1
|
Atwal N, Sokolaj E, Mitchell VA, Winters BL, Vaughan CW. Disrupted stress-induced analgesia in a neuropathic pain state is rescued by the endocannabinoid degradation inhibitor JZL195. J Neurochem 2024; 168:3801-3812. [PMID: 38922705 DOI: 10.1111/jnc.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Acute stress normally engages descending brain pathways to produce an antinociceptive response, known as stress-induced analgesia. Paradoxically, these descending pain modulatory pathways are also involved in the maintenance of the abnormal pain associated with chronic neuropathic pain. It remains unclear how stress-induced analgesia is affected by neuropathic pain states. We therefore examined the impact of a chronic constriction nerve-injury (CCI) model of neuropathic pain on restraint stress-induced analgesia in C57BL/6 mice. Thirty minutes of restraint stress produced analgesia in the hotplate thermal nociceptive assay that was less in CCI compared to control mice who underwent a sham-surgery. In sham but not CCI mice, stress-induced analgesia was reduced by the opioid receptor antagonist naltrexone. The cannabinoid CB1 receptor antagonist AM281 did not affect stress-induced analgesia in either sham or CCI mice. Low-dose pre-treatment with the dual fatty acid amide hydrolase and monoacylglycerol lipase inhibitor JZL195 increased stress-induced analgesia in CCI but not sham mice. The JZL195 enhancement of stress-induced analgesia in CCI mice was abolished by AM281 but was unaffected by naltrexone. These findings indicate that the acute opioid-mediated analgesic response to a psychological stressor is disrupted in a nerve-injury model of neuropathic pain. Importantly, this impairment of stress-induced analgesia was rescued by blockade of endocannabinoid breakdown via a cannabinoid CB1 receptor dependent mechanism. These findings suggest that subthreshold treatment with endocannabinoid degradation blockers could be used to alleviate the disruption of endogenous pain control systems in a neuropathic pain state.
Collapse
Affiliation(s)
- Nicholas Atwal
- Faculty of Medicine and Health, Pain Management Research Institute, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Sokolaj
- Faculty of Medicine and Health, Pain Management Research Institute, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa A Mitchell
- Faculty of Medicine and Health, Pain Management Research Institute, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Faculty of Medicine and Health, Pain Management Research Institute, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher W Vaughan
- Faculty of Medicine and Health, Pain Management Research Institute, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
De Preter CC, Heinricher MM. The 'in's and out's' of descending pain modulation from the rostral ventromedial medulla. Trends Neurosci 2024; 47:447-460. [PMID: 38749825 PMCID: PMC11168876 DOI: 10.1016/j.tins.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024]
Abstract
The descending-pain modulating circuit controls the experience of pain by modulating transmission of sensory signals through the dorsal horn. This circuit's key output node, the rostral ventromedial medulla (RVM), integrates 'top-down' and 'bottom-up' inputs that regulate functionally defined RVM cell types, 'OFF-cells' and 'ON-cells', which respectively suppress or facilitate pain-related sensory processing. While recent advances have sought molecular definition of RVM cell types, conflicting behavioral findings highlight challenges involved in aligning functional and molecularly defined types. This review summarizes current understanding, derived primarily from rodent studies but with corroborating evidence from human imaging, of the role of RVM populations in pain modulation and persistent pain states and explores recent advances outlining inputs to, and outputs from, RVM pain-modulating neurons.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
4
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
5
|
De Preter CC, Heinricher MM. Direct and Indirect Nociceptive Input from the Trigeminal Dorsal Horn to Pain-Modulating Neurons in the Rostral Ventromedial Medulla. J Neurosci 2023; 43:5779-5791. [PMID: 37487738 PMCID: PMC10423049 DOI: 10.1523/jneurosci.0680-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is able to amplify or suppress nociceptive signals by means of descending projections to the spinal and trigeminal dorsal horns from the rostral ventromedial medulla (RVM). Two physiologically defined cell classes within RVM, "ON-cells" and "OFF-cells," respectively facilitate and inhibit nociceptive transmission. However, sensory pathways through which nociceptive input drives changes in RVM cell activity are only now being defined. We recently showed that indirect inputs from the dorsal horn via the parabrachial complex (PB) convey nociceptive information to RVM. The purpose of the present study was to determine whether there are also direct dorsal horn inputs to RVM pain-modulating neurons. We focused on the trigeminal dorsal horn, which conveys sensory input from the face and head, and used a combination of single-cell recording with optogenetic activation and inhibition of projections to RVM and PB from the trigeminal interpolaris-caudalis transition zone (Vi/Vc) in male and female rats. We determined that a direct projection from ventral Vi/Vc to RVM carries nociceptive information to RVM pain-modulating neurons. This projection included a GABAergic component, which could contribute to nociceptive inhibition of OFF-cells. This approach also revealed a parallel, indirect, relay of trigeminal information to RVM via PB. Activation of the indirect pathway through PB produced a more sustained response in RVM compared with activation of the direct projection from Vi/Vc. These data demonstrate that a direct trigeminal output conveys nociceptive information to RVM pain-modulating neurons with a parallel indirect pathway through the parabrachial complex.SIGNIFICANCE STATEMENT Rostral ventromedial medulla (RVM) pain-modulating neurons respond to noxious stimulation, which implies that they receive input from pain-transmission circuits. However, the traditional view has been that there is no direct input to RVM pain-modulating neurons from the dorsal horn, and that nociceptive information is carried by indirect pathways. Indeed, we recently showed that noxious information can reach RVM pain-modulating neurons via the parabrachial complex (PB). Using in vivo electrophysiology and optogenetics, the present study identified a direct relay of nociceptive information from the trigeminal dorsal horn to physiologically identified pain-modulating neurons in RVM. Combined tracing and electrophysiology data revealed that the direct projection includes GABAergic neurons. Direct and indirect pathways may play distinct functional roles in recruiting pain-modulating neurons.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
6
|
Imbe H, Ihara H. Mu opioid receptor expressing neurons in the rostral ventromedial medulla are the source of mechanical hypersensitivity induced by repeated restraint stress. Brain Res 2023:148465. [PMID: 37331575 DOI: 10.1016/j.brainres.2023.148465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Repeated exposure to psychophysical stress often causes an increase in sensitivity and response to pain. This phenomenon is commonly called stress-induced hyperalgesia (SIH). Although psychophysical stress is a well-known risk factor for numerous chronic pain syndromes, the neural mechanism underlying SIH has not yet been elucidated. The rostral ventromedial medulla (RVM) is a key output element of the descending pain modulation system. Descending signals from the RVM have a major impact on spinal nociceptive neurotransmission. In the present study, to clarify changes in the descending pain modulatory system in rats with SIH, we examined the expression of Mu opioid receptor (MOR) mRNA, MeCP2 and global DNA methylation in the RVM after repeated restraint stress for 3 weeks. Additionally, we microinjected neurotoxin dermorphin-SAP into the RVM. The repeated restraint stress for 3 weeks induced mechanical hypersensitivity in the hind paw, a significant increase in the expression of MOR mRNA and MeCP2, and a significant decrease in global DNA methylation in the RVM. The MeCP2 binding to MOR gene promoter in the RVM was significantly decreased in rats with repeated restraint stress. Furthermore, microinjection of dermorphin-SAP into the RVM prevented the mechanical hypersensitivity induced by repeated restraint stress. Although, because of the lack of specific antibody to MOR, we could not show a quantitative analysis in the number of MOR-expressing neurons after the microinjection, these results suggest that MOR-expressing neurons in the RVM induce SIH after repeated restraint stress.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan.
| | - Hayato Ihara
- Radioisotope Laboratory Center, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan
| |
Collapse
|
7
|
Pagliusi M, Gomes FV. The Role of The Rostral Ventromedial Medulla in Stress Responses. Brain Sci 2023; 13:brainsci13050776. [PMID: 37239248 DOI: 10.3390/brainsci13050776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a brainstem structure critical for the descending pain modulation system involved in both pain facilitation and inhibition through its projection to the spinal cord. Since the RVM is well connected with pain- and stress-engaged brain structures, such as the anterior cingulate cortex, nucleus accumbens, and amygdala, its involvement in stress responses has become a matter of great interest. While chronic stress has been proposed as a trigger of pain chronification and related psychiatric comorbidities due to maladaptive stress responses, acute stress triggers analgesia and other adaptative responses. Here we reviewed and highlighted the critical role of the RVM in stress responses, mainly in acute stress-induced analgesia (SIA) and chronic stress-induced hyperalgesia (SIH), providing insights into pain chronification processes and comorbidity between chronic pain and psychiatric disorders.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-069, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-069, SP, Brazil
| |
Collapse
|
8
|
Peng B, Jiao Y, Zhang Y, Li S, Chen S, Xu S, Gao P, Fan Y, Yu W. Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol 2023; 14:1159753. [PMID: 37153792 PMCID: PMC10157642 DOI: 10.3389/fphar.2023.1159753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a bulbospinal nuclei in the descending pain modulation system, and directly affects spinal nociceptive transmission through pronociceptive ON cells and antinociceptive OFF cells in this area. The functional status of ON and OFF neurons play a pivotal role in pain chronification. As distinct pain modulative information converges in the RVM and affects ON and OFF cell excitability, neural circuits and transmitters correlated to RVM need to be defined for an in-depth understanding of central-mediated pain sensitivity. In this review, neural circuits including the role of the periaqueductal gray, locus coeruleus, parabrachial complex, hypothalamus, amygdala input to the RVM, and RVM output to the spinal dorsal horn are discussed. Meanwhile, the role of neurotransmitters is concluded, including serotonin, opioids, amino acids, cannabinoids, TRPV1, substance P and cholecystokinin, and their dynamic impact on both ON and OFF cell activities in modulating pain transmission. Via clarifying potential specific receptors of ON and OFF cells, more targeted therapies can be raised to generate pain relief for patients who suffer from chronic pain.
Collapse
Affiliation(s)
- Bingxue Peng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shian Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- *Correspondence: Yinghui Fan, ; Weifeng Yu,
| |
Collapse
|
9
|
Perron B, Ali ABA, Svagerko P, Vernon K. The influence of severity of gastric ulceration on horse behavior and heart rate variability. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Persistent muscle hyperalgesia after adolescent stress is exacerbated by a mild-nociceptive input in adulthood and is associated with microglia activation. Sci Rep 2022; 12:18324. [PMID: 36316425 PMCID: PMC9622712 DOI: 10.1038/s41598-022-21808-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Non-specific low back pain (LBP) is a major global disease burden and childhood adversity predisposes to its development. The mechanisms are largely unknown. Here, we investigated if adversity in young rats augments mechanical hyperalgesia and how spinal cord microglia contribute to this. Adolescent rats underwent restraint stress, control animals were handled. In adulthood, all rats received two intramuscular injections of NGF/saline or both into the lumbar multifidus muscle. Stress induced in rats at adolescence lowered low back pressure pain threshold (PPT; p = 0.0001) and paw withdrawal threshold (PWT; p = 0.0007). The lowered muscle PPT persisted throughout adulthood (p = 0.012). A subsequent NGF in adulthood lowered only PPT (d = 0.87). Immunohistochemistry revealed changes in microglia morphology: stress followed by NGF induced a significant increase in ameboid state (p < 0.05). Repeated NGF injections without stress showed significantly increased cell size in surveilling and bushy states (p < 0.05). Thus, stress in adolescence induced persistent muscle hyperalgesia that can be enhanced by a mild-nociceptive input. The accompanying morphological changes in microglia differ between priming by adolescent stress and by nociceptive inputs. This novel rodent model shows that adolescent stress is a risk factor for the development of LBP in adulthood and that morphological changes in microglia are signs of spinal mechanisms involved.
Collapse
|
11
|
McPherson KB, Ingram SL. Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front Syst Neurosci 2022; 16:963812. [PMID: 36045708 PMCID: PMC9421147 DOI: 10.3389/fnsys.2022.963812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
The descending pain modulatory pathway exerts important bidirectional control of nociceptive inputs to dampen and/or facilitate the perception of pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from many regions associated with the processing of nociceptive, cognitive, and affective components of pain perception, and is a key brain area for opioid action. Opioid receptors are expressed on a subset of vlPAG neurons, as well as on both GABAergic and glutamatergic presynaptic terminals that impinge on vlPAG neurons. Microinjection of opioids into the vlPAG produces analgesia and microinjection of the opioid receptor antagonist naloxone blocks stimulation-mediated analgesia, highlighting the role of endogenous opioid release within this region in the modulation of nociception. Endogenous opioid effects within the vlPAG are complex and likely dependent on specific neuronal circuits activated by acute and chronic pain stimuli. This review is focused on the cellular heterogeneity within vlPAG circuits and highlights gaps in our understanding of endogenous opioid regulation of the descending pain modulatory circuits.
Collapse
Affiliation(s)
- Kylie B. McPherson
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Susan L. Ingram
| |
Collapse
|
12
|
Haas A, Borsook D, Adler G, Freeman R. Stress, hypoglycemia, and the autonomic nervous system. Auton Neurosci 2022; 240:102983. [PMID: 35417827 DOI: 10.1016/j.autneu.2022.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Stress can be classified as either psychosocial or physiologic. Physiologic stress refers to stresses due to acute illness, trauma, pain, hypoglycemia, and sleep deprivation-much less is known regarding its health consequences. This review focuses on hypoglycemia as a model to further investigate physiological stress. Experimental mild to moderate hypoglycemia is a paradigmatic physiological stress that evokes autonomic, neuroendocrine, and immune responses. Hypoglycemic stress is an ideal model to examine the interactions and consequences of physiological stress on the autonomic nervous system. Acute hypoglycemia has been demonstrated to increase inflammatory markers, prolong QTc, and impair cardiac-vagal baroreflex sensitivity. Some of these consequences may not reverse completely when euglycemia is restored. For example, there is attenuation of the cardiac-vagal baroreflex, attenuation of the vascular sympathetic baroreflex (muscle sympathetic nerve activity response to transient hypotension), and attenuation of the catecholamine response to lower body negative pressure that is present the next day after hypoglycemia has resolved.
Collapse
Affiliation(s)
- Andrea Haas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Gail Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Chen Q, Heinricher MM. Shifting the Balance: How Top-Down and Bottom-Up Input Modulate Pain via the Rostral Ventromedial Medulla. FRONTIERS IN PAIN RESEARCH 2022; 3:932476. [PMID: 35836737 PMCID: PMC9274196 DOI: 10.3389/fpain.2022.932476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The sensory experience of pain depends not only on the transmission of noxious information (nociception), but on the state of the body in a biological, psychological, and social milieu. A brainstem pain-modulating system with its output node in the rostral ventromedial medulla (RVM) can regulate the threshold and gain for nociceptive transmission. This review considers the current understanding of how RVM pain-modulating neurons, namely ON-cells and OFF-cells, are engaged by “top-down” cognitive and emotional factors, as well as by “bottom-up” sensory inputs, to enhance or suppress pain.
Collapse
Affiliation(s)
- Qiliang Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Mary M. Heinricher
- Department of Neurological Surgery and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Mary M. Heinricher
| |
Collapse
|
14
|
Ferrari LF, Pei J, Zickella M, Rey C, Zickella J, Ramirez A, Taylor NE. D2 Receptors in the Periaqueductal Gray/Dorsal Raphe Modulate Peripheral Inflammatory Hyperalgesia via the Rostral Ventral Medulla. Neuroscience 2021; 463:159-173. [PMID: 33826955 DOI: 10.1016/j.neuroscience.2021.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
Dopamine neurons in the periaqueductal gray (PAG)/dorsal raphe are key modulators of antinociception with known supraspinal targets. However, no study has directly tested whether these neurons contribute to descending pain inhibition. We hypothesized that PAG dopamine neurons contribute to the analgesic effect of D-amphetamine via a mechanism that involves descending modulation via the rostral ventral medulla (RVM). Male C57BL/6 mice showed increased c-FOS expression in PAG dopamine neurons and a significant increase in paw withdrawal latency to thermal stimulation after receiving a systemic injection of D-amphetamine. Targeted microinfusion of D-amphetamine, L-DOPA, or the selective D2 agonist quinpirole into the PAG produced analgesia, while a D1 agonist, chloro APB, had no effect. In addition, inhibition of D2 receptors in the PAG by eticlopride prevented the systemic D-amphetamine analgesic effect. D-amphetamine and PAG D2 receptor-mediated analgesia were inhibited by intra-RVM injection of lidocaine or the GABAA receptor agonist muscimol, indicating a PAG-RVM signaling pathway in this model of analgesia. Finally, both systemic D-amphetamine and local PAG microinjection of quinpirole, inhibited inflammatory hyperalgesia induced by carrageenan. This hyperalgesia was transiently restored by intra-PAG injection of eticlopride, as well as RVM microinjection of muscimol. We conclude that D-amphetamine analgesia is partially mediated by descending inhibition and that D2 receptors in the PAG are responsible for this effect via modulating neurons that project to the RVM. These results further our understanding of the antinociceptive effects of dopamine and elucidate a mechanism by which clinically available dopamine modulators produce analgesia.
Collapse
Affiliation(s)
- Luiz F Ferrari
- Department of Anesthesiology, University of Utah School of Medicine, 30 N 1900 E, RM 3C444 SOM, Salt Lake City, UT 84132, United States.
| | - JunZhu Pei
- Department of Biomedical Engineering, Florida International University, United States.
| | - Michael Zickella
- Department of Anesthesiology, University of Utah School of Medicine, 30 N 1900 E, RM 3C444 SOM, Salt Lake City, UT 84132, United States
| | - Charles Rey
- Department of Anesthesiology, University of Utah School of Medicine, 30 N 1900 E, RM 3C444 SOM, Salt Lake City, UT 84132, United States
| | - Jacqueline Zickella
- Department of Anesthesiology, University of Utah School of Medicine, 30 N 1900 E, RM 3C444 SOM, Salt Lake City, UT 84132, United States
| | - Anna Ramirez
- Department of Anesthesiology, University of Utah School of Medicine, 30 N 1900 E, RM 3C444 SOM, Salt Lake City, UT 84132, United States.
| | - Norman E Taylor
- Department of Anesthesiology, University of Utah School of Medicine, 30 N 1900 E, RM 3C444 SOM, Salt Lake City, UT 84132, United States.
| |
Collapse
|
15
|
Rat dorsal horn neurons primed by stress develop a long-lasting manifest sensitization after a short-lasting nociceptive low back input. Pain Rep 2021; 6:e904. [PMID: 33688602 PMCID: PMC7935483 DOI: 10.1097/pr9.0000000000000904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background A single injection of nerve growth factor (NGF) into a low back muscle induces a latent sensitization of rat dorsal horn neurons (DHNs) that primes for a manifest sensitization by a subsequent second NGF injection. Repeated restraint stress also causes a latent DHN sensitization. Objective In this study, we investigated whether repeated restraint stress followed by a single NGF injection causes a manifest sensitization of DHNs. Methods Rats were stressed repeatedly in a narrow plastic restrainer (1 hour on 12 consecutive days). Control animals were handled but not restrained. Two days after stress paradigm, behavioral tests and electrophysiological in vivo recordings from single DHNs were performed. Mild nociceptive low back input was induced by a single NGF injection into the lumbar multifidus muscle just before the recording started. Results Restraint stress slightly lowered the low back pressure pain threshold (Cohen d = 0.83). Subsequent NGF injection increased the proportion of neurons responsive to deep low back input (control + NGF: 14%, stress + NGF: 39%; P = 0.041), mostly for neurons with input from outside the low back (7% vs 26%; P = 0.081). There was an increased proportion of neurons with resting activity (28% vs 55%; P = 0.039), especially in neurons having deep input (0% vs 26%; P = 0.004). Conclusions The results indicate that stress followed by a short-lasting nociceptive input causes manifest sensitization of DHNs to deep input, mainly from tissue outside the low back associated with an increased resting activity. These findings on neuronal mechanisms in our rodent model suggest how stress might predispose to radiating pain in patients.
Collapse
|
16
|
Pirri F, Akbarabadi A, Sadat-Shirazi MS, Nouri Zadeh-Tehrani S, Mahboubi S, Karimi Goudarzi A, Zarrindast MR. Comparison and interaction of morphine and CB1 agonist conditioned place preference in the rat model of early life stress. Int J Dev Neurosci 2021; 81:238-248. [PMID: 33534920 DOI: 10.1002/jdn.10094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) disrupts brain development and subsequently affects physical and psychological health. ELS has been associated with an increased risk of relapse and inadequate treatment response in addicted patients. The current study was designed to find the effect of ELS on the rewarding effect of morphine and cannabinoid and their interaction. Pregnant female Wistar rats were used in this study. On postnatal day 2 (PND2), pups were separated from their mothers for 3 hr daily. This procedure was repeated every day at the same time until PND 14. The control group was kept in the standard nesting way with their mothers. The adult male offspring of maternal separated (MS) and standard nested (SN) rats were used. Using conditioned place preference task (CPP), the rewarding effect of morphine (0.75, 1.25, 2.5, and 5 mg/kg) was evaluated in both MS and SN groups. Besides, the rewarding effect of cannabinoids was investigated using the administration of CB1 receptor agonist (ACPA, 0.25, 0.5, 1 µg/rat) and inverse agonist (AM-251, 30, 60, and 90 ng/rat) in the nucleus accumbens (NAc). To evaluate the interaction between NAc cannabinoidergic system and morphine, the noneffective dose of ACPA and AM-251 were administered with a noneffective dose of morphine (0.75 mg/kg) on both MS and SN animals. Obtained results indicated that MS groups had a leftward shift in the rewarding effect of morphine and conditioned with low doses of morphine. However, they had a rightward shift in the rewarding effect of cannabinoids. In addition, coadministration of noneffective doses of morphine and ACPA potentiate conditioning in both MS and SN groups. Previous evidence shows that ELS induced changes in the brain, especially in the reward circuits. Here, we demonstrated that MS animals are more sensitive to the rewarding effect of morphine compared with SN animals. In addition, ELS disrupts the cannabinoid system and affect the rewarding effect of cannabinoids.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi Goudarzi
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
17
|
Hoegh M, Poulsen JN, Petrini L, Graven-Nielsen T. The Effect of Stress on Repeated Painful Stimuli with and Without Painful Conditioning. PAIN MEDICINE 2021; 21:317-325. [PMID: 31241135 DOI: 10.1093/pm/pnz115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Stress and pain have been interrelated in clinical widespread pain conditions. Studies indicate that acute experimental stress in healthy volunteers has a negative effect on the descending inhibitory pain control system and thus the ability to inhibit one painful stimulus with another (conditioned pain modulation [CPM]) although without effect on general pain sensitivity. CPM effects can be assessed immediately after the stress induction, whereas some physiological stress responses (e.g., cortisol release) are delayed and longer lasting. It is unclear whether CPM may relate to stress-induced increases in cortisol. DESIGN Twenty-five healthy men had CPM effects measured over a period of 10 minutes. Pain detection thresholds (PDTs) were assessed by repeated test stimuli with cuff algometry on one leg, with and without painful cuff pressure conditioning on the contralateral leg. CPM effects, assessed as the increase in PDT during conditioning stimulation compared with without, were measured before and after experimental stress and a control condition (Montreal Imaging Stress Task [MIST]). Saliva cortisol levels and self-perceived stress were collected. RESULTS Participants reported the MIST to be more stressful compared with the MIST control, but cortisol levels did not change significantly from baseline. In all sessions, PDT increased during conditioning (P = 0.001), although the MIST compared with the MIST control had no significant effect on PDT or CPM effects. A negative correlation between changes in cortisol and conditioned PDT was found when applying the MIST (P < 0.03). CONCLUSIONS No significant effect of stress was found on CPM compared with a matched control condition. Individual changes in experimental stress and in conditioned pain sensitivity may be linked with cortisol.
Collapse
Affiliation(s)
- Morten Hoegh
- Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| | - Jeppe N Poulsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| | - Laura Petrini
- Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| |
Collapse
|
18
|
Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behav Brain Res 2020; 391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
19
|
Imbe H, Kimura A. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia. Brain Res 2020; 1735:146758. [PMID: 32135148 DOI: 10.1016/j.brainres.2020.146758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Psychophysical stresses frequently increase sensitivity and response to pain, which is termed stress-induced hyperalgesia (SIH). However, the mechanism remains unknown. The subcortical areas such as medial preoptic area (MPO), dorsomedial nucleus of the hypothalamus (DMH), basolateral (BLA) and central nuclei of the amygdala (CeA), and the cortical areas such as insular (IC) and anterior cingulate cortices (ACC) play an important role in pain control via the descending pain modulatory system. In the present study we examined the expression of phosphorylated -cAMP-response element binding protein (pCREB) and the acetylation of histone H3 in these subcortical and cortical areas after repeated restraint stress to reveal changes in the subcortical and cortical areas that affect the function of descending pain modulatory system in the rats with SIH. The repeated restraint stress for 3 weeks induced a decrease in mechanical threshold in the rat hindpaw, an increase in the expression of pCREB in the MPO and an increase in the acetylation of histone H3 in the MPO, BLA and IC. The MPO was the only area that showed an increase in both the expression of pCREB and the acetylation of histone H3 among these examined areas after the repeated restraint stress. Furthermore, the number of pCREB-IR or acetylated histone H3-IR cells in the MPO was negatively correlated with the mechanical threshold. Together, our data represent the importance of the MPO among the subcortical and cortical areas that control descending pain modulatory system under the condition of SIH.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
20
|
Bravo L, Llorca-Torralba M, Suárez-Pereira I, Berrocoso E. Pain in neuropsychiatry: Insights from animal models. Neurosci Biobehav Rev 2020; 115:96-115. [PMID: 32437745 DOI: 10.1016/j.neubiorev.2020.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023]
Abstract
Pain is the most common symptom reported in clinical practice, meaning that it is associated with many pathologies as either the origin or a consequence of other illnesses. Furthermore, pain is a complex emotional and sensorial experience, as the correspondence between pain and body damage varies considerably. While these issues are widely acknowledged in clinical pain research, until recently they have not been extensively considered when exploring animal models, important tools for understanding pain pathophysiology. Interestingly, chronic pain is currently considered a risk factor to suffer psychiatric disorders, mainly stress-related disorders like anxiety and depression. Conversely, pain appears to be altered in many psychiatric disorders, such as depression, anxiety and schizophrenia. Thus, pain and psychiatric disorders have been linked in epidemiological and clinical terms, although the neurobiological mechanisms involved in this pathological bidirectional relationship remain unclear. Here we review the evidence obtained from animal models about the co-morbidity of pain and psychiatric disorders, placing special emphasis on the different dimensions of pain.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003 Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003 Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003 Cádiz, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
21
|
Robins MT, Heinricher MM, Ryabinin AE. From Pleasure to Pain, and Back Again: The Intricate Relationship Between Alcohol and Nociception. Alcohol Alcohol 2020; 54:625-638. [PMID: 31509854 DOI: 10.1093/alcalc/agz067] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
AIMS A close and bidirectional relationship between alcohol consumption and pain has been previously reported and discussed in influential reviews. The goal of the present narrative review is to provide an update on the developments in this field in order to guide future research objectives. METHODS We evaluated both epidemiological and neurobiological literature interrogating the relationship between alcohol use and pain for the presence of significant effects. We outlined studies on interactions between alcohol use and pain using both self-reports and objective experimental measures and discussed potential underlying mechanisms of these interactions. RESULTS Epidemiological, preclinical and clinical literature point to three major interactions between alcohol use and pain: (a) alcohol use leading to hyperalgesia, (b) alcohol use moderating pain and hyperalgesia and (c) chronic pain as a risk factor predisposing to alcohol relapse. Neurobiological studies using animal models to assess these interactions have transitioned from mostly involuntary modes of experimenter-controlled alcohol administration to self-administration procedures, and increasingly indicate that neuronal circuits implicated in both withdrawal and anticipation stages of alcohol use disorder also have a role in chronic pain. Mechanistically, alterations in GABA, glutamate, the corticotropin-releasing factor system, endogenous opioids and protein kinase C appear to play crucial roles in this maladaptive overlap. CONCLUSIONS Many of the principles explaining the interactions between alcohol and pain remain on a strong foundation, but continuing progress in modeling these interactions and underlying systems will provide a clearer basis for understanding, and ultimately treating, the damaging aspects of this interaction.
Collapse
Affiliation(s)
- Meridith T Robins
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.,Department of Neurological Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
22
|
When pain and stress interact: looking at stress-induced analgesia and hyperalgesia in birds. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933919000382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
He Q, Wang T, Ni H, Liu Q, An K, Tao J, Chen Y, Xu L, Zhu C, Yao M. Endoplasmic reticulum stress promoting caspase signaling pathway-dependent apoptosis contributes to bone cancer pain in the spinal dorsal horn. Mol Pain 2019; 15:1744806919876150. [PMID: 31452457 PMCID: PMC6767730 DOI: 10.1177/1744806919876150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Qiuli He
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China.,Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tingting Wang
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qianying Liu
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Kang An
- Department of Anesthesiology, Affliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Jiachun Tao
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajing Chen
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chunyan Zhu
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
24
|
Elman I, Borsook D. The failing cascade: Comorbid post traumatic stress- and opioid use disorders. Neurosci Biobehav Rev 2019; 103:374-383. [DOI: 10.1016/j.neubiorev.2019.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
|
25
|
Jiang M, Bo J, Lei Y, Hu F, Xia Z, Liu Y, Lu C, Sun Y, Hou B, Ni K, Ma Z, Gu X. Anxiety-induced hyperalgesia in female rats is mediated by cholecystokinin 2 receptor in rostral ventromedial medulla and spinal 5-hydroxytryptamine 2B receptor. J Pain Res 2019; 12:2009-2026. [PMID: 31308730 PMCID: PMC6613357 DOI: 10.2147/jpr.s187715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Preoperative anxiety is associated with postoperative hyperalgesia; however, few studies have investigated the mechanism underlying this association in female surgical patients. Research has suggested that ON cells in the rostral ventromedial medulla (RVM) receive nerve impulses via cholecystokinin 2 (CCK2) receptors, facilitating hyperalgesia. Additionally, the downstream serotonergic projection system from the RVM to the spinal cord has a dual regulating effect on pain responses, and the 5-hydoxytryptophan 2B (5-HT2B) receptor in spinal dorsal horn neurons is critically involved in mechanical allodynia. Methods Ovariectomized rats were treated with estrogen replacement, single prolonged stress (SPS), and plantar incision. Various receptor agonists and antagonists were then administered into the RVM and spinal cord to study the mechanism underlying postoperative hyperalgesia caused by preoperative anxiety in female rats. Results Behavioral testing revealed that preoperative SPS induced postoperative hyperalgesia, as well as the expression of the CCK2 receptor in the RVM and the expression of the 5-HT2B receptor, protein kinase Cγ (PKCγ), and phosphorylation of the N-methyl-d-aspartate receptor1 (p-NR1) in the spinal cord increased confirmed by Western blot. RVM microinjection of the CCK2 receptor agonist CCK-8 and intrathecal injection of the 5-HT2B receptor agonist BW723C86 both produced hyperalgesia in female rats after plantar incision, whereas the CCK2 receptor antagonist YM022, the 5-HT2B receptor antagonist RS127445, and the PKCγ inhibitor C37H65N9O13 decreased the rats’ sensitivity to the same stimulus. Additionally, electrophysiological analysis suggested that activation of the 5-HT2B receptor increased the whole-cell current (IBa) in superficial dorsal horn neurons through the PKCγ pathway. Conclusion Our study demonstrated that preoperative anxiety-induced postoperative hyperalgesia in female rats is associated with descending pain pathways. The CCK2 receptor in the RVM and spinal 5-HT2B receptor may play a role in this hyperalgesic effect.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Jinhua Bo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Fan Hu
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhengrong Xia
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Kun Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| |
Collapse
|
26
|
Fragiotta G, Pierelli F, Coppola G, Conte C, Perrotta A, Serrao M. Effect of phobic visual stimulation on spinal nociception. Physiol Behav 2019; 206:22-27. [DOI: 10.1016/j.physbeh.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
|
27
|
Chen W, Taché Y, Marvizón JC. Corticotropin-Releasing Factor in the Brain and Blocking Spinal Descending Signals Induce Hyperalgesia in the Latent Sensitization Model of Chronic Pain. Neuroscience 2019; 381:149-158. [PMID: 29776484 DOI: 10.1016/j.neuroscience.2018.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/21/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
Latent sensitization is a model of chronic pain in which an injury triggers a period of hyperalgesia followed by an apparent recovery, but in which pain sensitization persists but is suppressed by opioid and adrenergic receptors. One important characteristic of latent sensitization is that hyperalgesia can be triggered by acute stress. To determine whether the effect of stress is mimicked by the activation of corticotropin-releasing factor (CRF) signaling in the brain, rats with latent sensitization induced by injecting complete Freund's adjuvant (CFA, 50 μl) in one hind paw were given an intracerebroventricular (i.c.v.) injection of CRF. The i.c.v. injection of CRF (0.6 μg, 10 μl), but not saline, induced bilateral mechanical hyperalgesia in rats with latent sensitization. In contrast, CRF i.c.v. did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). To determine whether descending pain inhibition mediates the suppression of hyperalgesia in latent sensitization, rats with CFA-induced latent sensitization received an intrathecal injection of lidocaine (10%, 1 μl) at the cervical-thoracic spinal cord to produce a spinal block. Lidocaine-injected rats, but not rats injected intrathecally with saline, developed bilateral mechanical hyperalgesia. Intrathecal lidocaine did not induce hyperalgesia in rats without latent sensitization (injected with saline in the hind paw). These results show that i.c.v. CRF mimicked the hyperalgesic response triggered by stress during latent sensitization, possibly by blocking inhibitory spinal descending signals that suppress hyperalgesia.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Yvette Taché
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Juan Carlos Marvizón
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States; Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The goal of the review was to highlight recent advances in our understanding of descending pain-modulating systems and how these contribute to persistent pain states, with an emphasis on the current state of knowledge around "bottom-up" (sensory) and "top-down" (higher structures mediating cognitive and emotional processing) influences on pain-modulating circuits. RECENT FINDINGS The connectivity, physiology, and function of these systems have been characterized extensively over the last 30 years. The field is now beginning to ask how and when these systems are engaged to modulate pain. A recent focus is on the parabrachial complex, now recognized as the major relay of nociceptive information to pain-modulating circuits, and plasticity in this circuit and its connections to the RVM is marked in persistent inflammatory pain. Top-down influences from higher structures, including hypothalamus, amygdala, and medial prefrontal areas, are also considered. The challenge will be to tease out mechanisms through which a particular behavioral context engages distinct circuits to enhance or suppress pain, and to understand how these mechanisms contribute to chronic pain.
Collapse
|
29
|
Malfliet A, Kregel J, Meeus M, Danneels L, Cagnie B, Roussel N, Nijs J. Patients With Chronic Spinal Pain Benefit From Pain Neuroscience Education Regardless the Self-Reported Signs of Central Sensitization: Secondary Analysis of a Randomized Controlled Multicenter Trial. PM R 2018; 10:1330-1343.e1. [DOI: 10.1016/j.pmrj.2018.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
|
30
|
Rafique N, Al-Sheikh MH. Prevalence of menstrual problems and their association with psychological stress in young female students studying health sciences. Saudi Med J 2018; 39:67-73. [PMID: 29332111 PMCID: PMC5885123 DOI: 10.15537/smj.2018.1.21438] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives: To identify the prevalence of various menstrual problems in young females studying health sciences and to identify their association with academic stress. Methods: This was a cross-sectional study, conducted in the health colleges of Immam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia between February 2015 and February 2016. Seven hundred and thirty-eight female students aged 18-25 years anonymously completed menstrual problem identification and perceived stress scale questionnaire. The data was analyzed using the Statistical Package for Social Sciences version 16.0. Results: Ninety-one percent of the students were suffering from some kind of menstrual problem. The different menstrual problems reported, and their incidences included irregular menstruation (27%), abnormal vaginal bleeding (9.3%), amenorrhea (9.2%), menorrhagia (3.4%), dysmenorrhea (89.7%), and premenstrual symptoms (46.7%). High perceived stress (HPS) was identified in 39% of the students. A significant positive correlation was found between HPS and menstrual problems. Students with HPS had 4 times, 2 times, and 2.8 times increased odds ratio for experiencing amenorrhea, dysmenorrhea, and premenstrual syndrome (p<0.05). Conclusion: The most prevalent menstrual problems (dysmenorrhea and premenstrual symptoms) in the target population were strongly associated with stress. Therefore, it is recommended that health science students should be provided with early psychological and gynecological counselling to prevent future complications.
Collapse
Affiliation(s)
- Nazish Rafique
- Department of Physiology, Immam Abdul Rehman Bin Faisal University, Dammam, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
31
|
Welte-Jzyk C, Pfau DB, Hartmann A, Daubländer M. Somatosensory profiles of patients with chronic myogenic temporomandibular disorders in relation to their painDETECT score. BMC Oral Health 2018; 18:138. [PMID: 30092795 PMCID: PMC6085668 DOI: 10.1186/s12903-018-0601-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to characterize patients with chronic temporomandibular disorders (TMD) in terms of existing hyperalgesia against cold, heat and pressure. METHODS The extent of hyperalgesia for pressure and thermal sensation in TMD patients was determined by the use of the painDETECT questionnaire ("Is cold or heat in this area occasionally painful?" "Does slight pressure in this area, e.g., with a finger, trigger pain?") and experimental somatosensory testing against thermal and pressure stimuli (Quantitative Sensory Testing; QST). In addition, we explored psychological comorbidity among the chronic TMD patients (hospital anxiety and depression scale, HADS-D and coping strategies questionnaire, CSQ). RESULTS Nineteen patients with chronic TMD and 38 healthy subjects participated in the study. N = 12 patients had a painDETECT score ≤ 12, n = 3 patients had a painDETECT score of 13-18 and n = 4 patients had a painDETECT score ≥ 19. TMD patients with painDETECT scores ≥19 had moderately, strong or very strong enhancement of thermal and pressure pain perception, whereas patients with painDETECT scores 13-18 and ≤ 12 responded these questions with "never", "hardly noticed" or "slightly painful" (p < 0.05-0.01). With increasing painDETECT scores we found increased hyperalgesia for pressure (p < 0.01) and thermal stimuli (p < 0.05) in QST. The patients with a painDETECT score ≥ 19 showed increased signs of anxiety (p < 0.05), depression (p < 0.01), praying and hoping (p < 0.05). CONCLUSION The present study has shown that the PainDETECT questionnaire can be a helpful additional diagnostic tool. Together with QST, the PainDETECT questionnaire detected hyperalgesia for pressure and thermal sensation. Therefore the PainDETECT questionnaire is helpful to decide which TMD patients should undergo QST.
Collapse
Affiliation(s)
- C Welte-Jzyk
- Department of Oral and Maxillofacial Surgery, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany.
| | - D B Pfau
- Mannheim Institute of Public Health (MIPH), Social and Preventive Medicine, University of Heidelberg, Heidelberg, Germany.,Department of Neurophysiology, Centre of Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, Heidelberg, Germany
| | - A Hartmann
- Private Practice Dr. Seiler and colleagues, Filderstadt, Germany
| | - M Daubländer
- Department of Oral and Maxillofacial Surgery, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
32
|
Geva N, Defrin R. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response. THE JOURNAL OF PAIN 2018; 19:360-371. [DOI: 10.1016/j.jpain.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022]
|
33
|
Fregni F, Macedo I, Spezia-Adachi L, Scarabelot V, Laste G, Souza A, Sanches PRS, Caumo W, Torres I. Transcranial direct current stimulation (tDCS) prevents chronic stress-induced hyperalgesia in rats. Brain Stimul 2018; 11:299-301. [DOI: 10.1016/j.brs.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
|
34
|
Spezia Adachi LN, Vercelino R, de Oliveira C, Scarabelot VL, de Souza A, Medeiros LF, Cioato SG, Caumo W, Torres ILS. Isoflurane and the Analgesic Effect of Acupuncture and Electroacupuncture in an Animal Model of Neuropathic Pain. J Acupunct Meridian Stud 2018; 11:97-106. [PMID: 29436370 DOI: 10.1016/j.jams.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to determine whether isoflurane interferes with the analgesic effects of acupuncture (Ac) and electroacupuncture (EA), using a neuropathic pain (NP) rat model. In total, 140 male Wistar rats were used; isoflurane-induced nociceptive response was evaluated using the von Frey test, serum calcium-binding protein β (S100β) levels and nerve growth factor (NGF) levels in the left sciatic nerve. The NP model was induced by chronic constriction injury of the sciatic nerve at 14 days after surgery. Treatment was initiated after NP induction with or without isoflurane anesthesia (20 min/day/8 days). The von Frey test was performed at baseline, 14 days postoperatively, and immediately, 24 h, and 48 h after the last treatment. Results of the nociceptive test and three-way analysis of variance were analyzed by generalized estimating equations, the Bonferroni test, followed by Student-Newman-Keuls or Fisher's least significant difference tests for comparing biochemical parameters (significance defined as p ≤ 0.05). At baseline, no difference was noted in the nociceptive response threshold among all groups. Fourteen days after surgery, compared with other groups, NP groups showed a decreased pain threshold, confirming establishment of NP. Ac and EA enhanced the mechanical pain threshold immediately after the last session in the NP groups, without anesthesia. Isoflurane administration caused increased nociceptive threshold in all groups, and this effect persisted for 48 h after the last treatment. There was an interaction between the independent variables: pain, treatments, and anesthesia in serum S100β levels and NGF levels in the left sciatic nerve. Isoflurane enhanced the analgesic effects of Ac and EA and altered serum S100β and left sciatic nerve NGF levels in rats with NP.
Collapse
Affiliation(s)
- Lauren N Spezia Adachi
- Graduate Program in Medicine, Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael Vercelino
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Centro Universitário FADERGS, Health and Wellness School Laureate International Universities, Porto Alegre, RS, Brazil
| | - Carla de Oliveira
- Graduate Program in Medicine, Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa L Scarabelot
- Graduate Program in Biological Sciences, Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liciane F Medeiros
- Graduate Program in Biological Sciences, Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Stefania G Cioato
- Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Graduate Program in Medicine, Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Graduate Program in Medicine, Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences, Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researchs, Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:281-303. [PMID: 30454595 DOI: 10.1016/b978-0-444-63912-7.00017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental central neural circuits for thermoregulation orchestrate behavioral and autonomic repertoires that maintain body core temperature during thermal challenges that arise from either the ambient or the internal environment. This review summarizes our understanding of the neural pathways within the fundamental thermoregulatory reflex circuitry that comprise the efferent (i.e., beyond thermosensory) control of brown adipose tissue (BAT) and shivering thermogenesis: the motor neuron systems consisting of the BAT sympathetic preganglionic neurons and BAT sympathetic ganglion cells, and the alpha- and gamma-motoneurons; the premotor neurons in the region of the rostral raphe pallidus, and the thermogenesis-promoting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area. Also included are inputs to, and neurochemical modulators of, these efferent neuronal populations that could influence their activity during thermoregulatory responses. Signals of metabolic status can be particularly significant for the energy-hungry thermoeffectors for heat production.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
36
|
Abstract
The rostral ventromedial medulla (RVM) has a well-documented role in pain modulation and exerts antinociceptive and pronociceptive influences mediated by 2 distinct classes of neurons, OFF-cells and ON-cells. OFF-cells are defined by a sudden pause in firing in response to nociceptive inputs, whereas ON-cells are characterized by a "burst" of activity. Although these reflex-related changes in ON- and OFF-cell firing are critical to their pain-modulating function, the pathways mediating these responses have not been identified. The present experiments were designed to test the hypothesis that nociceptive input to the RVM is relayed through the parabrachial complex (PB). In electrophysiological studies, ON- and OFF-cells were recorded in the RVM of lightly anesthetized male rats before and after an infusion of lidocaine or muscimol into PB. The ON-cell burst and OFF-cell pause evoked by noxious heat or mechanical probing were substantially attenuated by inactivation of the lateral, but not medial, parabrachial area. Retrograde tracing studies showed that neurons projecting to the RVM were scattered throughout PB. Few of these neurons expressed calcitonin gene-related peptide, suggesting that the RVM projection from PB is distinct from that to the amygdala. These data show that a substantial component of "bottom-up" nociceptive drive to RVM pain-modulating neurons is relayed through the PB. While the PB is well known as an important relay for ascending nociceptive information, its functional connection with the RVM allows the spinoparabrachial pathway to access descending control systems as part of a recurrent circuit.
Collapse
|
37
|
Reid K, Rogers CW, Gronqvist G, Gee EK, Bolwell CF. Anxiety and pain in horses measured by heart rate variability and behavior. J Vet Behav 2017. [DOI: 10.1016/j.jveb.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Blackman VS, Cooper BA, Puntillo K, Franck LS. Demographic, Clinical, and Health System Characteristics Associated With Pain Assessment Documentation and Pain Severity in U.S. Military Patients in Combat Zone Emergency Departments, 2010-2013. J Trauma Nurs 2017; 23:257-74. [PMID: 27618374 DOI: 10.1097/jtn.0000000000000231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Emergency department (ED) pain assessment documentation in trauma patients is critical to ED pain care. This retrospective, cross-sectional study used trauma registry data to evaluate U.S. military combat zone trauma patients injured between 2010 and 2013 requiring ≥ 24-hr inpatient care. Study aims were to identify the frequency of combat zone ED pain assessment documentation and describe pain severity. Secondary aims were to construct statistical models to explain variation in pain assessment documentation and pain severity.Pain scores were documented in 60.5% (n = 3,339) of the 5,518 records evaluated. The proportion of records with ED pain scores increased yearly. Pain assessment documentation was associated with documentation of ED vital signs, comprehensive facility, more recent year, prehospital (PH) heart rate of 60-100 beats/min, ED Glasgow Coma Scale score of 15 vs. 14, blunt trauma, and lower injury severity score (ISS).Pain severity scores ranged from 0 to 10; mean = 5.5 (SD = 3.1); median = 6. Higher ED pain scores were associated with Army service compared with Marine Corps, no documented PH vital signs, higher PH pain score, ED respiratory rate < 12 or >16, moderate or severe ISS compared with minor ISS, treatment in a less-equipped facility, and injury in 2011 or 2012 vs. 2010. The pain severity model explained 20.4% of variance in pain severity.Overall, frequency of pain assessment documentation in combat-zone EDs improved yearly, but remained suboptimal. Pain severity was poorly predicted by demographic, clinical, and health system variables available from the trauma registry, emphasizing the importance of individual assessment.
Collapse
Affiliation(s)
- Virginia Schmied Blackman
- Nurse Corps, U.S. Navy, Walter Reed National Military Medical Center, Department of Research Programs, Center for Nursing Science and Clinical Inquiry, Bethesda, Maryland (Dr Blackman); and School of Nursing, University of California, San Francisco (Drs Blackman, Cooper, Puntillo, and Franck)
| | | | | | | |
Collapse
|
39
|
|
40
|
Anterior Cingulate Cortex Contributes to Alcohol Withdrawal- Induced and Socially Transferred Hyperalgesia. eNeuro 2017; 4:eN-NWR-0087-17. [PMID: 28785727 PMCID: PMC5526654 DOI: 10.1523/eneuro.0087-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 01/10/2023] Open
Abstract
Pain is often described as a “biopsychosocial” process, yet social influences on pain and underlying neural mechanisms are only now receiving significant experimental attention. Expression of pain by one individual can be communicated to nearby individuals by auditory, visual, and olfactory cues. Conversely, the perception of another’s pain can lead to physiological and behavioral changes in the observer, which can include induction of hyperalgesia in “bystanders” exposed to “primary” conspecifics in which hyperalgesia has been induced directly. The current studies were designed to investigate the neural mechanisms responsible for the social transfer of hyperalgesia in bystander mice housed and tested with primary mice in which hyperalgesia was induced using withdrawal (WD) from voluntary alcohol consumption. Male C57BL/6J mice undergoing WD from a two-bottle choice voluntary alcohol-drinking procedure served as the primary mice. Mice housed in the same room served as bystanders. Naïve, water-drinking controls were housed in a separate room. Immunohistochemical mapping identified significantly enhanced Fos immunoreactivity (Fos-ir) in the anterior cingulate cortex (ACC) and insula (INS) of bystander mice compared to naïve controls, and in the dorsal medial hypothalamus (DMH) of primary mice. Chemogenetic inactivation of the ACC but not primary somatosensory cortex reversed the expression of hyperalgesia in both primary and bystander mice. These studies point to an overlapping neural substrate for expression of socially transferred hyperalgesia and that expressed during alcohol WD.
Collapse
|
41
|
Optogenetic Evidence for a Direct Circuit Linking Nociceptive Transmission through the Parabrachial Complex with Pain-Modulating Neurons of the Rostral Ventromedial Medulla (RVM). eNeuro 2017; 4:eN-NWR-0202-17. [PMID: 28660248 PMCID: PMC5483601 DOI: 10.1523/eneuro.0202-17.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 11/28/2022] Open
Abstract
The parabrachial complex (PB) is a functionally and anatomically complex structure involved in a range of homeostatic and sensory functions, including nociceptive transmission. There is also evidence that PB can engage descending pain-modulating systems, the best characterized of which is the rostral ventromedial medulla (RVM). Two distinct classes of RVM neurons, “ON-cells” and “OFF-cells,” exert net pronociceptive and anti-nociceptive effects, respectively. PB was recently shown to be a relay of nociceptive information to RVM ON- and OFF-cells. The present experiments used optogenetic methods in a lightly anesthetized rat and an adult RVM slice to determine whether there are direct, functionally relevant inputs to RVM pain-modulating neurons from PB. Whole-cell patch-clamp recordings demonstrated that PB conveys direct glutamatergic and GABAergic inputs to RVM neurons. Consistent with this, in vivo recording showed that nociceptive-evoked responses of ON- and OFF-cells were suppressed by optogenetic inactivation of archaerhodopsin (ArchT)-expressing PB terminals in RVM, demonstrating that a net inhibitory input to OFF-cells and net excitatory input to ON-cells are engaged by acute noxious stimulation. Further, the majority of ON- and OFF-cells responded to optogenetic activation of channelrhodopsin (ChR2)-expressing terminals in the RVM, confirming a direct PB influence on RVM pain-modulating neurons. These data show that a direct connection from the PB to the RVM conveys nociceptive information to the pain-modulating neurons of RVM under basal conditions. They also reveal additional inputs from PB with the capacity to activate both classes of RVM pain-modulating neurons and the potential to be recruited under different physiological and pathophysiological conditions.
Collapse
|
42
|
Malfliet A, Leysen L, Pas R, Kuppens K, Nijs J, Van Wilgen P, Huysmans E, Goudman L, Ickmans K. Modern pain neuroscience in clinical practice: applied to post-cancer, paediatric and sports-related pain. Braz J Phys Ther 2017; 21:225-232. [PMID: 28579013 PMCID: PMC5537480 DOI: 10.1016/j.bjpt.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022] Open
Abstract
Generalized hypersensitivity in post-cancer, sports-related and pediatric pain. Rationale for pain education, stress management and cognition targeted exercises. Need to change from a biomedical or psychosocial to an integrated approach.
In the last decade, evidence regarding chronic pain has developed exponentially. Numerous studies show that many chronic pain populations show specific neuroplastic changes in the peripheral and central nervous system. These changes are reflected in clinical manifestations, like a generalized hypersensitivity of the somatosensory system. Besides a hypersensitivity of bottom-up nociceptive transmission, there is also evidence for top-down facilitation of pain due to malfunctioning of the endogenous descending nociceptive modulatory systems. These and other aspects of modern pain neuroscience are starting to be applied within daily clinical practice. However, currently the application of this knowledge is mostly limited to the general adult population with musculoskeletal problems, while evidence is getting stronger that also in other chronic pain populations these neuroplastic processes may contribute to the occurrence and persistence of the pain problem. Therefore, this masterclass article aims at giving an overview of the current modern pain neuroscience knowledge and its potential application in post-cancer, paediatric and sports-related pain problems.
Collapse
Affiliation(s)
- Anneleen Malfliet
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊); Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium.
| | - Laurence Leysen
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊)
| | - Roselien Pas
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊); Department of Rehabilitation Sciences and Physiotherapy (REVAKI), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Kevin Kuppens
- Pain in Motion International Research Group,(◊); Department of Rehabilitation Sciences and Physiotherapy (REVAKI), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Jo Nijs
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊); Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
| | - Paul Van Wilgen
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊); Transcare, Transdisciplinary Pain-management Centre,(◊◊) The Netherlands
| | - Eva Huysmans
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊)
| | - Lisa Goudman
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊); Department of Neurosurgery, University Hospital Brussels, Brussels, Belgium
| | - Kelly Ickmans
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA), Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Pain in Motion International Research Group,(◊); Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
| |
Collapse
|
43
|
GEVA NIRIT, PRUESSNER JENS, DEFRIN RUTH. Triathletes Lose Their Advantageous Pain Modulation under Acute Psychosocial Stress. Med Sci Sports Exerc 2017; 49:333-341. [DOI: 10.1249/mss.0000000000001110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Amini-Khoei H, Amiri S, Mohammadi-Asl A, Alijanpour S, Poursaman S, Haj-Mirzaian A, Rastegar M, Mesdaghinia A, Banafshe HR, Sadeghi E, Samiei E, Mehr SE, Dehpour AR. Experiencing neonatal maternal separation increased pain sensitivity in adult male mice: Involvement of oxytocinergic system. Neuropeptides 2017; 61:77-85. [PMID: 27932062 DOI: 10.1016/j.npep.2016.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Early-life stress adversely affects the development of the brain, and alters a variety of behaviors such as pain in later life. In present study, we investigated how early-life stress (maternal separation or MS) can affect the nociceptive response later in life. We particularly focused on the role of oxytocin (OT) in regulating nociception in previously exposed (MS during early postnatal development) mice that were subjected to acute stress (restraint stress or RS). Further, we evaluated whether such modulation of pain sensation in MS mice are regulated by shared mechanisms of the OTergic and opioidergic systems. To do this, we assessed the underlying systems mediating the nociceptive response by administrating different antagonists (for both opioid and OTergic systems) under the different experimental conditions (control vs MS, and control plus RS vs MS plus RS). Our results showed that MS increased pain sensitivity in both tail-flick and hot-plate tests while after administration of OT (1μg/μl/mouse, i.c.v) pain threshold was increased. Atosiban, an OT antagonist (10μg/μl/mouse, i.c.v) abolished the effects of OT. While acute RS increased the pain threshold in control (and not MS) mice, treating MS mice with OT normalized the pain response to RS. This latter effect was reversed by atosiban and/or naltrexone, an opioid antagonist (0.5μg/μl/mouse, i.c.v) suggesting that OT enhances the effect of endogenous opioids. OTergic system is involved in mediating the nociception under acute stress in mice subjected to early-life stress and OTergic and opioidergic systems interact to modulate pain sensitivity in MS mice.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shayan Amiri
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ali Mohammadi-Asl
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran
| | - Simin Poursaman
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Azam Mesdaghinia
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsanollah Sadeghi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
| | - Elika Samiei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaie Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
45
|
Abstract
Patients with functional pain disorders often complain of generalized sensory hypersensitivity, finding sounds, smells, or even everyday light aversive. The neural basis for this aversion is unknown, but it cannot be attributed to a general increase in cortical sensory processing. Here, we quantified the threshold for aversion to light in patients with fibromyalgia, a pain disorder thought to reflect dysregulation of pain-modulating systems in the brain. These individuals expressed discomfort at light levels substantially lower than that of healthy control subjects. Complementary studies in lightly anesthetized rat demonstrated that a subset of identified pain-modulating neurons in the rostral ventromedial medulla unexpectedly responds to light. Approximately half of the pain-facilitating "ON-cells" and pain-inhibiting "OFF-cells" sampled exhibited a change in firing with light exposure, shifting the system to a pronociceptive state with the activation of ON-cells and suppression of OFF-cell firing. The change in neuronal firing did not require a trigeminal or posterior thalamic relay, but it was blocked by the inactivation of the olivary pretectal nucleus. Light exposure also resulted in a measurable but modest decrease in the threshold for heat-evoked paw withdrawal, as would be expected with engagement of this pain-modulating circuitry. These data demonstrate integration of information about light intensity with somatic input at the level of single pain-modulating neurons in the brain stem of the rat under basal conditions. Taken together, our findings in rodents and humans provide a novel mechanism for abnormal photosensitivity and suggest that light has the potential to engage pain-modulating systems such that normally innocuous inputs are perceived as aversive or even painful.
Collapse
|
46
|
Nijs J, Leysen L, Pas R, Adriaenssens N, Meeus M, Hoelen W, Ickmans K, Moloney N. Treatment of pain following cancer: applying neuro-immunology in rehabilitation practice. Disabil Rehabil 2016; 40:714-721. [DOI: 10.1080/09638288.2016.1261418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jo Nijs
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Laurence Leysen
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Roselien Pas
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nele Adriaenssens
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Oncology, University Hospital Brussels, Brussels, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine, Antwerp University, Antwerp, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Wouter Hoelen
- De Berekuyl, Private practice for physiotherapy in oncology & lymphology, Hierden, the Netherlands
| | - Kelly Ickmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Niamh Moloney
- Department of Health Professions, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
47
|
El Bitar N, Pollin B, Karroum E, Pincedé I, Le Bars D. Entanglement between thermoregulation and nociception in the rat: the case of morphine. J Neurophysiol 2016; 116:2473-2496. [PMID: 27605533 PMCID: PMC5133307 DOI: 10.1152/jn.00482.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/03/2016] [Indexed: 11/22/2022] Open
Abstract
In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED50 in the 0.5-1 mg/kg range. Given the pivotal functional role of the rostral ventromedial medulla (RVM) in nociception and the rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, the RVM/rMR was blocked by muscimol: it suppressed the effects of morphine. "On-" and "off-" neurons recorded in the RVM/rMR are activated and inhibited by thermal nociceptive stimuli, respectively. They are also implicated in regulating the cyclic variations of the vasomotion of the tail and paws seen in thermoneutral conditions. Morphine elicited abrupt inhibition and activation of the firing of on- and off-cells recorded in the RVM/rMR. By using a model that takes into account the power of the radiant heat source, initial skin temperature, core body temperature, and peripheral nerve conduction distance, one can argue that the morphine-induced increase of reaction time is mainly related to the morphine-induced vasoconstriction. This statement was confirmed by analyzing in psychophysical terms the tail-flick response to random variations of noxious radiant heat. Although the increase of a reaction time to radiant heat is generally interpreted in terms of analgesia, the present data question the validity of using such an approach to build a pain index.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Elias Karroum
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Ivanne Pincedé
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| |
Collapse
|
48
|
Salas R, Ramirez K, Vanegas H, Vazquez E. Activity correlations between on-like and off-like cells of the rostral ventromedial medulla and simultaneously recorded wide-dynamic-range neurons of the spinal dorsal horn in rats. Brain Res 2016; 1652:103-110. [PMID: 27720764 DOI: 10.1016/j.brainres.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 12/27/2022]
Abstract
Considerable evidence supports the notion that on- and off-cells of the rostral ventromedial medulla (RVM) facilitate and depress, respectively, spinal nociceptive transmission. This notion stems from a covariation of on- or off-cell activities and spinal nocifensive reflexes. Such covariation could theoretically be due to their independently responding to a common source, or to an RVM-derived modulation of ventral horn neurons. Here, we tested whether on- and off-cells indeed modulate spinal nociceptive neurons. In deeply anesthetized rats, unitary recordings were simultaneously made from an RVM on-like or off-like cell and a spinal nociceptive neuron that shared a receptive field (RF) at a hind paw. Action potential firing in RVM/spinal neuron pairs was highly correlated, positively for on-like cells and negatively for off-like cells, both during ongoing activity and during application of calibrated noxious pressure to the RF. Microinjection of morphine into RVM induced a correlated decrease in on-like cell/spinal neuron ongoing activity and response to noxious stimulation. RVM morphine induced changes in off-like cell activity that were not correlated with spinal neuronal activity. These results suggest that on-cells exert a positive modulation upon spinal nociceptive neurons, upstream to ventral horn circuits and plausibly at the origin of nociceptive information that eventually reaches the cerebral cortex. On-cells may in this manner contribute to inflammation- and neuropathy-induced increases in withdrawal reflexes. Most significantly, on-cell modulation of nociceptive neurons may be a key factor in clinical pain conditions such as hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Rafael Salas
- Catedra de Fisiologia, Escuela de Bioanalisis, Facultad de Medicina, Universidad Central de Venezuela, Apartado 9995, Caracas 1050, Venezuela.
| | - Karla Ramirez
- Laboratorio de Neurofisiologia, Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela.
| | - Horacio Vanegas
- Laboratorio de Neurofisiologia, Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela.
| | - Enrique Vazquez
- Laboratorio de Neurofisiologia, Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela.
| |
Collapse
|
49
|
Cho SH, Ko SH, Lee MS, Koo BS, Lee JH, Kim SH, Chae WS, Jin HC, Lee JS, Kim YI. Development of the Geop-Pain questionnaire for multidisciplinary assessment of pain sensitivity. Korean J Anesthesiol 2016; 69:492-505. [PMID: 27703631 PMCID: PMC5047986 DOI: 10.4097/kjae.2016.69.5.492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 02/02/2023] Open
Abstract
Background To assess the multidisciplinary aspects of pain, various self-rating questionnaires have been developed, but there have not been sufficient relevant studies on this topic in South Korea. The aim of this study was to develop a new pain sensitivity-related questionnaire in the Korean language that would be simple and would well reflect Koreans' senses. Methods A new pain assessment questionnaire was developed through a pre-survey on "geop", which is the Korean word expressing fear, anxiety, or catastrophizing. We named the new assessment questionnaire the Geop-Pain Questionnaire (GPQ). The GPQ was composed of 15 items divided into three categories and rated on a 5-point scale. As a preliminary study, internal consistency and test-retest reliability analyses were conducted. Subsequently, 109 individuals completed the GPQ along with three pain-related questionnaires translated into Korean (Pain Sensitivity Questionnaire [PSQ], Pain Anxiety Symptoms Scale [PASS], and Pain Catastrophizing Scale [PCS]), and the correlations were analyzed. Results All items in the GPQ showed appropriate internal consistency, and the test-retest reliability analysis showed no statistically significant differences. The correlations between the GPQ and the existing questionnaires revealed that the GPQ scores had mid-positive correlations with the PSQ scores and strong positive correlations with the PASS and PCS scores. Conclusions This study attempted to develop a questionnaire assessing pain sensitivity multidimensionally using the Korean word geop for the first time. The self-rating GPQ showed high correlations with the existing questionnaires and demonstrated potential to be utilized as a pain prediction index in clinical practice.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Su-Hwan Ko
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Mi-Soon Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Bon-Sung Koo
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Joon-Ho Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sang-Hyun Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Seok Chae
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hee Cheol Jin
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jeong Seok Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yong-Ik Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
50
|
Takao K, Shoji H, Hattori S, Miyakawa T. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior. Front Behav Neurosci 2016; 10:99. [PMID: 27375443 PMCID: PMC4891333 DOI: 10.3389/fnbeh.2016.00099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.
Collapse
Affiliation(s)
- Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, CRESTKawaguchi, Japan; Division of Animal Resources and Development, Life Science Research Center, University of ToyamaToyama, Japan
| | - Hirotaka Shoji
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, CRESTKawaguchi, Japan; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan
| | - Satoko Hattori
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, CRESTKawaguchi, Japan; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, CRESTKawaguchi, Japan; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan
| |
Collapse
|