1
|
Abdollahi M, Castaño JD, Salem JB, Beaudry F. Anandamide Modulates Thermal Avoidance in Caenorhabditis elegans Through Vanilloid and Cannabinoid Receptor Interplay. Neurochem Res 2024; 49:2423-2439. [PMID: 38847909 DOI: 10.1007/s11064-024-04186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024]
Abstract
Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.
Collapse
Affiliation(s)
- Marzieh Abdollahi
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus D Castaño
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Canada Research Chair in Metrology of Bioactive Molecules and Target Discovery, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Pandey K, Hoda W. Cannabinoids in anesthesia and chronic pain: Where do we stand? Saudi J Anaesth 2024; 18:100-104. [PMID: 38313715 PMCID: PMC10833032 DOI: 10.4103/sja.sja_710_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 02/06/2024] Open
Abstract
Cannabis derivatives have been conventionally employed globally for their curative and restorative properties for various ailments. However, its recreational use and consequent legal restrictions have substantially cramped its scientific research. An emerging interest regarding the profound therapeutic potential of cannabinoids has been observed among clinicians. Despite a rich cultural background, high-quality research on cannabinoids is lacking in the Indian scenario. This review readdresses the challenges on this front and brings an insight into the current status of cannabinoids and their utility in scientific exploration. Cannabinoids have a significant medicinal value in various clinical disorders. Its use so far has been based on scarce resources and corroborations, as evidence-based substantiation is limited. Through this review article, we emphasize the remarkable role enacted by cannabinoids in the treatment of various clinical disorders and an utterly significant need to formulate stringent research methodologies to promote its systematic investigation.
Collapse
Affiliation(s)
- Khushboo Pandey
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Wasimul Hoda
- Department of Anaesthesiology, Rajendra Institute of Medical Sciences, Bariatu, Ranchi, Jharkhand, India
| |
Collapse
|
4
|
Leite-Panissi CRA, De Paula BB, Neubert JK, Caudle RM. Influence of TRPV1 on Thermal Nociception in Rats with Temporomandibular Joint Persistent Inflammation Evaluated by the Operant Orofacial Pain Assessment Device (OPAD). J Pain Res 2023; 16:2047-2062. [PMID: 37342611 PMCID: PMC10278653 DOI: 10.2147/jpr.s405258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Background Temporomandibular joint (TMJ)-associated inflammation contributes to the pain reported by patients with temporomandibular disorders (TMD). It is common for patients diagnosed with TMD to report pain in the masticatory muscles and temporomandibular joints, headache, and jaw movement disturbances. Although TMD can have different origins, including trauma and malocclusion disorder, anxiety/depression substantially impacts the development and maintenance of TMD. In general, rodent studies on orofacial pain mechanisms involve the use of tests originally developed for other body regions, which were adapted to the orofacial area. To overcome limitations and expand knowledge in orofacial pain, our group validated and characterized an operant assessment paradigm in rats with both hot and cold stimuli as well mechanical stimuli. Nevertheless, persistent inflammation of the TMJ has not been evaluated with this operant orofacial pain assessment device (OPAD). Methods We characterized the thermal orofacial sensitivity for cold, neutral, and hot stimuli during the development of TMD using the OPAD behavior test. In addition, we evaluated the role of transient receptor potential vanilloid 1 (TRPV1) expressing nociceptors in rats with persistent TMJ inflammation. The experiments were performed in male and female rats with TMJ inflammation induced by carrageenan (CARR). Additionally, resiniferatoxin (RTX) was administered into the TMJs prior CARR to lesion TRPV1-expressing neurons to evaluate the role of TRPV1-expressing neurons. Results We evidenced an increase in the number of facial contacts and changes in the number of reward licks per stimulus on neutral (37°C) and cold (21°C) temperatures. However, at the hot temperature (42°C), the inflammation did not induce changes in the OPAD test. The prior administration of RTX in the TMJ prevented the allodynia and thermal hyperalgesia induced by CARR. Conclusion We showed that TRPV-expressing neurons are involved in the sensitivity to carrageenan-induced pain in male and female rats evaluated in the OPAD.
Collapse
Affiliation(s)
- Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna B De Paula
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Kang SY, Seo SY, Bang SK, Cho SJ, Choi KH, Ryu Y. Inhibition of Spinal TRPV1 Reduces NMDA Receptor 2B Phosphorylation and Produces Anti-Nociceptive Effects in Mice with Inflammatory Pain. Int J Mol Sci 2021; 22:ijms222011177. [PMID: 34681836 PMCID: PMC8539417 DOI: 10.3390/ijms222011177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 01/31/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and N-methyl-D-aspartate (NMDA) receptors in the regulation of inflammatory pain remains poorly understood. This study aimed to investigate the analgesic effects of intrathecal administration of capsazepine, a TRPV1 antagonist, on carrageenan-induced inflammatory pain in mice and to identify its interactions with NMDA receptors. Inflammatory pain was induced by intraplantar injection of 2% carrageenan in male ICR mice. To investigate the analgesic effects of capsazepine, pain-related behaviors were evaluated using von Frey filaments and a thermal stimulator placed on the hind paw. TRPV1 expression and NMDA receptor phosphorylation in the spinal cord and glutamate concentration in the spinal cord and serum were measured. Intrathecal treatment with capsazepine significantly attenuated carrageenan-induced mechanical allodynia and thermal hyperalgesia. Moreover, carrageenan-enhanced glutamate and phosphorylation of NMDA receptor subunit 2B in the spinal cord were suppressed by capsazepine administration. These results indicate that TRPV1 and NMDA receptors in the spinal cord are associated with inflammatory pain transmission, and inhibition of TRPV1 may reduce inflammatory pain via NMDA receptors.
Collapse
|
6
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
8
|
Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model. Pharmacol Rep 2021; 73:820-827. [PMID: 33783763 DOI: 10.1007/s43440-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The endocannabinoid system modulates a wide variety of pain conditions. Systemically administered AM404, an endocannabinoid reuptake inhibitor, exerts antinociceptive effects via activation of the endocannabinoid system. However, the mechanism and site of AM404 action are not fully understood. Here, we explored the effect of AM404 on neuropathic pain at the site of the spinal cord. METHODS Male Sprague-Dawley rats were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of intrathecal administration of AM404 on mechanical and cold hyperalgesia were examined using the electronic von Frey test and cold plate test, respectively. Motor coordination was assessed using the rotarod test. To understand the mechanisms underlying the action of AM404, we tested the effects of pretreatment with the cannabinoid type 1 (CB1) receptor antagonist AM251, CB2 receptor antagonist AM630, and transient receptor potential vanilloid type 1 (TRPV1) antagonist capsazepine. RESULTS AM404 attenuated mechanical and cold hyperalgesia with minimal effects on motor coordination. AM251 significantly inhibited the antihyperalgesic action of AM404, whereas capsazepine showed a potentiating effect. CONCLUSIONS These results indicate that AM404 exerts antihyperalgesic effects primarily via CB1, but not CB2, receptor activation at the site of the spinal cord. TRPV1 receptors appear to play a pronociceptive role in CCI rats. The endocannabinoid reuptake inhibitor may be a promising candidate treatment for neuropathic pain.
Collapse
|
9
|
Narouze S. Antinociception mechanisms of action of cannabinoid-based medicine: an overview for anesthesiologists and pain physicians. Reg Anesth Pain Med 2020; 46:240-250. [PMID: 33239391 DOI: 10.1136/rapm-2020-102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabinoid-based medications possess unique multimodal analgesic mechanisms of action, modulating diverse pain targets. Cannabinoids are classified based on their origin into three categories: endocannabinoids (present endogenously in human tissues), phytocannabinoids (plant derived) and synthetic cannabinoids (pharmaceutical). Cannabinoids exert an analgesic effect, peculiarly in hyperalgesia, neuropathic pain and inflammatory states. Endocannabinoids are released on demand from postsynaptic terminals and travels retrograde to stimulate cannabinoids receptors on presynaptic terminals, inhibiting the release of excitatory neurotransmitters. Cannabinoids (endogenous and phytocannabinoids) produce analgesia by interacting with cannabinoids receptors type 1 and 2 (CB1 and CB2), as well as putative non-CB1/CB2 receptors; G protein-coupled receptor 55, and transient receptor potential vanilloid type-1. Moreover, they modulate multiple peripheral, spinal and supraspinal nociception pathways. Cannabinoids-opioids cross-modulation and synergy contribute significantly to tolerance and antinociceptive effects of cannabinoids. This narrative review evaluates cannabinoids' diverse mechanisms of action as it pertains to nociception modulation relevant to the practice of anesthesiologists and pain medicine physicians.
Collapse
Affiliation(s)
- Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
10
|
Quiñonez‐Bastidas GN, Palomino‐Hernández O, López‐Ortíz M, Rocha‐González HI, González‐Anduaga GM, Regla I, Navarrete A. Antiallodynic effect of PhAR-DBH-Me involves cannabinoid and TRPV1 receptors. Pharmacol Res Perspect 2020; 8:e00663. [PMID: 32965798 PMCID: PMC7510332 DOI: 10.1002/prp2.663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
The antiallodynic effect of PhAR-DBH-Me was evaluated on two models of neuropathic pain, and the potential roles of CB1, CB2, and TRPV1 receptors as molecular targets of PhAR-DBH-Me were studied. Female Wistar rats were submitted to L5/L6 spinal nerve ligation (SNL) or repeated doses of cisplatin (0.1 mg/kg, i.p.) to induce experimental neuropathy. Then, tactile allodynia was determined, and animals were treated with logarithmic doses of PhAR-DBH-Me (3.2-100 mg/kg, i.p.). To evaluate the mechanism of action of PhAR-DBH-Me, in silico studies using crystallized structures of CB1, CB2, and TRPV1 receptors were performed. To corroborate the computational insights, animals were intraperitoneally administrated with antagonists for CB1 (AM-251, 3 mg/kg), CB2 (AM-630, 1 mg/kg), and TRPV1 receptors (capsazepine, 3 mg/kg), 15 min before to PhAR-DBH-Me (100 mg/kg) administration. Vagal stimulation evoked on striated muscle contraction in esophagus, was used to elicited pharmacological response of PhAR-DBH-ME on nervous tissue. Systemic administration of PhAR-DBH-Me reduced the SNL- and cisplatin-induced allodynia. Docking studies suggested that PhAR-DBH-Me acts as an agonist for CB1, CB2, and TRPV1 receptors, with similar affinity to the endogenous ligand anandamide. Moreover antiallodynic effect of PhAR-DBH-Me was partially prevented by administration of AM-251 and AM-630, and completely prevented by capsazepine. Finally, PhAR-DBH-Me decreased the vagally evoked electrical response in esophagus rat. Taken together, results indicate that PhAR-DBH-Me induces an antiallodynic effect through partial activation of CB1 and CB2 receptors, as well as desensitization of TRPV1 receptors. Data also shed light on the novel vanilloid nature of the synthetic compound PhAR-DBH-Me.
Collapse
Affiliation(s)
| | - Oscar Palomino‐Hernández
- Computational Biomedicine ‐ Institute for Advanced Simulation (IAS‐5) and Institute of Neuroscience and Medicine (INM‐9)Forschungszentrum JülichJülichGermany
- Department of ChemistryRheinisch‐Westfälische Technische Hochschule AachenAachenGermany
| | - Manuel López‐Ortíz
- Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de México (UNAM)MéxicoDFMéxico
| | - Héctor Isaac Rocha‐González
- Sección de Estudios de Posgrado e InvestigaciónEscuela Superior de MedicinaInstituto Politécnico NacionalMéxicoCiudad de MéxicoMéxico
| | - Gloria Melisa González‐Anduaga
- Facultad de QuímicaDepartamento de FarmaciaUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCoyoacánCiudad de MéxicoMéxico
| | - Ignacio Regla
- Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de México (UNAM)MéxicoDFMéxico
| | - Andrés Navarrete
- Facultad de QuímicaDepartamento de FarmaciaUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCoyoacánCiudad de MéxicoMéxico
| |
Collapse
|
11
|
Bouchet CA, Ingram SL. Cannabinoids in the descending pain modulatory circuit: Role in inflammation. Pharmacol Ther 2020; 209:107495. [PMID: 32004514 PMCID: PMC7183429 DOI: 10.1016/j.pharmthera.2020.107495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
The legalization of cannabis in some states has intensified interest in the potential for cannabis and its constituents to lead to novel therapeutics for pain. Our understanding of the cellular mechanisms underlying cannabinoid actions in the brain have lagged behind opioids; however, the current opioid epidemic has also increased attention on the use of cannabinoids as alternatives to opioids for pain, especially chronic pain that requires long-term use. Endogenous cannabinoids are lipid signaling molecules that have complex roles in modulating neuronal function throughout the brain. In this review, we discuss cannabinoid functions in the descending pain modulatory pathway, a brain circuit that integrates cognitive and emotional processing of pain to modulate incoming sensory inputs. In addition, we highlight areas where further studies are necessary to understand cannabinoid regulation of descending pain modulation.
Collapse
Affiliation(s)
- Courtney A Bouchet
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, United States of America.
| |
Collapse
|
12
|
Cannabinoids Stimulate the TRP Channel-Dependent Release of Both Serotonin and Dopamine to Modulate Behavior in C. elegans. J Neurosci 2019; 39:4142-4152. [PMID: 30886012 DOI: 10.1523/jneurosci.2371-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/04/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cannabis sativa alters sensory perception and exhibits potential medicinal benefits. In mammals, cannabinoids activate two canonical receptors, CB1/CB2, as well additional receptors/ion channels whose overall contributions to cannabinoid signaling have yet to be fully assessed. In Caenorhabditis elegans, the endogenous cannabinoid receptor agonist, 2-arachidonoylglycerol (2-AG) activates a CB1 ortholog, NPR-19, to modulate behavior (Oakes et al., 2017). In addition, 2-AG stimulates the NPR-19 independent release of both serotonin (5-HT) and dopamine (DA) from subsets of monoaminergic neurons to modulate locomotory behaviors through a complex monoaminergic signaling pathway involving multiple serotonin and dopamine receptors. 2-AG also inhibits locomotion in remodeled monoamine receptor mutant animals designed to measure the acute release of either 5-HT or DA, confirming the direct effects of 2-AG on monoamine release. 2-AG-dependent locomotory inhibition requires the expression of transient receptor potential vanilloid 1 (TRPV1) and TRPN-like channels in the serotonergic or dopaminergic neurons, respectively, and the acute pharmacological inhibition of the TRPV1-like channel abolishes both 2-AG-dependent 5-HT release and locomotory inhibition, suggesting the 2-AG may activate the channel directly. This study highlights the advantages of identifying and assessing both CB1/CB2-dependent and independent cannabinoid signaling pathways in a genetically tractable, mammalian predictive model, where cannabinoid signaling at the molecular/neuronal levels can be correlated directly with changes in behavior.SIGNIFICANCE STATEMENT This study is focused on assessing CB1/CB2-independent cannabinoid signaling in a genetically tractable, whole-animal model where cannabinoid signaling at the molecular/neuronal levels can be correlated with behavioral change. Caenorhabditis elegans contains a cannabinoid signaling system mediated by a canonical cannabinoid receptor, NPR-19, with orthology to human CB1/CB2 (Oakes et al., 2017). The present study has characterized an NPR-19-independent signaling pathway that involves the cannabinoid-dependent release of both serotonin and dopamine and the expression of distinct TRP-like channels on the monoaminergic neurons. Our work should be of interest to those studying the complexities of CB1/CB2-independent cannabinoid signaling, the role of TRP channels in the modulation of monoaminergic signaling, and the cannabinoid-dependent modulation of behavior.
Collapse
|
13
|
Vučković S, Srebro D, Vujović KS, Vučetić Č, Prostran M. Cannabinoids and Pain: New Insights From Old Molecules. Front Pharmacol 2018; 9:1259. [PMID: 30542280 PMCID: PMC6277878 DOI: 10.3389/fphar.2018.01259] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
Cannabis has been used for medicinal purposes for thousands of years. The prohibition of cannabis in the middle of the 20th century has arrested cannabis research. In recent years there is a growing debate about the use of cannabis for medical purposes. The term ‘medical cannabis’ refers to physician-recommended use of the cannabis plant and its components, called cannabinoids, to treat disease or improve symptoms. Chronic pain is the most commonly cited reason for using medical cannabis. Cannabinoids act via cannabinoid receptors, but they also affect the activities of many other receptors, ion channels and enzymes. Preclinical studies in animals using both pharmacological and genetic approaches have increased our understanding of the mechanisms of cannabinoid-induced analgesia and provided therapeutical strategies for treating pain in humans. The mechanisms of the analgesic effect of cannabinoids include inhibition of the release of neurotransmitters and neuropeptides from presynaptic nerve endings, modulation of postsynaptic neuron excitability, activation of descending inhibitory pain pathways, and reduction of neural inflammation. Recent meta-analyses of clinical trials that have examined the use of medical cannabis in chronic pain present a moderate amount of evidence that cannabis/cannabinoids exhibit analgesic activity, especially in neuropathic pain. The main limitations of these studies are short treatment duration, small numbers of patients, heterogeneous patient populations, examination of different cannabinoids, different doses, the use of different efficacy endpoints, as well as modest observable effects. Adverse effects in the short-term medical use of cannabis are generally mild to moderate, well tolerated and transient. However, there are scant data regarding the long-term safety of medical cannabis use. Larger well-designed studies of longer duration are mandatory to determine the long-term efficacy and long-term safety of cannabis/cannabinoids and to provide definitive answers to physicians and patients regarding the risk and benefits of its use in the treatment of pain. In conclusion, the evidence from current research supports the use of medical cannabis in the treatment of chronic pain in adults. Careful follow-up and monitoring of patients using cannabis/cannabinoids are mandatory.
Collapse
Affiliation(s)
- Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Čedomir Vučetić
- Clinic of Orthopaedic Surgery and Traumatology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Damien J, Colloca L, Bellei-Rodriguez CÉ, Marchand S. Pain Modulation: From Conditioned Pain Modulation to Placebo and Nocebo Effects in Experimental and Clinical Pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 139:255-296. [PMID: 30146050 DOI: 10.1016/bs.irn.2018.07.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence reveal important applications of endogenous pain modulation assessment in healthy controls and in patients in clinical settings, as dysregulations in the balance of pain modulatory circuits may facilitate pain and promote chronification of pain. This article reviews data on pain modulation, focusing on the mechanisms and translational aspects of pain modulation from conditioned pain modulation (CPM) to placebo and nocebo effects in experimental and clinical pain. The specific roles of expectations, learning, neural and neurophysiological mechanisms of the central nervous system are briefly reviewed herein. The interaction between CPM and placebo systems in pain inhibitory pathways is highly relevant in the clinic and in randomized controlled trials yet remains to be clarified. Examples of clinical implications of CPM and its relationship to placebo and nocebo effects are provided. A greater understanding of the role of pain modulation in various pain states can help characterize the manifestation and development of chronic pain and assist in predicting the response to pain-relieving treatments. Placebo and nocebo effects, intrinsic to every treatment, can be used to develop personalized therapeutic approaches that improve clinical outcomes while limiting unwanted effects.
Collapse
Affiliation(s)
- Janie Damien
- Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luana Colloca
- Department of Pain Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, United States; Departments of Psychiatry and Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carmen-Édith Bellei-Rodriguez
- Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Serge Marchand
- Research Center of the Centre hospitalier universitaire de Sherbrooke (CHUS), Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Fonds de Recherche du Québec-Santé (FRQS), Montréal, QC, Canada.
| |
Collapse
|
15
|
Reynoso-Moreno I, Chicca A, Flores-Soto ME, Viveros-Paredes JM, Gertsch J. The Endocannabinoid Reuptake Inhibitor WOBE437 Is Orally Bioavailable and Exerts Indirect Polypharmacological Effects via Different Endocannabinoid Receptors. Front Mol Neurosci 2018; 11:180. [PMID: 29910713 PMCID: PMC5992379 DOI: 10.3389/fnmol.2018.00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo, but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo. Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated tmax value of ≤20 min in plasma (Cmax ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (Cmax ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N-acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.
Collapse
Affiliation(s)
- Inés Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland.,Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Mario E Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Segura Social, Guadalajara, Mexico
| | - Juan M Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Jee Kim M, Tanioka M, Woo Um S, Hong SK, Hwan Lee B. Analgesic effects of FAAH inhibitor in the insular cortex of nerve-injured rats. Mol Pain 2018; 14:1744806918814345. [PMID: 30380982 PMCID: PMC6247483 DOI: 10.1177/1744806918814345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/10/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
The insular cortex is an important region of brain involved in the processing of pain and emotion. Recent studies indicate that lesions in the insular cortex induce pain asymbolia and reverse neuropathic pain. Endogenous cannabinoids (endocannabinoids), which have been shown to attenuate pain, are simultaneously degraded by fatty acid amide hydrolase (FAAH) that halts the mechanisms of action. Selective inhibitor URB597 suppresses FAAH activity by conserving endocannabinoids, which reduces pain. The present study examined the analgesic effects of URB597 treatment in the insular cortex of an animal model of neuropathic pain. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to nerve injury and cannula implantation. On postoperative day 14, rodents received microinjection of URB597 into the insular cortex. In order to verify the analgesic mechanisms of URB597, cannabinoid 1 receptor (CB1R) antagonist AM251, peroxisome proliferator-activated receptor alpha (PPAR alpha) antagonist GW6471, and transient receptor potential vanilloid 1 (TRPV1) antagonist Iodoresiniferatoxin (I-RTX) were microinjected 15 min prior to URB597 injection. Changes in mechanical allodynia were measured using the von-Frey test. Expressions of CB1R, N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and TRPV1 significantly increased in the neuropathic pain group compared to the sham-operated control group. Mechanical threshold and expression of NAPE-PLD significantly increased in groups treated with 2 nM and 4 nM URB597 compared with the vehicle-injected group. Blockages of CB1R and PPAR alpha diminished the analgesic effects of URB597. Inhibition of TRPV1 did not effectively reduce the effects of URB597 but attenuated expression of NAPE-PLD compared with the URB597-injected group. In addition, optical imaging demonstrated that neuronal activity of the insular cortex was reduced following URB597 treatment. Our results suggest that microinjection of FAAH inhibitor into the insular cortex causes analgesic effects by decreasing neural excitability and increasing signals related to the endogenous cannabinoid pathway in the insular cortex.
Collapse
Affiliation(s)
- Min Jee Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motomasa Tanioka
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Woo Um
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Karp Hong
- Division of Bio and Health Sciences, Mokwon University, Daejeon, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Malek N, Starowicz K. Dual-Acting Compounds Targeting Endocannabinoid and Endovanilloid Systems-A Novel Treatment Option for Chronic Pain Management. Front Pharmacol 2016; 7:257. [PMID: 27582708 PMCID: PMC4987369 DOI: 10.3389/fphar.2016.00257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time, and is often resistant to medical treatment. Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments. The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects. Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target. A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain. Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme. Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors) that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins. The plasticity of the endocannabinoid system (ECS) and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated. Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively. Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| |
Collapse
|
19
|
Malek N, Kostrzewa M, Makuch W, Pajak A, Kucharczyk M, Piscitelli F, Przewlocka B, Di Marzo V, Starowicz K. The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. Pharmacol Res 2016; 111:251-263. [PMID: 27326920 DOI: 10.1016/j.phrs.2016.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/11/2016] [Indexed: 11/27/2022]
Abstract
There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects. Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration. We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels. Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Magdalena Kostrzewa
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Agnieszka Pajak
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Mateusz Kucharczyk
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular ChemistryC.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy.
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular ChemistryC.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy.
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland; Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| |
Collapse
|
20
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Nagy-Grócz G, Tar L, Bohár Z, Fejes-Szabó A, Laborc KF, Spekker E, Vécsei L, Párdutz Á. The modulatory effect of anandamide on nitroglycerin-induced sensitization in the trigeminal system of the rat. Cephalalgia 2015; 36:849-61. [PMID: 26512068 DOI: 10.1177/0333102415613766] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the human and animal models of migraine is the systemic administration of the nitric oxide donor (NO) nitroglycerin (NTG). NO can provoke migraine-like attacks in migraineurs and initiates a self-amplifying process in the trigeminal system, probably leading to central sensitization. Recent studies suggest that the endocannabinoid system is involved in nociceptive signal processing and cannabinoid receptor (CB) agonists are able to attenuate nociception in animal models of pain. AIM The purpose of the present study was to investigate the modulatory effects of a CB agonist anandamide (AEA) on the NTG-induced expression of transient receptor potential vanilloid type 1 (TRPV1), neuronal nitric oxide synthase (nNOS), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and kynurenine aminotransferase-II (KAT-II) in the upper cervical spinal cord (C1-C2) of the rat, where most of the trigeminal nociceptive afferents convey. METHODS A half hour before and one hour after NTG (10 mg/kg) or placebo injection, adult male Sprague-Dawley rats (n = 44) were treated with AEA (2 × 5 mg/kg). Four hours after placebo/NTG injection, the animals were perfused and the cervical spinal cords were removed for immunohistochemistry and Western blotting. RESULTS AND CONCLUSION Our results show that NTG is able to increase TRPV1, nNOS, NF-κB and COX-2 and decrease KAT-II expression in the C1-C2 segments. On the other hand, we have found that AEA modulates the NTG-induced changes, thus it influences the activation and central sensitization process in the trigeminal system, probably via CBs.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - Lilla Tar
- Department of Neurology, University of Ulm, Germany
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, University of Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary MTA-SZTE Neuroscience Research Group, University of Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| |
Collapse
|
22
|
Déciga-Campos M, Ramírez-Marín PM, López-Muñoz FJ. Synergistic antinociceptive interaction between palmitoylethanolamide and tramadol in the mouse formalin test. Eur J Pharmacol 2015; 765:68-74. [PMID: 26297302 DOI: 10.1016/j.ejphar.2015.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Pharmacological synergism has been used to obtain a higher efficacy using drug concentrations at which side effects are minimal. In this study, the pharmacological antinociceptive interaction between N-palmitoylethanolamide (PEA) and tramadol was investigated. The individual concentration-response curves for PEA (0.1-56.2 μg/paw) and tramadol (1-56.2 μg/paw) were evaluated in mice in which nociception was induced by an intraplantar injection of 2% formalin. Isobolographic analysis was used to evaluate the pharmacological interaction between PEA (EC50=23.7±1.6 μg/paw) and tramadol (EC50=26.02±2.96 μg/paw) using the EC50 and a fixed 1:1 ratio combination. The isobologram demonstrated that the combinations investigated in this study produced a synergistic interaction; the experimental values (Zexp=9.5±0.2 μg/paw) were significantly smaller than those calculated theoretically (Zadd=24.8±0.2 μg/paw). The antinociceptive mechanisms of the PEA and tramadol combination involved the opioid receptor, transient receptor potential cation channel subfamily V member 1 (TRPV1), and peroxisome proliferator-activated receptor alpha (PPAR-α). The sedative effect of the combination of PEA and tramadol was less than that generated by individual treatments. These findings suggest that the PEA and tramadol combination produced enhanced antinociceptive efficacy at concentrations at which side effects are minimal.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F.11340, Mexico
| | - Pamela Moncerrat Ramírez-Marín
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F.11340, Mexico
| | | |
Collapse
|
23
|
Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models. CHEMOSENS PERCEPT 2015; 8:96-108. [PMID: 26388966 DOI: 10.1007/s12078-015-9176-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. METHODS Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. RESULTS Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. CONCLUSIONS The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed.
Collapse
|
24
|
Schlosburg JE, Kinsey SG, Ignatowska-Jankowska B, Ramesh D, Abdullah RA, Tao Q, Booker L, Long JZ, Selley DE, Cravatt BF, Lichtman AH. Prolonged monoacylglycerol lipase blockade causes equivalent cannabinoid receptor type 1 receptor-mediated adaptations in fatty acid amide hydrolase wild-type and knockout mice. J Pharmacol Exp Ther 2014; 350:196-204. [PMID: 24849924 PMCID: PMC4109488 DOI: 10.1124/jpet.114.212753] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/20/2014] [Indexed: 11/22/2022] Open
Abstract
Complementary genetic and pharmacological approaches to inhibit monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), the primary hydrolytic enzymes of the respective endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine, enable the exploration of potential therapeutic applications and physiologic roles of these enzymes. Complete and simultaneous inhibition of both FAAH and MAGL produces greatly enhanced cannabimimetic responses, including increased antinociception, and other cannabimimetic effects, far beyond those seen with inhibition of either enzyme alone. While cannabinoid receptor type 1 (CB1) function is maintained following chronic FAAH inactivation, prolonged excessive elevation of brain 2-AG levels, via MAGL inhibition, elicits both behavioral and molecular signs of cannabinoid tolerance and dependence. Here, we evaluated the consequences of a high dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate; 40 mg/kg] given acutely or for 6 days in FAAH(-/-) and (+/+) mice. While acute administration of JZL184 to FAAH(-/-) mice enhanced the magnitude of a subset of cannabimimetic responses, repeated JZL184 treatment led to tolerance to its antinociceptive effects, cross-tolerance to the pharmacological effects of Δ(9)-tetrahydrocannabinol, decreases in CB1 receptor agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding, and dependence as indicated by rimonabant-precipitated withdrawal behaviors, regardless of genotype. Together, these data suggest that simultaneous elevation of both endocannabinoids elicits enhanced cannabimimetic activity but MAGL inhibition drives CB1 receptor functional tolerance and cannabinoid dependence.
Collapse
Affiliation(s)
- Joel E Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Steven G Kinsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Bogna Ignatowska-Jankowska
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Divya Ramesh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Rehab A Abdullah
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Qing Tao
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Lamont Booker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Jonathan Z Long
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Benjamin F Cravatt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (J.E.S., B.I.-J., D.R., R.A.A., Q.T., L.B., D.E.S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology (J.Z.L., B.F.C.), and Committee on the Neurobiology of Addictive Disorders (J.E.S.), The Scripps Research Institute, La Jolla, California
| |
Collapse
|
25
|
Peppin JF, Pappagallo M. Capsaicinoids in the treatment of neuropathic pain: a review. Ther Adv Neurol Disord 2014; 7:22-32. [PMID: 24409200 PMCID: PMC3886382 DOI: 10.1177/1756285613501576] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The treatment of neuropathic pain is difficult. Oral pharmaceuticals have significant side effects, and treatment efficacy tends to be modest. The use of topical analgesics reduces the potential for systemic side effects and allows direct application of medications to the area of pain. The natural spicy substance, capsaicin, has historically been known for its topical use. Capsaicin, once applied to the skin, causes a brief initial sensitization followed by a prolonged desensitization of the local pain nerves. This occurs through stimulation of the transient receptor potential vanilloid-1 (TRPV1) expressing pain nerve fibers. While low-dose capsaicin has not resulted in good efficacy, the larger dose 8% topical capsaicin has had some of the best data currently available in the treatment of post-herpetic neuralgia (PHN) and other neuropathic conditions. This paper discusses the data currently existing for capsaicin 8% in the treatment of PHN. It further reviews data for the low-dose capsaicin products and the current status in the development of other capsaicinoids, e.g. resiniferotoxin, and high-concentration liquid capsaicin.
Collapse
Affiliation(s)
- John F Peppin
- Center for Bioethics, Pain Management and Medicine, 1121 Four Wynds Trail, Lexington KT 40515, USA
| | - Marco Pappagallo
- The New Medical Home for Pain Management and Medical Mentoring, New York, NY, USA
| |
Collapse
|
26
|
Starowicz K, Przewlocka B. Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. Philos Trans R Soc Lond B Biol Sci 2013; 367:3286-99. [PMID: 23108547 DOI: 10.1098/rstb.2011.0392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, ul. Smetna 12, 31-343 Krakow, Poland.
| | | |
Collapse
|
27
|
O'Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 2012; 64:939-71. [PMID: 23023032 PMCID: PMC3462993 DOI: 10.1124/pr.112.006163] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes.
Collapse
Affiliation(s)
- Jessica O'Neill
- Neuroscience, Physiology and Pharmacology, University College London, London.
| | | | | | | | | | | |
Collapse
|
28
|
NSAIDs: eNdocannabinoid stimulating anti-inflammatory drugs? Trends Pharmacol Sci 2012; 33:468-73. [DOI: 10.1016/j.tips.2012.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/13/2012] [Accepted: 05/07/2012] [Indexed: 02/02/2023]
|
29
|
Booker L, Kinsey SG, Abdullah RA, Blankman JL, Long JZ, Ezzili C, Boger DL, Cravatt BF, Lichtman AH. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br J Pharmacol 2012; 165:2485-96. [PMID: 21506952 DOI: 10.1111/j.1476-5381.2011.01445.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ(9) -tetrahydrocannabinol (THC). EXPERIMENTAL APPROACH Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses. KEY RESULTS FAAH (-/-) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role. CONCLUSIONS AND IMPLICATIONS AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Lamont Booker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Petrovszki Z, Kovacs G, Tömböly C, Benedek G, Horvath G. The effects of peptide and lipid endocannabinoids on arthritic pain at the spinal level. Anesth Analg 2012; 114:1346-52. [PMID: 22451592 DOI: 10.1213/ane.0b013e31824c4eeb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hemopressin, a nonapeptide (PVNFKFLSH: HP) derived from the α chain of hemoglobin was shown to interact specifically with brain cannabinoid CB(1) receptors. Therefore, it seems to be the only peptide structure with cannabinoid activities. Our goal in this study was to further characterize this peptide and to clarify the antinociceptive potency of the polyunsaturated fatty acid derivates, 2-arachidonoyl-glycerol (2-AG) and anandamide, by investigating their effects on mechanical allodynia at the spinal level. METHODS HP was prepared on solid phase by in situ neutralization. After chronic intrathecal catheterization, mechanical hypersensitivity was produced in male Wistar rats by injection of carrageenan (300 μg/30 μL) into the tibiotarsal joint of one of the hind legs. Three hours after carrageenan administration, the ligands were administered intrathecally. The mechanical threshold was assessed using a dynamic aesthesiometer. RESULTS 2-AG (1-200 μg) and anandamide (10-200 μg) decreased carrageenan-induced mechanical allodynia in a dose-dependent manner, whereas HP had no antinociceptive effect in a wide dose range (0.3-30 μg). The effect of 2-AG was prevented by the CB(1) receptor antagonist AM 251, but not by the CB(2) antagonist SSR144528-2. HP (3 and 30 μg) also inhibited the effect of 2-AG. None of the ligands influenced the degree of edema. CONCLUSIONS HP posttreatment had no effect on mechanical allodynia, whereas spinally injected 2-AG and anandamide were potent drugs.
Collapse
Affiliation(s)
- Zita Petrovszki
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
31
|
Talbot S, Dias JP, Lahjouji K, Bogo MR, Campos MM, Gaudreau P, Couture R. Activation of TRPV1 by capsaicin induces functional kinin B(1) receptor in rat spinal cord microglia. J Neuroinflammation 2012; 9:16. [PMID: 22264228 PMCID: PMC3282640 DOI: 10.1186/1742-2094-9-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/20/2012] [Indexed: 12/15/2022] Open
Abstract
Background The kinin B1 receptor (B1R) is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1) activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites) was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c) in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791), the antioxidant N-acetyl-L-cysteine (NAC), or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t.) injection of a selective B1R agonist (des-Arg9-BK), and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site) was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c.) enhanced time-dependently (0-24h) B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t.) and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.). Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site) also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days) prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg). Des-Arg9-BK (9.6 nmol/site, i.t.) decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg) while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p.o.), glutamate NMDA receptor (DL-AP5, 10 μg/site, i.t.), substance P NK-1 receptor (RP-67580, 10 μg/site, i.t.) and nitric oxide synthase (L-NNA, 10 μg/site, i.t.). The B1R fluorescent agonist was co-localized with an immunomarker of microglia (Iba-1) in spinal cord dorsal horn of capsaicin-treated rats. Conclusion This study highlights a new mechanism for B1R induction via TRPV1 activation and establishes a link between these two pro-nociceptive receptors in inflammatory pain.
Collapse
Affiliation(s)
- Sébastien Talbot
- Department of Physiology, Faculty of Medicine, Université de Montréal, C,P, 6128, Succursale Centre-ville, Montréal, H3C 3J7, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Takeda M, Oshima K, Takahashi M, Matsumoto S. Systemic administration of lidocaine suppresses the excitability of rat cervical dorsal horn neurons and tooth-pulp-evoked jaw-opening reflex. Eur J Pain 2012; 13:929-34. [DOI: 10.1016/j.ejpain.2008.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/27/2008] [Accepted: 11/23/2008] [Indexed: 11/28/2022]
|
33
|
Wilkerson JL, Milligan ED. The Central Role of Glia in Pathological Pain and the Potential of Targeting the Cannabinoid 2 Receptor for Pain Relief. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22442754 DOI: 10.5402/2011/593894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Under normal conditions, acute pain processing consists of well-characterized neuronal signaling events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and their released factors participate in the mediation of pathological pain. The use of cannabinoid compounds for pain relief is currently an area of great interest for both basic scientists and physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB(1)R) or cannabinoid receptor subtype 2 (CB(2)R) and are able to modulate pain. Although cannabinoids were initially only thought to modulate pain via neuronal mechanisms within the central nervous system, strong evidence now supports that CB(2)R cannabinoid compounds are capable of modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body of evidence supports that CB(2)R agonist compounds may prove to be powerful novel therapeutic candidates for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, School of Medicine, University of New Mexico, HSC, MSC08-4740, Albuquerque, NM 87131, USA
| | | |
Collapse
|
34
|
Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology 2011; 62:1746-55. [PMID: 22178705 DOI: 10.1016/j.neuropharm.2011.11.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022]
Abstract
The endocannabinoid anandamide (AEA) activates also transient receptor potential vanilloid-1 (TRPV1) channels. However, no data exist on the potential role of spinal TRPV1 activation by AEA in neuropathic pain. We tested the effect of: 1) AEA (5-100 μg), alone or in the presence of an inhibitor of its hydrolysis, and 2) elevated levels of endogenous AEA (following inhibition of AEA hydrolysis), in CCI rats, and the involvement of TRPV1 or cannabinoid CB(1) receptors in the observed effects. Levels of AEA in the spinal cord of CCI rats were measured following all treatments. AEA (50 μg) displayed anti-allodynic and anti-hyperalgesic effects which were abolished by previous antagonism of TRPV1, but not CB(1), receptors. Depending on the administered dose, the selective inhibitor of AEA enzymatic hydrolysis, URB597 (10-100 μg), reduced thermal and tactile nociception via CB(1) or CB(1)/TRPV1 receptors. The anti-nociceptive effects of co-administered per se ineffective doses of AEA (5 μg) and URB597 (5 μg) was abolished by antagonism of CB(1), but not TRPV1, receptors. Spinal AEA levels were increased after CCI, slightly increased further by URB597, 10 μg i.t., and strongly elevated by URB597, 100 μg. Injection of AEA (50 μg) into the lumbar spinal cord led to its dramatic elevation in this tissue, whereas, when a lower dose was used (5 μg) AEA endogenous levels were elevated only in the presence of URB597 (5 μg). We suggest that spinal AEA reduces neuropathic pain via CB(1) or TRPV1, depending on its local concentration.
Collapse
|
35
|
Farkas I, Tuboly G, Benedek G, Horvath G. The antinociceptive potency of N-arachidonoyl-dopamine (NADA) and its interaction with endomorphin-1 at the spinal level. Pharmacol Biochem Behav 2011; 99:731-7. [DOI: 10.1016/j.pbb.2011.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 04/27/2011] [Accepted: 05/15/2011] [Indexed: 11/27/2022]
|
36
|
Kinsey SG, Naidu PS, Cravatt BF, Dudley DT, Lichtman AH. Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice. Pharmacol Biochem Behav 2011; 99:718-25. [PMID: 21740924 DOI: 10.1016/j.pbb.2011.06.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/03/2011] [Accepted: 06/18/2011] [Indexed: 11/15/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is the primary degradative enzyme of the endocannabinoid anandamide (N-arachidonoylethanolamine), which activates cannabinoid CB(1) and CB(2) receptors. FAAH disruption reduces nociception in a variety of acute rodent models of inflammatory pain. The present study investigated whether these actions extend to the chronic, collagen-induced arthritis (CIA) model. We investigated the anti-arthritic and anti-hyperalgesic effects of genetic deletion or pharmacological inhibition of FAAH in the CIA model. FAAH (-/-) mice, and FAAH-NS mice that express FAAH exclusively in nervous tissue, displayed decreased severity of CIA and associated hyperalgesia. These phenotypic anti-arthritic effects were prevented by repeated daily injections of the CB(2) receptor antagonist, SR144528, but not the CB(1) receptor antagonist rimonabant. Similarly, repeated administration of the FAAH inhibitor URB597 reduced CIA severity, and acute administration of rimonabant, but not SR144528, blocked the anti-hyperalgesic effects of prolonged FAAH inhibition, suggesting that prolonged CB(2) receptor activation reduces the severity of CIA, whereas acute CB(1) receptor activation reduces CIA-induced hyperalgesia. In contrast, acute administration of URB597 elicited a CB(1) receptor-dependent anti-hyperalgesic effect. The observed anti-arthritic and anti-hyperalgesic properties of FAAH inhibition, coupled with a lack of apparent behavioral alterations, suggest that endocannabinoid modulating enzymes offer a promising therapeutic target for the development of novel pharmacological approaches to treat rheumatoid arthritis and associated hyperalgesia.
Collapse
Affiliation(s)
- Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Spicarova D, Palecek J. Tumor necrosis factor alpha sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine. J Neuroinflammation 2010; 7:49. [PMID: 20796308 PMCID: PMC2936303 DOI: 10.1186/1742-2094-7-49] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/26/2010] [Indexed: 02/03/2023] Open
Abstract
Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor alpha (TNFalpha), is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFalpha and its receptors (TNFR) in dorsal root ganglion (DRG) cells and in the spinal cord has been shown to play an important role in neuropathic and inflammatory pain conditions. Transient receptor potential vanilloid 1 (TRPV1) receptors are known as molecular integrators of nociceptive stimuli in the periphery, but their role on the spinal endings of nociceptive DRG neurons is unclear. The endogenous TRPV1 receptor agonist N-oleoyldopamine (OLDA) was shown previously to activate spinal TRPV1 receptors. In our experiments the possible influence of TNFalpha on presynaptic spinal cord TRPV1 receptor function was investigated. Using the patch-clamp technique, miniature excitatory postsynaptic currents (mEPSCs) were recorded in superficial dorsal horn neurons in acute slices after incubation with 60 nM TNFalpha. A population of dorsal horn neurons with capsaicin sensitive primary afferent input recorded after the TNFalpha pretreatment had a basal mEPSC frequency of 1.35 +/- 0.20 Hz (n = 13), which was significantly higher when compared to a similar population of neurons in control slices (0.76 +/- 0.08 Hz; n = 53; P < 0.01). In control slices application of a low concentration of OLDA (0.2 uM) did not evoke any change in mEPSC frequency. After incubation with TNFalpha, OLDA (0.2 uM) application to slices induced a significant increase in mEPSC frequency (155.5 +/- 17.5%; P < 0.001; n = 10). Our results indicate that TNFalpha may have a significant impact on nociceptive signaling at the spinal cord level that could be mediated by increased responsiveness of presynaptic TRPV1 receptors to endogenous agonists. This could be of major importance, especially during pathological conditions, when increased levels of TNFalpha and TNFR are present in the spinal cord.
Collapse
Affiliation(s)
- Diana Spicarova
- Department of Functional Morphology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
39
|
Chen L, Zhang J, Li F, Qiu Y, Wang L, Li YH, Shi J, Pan HL, Li M. Endogenous Anandamide and Cannabinoid Receptor-2 Contribute to Electroacupuncture Analgesia in Rats. THE JOURNAL OF PAIN 2009; 10:732-9. [DOI: 10.1016/j.jpain.2008.12.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/15/2008] [Accepted: 12/19/2008] [Indexed: 01/26/2023]
|
40
|
Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell Calcium 2009; 45:611-24. [DOI: 10.1016/j.ceca.2009.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 12/14/2022]
|
41
|
Spicarova D, Palecek J. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol 2009; 102:234-43. [PMID: 19369364 DOI: 10.1152/jn.00024.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transient receptor potential vanilloid (TRPV1) receptors are abundant in a subpopulation of primary sensory neurons that convey nociceptive information from the periphery to the spinal cord dorsal horn. The TRPV1 receptors are expressed on both the peripheral and central branches of these dorsal root ganglion (DRG) neurons and can be activated by capsaicin, heat, low pH, and also by recently described endogenous lipids. Using patch-clamp recordings from superficial dorsal horn (DH) neurons in acute spinal cord slices, the effect of application of the endogenous TRPV1 agonist N-oleoyldopamine (OLDA) on the frequency of miniature excitatory postsynaptic currents (mEPSCs) was evaluated. A high concentration OLDA (10 microM) solution was needed to increase the mEPSC frequency, whereas low concentration OLDA (0.2 microM) did not evoke any change under control conditions. The increase was blocked by the TRPV1 antagonists SB366791 or BCTC. Application of a low concentration of OLDA evoked an increase in mEPSC frequency after activation of protein kinase C by phorbol ester (PMA) and bradykinin or in slices from animals with peripheral inflammation. Increasing the bath temperature from 24 to 34 degrees C enhanced the basal mEPSC frequency, but the magnitude of changes in the mEPSC frequency induced by OLDA administration was similar at both temperatures. Our results suggest that presumed endogenous agonists of TRPV1 receptors, like OLDA, could have a considerable impact on synaptic transmission in the spinal cord, especially when TRPV1 receptors are sensitized. Spinal TRPV1 receptors could play a pivotal role in modulation of nociceptive signaling in inflammatory pain.
Collapse
Affiliation(s)
- Diana Spicarova
- Department of Functional Morphology, Institute of Physiology, Academy of Science of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | |
Collapse
|
42
|
Potenzieri C, Brink TS, Simone DA. Excitation of cutaneous C nociceptors by intraplantar administration of anandamide. Brain Res 2009; 1268:38-47. [PMID: 19285051 DOI: 10.1016/j.brainres.2009.02.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
Abstract
Anandamide has been characterized as both an endocannabinoid and endovanilloid. Consistent with its actions as an endovanilloid, previous studies have demonstrated that anandamide can excite primary sensory neurons in vitro via transient receptor potential vanilloid type one (TRPV1) receptors. In the present study, we sought to determine if anandamide excited cutaneous C nociceptors in vivo and if this excitation correlated with nocifensive behaviors. Using teased-fiber electrophysiological methods in the rat, C nociceptors isolated from the tibial nerve with receptive fields (RFs) on the plantar surface of the hindpaw were studied. Injection of anandamide into the RF dose-dependently excited nociceptors at doses of 10 and 100 microg. The TRPV1 receptor antagonists, capsazepine or SB 366791, were applied to the RF to determine if excitation by anandamide was mediated through TRPV1 receptors. Intraplantar injection of either capsazepine (10 microg) or SB 366791 (3 microg) attenuated the excitation produced by 100 microg anandamide. We also determined whether excitation of C nociceptors by anandamide was associated with nocifensive behaviors. Intraplantar injection of 100 microg anandamide produced nocifensive behaviors that were attenuated by pre-treatment with either capsazepine or SB 366791. Furthermore, we determined if intraplantar injection of anandamide altered withdrawal responses to radiant heat. Neither intraplantar injection of anandamide nor vehicle produced antinociception or hyperalgesia to radiant heat. Our results indicate that anandamide excited cutaneous C nociceptors and produced nocifensive behaviors via activation of TRPV1 receptors.
Collapse
Affiliation(s)
- Carl Potenzieri
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Thaddeus S Brink
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
43
|
Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE. Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 2009; 181:1939-48. [PMID: 19237169 DOI: 10.1016/j.juro.2008.11.079] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE We investigated the distribution of cannabinoid receptor subtypes 1 and 2 in the detrusor of different species and studied the effects of cannabinoid receptor 1 and 2 agonists on bladder function. MATERIALS AND METHODS Cannabinoid receptor 1 and 2 expression was studied with Western blot and immunohistochemistry in rat, monkey and human detrusors. Co-staining was done for markers of sensory nerves using calcitonin gene-related peptide (Euro-Diagnostica, Malmö, Sweden) and transient receptor potential vanilloid 1, and for cholinergic nerves using VAChT (Santa Cruz Biotechnology, Santa Cruz, California). Actions of the endogenous cannabinoid receptor-1 and 2 agonist anandamide (Sigma(R)), and the cannabinoid receptor 1 and 2 agonist CP55,940 (Sigma) on isolated detrusor and during cystometry in conscious rats were recorded. RESULTS Higher expression of cannabinoid receptor 2 but not cannabinoid receptor 1 was noted in the mucosa than in the detrusor. Compared to the detrusor larger amounts of cannabinoid receptor 2 containing nerves that also expressed transient receptor potential vanilloid 1 or calcitonin gene-related peptide were observed in the suburothelium. Nerve fibers containing cannabinoid receptor 2 and VAChT were located in the detrusor. Neither anandamide nor CP55,940 affected isolated detrusor carbachol (Sigma) contractions. Nerve contractions were enhanced by 10 muM anandamide and decreased by 10 muM CP55,940 (p<0.05). In vivo CP55,940 increased the micturition interval by 46% and threshold pressure by 124% (p <0.05). Anandamide increased threshold pressure by 26% and decreased the micturition interval by 19% (p <0.05 and <0.01, respectively). CONCLUSIONS The distribution of cannabinoid receptor 2 on sensory nerves and in the urothelium, and effects by CP55940 on the micturition interval and threshold pressure suggest a role for cannabinoid receptor 2 in bladder afferent signals. Co-expression of VAChT and cannabinoid receptor 2, and effects by CP55940 on nerve contractions suggest a cannabinoid receptor 2 mediated modulatory effect on cholinergic nerve activity. Anandamide may not be a good tool for cannabinoid receptor studies due to its activity at other receptors.
Collapse
Affiliation(s)
- Christian Gratzke
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Fowler CJ, Naidu PS, Lichtman A, Onnis V. The case for the development of novel analgesic agents targeting both fatty acid amide hydrolase and either cyclooxygenase or TRPV1. Br J Pharmacol 2009; 156:412-9. [PMID: 19226258 PMCID: PMC2697682 DOI: 10.1111/j.1476-5381.2008.00029.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 12/19/2022] Open
Abstract
Although the dominant approach to drug development is the design of compounds selective for a given target, compounds targeting more than one biological process may have superior efficacy, or alternatively a better safety profile than standard selective compounds. Here, this possibility has been explored with respect to the endocannabinoid system and pain. Compounds inhibiting the enzyme fatty acid amide hydrolase (FAAH), by increasing local endocannabinoid tone, produce potentially useful effects in models of inflammatory and possibly neuropathic pain. Local increases in levels of the endocannabinoid anandamide potentiate the actions of cyclooxygenase inhibitors, raising the possibility that compounds inhibiting both FAAH and cyclooxygenase can be as effective as non-steroidal anti-inflammatory drugs but with a reduced cyclooxygenase inhibitory 'load'. An ibuprofen analogue active in models of visceral pain and with FAAH and cyclooxygenase inhibitory properties has been identified. Another approach, built in to the experimental analgesic compound N-arachidonoylserotonin, is the combination of FAAH inhibitory and transient receptor potential vanilloid type 1 antagonist properties. Although finding the right balance of actions upon the two targets is a key to success, it is hoped that dual-action compounds of the types illustrated in this review will prove to be useful analgesic drugs.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| | | | | | | |
Collapse
|
45
|
Schlosburg JE, Kinsey SG, Lichtman AH. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS JOURNAL 2009; 11:39-44. [PMID: 19184452 DOI: 10.1208/s12248-008-9075-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/09/2008] [Indexed: 12/20/2022]
Abstract
The endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA) produces most of its pharmacological effects by binding and activating CB(1) and CB(2) cannabinoid receptors within the CNS and periphery. However, the actions of AEA are short lived because of its rapid catabolism by fatty acid amide hydrolase (FAAH). Indeed, FAAH knockout mice as well as animals treated with FAAH inhibitors are severely impaired in their ability to hydrolyze AEA as well as a variety of noncannabinoid lipid signaling molecules and consequently possess greatly elevated levels of these endogenous ligands. In this mini review, we describe recent research that has investigated the functional consequences of inhibiting this enzyme in a wide range of animal models of inflammatory and neuropathic pain states. FAAH-compromised animals reliably display antinociceptive and anti-inflammatory phenotypes with a similar efficacy as direct-acting cannabinoid receptor agonists, such as Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of Cannabis sativa. Importantly, FAAH blockade does not elicit any apparent psychomimetic effects associated with THC or produce reinforcing effects that are predictive of human drug abuse. The beneficial effects caused by FAAH blockade in these models are predominantly mediated through the activation of CB(1) and/or CB(2) receptors, though noncannabinoid mechanisms of actions can also play contributory or even primary roles. Collectively, the current body of scientific literature suggests that activating the endogenous cannabinoid system by targeting FAAH is a promising strategy to treat pain and inflammation but lacks untoward side effects typically associated with Cannabis sativa.
Collapse
Affiliation(s)
- Joel E Schlosburg
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, P.O. Box 980613, Richmond, Virginia 23298-0613, USA
| | | | | |
Collapse
|
46
|
Zhou HY, Chen SR, Chen H, Pan HL. The glutamatergic nature of TRPV1-expressing neurons in the spinal dorsal horn. J Neurochem 2008; 108:305-18. [PMID: 19012737 DOI: 10.1111/j.1471-4159.2008.05772.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
47
|
Tuboly G, Mecs L, Benedek G, Horvath G. Antinociceptive interactions between anandamide and endomorphin-1 at the spinal level. Clin Exp Pharmacol Physiol 2008; 36:400-5. [PMID: 19018802 DOI: 10.1111/j.1440-1681.2008.05081.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Although it is well known that the combined administration of synthetic or plant-originated opioids with cannabinoids (CB) results in synergistic antinociception, the effects of combined administration of endogenous ligands acting at micro-opioid and CB receptors are not known. The aim of the present study was to determine the interaction between anandamide (AEA; a CB(1) receptor agonist) and endomorphin-1 (EM-1; a micro-opioid receptor agonist) after intrathecal administration. 2. Nociception was assessed by the paw-withdrawal test after carrageenan-induced inflammation in male Wistar rats. 3. Endomorphin-1 (16.4 pmol to 16.4 nmol) and AEA (4.3-288 nmol) alone dose-dependently decreased carrageenan-induced thermal hyperalgesia, although the highest dose of AEA also exhibited pain-inducing potential. The potency of AEA was approximately 59-fold lower than that of EM-1 (35% effective dose (ED(35)) 194.4 vs 3.3 nmol, respectively). Coadministration of these ligands revealed that combinations of 16.4 pmol EM-1 plus 28.8 or 86.5 nmol AEA were more effective than either drug alone, but other combinations were no more effective than the administration of EM-1 itself. Therefore, coadministration of AEA did not significantly shift the dose-response curve to EM-1. 4. The results of the present study indicate that the coadministration of AEA and EM-1 results in potentiated antihyperalgesia only for a combination of specific doses. Because AEA activates other receptor types (e.g. TRPV1) in addition to CB(1) receptors, the results of the present suggest that, after the coadministration of EM-1 and AEA, complex interactions ensue that may lead to different outcomes compared with those seen following the injection of exogenous ligands.
Collapse
Affiliation(s)
- Gabor Tuboly
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | |
Collapse
|
48
|
Tuboly G, Kekesi G, Nagy E, Benedek G, Horvath G. The antinociceptive interaction of anandamide and adenosine at the spinal level. Pharmacol Biochem Behav 2008; 91:374-9. [PMID: 18760296 DOI: 10.1016/j.pbb.2008.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 06/30/2008] [Accepted: 08/05/2008] [Indexed: 01/16/2023]
Abstract
Both anandamide and adenosine have significant roles in pain mechanisms, but no data are available concerning their interaction at the spinal level. The goal of this study was to determine how adenosine and the adenosine receptor antagonist caffeine affect the antinociceptive effect of anandamide. The pain sensitivity was assessed by the acute tail-flick test and by paw withdrawal test after carrageenan-induced inflammation. The substances were administered intrathecally to male Wistar rats. Anandamide alone (1, 30 and 100 microg) dose-dependently decreased the hyperalgesia, however it had low potency in the tail-flick test. Neither adenosine (100 microg) nor caffeine (400 microg) alone changed the pain sensitivity markedly. Their combination caused a short-lasting antihyperalgesia, but it did not influence the tail-flick latency. Both adenosine and caffeine decreased the antihyperalgesic potential of 100 microg anandamide, while adenosine-caffeine pretreatment temporarily enhanced its effect. As regards acute heat pain sensitivity, no combination with anandamide influenced the effect of anandamide. These findings provide new data concerning the interaction between two endogenous ligands and caffeine. Since these substances may exert effects on several receptors and/or systems, their interaction in vivo must be very complex and the net outcome after their coadministration could not been predicted from the in vitro results.
Collapse
Affiliation(s)
- Gabor Tuboly
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
49
|
Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 2008; 7:438-55. [PMID: 18446159 DOI: 10.1038/nrd2553] [Citation(s) in RCA: 622] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As our understanding of the endocannabinoids improves, so does the awareness of their complexity. During pathological states, the levels of these mediators in tissues change, and their effects vary from those of protective endogenous compounds to those of dysregulated signals. These observations led to the discovery of compounds that either prolong the lifespan of endocannabinoids or tone down their action for the potential future treatment of pain, affective and neurodegenerative disorders, gastrointestinal inflammation, obesity and metabolic dysfunctions, cardiovascular conditions and liver diseases. When moving to the clinic, however, the pleiotropic nature of endocannabinoid functions will require careful judgement in the choice of patients and stage of the disorder for treatment.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| |
Collapse
|