome capture sequencing. The corrected hiPSCs were analyzed by teratoma formation and erythroblasts differentiation assays. RESULTS These mutations were corrected with linearized donor DNA through CRISPR/Cas9-mediated homology-directed repair. Corrections of hiPSCs were validated by sequences. The corrected hiPSCs retain normal pluripotency. Moreover, they could be differentiated into hematopoietic progenitors, which proves that they maintain the multilineage differentiation potential. CONCLUSIONS We designed sgRNAs and demonstrated that these sgRNAs facilitating the CRISPR-Cas9 genomic editing system could be applied to correct concurrent α- and β-thalassemia in patient-derived hiPSCs. In the future, these corrected hiPSCs can be applied for autologous transplantation in patients with concurrent α- and β-thalassemia.
Collapse
Affiliation(s)
- Lingli Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi, China
| | - Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China. .,College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China.
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China. .,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China. .,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, 570102, Hainan, China. .,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China. .,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
38
|
Papasavva PL, Patsali P, Loucari CC, Kurita R, Nakamura Y, Kleanthous M, Lederer CW. CRISPR Editing Enables Consequential Tag-Activated MicroRNA-Mediated Endogene Deactivation. Int J Mol Sci 2022; 23:1082. [PMID: 35163006 PMCID: PMC8834719 DOI: 10.3390/ijms23031082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.
Collapse
Affiliation(s)
- Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Constantinos C. Loucari
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Koto-ku, Tokyo 135-8521, Japan;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan;
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.L.P.); (P.P.); (C.C.L.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
39
|
Devaraju N, Rajendiran V, Ravi NS, Mohankumar KM. Genome Engineering of Hematopoietic Stem Cells Using CRISPR/Cas9 System. Methods Mol Biol 2022; 2429:307-331. [PMID: 35507170 DOI: 10.1007/978-1-0716-1979-7_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ex vivo genetic manipulation of autologous hematopoietic stem and progenitor cells (HSPCs) is a viable strategy for the treatment of hematologic and primary immune disorders. Targeted genome editing of HSPCs using the CRISPR-Cas9 system provides an effective platform to edit the desired genomic locus for therapeutic purposes with minimal off-target effects. In this chapter, we describe the detailed methodology for the CRISPR-Cas9 mediated gene knockout, deletion, addition, and correction in human HSPCs by viral and nonviral approaches. We also present a comprehensive protocol for the analysis of genome modified HSPCs toward the erythroid and megakaryocyte lineage in vitro and the long-term multilineage reconstitution capacity in the recently developed NBSGW mouse model that supports human erythropoiesis.
Collapse
Affiliation(s)
- Nivedhitha Devaraju
- Centre for Stem Cell Research (a unit of inStem, Bangalore), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a unit of inStem, Bangalore), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a unit of inStem, Bangalore), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a unit of inStem, Bangalore), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, India.
| |
Collapse
|
40
|
Rogers GL, Huang C, Clark RDE, Seclén E, Chen HY, Cannon PM. Optimization of AAV6 transduction enhances site-specific genome editing of primary human lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:198-209. [PMID: 34703842 PMCID: PMC8517001 DOI: 10.1016/j.omtm.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus serotype 6 (AAV6) is a valuable reagent for genome editing of hematopoietic cells due to its ability to serve as a homology donor template. However, a comprehensive study of AAV6 transduction of hematopoietic cells in culture, with the goal of maximizing ex vivo genome editing, has not been reported. Here, we evaluated how the presence of serum, culture volume, transduction time, and electroporation parameters could influence AAV6 transduction. Based on these results, we identified an optimized protocol for genome editing of human lymphocytes based on a short, highly concentrated AAV6 transduction in the absence of serum, followed by electroporation with a targeted nuclease. In human CD4+ T cells and B cells, this protocol improved editing rates up to 7-fold and 21-fold, respectively, when compared to standard AAV6 transduction protocols described in the literature. As a result, editing frequencies could be maintained using 50- to 100-fold less AAV6, which also reduced cellular toxicity. Our results highlight the important contribution of cell culture conditions for ex vivo genome editing with AAV6 vectors and provide a blueprint for improving AAV6-mediated homology-directed editing of human T and B cells.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert D E Clark
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eduardo Seclén
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Ferrari S, Vavassori V, Canarutto D, Jacob A, Castiello MC, Javed AO, Genovese P. Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Front Genome Ed 2021; 3:618378. [PMID: 34713250 PMCID: PMC8525369 DOI: 10.3389/fgeed.2021.618378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), Milano-Bicocca University, Monza, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Azhagiri MKK, Babu P, Venkatesan V, Thangavel S. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Res Ther 2021; 12:500. [PMID: 34503562 PMCID: PMC8428126 DOI: 10.1186/s13287-021-02565-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
The advent of next-generation genome engineering tools like CRISPR-Cas9 has transformed the field of gene therapy, rendering targeted treatment for several incurable diseases. Hematopoietic stem and progenitor cells (HSPCs) continue to be the ideal target cells for gene manipulation due to their long-term repopulation potential. Among the gene manipulation strategies such as lentiviral gene augmentation, non-homologous end joining (NHEJ)-mediated gene editing, base editing and prime editing, only the homology-directed repair (HDR)-mediated gene editing provides the option of inserting a large transgene under its endogenous promoter or any desired locus. In addition, HDR-mediated gene editing can be applied for the gene knock-out, correction of point mutations and introduction of beneficial mutations. HSPC gene therapy studies involving lentiviral vectors and NHEJ-based gene-editing studies have exhibited substantial clinical progress. However, studies involving HDR-mediated HSPC gene editing have not yet progressed to the clinical testing. This suggests the existence of unique challenges in exploiting HDR pathway for HSPC gene therapy. Our review summarizes the mechanism, recent progresses, challenges, and the scope of HDR-based gene editing for the HSPC gene therapy.
Collapse
Affiliation(s)
- Manoj Kumar K Azhagiri
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India.
| |
Collapse
|
44
|
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll JJ, Peytavi R, Lu HW, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2021; 5:713-725. [PMID: 33820980 DOI: 10.1038/s41551-021-00706-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
Collapse
Affiliation(s)
- Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | - Kandace Fung
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | | | - Kasey Smith
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | - Giedrius Gasiunas
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daehwan Kim
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | | | | | - Virginijus Siksnys
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Cardea, San Diego, CA, USA.
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
45
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
46
|
CRISPR/Cas based gene editing: marking a new era in medical science. Mol Biol Rep 2021; 48:4879-4895. [PMID: 34143395 PMCID: PMC8212587 DOI: 10.1007/s11033-021-06479-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9 system, a bacterial adaptive immune system developed into a genome editing technology, has emerged as a powerful tool revolutionising genome engineering in all branches of biological science including agriculture, research and medicine. Rapid evolution of CRISPR/Cas9 system from the generation of double strand breaks to more advanced applications on gene regulation has made the wide-spread use of this technology possible. Medical science has benefited greatly from CRISPR/Cas9; being both a versatile and economical tool, it has brought gene therapy closer to reality. In this review, the development of CRISPR/Cas9 system, variants thereof and its application in different walks of medical science- research, diagnostics and therapy, will be discussed.
Collapse
|
47
|
Sweeney CL, Pavel-Dinu M, Choi U, Brault J, Liu T, Koontz S, Li L, Theobald N, Lee J, Bello EA, Wu X, Meis RJ, Dahl GA, Porteus MH, Malech HL, De Ravin SS. Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Ther 2021; 28:373-390. [PMID: 33712802 PMCID: PMC8232036 DOI: 10.1038/s41434-021-00251-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
X-linked chronic granulomatous disease is an immunodeficiency characterized by defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the 13 exons and splice sites of the CYBB gene, resulting in loss of gp91phox protein. Here we report gene correction by homology-directed repair in patient hematopoietic stem/progenitor cells (HSPCs) using CRISPR/Cas9 for targeted insertion of CYBB exon 1-13 or 2-13 cDNAs from adeno-associated virus donors at endogenous CYBB exon 1 or exon 2 sites. Targeted insertion of exon 1-13 cDNA did not restore physiologic gp91phox levels, consistent with a requirement for intron 1 in CYBB expression. However, insertion of exon 2-13 cDNA fully restored gp91phox and ROS production upon phagocyte differentiation. Addition of a woodchuck hepatitis virus post-transcriptional regulatory element did not further enhance gp91phox expression in exon 2-13 corrected cells, indicating that retention of intron 1 was sufficient for optimal CYBB expression. Targeted correction was increased ~1.5-fold using i53 mRNA to transiently inhibit nonhomologous end joining. Following engraftment in NSG mice, corrected HSPCs generated phagocytes with restored gp91phox and ROS production. Our findings demonstrate the utility of tailoring donor design and targeting strategies to retain regulatory elements needed for optimal expression of the target gene.
Collapse
Affiliation(s)
- Colin L Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Brault
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Liu
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sherry Koontz
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Narda Theobald
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janet Lee
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ezekiel A Bello
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Harry L Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suk See De Ravin
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
48
|
Garg H, Tatiossian KJ, Peppel K, Kato GJ, Herzog E. Gene therapy as the new frontier for Sickle Cell Disease. Curr Med Chem 2021; 29:453-466. [PMID: 34047257 DOI: 10.2174/0929867328666210527092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is one of the most common monogenic disorders caused by a point mutation in the β-globin gene. This mutation results in polymerization of hemoglobin (Hb) under reduced oxygenation conditions, causing rigid sickle-shaped RBCs and hemolytic anemia. This clearly defined fundamental molecular mechanism makes SCD a prototypical target for precision therapy. Both the mutant β-globin protein and its downstream pathophysiology are pharmacological targets of intensive research. SCD also is a disease well-suited for biological interventions like gene therapy. Recent advances in hematopoietic stem cell (HSC) transplantation and gene therapy platforms, like Lentiviral vectors and gene editing strategies, expand the potentially curative options for patients with SCD. This review discusses the recent advances in precision therapy for SCD and the preclinical and clinical advances in autologous HSC gene therapy for SCD.
Collapse
Affiliation(s)
- Himanshu Garg
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | | | - Karsten Peppel
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | - Gregory J Kato
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | - Eva Herzog
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| |
Collapse
|
49
|
Uchida N, Li L, Nassehi T, Drysdale CM, Yapundich M, Gamer J, Haro-Mora JJ, Demirci S, Leonard A, Bonifacino AC, Krouse AE, Linde NS, Allen C, Peshwa MV, De Ravin SS, Donahue RE, Malech HL, Tisdale JF. Preclinical evaluation for engraftment of CD34 + cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med 2021; 2:100247. [PMID: 33948577 PMCID: PMC8080237 DOI: 10.1016/j.xcrm.2021.100247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.
Collapse
Affiliation(s)
- Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | | | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claire M. Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Juan J. Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | - N. Seth Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | | | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
50
|
Doerfler PA, Sharma A, Porter JS, Zheng Y, Tisdale JF, Weiss MJ. Genetic therapies for the first molecular disease. J Clin Invest 2021; 131:146394. [PMID: 33855970 PMCID: PMC8262557 DOI: 10.1172/jci146394] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder characterized by recurrent episodes of severe bone pain, multi-organ failure, and early mortality. Although medical progress over the past several decades has improved clinical outcomes and offered cures for many affected individuals living in high-income countries, most SCD patients still experience substantial morbidity and premature death. Emerging technologies to manipulate somatic cell genomes and insights into the mechanisms of developmental globin gene regulation are generating potentially transformative approaches to cure SCD by autologous hematopoietic stem cell (HSC) transplantation. Key components of current approaches include ethical informed consent, isolation of patient HSCs, in vitro genetic modification of HSCs to correct the SCD mutation or circumvent its damaging effects, and reinfusion of the modified HSCs following myelotoxic bone marrow conditioning. Successful integration of these components into effective therapies requires interdisciplinary collaborations between laboratory researchers, clinical caregivers, and patients. Here we summarize current knowledge and research challenges for each key component, emphasizing that the best approaches have yet to be developed.
Collapse
Affiliation(s)
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy
| | | | - Yan Zheng
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|