1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Dunker C, Vinnenberg L, Isaak A, Karabatak E, Hundehege P, Budde T, Murakami K, Junker A. Exploring P2X receptor activity: A journey from cellular impact to electrophysiological profiling. Biochem Pharmacol 2024; 229:116543. [PMID: 39304104 DOI: 10.1016/j.bcp.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The development of in vitro pharmacological assays relies on creating genetically modified cell lines that overexpress the target protein of interest. However, the choice of the host cell line can significantly impact the experimental outcomes. This study explores the functional characterization of P2X7 and P2X4 receptor modulators through cellular assays and advanced electrophysiological techniques. The influence of different host cell lines (HEK-293, HEK-293FT, and 1321N1) on the activity of reference agonists and antagonists targeting human and murine P2X4 and P2X7 receptors was systematically investigated, highlighting the significant impact of the host cell on experimental results. The 1321N1 cell line was identified as the preferred host cell line when investigating the human P2X4 receptor due to more consistent agonist activities, antagonist potencies, and a more stable assay signal window. Furthermore, a patch-clamp protocol that allows for the repetitive recording of ATP-mediated inward currents from isolated human CD4+ T-cells was established, revealing that both P2X7 and P2X4 receptors are crucial for immune cell regulation, positioning them as promising therapeutic targets for managing inflammatory disorders.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI), Roentgenstr 16, University of Muenster, 48149 Muenster, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Laura Vinnenberg
- University Hospital Muenster, Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Andreas Isaak
- European Institute for Molecular Imaging (EIMI), Roentgenstr 16, University of Muenster, 48149 Muenster, Germany
| | - Elif Karabatak
- Institute of Physiology I, University of Muenster, Robert-Koch-Str. 27a, 48149 Muenster, Germany
| | - Petra Hundehege
- University Hospital Muenster, Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Thomas Budde
- Institute of Physiology I, University of Muenster, Robert-Koch-Str. 27a, 48149 Muenster, Germany
| | - Kazuhiro Murakami
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), Roentgenstr 16, University of Muenster, 48149 Muenster, Germany; Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Roentgenweg 13, 72076, Tuebingen, Germany.
| |
Collapse
|
3
|
He X, Yang H, Zheng Y, Zhao X, Wang T. The role of non-coding RNAs in neuropathic pain. Pflugers Arch 2024; 476:1625-1643. [PMID: 39017932 DOI: 10.1007/s00424-024-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.
Collapse
Affiliation(s)
- Xiuying He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huisi Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yuexiang Zheng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, P.R. China.
| | - Tinghua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
An N, Zhang Y, Xie J, Li J, Lin J, Li Q, Wang Y, Liu Y, Yang Y. Study on the involvement of microglial S100A8 in neuroinflammation and microglia activation during migraine attacks. Mol Cell Neurosci 2024; 130:103957. [PMID: 39111720 DOI: 10.1016/j.mcn.2024.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks. METHODS The RNA sequencing results of migraineurs and the panglaodb database were used to obtain differentially expressed genes (DEGs) in migraine related to microglia. A migraine rat model was established for validating and localizing of the MRGs, and subsequent screening for target genes was conducted. A shRNA was designed to interference the expression of target genes and administered into the trigeminal ganglion (TG) of rats. Pain sensitivity in rats was evaluated via the hot water tail-flick (HWTF) and formalin-induced pain (FIP) experiments. ELISA was used to quantify the levels of inflammatory cytokines and CGRP. WB and immunofluorescence assays were applied to detect the activation of microglia. RESULTS A total of five DEGs in migraine related to microglia were obtained from RNA sequencing and panglaodb database. Animal experiments showed that these genes expression were heightened in the TG and medulla oblongata (MO) of migraine rats. The gene S100A8 co-localized with microglia in both TG and MO. The HWTF and FIP experiments demonstrated that interference with S100A8 alleviated the sense of pain in migraine rats. Moreover, the levels of TNFα, IL-1β, IL-6, and CGRP in the TG and MO of rats in the model rats were increased, and the expression of microglia markers IBA-1, M1 polarization markers CD86 and iNOS was upregulated. Significantly, interference with S100A8 reversed these indicators. CONCLUSION Interference with S100A8 in microglia increased the pain threshold during migraine attacks, and inhibited neuroinflammation and microglia activation.
Collapse
Affiliation(s)
- Ning An
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yingying Zhang
- Department of Neurology, the forth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinding Xie
- Department of chirurgery, Maternal and Child Health Care Hospital, Mudanjiang, Heilongjiang, China
| | - Jingchao Li
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jing Lin
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuyan Li
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yating Wang
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yang Liu
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yindong Yang
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
5
|
Zhang X, Liu H, Xiu X, Cheng J, Li T, Wang P, Men L, Qiu J, Jin Y, Zhao J. Exosomal GDNF from Bone Marrow Mesenchymal Stem Cells Moderates Neuropathic Pain in a Rat Model of Chronic Constriction Injury. Neuromolecular Med 2024; 26:34. [PMID: 39167282 DOI: 10.1007/s12017-024-08800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Both of exosomes derived from mesenchymal stem cells (MSCs) and glial cell line-derived neurotrophic factor (GDNF) show potential for the treatment of neuropathic pain. Here, the analgesic effects of exosomes derived from bone marrow MSCs (BMSCs) were investigated. BMSCs-derived exosomes were isolated and characterized. Chronic constriction injury (CCI) was constructed to induce neuropathic pain in rats, which were then treated with exosomes. Pain behaviors were evaluated by measuring paw withdrawal thresholds and latency. The changes of key proteins, including cytokines, were explored using Western blot and ELISA. Administration of BMSCs-derived exosomes alleviated neuropathic pain, as demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia, as well as the reduced secretion of pro-inflammatory cytokines in CCI rats. These effects were comparable to the treatment of GDNF alone. Mechanically, the exosomes suppressed the CCI-induced activation of TLR2/MyD88/NF-κB signaling pathway, while GDNF knockdown impaired their analgesic effects on CCI rat. BMSCs-derived exosomes may alleviate CCI-induced neuropathic pain and inflammation in rats by transporting GDNF.
Collapse
Affiliation(s)
- Xuelei Zhang
- Graduate School, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan District, Shijiazhuang, 050200, Hebei, China.
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China.
- Hebei Key Laboratory of Intergraded Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, 061000, Hebei, China.
| | - Huan Liu
- Graduate School, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan District, Shijiazhuang, 050200, Hebei, China
| | - Xiaolei Xiu
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Jibo Cheng
- Chengde Medical University, Anyuan Road, Chengde, 067000, Hebei, China
| | - Tong Li
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Ping Wang
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Lili Men
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Junru Qiu
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Yanyan Jin
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China
| | - Jianyong Zhao
- Department of Hand Microsurgery, The Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
6
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| | - Michael R Bruchas
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Benjamin B Land
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Center for Cannabis Research, University of Washington, Seattle, Washington, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Zhang Z, Wang T, Luo Z, Zaib MH, Yi M, Zeng H, Li P, Tang D, Verkhratsky A, Nie H. Anti-inflammatory and analgesic properties of Polyphyllin VI revealed by network pharmacology and RNA sequencing. Purinergic Signal 2024; 20:449-463. [PMID: 37981630 PMCID: PMC11303374 DOI: 10.1007/s11302-023-09979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
Inflammatory pain, sustained by a complex network of inflammatory mediators, is a severe and persistent illness affecting many of the general population. We explore possible anti-inflammatory pathways of Polyphyllin VI (PPVI) based on our prior study, which showed that PPVI reduces inflammation in mice to reduce pain. Network pharmacology and RNA-Seq identified the contribution of the MAPK signaling pathway to inflammatory pain. In the LPS/ATP-induced RAW264.7 cell model, pretreatment with PPVI for 1 h inhibited the release of IL-6 and IL-8, down-regulated expression of the P2X7 receptor(P2X7R), and decreased phosphorylation of p38 and ERK1/2 components of the MAPK pathway. Moreover, PPVI decreased expression of IL-6 and IL-8 was observed in the serum of the inflammatory pain mice model and reduced phosphorylation of p38 and ERK1/2 in the dorsal root ganglia while the reductions of expression of IL-6 and phosphorylation of ERK1/2 were not observed after the pre-treatment with A740003 (an antagonist of the P2X7R). These results suggest that PPVI may inhibit the release of IL-8 by regulating P2X7R to reduce the phosphorylation of p38. However, the modulation of PPVI on the release of IL-6 and phosphorylation of ERK1/2 may mediated by other P2X7R-independent signals.
Collapse
Affiliation(s)
- Zhenglang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenhui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Muhammad Haris Zaib
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Mengqin Yi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hekun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peiyang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, the University of Manchester, Manchester, UK.
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Wang W, Zheng WQ, Du X, Chen SC, Chen YH, Ma QY, Wang H, Gao S, Tan R, Zhang HT, Zhou YM, Zhang FF. Chronic pain exacerbates memory impairment and pathology of Aβ and tau by upregulating IL-1β and p-65 signaling in a mouse model of Alzheimer's disease. Brain Res 2024; 1832:148843. [PMID: 38430996 DOI: 10.1016/j.brainres.2024.148843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chronic pain is linked to cognitive impairment; however, the underlying mechanisms remain unclear. In the present study, we examined these mechanisms in a well-established mouse model of Alzheimer's disease (AD). METHODS Neuropathic pain was modeled in 5-month-old transgenic APPswe/PS1dE9 (APP/PS1) mice by partial ligation of the sciatic nerve on the left side, and chronic inflammatory pain was modeled in another group of APP/PS1 mice by injecting them with complete Freund's adjuvant on the plantar surface of the left hind paw. Six weeks after molding, the animals were tested to assess pain threshold (von Frey filament), learning, memory (novel object recognition, Morris water maze, Y-maze, and passive avoidance), and depression-like symptoms (sucrose preference, tail suspension, and forced swimming). After behavioral testing, mice were sacrificed and the levels of p65, amyloid-β (residues 1-42) and phospho-tau in the hippocampus and cerebral cortex were assayed using western blotting, while interleukin (IL)-1β levels were measured by enzyme-linked immunosorbent assay. RESULTS Animals subjected to either type of chronic pain showed lower pain thresholds, more severe deficits in learning and memory, and stronger depression-like symptoms than the corresponding control animals. Either type of chronic pain was associated with upregulation of p65, amyloid-β (1-42), and IL-1β in the hippocampus and cerebral cortex, as well as higher levels of phosphorylated tau. CONCLUSIONS Chronic pain may exacerbate cognitive deficits and depression-like symptoms in APP/PS1 mice by worsening pathology related to amyloid-β and tau and by upregulating signaling involving IL-1β and p65.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wen-Qing Zheng
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China; Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xian Du
- Tai'an Municipal Hospital, Tai'an, China
| | - Shi-Cai Chen
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yan-Han Chen
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Qing-Yang Ma
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Hao Wang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Shan Gao
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rui Tan
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China.
| | - Fang-Fang Zhang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China.
| |
Collapse
|
9
|
Röwekamp I, Maschirow L, Rabes A, Fiocca Vernengo F, Hamann L, Heinz GA, Mashreghi MF, Caesar S, Milek M, Fagundes Fonseca AC, Wienhold SM, Nouailles G, Yao L, Mousavi S, Bruder D, Boehme JD, Puzianowska-Kuznicka M, Beule D, Witzenrath M, Löhning M, Klose CSN, Heimesaat MM, Diefenbach A, Opitz B. IL-33 controls IL-22-dependent antibacterial defense by modulating the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2310864121. [PMID: 38781213 PMCID: PMC11145264 DOI: 10.1073/pnas.2310864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.
Collapse
Affiliation(s)
- Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Laura Maschirow
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Anne Rabes
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Lutz Hamann
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Gitta Anne Heinz
- German Rheumatism Research Center, a Leibniz Institute, Berlin10117, Germany
| | | | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin10117, Germany
| | - Anna Carolina Fagundes Fonseca
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Ling Yao
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg39120, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Julia D. Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg39120, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw02-106, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw01-813, Poland
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin10117, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
- German center for lung research (DZL), Berlin13353, Germany
| | | | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, a Leibniz Institute, Berlin10117, Germany
| | - Christoph S. N. Klose
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
- German center for lung research (DZL), Berlin13353, Germany
| |
Collapse
|
10
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 PMCID: PMC10749601 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Fu GJ, Wang LD, Chi XS, Liang X, Wei JJ, Huang ZH, Shen W, Zhang YL. Research Progress on the Experimental Model and Underlying Mechanistic Studies of Tension-Type Headaches. Curr Pain Headache Rep 2024; 28:439-451. [PMID: 38502437 PMCID: PMC11126509 DOI: 10.1007/s11916-024-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW Tension-type headaches (TTH) significantly diminish patients' quality of life and increase absenteeism, thereby imposing a substantial economic burden. Animal models are essential tools for studying disease mechanisms and drug development. However, until now, little focus has been placed on summarizing the animal models of TTH and associated mechanistic studies. This narrative review discusses the current animal models of TTH and related mechanistic studies to provide insights into the pathophysiological mechanisms of and treatments for TTH. RECENT FINDINGS The primary method for constructing an animal model of TTH involves injecting a solution of pain relievers, such as adenosine triphosphate, nerve growth factor, or a high concentration of salt solution, into the neck to initiate harmful cervical muscle responses. This model enables the examination of the interaction between peripheral muscles and central sensitization, which is crucial for understanding the pathophysiology of TTH. Mechanistic studies based on this model have investigated the effect of the P2X receptor antagonist, P2X7 receptor blockade, the P2Y1 receptor agonist 2-MESADP, P2Y1 receptor antagonist MRS2179, nitric oxide synthase inhibitors, and acetylsalicylic acid. Despite notable advancements, the current model of TTH has limitations, including surgical complexity and the inability to replicate chronic tension-type headache (CTTH). To gain a more comprehensive understanding and develop more effective treatment methods, future studies should focus on simplifying surgical procedures, examining other predisposing factors, and establishing a model for chronic TTH. This will offer a deeper insight into the pathophysiological mechanism of TTH and pave the way for improved treatment approaches.
Collapse
Affiliation(s)
- Guo-Jing Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Liu-Ding Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Xian-Su Chi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Xiao Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Jing-Jing Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China
| | - Zhi-Hong Huang
- Yidu Central Hospital of Weifang, Weifang, 262,550, China
| | - Wei Shen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China.
| | - Yun-Ling Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100,091, China.
| |
Collapse
|
12
|
Hanani M. Satellite Glial Cells in Human Disease. Cells 2024; 13:566. [PMID: 38607005 PMCID: PMC11011452 DOI: 10.3390/cells13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; ; Tel.: +972-2-5844721
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
13
|
Zorina-Lichtenwalter K, Ase AR, Verma V, Parra AIM, Komarova S, Khadra A, Séguéla P, Diatchenko L. Characterization of Common Genetic Variants in P2RX7 and Their Contribution to Chronic Pain Conditions. THE JOURNAL OF PAIN 2024; 25:545-556. [PMID: 37742908 DOI: 10.1016/j.jpain.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The adenosine triphosphate (ATP)-gated channel P2X7 is encoded by a gene enriched for common nonsynonymous variants. Many of these variants have functional cellular effects, and some have been implicated in chronic pain. In this study, we first systematically characterized all 17 common nonsynonymous variants using whole-cell patch clamp electrophysiology. Then, we analyzed these variants for statistical association with chronic pain phenotypes using both individual P2RX7 variants as predictors and cumulative allele counts of same-direction cellular effect in univariate models. Association and validation analyses were conducted in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) cohort (N = 3260) and in the Complex Persistent Pain Conditions (CPPC) cohort (N = 900), respectively. Our results showed an association between allele A of rs7958311 and an increased risk of chronic pelvic pain, with convergent evidence for contribution to fibromyalgia and irritable bowel syndrome, confirmed in a meta-analysis. This allelic variant produced a unique cellular phenotype: a gain-of-function in channel opening, and a loss-of-function in pore opening. A computational study using a 12-state Markov model of ATP binding to the P2X7 receptor suggested that this cellular phenotype arises from an increased ATP binding affinity and an increased open channel conductance combined with a loss of sensitization. Cumulative allele count analysis did not provide additional insights. In conclusion, our results go beyond reproducing association for rs7958311 with chronic pain and suggest that its unique combination of gain-of-function in channel and loss-of-function in pore activity may explain why it is likely the only common P2RX7 variant with contribution to chronic pain. PERSPECTIVE: This study characterizes all common P2RX7 variants using cellular assays and statistical association analyses with chronic pain, with Markov state modeling of the most robustly associated variant.
Collapse
Affiliation(s)
- Katerina Zorina-Lichtenwalter
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Ariel R Ase
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Vivek Verma
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arturo I M Parra
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Svetlana Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
15
|
Okada M, Nose T. Eperisone Hydrochloride, a Muscle Relaxant, Is a Potent P2X7 Receptor Antagonist. Chem Pharm Bull (Tokyo) 2024; 72:345-348. [PMID: 38556262 DOI: 10.1248/cpb.c24-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Eperisone Hydrochloride was launched in Japan in 1983 and has been used to improve muscle tone and treat spastic paralysis (Originator: Eisai Co., Ltd.). However, its biochemical mechanism of action is unknown. SB Drug Discovery was used to evaluate purinergic P2X (P2X) receptor antagonism using fluorescence. In this study, we discovered that its target protein is the P2X7 receptor. Also, P2X receptor subtype selectivity was high. This finding demonstrates the (Eperisone-P2X7-pain linkage), the validity of P2X7 as a drug target, and the possibility of drug repositioning of Eperisone Hydrochloride.
Collapse
Affiliation(s)
- Makoto Okada
- ASKA Pharmaceutical Co., Ltd., Research Management Department
| | - Takashi Nose
- ASKA Pharmaceutical Co., Ltd., Drug Development Department
| |
Collapse
|
16
|
Zhang J, Gao L, Zhang Y, Wang H, Sun S, Wu L. Involvement of microglial P2X7 receptor in pain modulation. CNS Neurosci Ther 2024; 30:e14496. [PMID: 37950524 PMCID: PMC10805404 DOI: 10.1111/cns.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Pain is a rapid response mechanism that compels organisms to retreat from the harmful stimuli and triggers a repair response. Nonetheless, when pain persists for extended periods, it can lead to adverse changes into in the individual's brain, negatively impacting their emotional state and overall quality of life. Microglia, the resident immune cells in the central nervous system (CNS), play a pivotal role in regulating a variety of pain-related disorders. Specifically, recent studies have shed light on the central role that microglial purinergic ligand-gated ion channel 7 receptor (P2X7R) plays in regulating pain. In this respect, the P2X7R on microglial membranes represents a potential therapeutic target. AIMS To expound on the intricate link between microglial P2X7R and pain, offering insights into potential avenues for future research. METHODS We reviewed 140 literature and summarized the important role of microglial P2X7R in regulating pain, including the structure and function of P2X7R, the relationship between P2X7R and microglial polarization, P2X7R-related signaling pathways, and the effects of P2X7R antagonists on pain regulation. RESULTS P2X7R activation is related to M1 polarization of microglia, while suppressing P2X7R can transfer microglia from M1 into M2 phenotype. And targeting the P2X7R-mediated signaling pathways helps to explore new therapy for pain alleviation. P2X7R antagonists also hold potential for translational and clinical applications in pain management. CONCLUSIONS Microglial P2X7R holds promise as a potential novel pharmacological target for clinical treatments due to its distinctive structure, function, and the development of antagonists.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lei Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yaoyuan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haozhen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Li‐an Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
17
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
18
|
Starinets A, Ponomarenko A, Tyrtyshnaia A, Manzhulo I. Synaptamide modulates glial and neurotransmitter activity in the spinal cord during neuropathic pain. J Chem Neuroanat 2023; 134:102361. [PMID: 37935251 DOI: 10.1016/j.jchemneu.2023.102361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
N-docosahexaenoylethanolamine, or synaptamide, is an endogenous metabolite of docosahexaenoic acid that is known for synaptogenic and neurogenic effects. In our previous studies we have shown that synaptamide attenuates neuropathic pain, facilitates remyelination, and reduces neuroinflammation after the chronic constriction injury (CCI) of the sciatic nerve in rats. In the current study, we show that daily synaptamide administration (4 mg/kg/day) within 14 days post-surgery: (1) decreases micro- and astroglia activity in the dorsal and ventral horns of the lumbar spinal cord; (2) modulates pro-inflammatory (IL1β, IL6) and anti-inflammatory (IL4, IL10) cytokine level in the serum and spinal cord; (3) leads to a rise in synaptamide and anandamide concentration in the spinal cord; (4) enhances IL10, CD206 and N-acylethanolamine-hydrolyzing acid amidase synthesis in macrophage cell culture following LPS-induced inflammation. Thus, the ability of synaptamide to modulate glial and cytokine activity indicates its potential for implementation in the treatment peripheral nerve injury.
Collapse
Affiliation(s)
- Anna Starinets
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Arina Ponomarenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
19
|
Shah S, Kondapalli K, Rasheed N, Chu XP. Commentary: P2X7 receptor modulation is a viable therapeutic target for neurogenic pain with concurrent sleep disorders. Front Neurosci 2023; 17:1293174. [PMID: 38099200 PMCID: PMC10720246 DOI: 10.3389/fnins.2023.1293174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri–Kansas City School of Medicine, Kansas, MO, United States
| |
Collapse
|
20
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
21
|
Kuan YH, Li FA, Cheng SJ, Chang WP, Shyu BC. Modulation of Thalamocingulate Nociceptive Transmission and Glutamate Secretion by Targeting P2×7 Receptor. THE JOURNAL OF PAIN 2023; 24:1915-1930. [PMID: 37271352 DOI: 10.1016/j.jpain.2023.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The complexity and diversity of pain signaling have led to obstacles for prominent treatments due to mechanisms that are not yet fully understood. Among adenosine triphosphate (ATP) receptors, P2×7 differs in many respects from P2×1-6, it plays a significant role in various inflammatory pain, but whether it plays a role in noninflammatory pain has not been widely discussed. In this study, we utilized major neuropharmacological methods to record the effects of manipulating P2×7 during nociceptive signal transmission in the thalamocingulate circuits. Our results show that regardless of the specific cell type distribution of P2×7 in the central nervous system (CNS), it participates directly in the generated nociceptive transmission, which indicates its apparent functional existence in the major pain transmission path, the thalamocingulate circuits. Activation of P2×7 may facilitate transmission velocity along the thalamocingulate projection as well as neuron firings and synaptic vesicle release in anterior cingulate cortical neurons. Targeting thalamic P2×7 affects glutamate and ATP secretion during nociceptive signal transmission. PERSPECTIVE: The observations in this study provide evidence that the ATP receptor P2×7 presents in the central ascending pain path and plays a modulatory role during nociceptive transmission, which could contribute new insights for many antinociceptive applications.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Proteomics Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sin-Jhong Cheng
- Neuro Circuit Electrophysiology Core Facility, Neuroscience Program, Academia Sinica (NPAS), Taipei, Taiwan
| | - Wei-Peng Chang
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Yang Y, Mou B, Zhang QR, Zhao HX, Zhang JY, Yun X, Xiong MT, Liu Y, Liu YU, Pan H, Ma CL, Li BM, Peng J. Microglia are involved in regulating histamine-dependent and non-dependent itch transmissions with distinguished signal pathways. Glia 2023; 71:2541-2558. [PMID: 37392090 DOI: 10.1002/glia.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Although itch and pain have many similarities, they are completely different in perceptual experience and behavioral response. In recent years, we have a deep understanding of the neural pathways of itch sensation transmission. However, there are few reports on the role of non-neuronal cells in itch. Microglia are known to play a key role in chronic neuropathic pain and acute inflammatory pain. It is still unknown whether microglia are also involved in regulating the transmission of itch sensation. In the present study, we used several kinds of transgenic mice to specifically deplete CX3CR1+ microglia and peripheral macrophages together (whole depletion), or selectively deplete microglia alone (central depletion). We observed that the acute itch responses to histamine, compound 48/80 and chloroquine were all significantly reduced in mice with either whole or central depletion. Spinal c-fos mRNA assay and further studies revealed that histamine and compound 48/80, but not chloroquine elicited primary itch signal transmission from DRG to spinal Npr1- and somatostatin-positive neurons relied on microglial CX3CL1-CX3CR1 pathway. Our results suggested that microglia were involved in multiple types of acute chemical itch transmission, while the underlying mechanisms for histamine-dependent and non-dependent itch transmission were different that the former required the CX3CL1-CX3CR1 signal pathway.
Collapse
Affiliation(s)
- Yuxiu Yang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Bin Mou
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Qi-Ruo Zhang
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Hong-Xue Zhao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Jian-Yun Zhang
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Xiao Yun
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Ming-Tao Xiong
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Ying Liu
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Disease, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haili Pan
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Chao-Lin Ma
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Bao-Ming Li
- Institute of Life Science, Nanchang University, Nanchang, China
- Department of Physiology and Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiyun Peng
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Cevoli F, Arnould B, Peralta FA, Grutter T. Untangling Macropore Formation and Current Facilitation in P2X7. Int J Mol Sci 2023; 24:10896. [PMID: 37446075 DOI: 10.3390/ijms241310896] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase. On the other hand, current facilitation refers to the progressive increase in current amplitude and activation kinetics observed with prolonged or repetitive exposure to ATP. Various mechanisms, including the activation of chloride channels and intrinsic properties of P2X7, have been proposed to explain this phenomenon. In this comprehensive review, we present an in-depth overview of P2X7 current facilitation and macropore formation, highlighting new findings and proposing mechanistic models that may offer fresh insights into these untangled processes.
Collapse
Affiliation(s)
- Federico Cevoli
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Arnould
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francisco Andrés Peralta
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Thomas Grutter
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67000 Strasbourg, France
| |
Collapse
|
26
|
Gaff J, Octaviana F, Jackaman C, Kamerman P, Papadimitriou J, Lee S, Mountford J, Price P. Expression in skin biopsies supports genetic evidence linking CAMKK2, P2X7R and P2X4R with HIV-associated sensory neuropathy. J Neurovirol 2023; 29:241-251. [PMID: 37166584 PMCID: PMC10404215 DOI: 10.1007/s13365-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
HIV-associated sensory neuropathy (HIV-SN) affects 14-38% of HIV+ individuals stable on therapy with no neurotoxic drugs. Polymorphisms in CAMKK2, P2X7R and P2X4R associated with altered risk of HIV-SN in Indonesian and South African patients. The role of CaMKK2 in neuronal repair makes this an attractive candidate, but a direct role for any protein is predicated on expression in affected tissues. Here, we describe expression of CaMKK2, P2X7R and P2X4R proteins in skin biopsies from the lower legs of HIV+ Indonesians with and without HIV-SN, and healthy controls (HC). HIV-SN was diagnosed using the Brief Peripheral Neuropathy Screen. Biopsies were stained to detect protein gene product 9.5 on nerve fibres and CaMKK2, P2X7R or P2X4R, and were examined using 3-colour sequential scanning confocal microscopy. Intraepidermal nerve fibre densities (IENFD) were lower in HIV+ donors than HC and correlated directly with nadir CD4 T-cell counts (r = 0.69, p = 0.004). However, IENFD counts were similar in HIV-SN+ and HIV-SN- donors (p = 0.19) and so did not define neuropathy. CaMKK2+ cells were located close to dermal and epidermal nerve fibres and were rare in HC and HIV-SN- donors, consistent with a role for the protein in nerve damage and/or repair. P2X7R was expressed by cells in blood vessels of HIV-SN- donors, but rarely in HC or HIV-SN+ donors. P2X4R expression by cells in the epidermal basal layer appeared greatest in HIV-SN+ donors. Overall, the differential expression of CaMKK2, P2X7R and P2X4R supports the genetic evidence of a role for these proteins in HIV-SN.
Collapse
Affiliation(s)
- Jessica Gaff
- Curtin Medical School, Curtin University, Bentley, 6102, Australia
| | - Fitri Octaviana
- Neurology Department, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Neurology Department, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Connie Jackaman
- Curtin Medical School, Curtin University, Bentley, 6102, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Peter Kamerman
- School of Physiology, University of Witwatersrand, Johannesburg, South Africa
| | | | - Silvia Lee
- Curtin Medical School, Curtin University, Bentley, 6102, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Australia
| | | | - Patricia Price
- Curtin Medical School, Curtin University, Bentley, 6102, Australia.
- Neurology Department, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Curtin Health Innovation Research Institute, Bentley, Australia.
- School of Physiology, University of Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
27
|
Mei C, Pan C, Xu L, Miao M, Lu Q, Yu Y, Lin P, Wu W, Ni F, Gao Y, Xu Y, Xu J, Chen X. Trimethoxyflavanone relieves Paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 2023; 236:109584. [PMID: 37225085 DOI: 10.1016/j.neuropharm.2023.109584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 μg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.
Collapse
Affiliation(s)
- Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qichen Lu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Yu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Pengyu Lin
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wenwei Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; LeadArt Technologies Ltd., Ningbo, 315201, China
| | - Yinping Gao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
28
|
You HP, Xu CJ, Zhang LH, Chen ZY, Liu WF, Wang HG, He HF, Zhang LC. Taselisib moderates neuropathic pain through PI3K/AKT signaling pathway in a rat model of chronic constriction injury. Brain Res Bull 2023; 199:110671. [PMID: 37210013 DOI: 10.1016/j.brainresbull.2023.110671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic condition commonly caused by inflammation-induced disturbances or lesions of somatosensory functions in the nervous system. The aim of this study was to investigate the effects and mechanisms of Taselisib on chronic constriction injury (CCI)-induced neuropathic pain in rats. METHODS The rats were divided into four groups: sham group, sham + Taselisib (10mg/kg orally once a day) group, CCI group, and CCI + Taselisib (10mg/kg orally once a day) group. Pain behavioral tests, recorded by measuring paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL), were conducted on days 0, 3, 7, 14, and 21 after surgery. After testing, the animals were euthanized and spinal dorsal horns were collected. Pro-inflammatory cytokines were quantified using ELISA and qRT-PCR. PI3K/pAKT signaling was assessed using Western blot and immunofluorescence. RESULTS PWT and TWL were significantly reduced after CCI surgery, but were successfully increased by Taselisib treatment. Taselisib treatment notably suppressed the upregulation of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-⍺. Taselisib treatment significantly reduced the elevated phosphorylation of AKT and PI3K induced by CCI. CONCLUSION Taselisib can alleviate neuropathic pain by inhibiting the pro-inflammatory response, potentially through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Hai-Ping You
- Department of Anesthesiology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 350001, Fujian, China; Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Chong-Jun Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Li-Hong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China
| | - Zhi-Yuan Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China
| | - Wei-Feng Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Hong-Geng Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Liang-Cheng Zhang
- Department of Anesthesiology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 350001, Fujian, China.
| |
Collapse
|
29
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Shi Y, Gong C, Nan W, Zhou W, Lei Z, Zhou K, Wang L, Zhao G, Zhang H. Intrathecal administration of botulinum toxin type a antagonizes neuropathic pain by countering increased vesicular nucleotide transporter expression in the spinal cord of chronic constriction injury of the sciatic nerve rats. Neuropeptides 2023; 100:102346. [PMID: 37178626 DOI: 10.1016/j.npep.2023.102346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Botulinum toxin type A (BoNT/A) induces direct analgesic effects in neuropathic pain by inhibiting the release of substance P, calcitonin gene-related peptide (CGRP) and glutamate. Vesicular nucleotide transporter (VNUT) was responsible for the storage and release of ATP in vivo, and one of the mechanisms underlying neuropathic pain is VNUT-dependent release of extracellular ATP from dorsal horn neurons. However, the analgesic effect of BoNT/A by affecting the expression of VNUT remained largely unknown. Thus, in this study, we aimed to elucidate the antinociceptive potency and analgesic mechanism of BoNT/A in chronic constriction injury of the sciatic nerve (CCI) induced neuropathic pain. Our results showed that a single intrathecal injection of 0.1 U BoNT/A seven days after CCI surgery produced significant analgesic activity and decreased the expression of VNUT in the spinal cord of CCI rats. Similarly, BoNT/A inhibited the CCI-induced increase in ATP content in the rat spinal cord. Overexpression of VNUT in the spinal cord of CCI-induced rats markedly reversed the antinociceptive effect of BoNT/A. Furthermore, 33 U/mL BoNT/A dramatically reduced the expression of VNUT in pheochromocytoma (PC12) cells but overexpressing SNAP-25 increased VNUT expression in PC12 cells. Our current study is the first to demonstrate that BoNT/A is involved in neuropathic pain by regulating the expression of VNUT in the spinal cord in rats.
Collapse
Affiliation(s)
- Yongqiang Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoyang Gong
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Wei Nan
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Wenming Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zeyuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Kaisheng Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Linna Wang
- Lanzhou Biotechnique Development Co.LTD, China
| | - Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
31
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
32
|
McGinnis A, Ji RR. The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells 2023; 12:965. [PMID: 36980304 PMCID: PMC10047571 DOI: 10.3390/cells12060965] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Preclinical studies have identified glial cells as pivotal players in the genesis and maintenance of neuropathic pain after nerve injury associated with diabetes, chemotherapy, major surgeries, and virus infections. Satellite glial cells (SGCs) in the dorsal root and trigeminal ganglia of the peripheral nervous system (PNS) and astrocytes in the central nervous system (CNS) express similar molecular markers and are protective under physiological conditions. They also serve similar functions in the genesis and maintenance of neuropathic pain, downregulating some of their homeostatic functions and driving pro-inflammatory neuro-glial interactions in the PNS and CNS, i.e., "gliopathy". However, the role of SGCs in neuropathic pain is not simply as "peripheral astrocytes". We delineate how these peripheral and central glia participate in neuropathic pain by producing different mediators, engaging different parts of neurons, and becoming active at different stages following nerve injury. Finally, we highlight the recent findings that SGCs are enriched with proteins related to fatty acid metabolism and signaling such as Apo-E, FABP7, and LPAR1. Targeting SGCs and astrocytes may lead to novel therapeutics for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
Grohs L, Cheng L, Cönen S, Haddad BG, Bülow A, Toklucu I, Ernst L, Körner J, Schmalzing G, Lampert A, Machtens JP, Hausmann R. Diclofenac and other non-steroidal anti-inflammatory drugs (NSAIDs) are competitive antagonists of the human P2X3 receptor. Front Pharmacol 2023; 14:1120360. [PMID: 37007008 PMCID: PMC10060569 DOI: 10.3389/fphar.2023.1120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: The P2X3 receptor (P2X3R), an ATP-gated non-selective cation channel of the P2X receptor family, is expressed in sensory neurons and involved in nociception. P2X3R inhibition was shown to reduce chronic and neuropathic pain. In a previous screening of 2000 approved drugs, natural products, and bioactive substances, various non-steroidal anti-inflammatory drugs (NSAIDs) were found to inhibit P2X3R-mediated currents.Methods: To investigate whether the inhibition of P2X receptors contributes to the analgesic effect of NSAIDs, we characterized the potency and selectivity of various NSAIDs at P2X3R and other P2XR subtypes using two-electrode voltage clamp electrophysiology.Results: We identified diclofenac as a hP2X3R and hP2X2/3R antagonist with micromolar potency (with IC50 values of 138.2 and 76.7 µM, respectively). A weaker inhibition of hP2X1R, hP2X4R, and hP2X7R by diclofenac was determined. Flufenamic acid (FFA) inhibited hP2X3R, rP2X3R, and hP2X7R (IC50 values of 221 µM, 264.1 µM, and ∼900 µM, respectively), calling into question its use as a non-selective ion channel blocker, when P2XR-mediated currents are under study. Inhibition of hP2X3R or hP2X2/3R by diclofenac could be overcome by prolonged ATP application or increasing concentrations of the agonist α,β-meATP, respectively, indicating competition of diclofenac and the agonists. Molecular dynamics simulation showed that diclofenac largely overlaps with ATP bound to the open state of the hP2X3R. Our results suggest a competitive antagonism through which diclofenac, by interacting with residues of the ATP-binding site, left flipper, and dorsal fin domains, inhibits the gating of P2X3R by conformational fixation of the left flipper and dorsal fin domains. In summary, we demonstrate the inhibition of the human P2X3 receptor by various NSAIDs. Diclofenac proved to be the most effective antagonist with a strong inhibition of hP2X3R and hP2X2/3R and a weaker inhibition of hP2X1R, hP2X4R, and hP2X7R.Discussion: Considering their involvement in nociception, inhibition of hP2X3R and hP2X2/3R by micromolar concentrations of diclofenac, which are rarely reached in the therapeutic range, may play a minor role in analgesia compared to the high-potency cyclooxygenase inhibition but may explain the known side effect of taste disturbances caused by diclofenac.
Collapse
Affiliation(s)
- Laura Grohs
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Linhan Cheng
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Saskia Cönen
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology (IBI-1), Institute of Biological Information Processing (IBI), Forschungszentrum Jülich, Jülich, Germany
| | - Bassam G. Haddad
- Molecular and Cellular Physiology (IBI-1), Institute of Biological Information Processing (IBI), Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Bülow
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Department of Plastic Surgery, Hand Surgery—Burn Center, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Idil Toklucu
- Institute of Physiology (Neurophysiology), RWTH Aachen University, Aachen, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Aachen, Germany
| | - Jannis Körner
- Institute of Physiology (Neurophysiology), RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology (Neurophysiology), RWTH Aachen University, Aachen, Germany
| | - Jan-Philipp Machtens
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology (IBI-1), Institute of Biological Information Processing (IBI), Forschungszentrum Jülich, Jülich, Germany
| | - Ralf Hausmann
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Ralf Hausmann,
| |
Collapse
|
34
|
Nan J, Liu J, Lin G, Zhang S, Xia A, Zhou P, Zhou Y, Zhang J, Zhao J, Zhang S, Huang C, Wang Y, Hu Q, Chen J, Xiang M, Yang X, Yang S. Discovery of 4-(1,2,4-Oxadiazol-5-yl)azepan-2-one Derivatives as a New Class of Cannabinoid Type 2 Receptor Agonists for the Treatment of Inflammatory Pain. J Med Chem 2023; 66:3460-3483. [PMID: 36821347 DOI: 10.1021/acs.jmedchem.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Selectively targeting the cannabinoid receptor CB2 is an attractive therapeutic strategy for the treatment of inflammatory pain without psychiatric side effects mediated by the cannabinoid receptor CB1. Herein, we report the discovery of 4-(1,2,4-oxadiazol-5-yl)azepan-2-one derivatives as a new class of CB2 agonists. Systematic structure-activity relationship investigations resulted in the identification of the most potent compound 25r. This compound displayed high selectivity for CB2 against CB1 (CB2 EC50 = 21.0 nM, Emax = 87%, CB1 EC50 > 30 μM, ratio CB1/CB2 > 1428) with favorable pharmacokinetic properties. Especially, 25r demonstrated significant efficacy in the analgesic model of rodent inflammatory pain. All the results suggest that compound 25r could serve as a lead compound for treating inflammatory pain and deserves further in-depth studies.
Collapse
Affiliation(s)
- Jinshan Nan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingming Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yangli Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiahao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinlong Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chong Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu Sichuan 610041, China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Spinal cord astrocyte P2X7Rs mediate the inhibitory effect of electroacupuncture on visceral hypersensitivity of rat with irritable bowel syndrome. Purinergic Signal 2023; 19:43-53. [PMID: 35389158 PMCID: PMC9984627 DOI: 10.1007/s11302-021-09830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/17/2021] [Indexed: 10/18/2022] Open
Abstract
This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.
Collapse
|
36
|
Chen XT, Chen LP, Fan LJ, Kan HM, Wang ZZ, Qian B, Pan ZQ, Shen W. Microglial P2Y12 Signaling Contributes to Cisplatin-induced Pain Hypersensitivity via IL-18-mediated Central Sensitization in the Spinal Cord. THE JOURNAL OF PAIN 2023; 24:901-917. [PMID: 36646400 DOI: 10.1016/j.jpain.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Administration of cisplatin and other chemotherapy drugs is crucial for treating tumors. However, cisplatin-induced pain hypersensitivity is still a critical clinical issue, and the underlying molecular mechanisms have remained unresolved to date. In this study, we found that repeated cisplatin treatments remarkedly upregulated the P2Y12 expression in the spinal cord. Expression of P2Y12 was predominant in the microglia. Pharmacological inhibition of P2Y12 expression markedly attenuated the cisplatin-induced pain hypersensitivity. Meanwhile, blocking the P2Y12 signal also suppressed cisplatin-induced microglia hyperactivity. Furthermore, the microglia Src family kinase/p38 pathway is required for P2Y12-mediated cisplatin-induced pain hypersensitivity via the proinflammatory cytokine IL-18 production in the spinal cord. Blocking the P2Y12/IL-18 signaling pathway reversed cisplatin-induced pain hypersensitivity, as well as activation of N-methyl-D-aspartate receptor and subsequent Ca2+-dependent signals. Collectively, our data suggest that microglia P2Y12-SFK-p38 signaling contributes to cisplatin-induced pain hypersensitivity via IL-18-mediated central sensitization in the spinal, and P2Y12 could be a potential target for intervention to prevent chemotherapy-induced pain hypersensitivity. PERSPECTIVE: Our work identified that P2Y12/IL-18 played a critical role in cisplatin-induced pain hypersensitivity. This work suggests that P2Y12/IL-18 signaling may be a useful strategy for the treatment of chemotherapy-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China; Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Jun Fan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Hou-Ming Kan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zi-Zhu Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Bin Qian
- Department of anesthesiology, The Yancheng Clinical College of Xuzhou Medical University; Department of central labotatory, The First people's Hospital of Yancheng, Yancheng, Jiangsu 224006, People's Republic of China
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.
| |
Collapse
|
37
|
Zhou Y, Xu Y, Yang J, Yu Z, Wang W, Yuan M, Wang Y, Bai Q, Li Z. Spinal cannabinoid receptor 2 activation alleviates neuropathic pain by regulating microglia and suppressing P2X7 receptor. Front Mol Neurosci 2023; 16:1061220. [PMID: 36969555 PMCID: PMC10030493 DOI: 10.3389/fnmol.2023.1061220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Neuropathic pain (NP) is the chronic pain in patients resulting from injuries or diseases in the somatosensory nervous system. However, effective treatment remains limited to opioids. Currently, there is an urgent need to develop new specific pharmaceuticals with low abuse potentiality. Cannabinoid receptor 2 (CB2R) is one of the significant receptors in the endocannabinoid system. It is widely expressed in the central nervous system, especially enriched in glial cells, and plays an important role in the occurrence and development of inflammation in the nervous system. CB2R activation has a neuroprotective effect on nerve injury. In this study, we report increased and more reactive microglia (with larger cell body, shorter processes, and fewer endpoints) observed in the spinal dorsal horn of spared nerve injury (SNI) rats. Continuous intrathecal administration of CB2R agonist PM226 attenuated mechanical and cold hyperalgesia in rats and prevented the transition of microglia to the proinflammatory stage. Thus, microglia transitioned into the neuroprotective stage. Meanwhile, the proinflammatory factors TNF-α and iNOS decreased, and the levels of anti-inflammatory factors Arg-1 and IL-10 increased. The content of P2X7 receptors in the spinal dorsal horn of rats increases with time after SNI. After continuous intrathecal administration of PM226, the content of P2X7 protein decreases significantly. The administration of P2X7 inhibitor A-438079 alleviated the mechanical hyperalgesia of rats, reduced the number of microglia, and decreased the content of P2X7. These results indicate that P2X7 is involved in the neuroprotective effect caused by CB2R activation. In conclusion, this study provides new insights into the neuroprotective mechanism of CB2R activation.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaowei Xu
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhixiang Yu
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenting Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Yuan
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Wang
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Bai,
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Zhisong Li,
| |
Collapse
|
38
|
Ma Y, Luo J, Wang XQ. The effect and mechanism of exercise for post-stroke pain. Front Mol Neurosci 2022; 15:1074205. [PMID: 36533131 PMCID: PMC9755671 DOI: 10.3389/fnmol.2022.1074205] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 08/30/2023] Open
Abstract
One of the common negative effects of a stroke that seriously lowers patients' quality of life is post-stroke pain (PSP). Thus, exercise in PSP management has become a hot research topic. The main advantages of exercise therapy are affordability and ease of acceptance by patients compared to other treatment methods. Therefore, this article reviews the effectiveness and possible mechanisms of exercise interventions for PSP. Exercise training for patients with PSP not only improves physical function but also effectively reduces pain intensity and attenuates the behavioral response to pain. In addition, exercise therapy can improve brain function and modulate levels of pro-inflammatory and neurotrophic factors to exert specific analgesic effects. Potential mechanisms for exercise intervention include modulation of synaptic plasticity in the anterior cingulate gyrus, modulation of endogenous opioids in vivo, reversal of brain-derived neurotrophic factor overexpression, inhibition of purinergic receptor (P2X4R, P2X7R) expression, and inhibition of microglia activation. However, current research on exercise for PSP remains limited, and the sustainable benefits of exercise interventions for PSP need to be further investigated.
Collapse
Affiliation(s)
- Yue Ma
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
39
|
Zhang Z, Liu L, Zhang H, Li C, Chen Y, Zhang J, Pan C, Cheng S, Yang X, Meng P, Yao Y, Jia Y, Wen Y, Zhang F. The genetic structure of pain in depression patients: A genome-wide association study and proteome-wide association study. J Psychiatr Res 2022; 156:547-556. [PMID: 36368244 DOI: 10.1016/j.jpsychires.2022.10.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Comparing with the general population, the pain in depression patients has more complex biological mechanism. We aim to explore the etiological mechanism of pain in depression patients from the perspective of genetics. METHODS Utilizing the UK Biobank samples with self-reported depression status or PHQ score ≥10, we conducted genome-wide association studies (GWAS) of seven pain traits (N = 1,133-58,349). Additionally, we used FUSION pipeline to perform proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) by integrating GWAS summary data with two different proteome reference weights (ROS/MAP and Banner) and Rnaseq gene expression reference weights, respectively. RESULTS GWAS identified 3 significant genes associated with different pain traits in depression patients, including TRIOBP (PGWAS = 4.48 × 10-8) for stomach or abdominal pain, SLC9A9(PGWAS = 2.77 × 10-8) for multisite chronic pain (MCP) and ADGRF1 (PGWAS = 1.51 × 10-8) for neck or shoulder pain. In addition, PWAS and TWAS analysis also identified multiple candidate genes associated with different pain traits in depression patients, such as TPRG1L (PPWAS-Banner = 3.38 × 10-2) and SIRPA (PPWAS-Banner = 3.65 × 10-2) for MCP, etc. Notably, when comparing the results of PWAS and TWAS analysis, we found overlapping candidate genes in these pain traits, such as GSTM3 (PPWAS-Banner = 3.38 × 10-2, PTWAS = 6.92 × 10-3) in the stomach or abdominal pain phenotype, ATG7 (PPWAS-Rosmap = 3.15 × 10-2, PTWAS = 2.98 × 10-2) in the MCP, etc. CONCLUSIONS: We identified multiple novel candidate genes for pain traits in depression patients from different perspectives of genetics, which provided novel clues for understanding the genetic mechanisms underlying the pain in depression patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
40
|
Staal RGW, Gandhi A, Zhou H, Cajina M, Jacobsen AM, Hestehave S, Hopper A, Poda S, Chandresana G, Zorn SH, Campbell B, Segerdahl M, Mӧller T, Munro G. Inhibition of P2X7 receptors by Lu AF27139 diminishes colonic hypersensitivity and CNS prostanoid levels in a rat model of visceral pain. Purinergic Signal 2022; 18:499-514. [PMID: 36001278 PMCID: PMC9832206 DOI: 10.1007/s11302-022-09892-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023] Open
Abstract
Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor's role in distinct rat models of inflammatory and visceral hypersensitivity. Rats injected with CFA in the hindpaw displayed a marked reduction in hindpaw mechanical threshold, which was dose-dependently reversed by Lu AF27139 (3-30 mg/kg, p.o.). In rats injected with TNBS in the proximal colon, the colorectal distension threshold measured distally was significantly lower than sham treated rats at 7 days post-injection (P < 0.001), indicative of a marked central sensitization. Colonic hypersensitivity was also reversed by Lu AF27139 (10-100 mg/kg) and by the κ-opioid receptor agonist U-50,488H (3 mg/kg, s.c.). Moreover, both Lu AF27139 and U-50,488H prevented a TNBS-induced increase in spinal and brain levels of PGE2 and LTB4, as well as an increase in brain levels of PGF2α and TXB2. Lu AF27139 was well tolerated as revealed by a lack of significant effect on rotarod motor function and coordination at all doses tested up to 300 mg/kg. Thus, P2X7 receptor antagonism is efficacious in a rat model of visceral pain, via a mechanism which potentially involves attenuation of microglial function within spinal and/or supraspinal pain circuits, albeit a peripheral site of action cannot be excluded.
Collapse
Affiliation(s)
- Roland G W Staal
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Adarsh Gandhi
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Hua Zhou
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Manuel Cajina
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | | | - Sara Hestehave
- Neurodegeneration In Vivo Lundbeck Research, Valby, Denmark
| | - Allen Hopper
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Suresh Poda
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Gamini Chandresana
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Stevin H Zorn
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Brian Campbell
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Marta Segerdahl
- Clinical Research Neurology Lundbeck Research, Valby, Denmark
| | - Thomas Mӧller
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, Paramus, NJ, USA
| | - Gordon Munro
- Neurodegeneration In Vivo Lundbeck Research, Valby, Denmark.
- Hoba Therapeutics, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
41
|
Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. J Bioenerg Biomembr 2022; 54:227-239. [PMID: 36070071 DOI: 10.1007/s10863-022-09947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The P2X7 receptor (P2X7R) is an ion channel that promotes the passage of ions through the membrane through brief stimulation once activated by ATP, its endogenous opener. However, prolonged stimulation with ATP, which occurs in pathological processes, opens a nonselective pore in the plasma membrane, allowing the passage of large molecules and leading to cytokine release or even cell death. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Considering the booming of biomass upgrading reactions in recent years and the continued efforts to synthesize biologically active molecules containing the 1,2,3-triazole ring, in the present work, we aimed to investigate whether triazole-linked menadione-furan derivatives could present P2X7R inhibitory activity. The novel compounds were tested for their inhibitory activity on ATP-induced dye uptake in peritoneal macrophages. Some have shown promising results, having displayed IC50 values lower than that of the P2X7R inhibitor BBG. Molecular docking studies also indicated that the active compounds bind to an allosteric site on P2X7R, presenting potential P2X7R inhibition.
Collapse
|
42
|
Genetzakis E, Gilchrist J, Kassiou M, Figtree GA. Development and clinical translation of P2X7 receptor antagonists: A potential therapeutic target in coronary artery disease? Pharmacol Ther 2022; 237:108228. [DOI: 10.1016/j.pharmthera.2022.108228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
|
43
|
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci Bull 2022; 39:368-378. [PMID: 35976535 PMCID: PMC10043090 DOI: 10.1007/s12264-022-00937-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022] Open
Abstract
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Collapse
|
44
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
45
|
De Salis SKF, Li L, Chen Z, Lam KW, Skarratt KK, Balle T, Fuller SJ. Alternatively Spliced Isoforms of the P2X7 Receptor: Structure, Function and Disease Associations. Int J Mol Sci 2022; 23:ijms23158174. [PMID: 35897750 PMCID: PMC9329894 DOI: 10.3390/ijms23158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated membrane ion channel that is expressed by multiple cell types. Following activation by extracellular ATP, the P2X7R mediates a broad range of cellular responses including cytokine and chemokine release, cell survival and differentiation, the activation of transcription factors, and apoptosis. The P2X7R is made up of three P2X7 subunits that contain specific domains essential for the receptor’s varied functions. Alternative splicing produces P2X7 isoforms that exclude one or more of these domains and assemble in combinations that alter P2X7R function. The modification of the structure and function of the P2X7R may adversely affect cellular responses to carcinogens and pathogens, and alternatively spliced (AS) P2X7 isoforms have been associated with several cancers. This review summarizes recent advances in understanding the structure and function of AS P2X7 isoforms and their associations with cancer and potential role in modulating the inflammatory response.
Collapse
Affiliation(s)
- Sophie K. F. De Salis
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Lanxin Li
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Zheng Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
| | - Kam Wa Lam
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (S.K.F.D.S.); (Z.C.); (T.B.)
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Penrith, NSW 2750, Australia; (L.L.); (K.W.L.); (K.K.S.)
- Correspondence: ; Tel.: +61-2-4734-3732
| |
Collapse
|
46
|
Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:946846. [PMID: 35859655 PMCID: PMC9289261 DOI: 10.3389/fpain.2022.946846] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.
Collapse
Affiliation(s)
- Jia-Xuan Yang
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Zhun Chen
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Han-Yu Li
- Second School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Chen Hu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - An-An Yu
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jun-Jun Wen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Si-Jia Chen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei-Dong Lai
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Song Wang
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yan Jin
| | - Jie Yu
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
- Jie Yu
| |
Collapse
|
47
|
Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ. The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 2022; 11:cells11132083. [PMID: 35805167 PMCID: PMC9265514 DOI: 10.3390/cells11132083] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injuries induce a pronounced immune reaction within the spinal cord, largely governed by microglia activation in both the dorsal and ventral horns. The mechanisms of activation and response of microglia are diverse depending on the location within the spinal cord, type, severity, and proximity of injury, as well as the age and species of the organism. Thanks to recent advancements in neuro-immune research techniques, such as single-cell transcriptomics, novel genetic mouse models, and live imaging, a vast amount of literature has come to light regarding the mechanisms of microglial activation and alluding to the function of microgliosis around injured motoneurons and sensory afferents. Herein, we provide a comparative analysis of the dorsal and ventral horns in relation to mechanisms of microglia activation (CSF1, DAP12, CCR2, Fractalkine signaling, Toll-like receptors, and purinergic signaling), and functionality in neuroprotection, degeneration, regeneration, synaptic plasticity, and spinal circuit reorganization following peripheral nerve injury. This review aims to shed new light on unsettled controversies regarding the diversity of spinal microglial-neuronal interactions following injury.
Collapse
Affiliation(s)
- Tana S. Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA;
| | - William M. McCallum
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Zoë A. Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Francisco J. Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
- Correspondence:
| |
Collapse
|
48
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Long L, Zhong W, Guo L, Ji J, Nie H. Effect of Bufalin-PLGA Microspheres in the Alleviation of Neuropathic Pain via the CCI Model. Front Pharmacol 2022; 13:910885. [PMID: 35770074 PMCID: PMC9234216 DOI: 10.3389/fphar.2022.910885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neuropathic pain (NPP) is considered challenging, while the search for alternative medication is striving. NPP pathology is related with the expression of both the purinergic 2X7 (P2X7) receptor and the transient receptor potential vanilloid 1 receptor (TRPV1). Bufalin is a traditional Chinese medication derived from toad venom with pronounced antitumor, analgesic, and anti-inflammatory properties. However, poor solubility, rapid metabolism, and the knowledge gap on its pain alleviation mechanism have limited the clinical application of bufalin. Hence, the purpose of this study is to illustrate the NPP alleviation mechanism of bufalin via chronic constriction injury (CCI). To address the concern on fast metabolism, bufalin-PLGA microspheres (MS) were prepared via membrane emulsification to achieve prolonged pain-relieving effects. Western blot, real-time PCR, immunofluorescence, and molecular docking were employed to demonstrate the therapeutic action of bufalin on NPP. The results showed enhanced thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) after the administration of both bufalin and bufalin-PLGA MS in the CCI rats. Prolonged pain-relieving effects for up to 3 days with reduced dose frequency was achieved via bufalin-PLGA MS. In the CCI rats treated with bufalin-PLGA MS, the expression levels of protein and mRNA in TRPV1 and P2X7, both localized in the dorsal root ganglion (DRG), were reduced. Moreover, bufalin-PLGA MS effectively reduced the levels of IL-1β, IL-18, IL-6, and TNF-α in the CCI group. The results from molecular docking suggested a possible mechanism of NPP alleviation of bufalin through binding to P2X7 receptors directly. The administration of bufalin-PLGA MS prepared by membrane emulsification demonstrated promising applications for sustained effect on the alleviation of NPP.
Collapse
Affiliation(s)
- Lina Long
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenwei Zhong
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu, China
- Guangzhou Nansha Information Technology Park Post-Doctoral Scientific Research Station, Guangzhou, China
- *Correspondence: Wenwei Zhong, ; Hong Nie,
| | - Liwei Guo
- Guangzhou Bio-Green Biotechnology Co., Ltd., Guangzhou, China
- National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangzhou, China
- Guangzhou Dayuan Studio of Membrane Science and Technology for Traditional Chinese Medicine, Guangzhou, China
| | - Jing Ji
- Guangzhou Nansha Information Technology Park Post-Doctoral Scientific Research Station, Guangzhou, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Wenwei Zhong, ; Hong Nie,
| |
Collapse
|
50
|
P2X7 Receptors in Astrocytes: A Switch for Ischemic Tolerance. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123655. [PMID: 35744780 PMCID: PMC9228417 DOI: 10.3390/molecules27123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
A sub-lethal ischemic episode (preconditioning [PC]) protects neurons against a subsequent lethal ischemic injury. This phenomenon is known as ischemic tolerance. PC itself does not cause brain damage, but affects glial responses, especially astrocytes, and transforms them into an ischemia-resistant phenotype. P2X7 receptors (P2X7Rs) in astrocytes play essential roles in PC. Although P2X7Rs trigger inflammatory and toxic responses, PC-induced P2X7Rs in astrocytes function as a switch to protect the brain against ischemia. In this review, we focus on P2X7Rs and summarize recent developments on how astrocytes control P2X7Rs and what molecular mechanisms they use to induce ischemic tolerance.
Collapse
|