1
|
Schaible HG, König C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem 2024; 168:3644-3662. [PMID: 36520021 DOI: 10.1111/jnc.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2X7-) cathepsin S/CX3CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1β, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
2
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
3
|
Li Y, Uhelski ML, North RY, Farson LB, Bankston CB, Roland GH, Fan DH, Sheffield KN, Jia A, Orlando D, Heles M, Yaksh TL, Miller YI, Kosten TA, Dougherty PM. ApoA-I binding protein (AIBP) regulates transient receptor potential vanilloid 1 (TRPV1) activity in rat dorsal root ganglion neurons by selective disruption of toll-like receptor 4 (TLR4)-lipid rafts. Brain Behav Immun 2024; 123:644-655. [PMID: 39414176 DOI: 10.1016/j.bbi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.
Collapse
Affiliation(s)
- Yan Li
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Megan L Uhelski
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Robert Y North
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, the United States of America
| | - Luke B Farson
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Christopher B Bankston
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Gavin H Roland
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Dwight H Fan
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | | | - Amy Jia
- Northwestern University, Evanston, IL 60208, the United States of America
| | - Dana Orlando
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Mario Heles
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Tony L Yaksh
- The Department of Anesthesiology, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Yury I Miller
- Department of Medicine, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Therese A Kosten
- Department of Psychology, Health Building 1, 4349 Martin Luther King Blvd, Houston, TX 77204, the United States of America
| | - Patrick M Dougherty
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America.
| |
Collapse
|
4
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
5
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Galante P, Campos GAA, Moser JCG, Martins DB, Dos Santos Cabrera MP, Rangel M, Coelho LC, Simon KS, Amado VM, de A I Muller J, Koehbach J, Lohman RJ, Cabot PJ, Vetter I, Craik DJ, Toffoli-Kadri MC, Monge-Fuentes V, Goulart JT, Schwartz EF, Silva LP, Bocca AL, Mortari MR. Exploring the therapeutic potential of an antinociceptive and anti-inflammatory peptide from wasp venom. Sci Rep 2023; 13:12491. [PMID: 37528129 PMCID: PMC10393941 DOI: 10.1038/s41598-023-38828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
Animal venoms are rich sources of neuroactive compounds, including anti-inflammatory, antiepileptic, and antinociceptive molecules. Our study identified a protonectin peptide from the wasp Parachartergus fraternus' venom using mass spectrometry and cDNA library construction. Using this peptide as a template, we designed a new peptide, protonectin-F, which exhibited higher antinociceptive activity and less motor impairment compared to protonectin. In drug interaction experiments with naloxone and AM251, Protonectin-F's activity was decreased by opioid and cannabinoid antagonism, two critical antinociception pathways. Further experiments revealed that this effect is most likely not induced by direct action on receptors but by activation of the descending pain control pathway. We noted that protonectin-F induced less tolerance in mice after repeated administration than morphine. Protonectin-F was also able to decrease TNF-α production in vitro and modulate the inflammatory response, which can further contribute to its antinociceptive activity. These findings suggest that protonectin-F may be a potential molecule for developing drugs to treat pain disorders with fewer adverse effects. Our results reinforce the biotechnological importance of animal venom for developing new molecules of clinical interest.
Collapse
Affiliation(s)
- Priscilla Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Gabriel A A Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jacqueline C G Moser
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Danubia B Martins
- Department of Physics, IBILCE, São Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Sao Paulo, SP, 05503-900, Brazil
| | - Luiza C Coelho
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Karina S Simon
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Veronica M Amado
- Faculty of Medicine and University Hospital of Brasília, University of Brasilia, Brasilia, DF, 79910-900, Brazil
| | - Jessica de A I Muller
- Laboratory of Pharmacology and Inflammation FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rink-Jan Lohman
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Monica C Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jair T Goulart
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Elisabeth F Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Luciano P Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70770917, Brazil
| | - Anamelia L Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
7
|
Kurtović Z, Sandor K, ter Heegde F, Rudjito R, Svensson CI, Palada V. circRNA landscape in dorsal root ganglia from mice with collagen antibody-induced arthritis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100142. [PMID: 38099281 PMCID: PMC10719524 DOI: 10.1016/j.ynpai.2023.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
Circular RNAs are a novel class of RNA molecules that are covalently closed into a ring structure. They are an epigenetic regulatory mechanism, and their best-studied function is regulation of microRNA activity. As such circular RNAs may be involved in the switch from acute to chronic pain. They have previously been studied in the context of neuropathic pain models, but their importance in inflammation-induced chronic pain models is unexplored. Microarray analysis of dorsal root ganglia collected in the late phase of collagen antibody-induced arthritis (day 59) were used to elucidate the relevance of circular RNAs in the mechanical hypersensitivity caused by this model. 120 circular RNA genes were found to be significantly differentially regulated in female BALB/c mice with collagen antibody-induced arthritis. Six genes were chosen for RT-qPCR analysis in the late (day 54-60) as well as the inflammatory (day 11-12) phase of this model. This validated an increase in circNufip1 expression in the late phase of collagen antibody-induced arthritis. Additionally, it was found that circVps13 and circMicall1 are upregulated in the inflammatory phase. Interestingly, no changes were found in dorsal root ganglia from mice injected with Freund's Complete Adjuvant (day 3) nor mice with spared nerve injury (day 20), despite their similarities to inflammatory and late phase collagen antibody-induced arthritis, respectively. This study provides evidence that mild circular RNA changes occur in dorsal root ganglia of mice with collagen antibody-induced arthritis that are, bioinformatically, predicated to be involved in processes relevant to sensitization.
Collapse
Affiliation(s)
- Zerina Kurtović
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Kancera AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Freija ter Heegde
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Vinko Palada
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
8
|
Valdrighi N, Blom AB, Vago JP, van Beuningen HM, Vitters EL, Helsen MM, Walgreen B, Arntz OJ, Koenders MI, van der Kraan PM, Blaney Davidson EN, van de Loo FAJ. Innate Immunity and Sex: Distinct Inflammatory Profiles Associated with Murine Pain in Acute Synovitis. Cells 2023; 12:1913. [PMID: 37508577 PMCID: PMC10378550 DOI: 10.3390/cells12141913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Joint pain severity in arthritic diseases differs between sexes and is often more pronounced in women. This disparity is thought to stem from biological mechanisms, particularly innate immunity, yet the understanding of sex-specific differences in arthritic pain remains incomplete. This study aims to investigate these disparities using an innate immunity-driven inflammation model induced by intra-articular injections of Streptococcus Cell Wall fragments to mimic both acute and pre-sensitized joint conditions. Nociceptive behavior was evaluated via gait analysis and static weight-bearing, and inflammation was evaluated via joint histology and the synovial gene expression involved in immune response. Although acute inflammation and pain severity were comparable between sexes, distinct associations between synovial inflammatory gene expression and static nociceptive behavior emerged. These associations delineated sex-specific relationships with pain, highlighting differential gene interactions (Il6 versus Cybb on day 1 and Cyba/Gas6 versus Nos2 on day 8) between sexes. In conclusion, our study found that, despite similar pain severity between sexes, the association of inflammatory synovial genes revealed sex-specific differences in the molecular inflammatory mechanisms underlying pain. These findings suggest a path towards more personalized treatment strategies for pain management in arthritis and other inflammatory joint diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fons A. J. van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands; (N.V.); (A.B.B.); (J.P.V.); (H.M.v.B.); (E.L.V.); (M.M.H.); (B.W.); (O.J.A.); (M.I.K.); (P.M.v.d.K.); (E.N.B.D.)
| |
Collapse
|
9
|
Sideris-Lampretsas G, Oggero S, Zeboudj L, Silva R, Bajpai A, Dharmalingam G, Collier DA, Malcangio M. Galectin-3 activates spinal microglia to induce inflammatory nociception in wild type but not in mice modelling Alzheimer's disease. Nat Commun 2023; 14:3579. [PMID: 37349313 PMCID: PMC10287730 DOI: 10.1038/s41467-023-39077-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Musculoskeletal chronic pain is prevalent in individuals with Alzheimer's disease (AD); however, it remains largely untreated in these patients, raising the possibility that pain mechanisms are perturbed. Here, we utilise the TASTPM transgenic mouse model of AD with the K/BxN serum transfer model of inflammatory arthritis. We show that in male and female WT mice, inflammatory allodynia is associated with a distinct spinal cord microglial response characterised by TLR4-driven transcriptional profile and upregulation of P2Y12. Dorsal horn nociceptive afferent terminals release the TLR4 ligand galectin-3 (Gal-3), and intrathecal injection of a Gal-3 inhibitor attenuates allodynia. In contrast, TASTPM mice show reduced inflammatory allodynia, which is not affected by the Gal-3 inhibitor and correlates with the emergence of a P2Y12- TLR4- microglia subset in the dorsal horn. We suggest that sensory neuron-derived Gal-3 promotes allodynia through the TLR4-regulated release of pro-nociceptive mediators by microglia, a process that is defective in TASTPM due to the absence of TLR4 in a microglia subset.
Collapse
Affiliation(s)
| | - Silvia Oggero
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Lynda Zeboudj
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Rita Silva
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Archana Bajpai
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - Gopuraja Dharmalingam
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - David A Collier
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom.
| |
Collapse
|
10
|
Chatterjee T, Arora I, Underwood LB, Lewis TL, Masjoan Juncos JX, Heath SL, Goodin BR, Aggarwal S. Heme-Induced Macrophage Phenotype Switching and Impaired Endogenous Opioid Homeostasis Correlate with Chronic Widespread Pain in HIV. Cells 2023; 12:1565. [PMID: 37371035 PMCID: PMC10297192 DOI: 10.3390/cells12121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic widespread pain (CWP) is associated with a high rate of disability and decreased quality of life in people with HIV-1 (PWH). We previously showed that PWH with CWP have increased hemolysis and elevated plasma levels of cell-free heme, which correlate with low endogenous opioid levels in leukocytes. Further, we demonstrated that cell-free heme impairs β-endorphin synthesis/release from leukocytes. However, the cellular mechanisms by which heme dampens β-endorphin production are inconclusive. The current hypothesis is that heme-dependent TLR4 activation and macrophage polarization to the M1 phenotype mediate this phenomenon. Our novel findings showed that PWH with CWP have elevated M1-specific macrophage chemokines (ENA-78, GRO-α, and IP-10) in plasma. In vitro, hemin-induced polarization of M0 and M2 macrophages to the M1 phenotype with low β-endorphins was mitigated by treating cells with the TLR4 inhibitor, TAK-242. Similarly, in vivo phenylhydrazine hydrochloride (PHZ), an inducer of hemolysis, injected into C57Bl/6 mice increased the M1/M2 cell ratio and reduced β-endorphin levels. However, treating these animals with the heme-scavenging protein hemopexin (Hx) or TAK-242 reduced the M1/M2 ratio and increased β-endorphins. Furthermore, Hx attenuated heme-induced mechanical, heat, and cold hypersensitivity, while TAK-242 abrogated hypersensitivity to mechanical and heat stimuli. Overall, these results suggest that heme-mediated TLR4 activation and M1 polarization of macrophages correlate with impaired endogenous opioid homeostasis and hypersensitivity in people with HIV.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Itika Arora
- Division of Developmental Biology and the Reproductive Sciences Center, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Lilly B. Underwood
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Terry L. Lewis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| | - Sonya L. Heath
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Burel R. Goodin
- Washington University Pain Center, Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, PBMR 230, 901 19th Street South, Birmingham, AL 35205, USA; (T.C.); (L.B.U.); (T.L.L.); (J.X.M.J.)
| |
Collapse
|
11
|
Bustin KA, Shishikura K, Chen I, Lin Z, McKnight N, Chang Y, Wang X, Li JJ, Arellano E, Pei L, Morton PD, Gregus AM, Buczynski MW, Matthews ML. Phenelzine-based probes reveal Secernin-3 is involved in thermal nociception. Mol Cell Neurosci 2023; 125:103842. [PMID: 36924917 PMCID: PMC10247460 DOI: 10.1016/j.mcn.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Katelyn A Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irene Chen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nate McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxuan Chang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Jing Li
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric Arellano
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, VA, 24060, USA
| | - Ann M Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Yaksh TL, Santos GGD, Borges Paes Lemes J, Malange K. Neuraxial drug delivery in pain management: An overview of past, present, and future. Best Pract Res Clin Anaesthesiol 2023; 37:243-265. [PMID: 37321769 DOI: 10.1016/j.bpa.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Activation of neuraxial nociceptive linkages leads to a high level of encoding of the message that is transmitted to the brain and that can initiate a pain state with its attendant emotive covariates. As we review here, the encoding of this message is subject to a profound regulation by pharmacological targeting of dorsal root ganglion and dorsal horn systems. Though first shown with the robust and selective modulation by spinal opiates, subsequent work has revealed the pharmacological and biological complexity of these neuraxial systems and points to several regulatory targets. Novel therapeutic delivery platforms, such as viral transfection, antisense and targeted neurotoxins, point to disease-modifying approaches that can selectively address the acute and chronic pain phenotype. Further developments are called for in delivery devices to enhance local distribution and to minimize concentration gradients, as frequently occurs with the poorly mixed intrathecal space. The field has advanced remarkably since the mid-1970s, but these advances must always address the issues of safety and tolerability of neuraxial therapy.
Collapse
Affiliation(s)
- Tony L Yaksh
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA.
| | | | | | - Kaue Malange
- Department of Anesthesiology University of California, San Diego, San Diego CA, 92103, USA
| |
Collapse
|
13
|
Bustin KA, Shishikura K, Chen I, Lin Z, McKnight N, Chang Y, Wang X, Li JJ, Arellano E, Pei L, Morton PD, Gregus AM, Buczynski MW, Matthews ML. Phenelzine-based probes reveal Secernin-3 is involved in thermal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526866. [PMID: 36778412 PMCID: PMC9915563 DOI: 10.1101/2023.02.02.526866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil ® ). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N -terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.
Collapse
|
14
|
Yadav S, Singh A, Kant R, Surolia A. TLR4 activation by lysozyme induces pain without inflammation. Front Immunol 2023; 14:1065226. [PMID: 37197666 PMCID: PMC10183575 DOI: 10.3389/fimmu.2023.1065226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Mostly, pain has been studied in association with inflammation, until recent studies which indicate that during bacterial infections, pain mechanisms could be independent of the inflammation. Chronic pain can sustain long after the healing from the injury, even in the absence of any visible inflammation. However, the mechanism behind this is not known. We tested inflammation in lysozyme-injected mice foot paw. Interestingly, we observed no inflammation in mice foot paw. Yet, lysozyme injections induced pain in these mice. Lysozyme induces pain in a TLR4-dependent manner and TLR4 activation by its ligands such as LPS leads to inflammatory response. We compared the intracellular signaling of MyD88 and TRIF pathways upon TLR4 activation by lysozyme and LPS to understand the underlying mechanism behind the absence of an inflammatory response upon lysozyme treatment. We observed a TLR4 induced selective TRIF and not MyD88 pathway activation upon lysozyme treatment. This is unlike any other previously known endogenous TLR4 activators. A selective activation of TRIF pathway by lysozyme induces weak inflammatory cytokine response devoid of inflammation. However, lysozyme activates glutamate oxaloacetate transaminase-2 (GOT2) in neurons in a TRIF-dependent manner, resulting in enhanced glutamate response. We propose that this enhanced glutaminergic response could lead to neuronal activation resulting in pain sensation upon lysozyme injections. Collectively we identify that TLR4 activation by lysozyme can induce pain in absence of a significant inflammation. Also, unlike other known TLR4 endogenous activators, lysozyme does not activate MyD88 signaling. These findings uncover a mechanism of selective activation of TRIF pathway by TLR4. This selective TRIF activation induces pain with negligible inflammation, constituting a chronic pain homeostatic mechanism.
Collapse
Affiliation(s)
- Saurabh Yadav
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Amrita Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Ravi Kant
- Institute of Science, Nirma University, Ahmedabad, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- *Correspondence: Avadhesha Surolia,
| |
Collapse
|
15
|
Oggero S, Cecconello C, Silva R, Zeboudj L, Sideris-Lampretsas G, Perretti M, Malcangio M. Dorsal root ganglia CX3CR1 expressing monocytes/macrophages contribute to arthritis pain. Brain Behav Immun 2022; 106:289-306. [PMID: 36115544 PMCID: PMC10166715 DOI: 10.1016/j.bbi.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Pain is a persistent symptom of Rheumatoid Arthritis, and the K/BxN serum transfer model recapitulates both association and dissociation between pain and joint inflammation in RA. Furthermore, this model features monocyte/macrophage infiltration in joints and lumbar dorsal root ganglia (DRG), where these immune cells are close to nociceptive neurons. We focussed on CX3CR1-monocyte/macrophage trafficking and show that at peak paw swelling associated with nociception, CX3CR1 deletion altered neither swelling nor macrophage infiltration/phenotype in paws. However, acute nociception and DRG non-classical monocyte numbers were reduced in CX3CR1GFP/GFP (KO) compared to CX3CR1+/GFP (WT). Nociception that persisted despite swelling had resolved was attenuated in KO and correlated with DRG macrophages displaying M2-like phenotype. Still in the DRG, neurons up-regulated neuropeptide CGRP and olcegepant treatment reduced acute swelling, nociception, and leukocyte infiltration in paws and DRG. We delineate in-vitro a signalling pathway showing that CGRP liberates the CX3CR1 ligand fractalkine (FKN) from endothelium, and in bone marrow-derived macrophages, FKN promotes activation of intracellular kinases, polarisation towards M1-like phenotype and release of pro-nociceptive IL-6. These data implicate non-classical CX3CR1-expressing monocyte and macrophage recruitment into the DRG in initiation and maintenance of arthritis pain.
Collapse
Affiliation(s)
- Silvia Oggero
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK
| | - Chiara Cecconello
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rita Silva
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK
| | - Lynda Zeboudj
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK
| | | | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK.
| |
Collapse
|
16
|
Chen Y, Chen H, Li XC, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal toll like receptor 9 contributes to complete Freund’s adjuvant-induced inflammatory pain in mice. Front Mol Neurosci 2022; 15:1008203. [PMID: 36277489 PMCID: PMC9582929 DOI: 10.3389/fnmol.2022.1008203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Toll like receptor 9 (TLR9) is a critical sensor for danger-associated molecular patterns (DAMPs) and a crucial marker of non-sterile/sterile inflammation among all TLRs. However, the significance of TLR9 in inflammatory pain remains unclear. Here, we subcutaneously injected Complete Freund’s adjuvant (CFA) into the plantar surface of the hind paw, to established a mouse model of inflammatory pain, and we examined expression and distribution of TLR9 in this model. There was a significant increase of TLR9 mRNA and reduction of mechanical paw withdrawal threshold in mice intraplantar injected with CFA. By contrast, mechanical paw withdrawal threshold significantly increased in mice treated with TLR9 antagonist ODN2088. Furthermore, TLR9 is found predominantly distributed in the neurons by immunofluorescence experiment. Accordingly, neuronal TLR9 downregulation in the spinal cord prevented CFA-induced persistent hyperalgesia. Overall, these findings indicate that neuronal TLR9 in the spinal cord is closely related to CFA-induced inflammatory pain. It provides a potential treatment option for CFA-induced inflammatory pain by applying TLR9 antagonist.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- *Correspondence: Qi-Liang Mao-Ying,
| |
Collapse
|
17
|
Liu X, Yang W, Zhu C, Sun S, Wu S, Wang L, Wang Y, Ge Z. Toll-like receptors and their role in neuropathic pain and migraine. Mol Brain 2022; 15:73. [PMID: 35987639 PMCID: PMC9392297 DOI: 10.1186/s13041-022-00960-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Migraine is a complex neurological disease of unknown etiology involving both genetic and environmental factors. It has previously been reported that persistent pain may be mediated by the immune and inflammatory systems. Toll-like receptors (TLRs) play a significant role in immune and inflammatory responses and are expressed by microglia and astrocytes. One of the fundamental mechanisms of the innate immune system in coordinating inflammatory signal transduction is through TLRs, which protect the host organism by initiating inflammatory signaling cascades in response to tissue damage or stress. TLRs reside at the neuroimmune interface, and accumulating evidence has suggested that the inflammatory consequences of TLR activation on glia (mainly microglia and astrocytes), sensory neurons, and other cell types can influence nociceptive processing and lead to pain. Several studies have shown that TLRs may play a key role in neuropathic pain and migraine etiology by activating the microglia. The pathogenesis of migraine may involve a TLR-mediated crosstalk between neurons and immune cells. Innate responses in the central nervous system (CNS) occur during neuroinflammatory phenomena, including migraine. Antigens found in the environment play a crucial role in the inflammatory response, causing a broad range of diseases, including migraines. These can be recognized by several innate immune cells, including macrophages, microglia, and dendritic cells, and can be activated through TLR signaling. Given the prevalence of migraine and the insufficient efficacy and safety of current treatment options, a deeper understanding of TLRs is expected to provide novel therapies for managing chronic migraine. This review aimed to justify the view that TLRs may be involved in migraine.
Collapse
|
18
|
Valdrighi N, Vago JP, Blom AB, van de Loo FA, Blaney Davidson EN. Innate Immunity at the Core of Sex Differences in Osteoarthritic Pain? Front Pharmacol 2022; 13:881500. [PMID: 35662714 PMCID: PMC9160873 DOI: 10.3389/fphar.2022.881500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a progressive whole-joint disease; no disease-modifying drugs are currently available to stop or slow its process. Symptoms alleviation is the only treatment option. OA is the major cause of chronic pain in adults, with pain being the main symptom driving patients to seek medical help. OA pathophysiology is closely associated with the innate immune system, which is also closely linked to pain mediators leading to joint pain. Pain research has shown sex differences in the biology of pain, including sexually dimorphic responses from key cell types in the innate immune system. Not only is OA more prevalent in women than in men, but women patients also show worse OA outcomes, partially due to experiencing more pain symptoms despite having similar levels of structural damage. The cause of sex differences in OA and OA pain is poorly understood. This review provides an overview of the involvement of innate immunity in OA pain in joints and in the dorsal root ganglion. We summarize the emerging evidence of sex differences regarding innate immunity in OA pain. Our main goal with this review was to provide a scientific foundation for future research leading to alternative pain relief therapies targeting innate immunity that consider sex differences. This will ultimately lead to a more effective treatment of pain in both women and men.
Collapse
|
19
|
Illias AM, Yu KJ, Hwang SH, Solis J, Zhang H, Velasquez JF, Cata JP, Dougherty PM. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022; 163:923-935. [PMID: 34490849 DOI: 10.1097/j.pain.0000000000002454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Activation of toll-like receptor 4 (TLR4) in the dorsal root ganglion (DRG) and spinal cord contributes to the generation of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Generalizability of TLR4 signaling in oxaliplatin-induced CIPN was tested here. Mechanical hypersensitivity developed in male SD rats by day 1 after oxaliplatin treatment, reached maximum intensity by day 14, and persisted through day 35. Western blot revealed an increase in TLR4 expression in the DRG of oxaliplatin at days 1 and 7 after oxaliplatin treatment. Cotreatment of rats with the TLR4 antagonist lipopolysaccharide derived from Rhodobacter sphaeroides ultrapure or with the nonspecific immunosuppressive minocycline with oxaliplatin resulted in significantly attenuated hyperalgesia on day 7 and 14 compared with rats that received oxaliplatin plus saline vehicle. Immunostaining of DRGs revealed an increase in the number of neurons expressing TLR4, its canonical downstream signal molecules myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β, at both day 7 and day 14 after oxaliplatin treatment. These increases were blocked by cotreatment with either lipopolysaccharide derived from Rhodobacter sphaeroides or minocycline. Double staining showed the localization of TLR4, MyD88, and TIR-domain-containing adapter-inducing interferon-β in subsets of DRG neurons. Finally, there was no significant difference in oxaliplatin-induced mechanical hypersensitivity between male and female rats when observed for 2 weeks. Furthermore, upregulation of TLR4 was detected in both sexes when tested 14 days after treatment with oxaliplatin. These findings suggest that the activation of TLR4 signaling in DRG neurons is a common mechanism in CIPN induced by multiple cancer chemotherapy agents.
Collapse
Affiliation(s)
- Amina M Illias
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seon-Hee Hwang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jacob Solis
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongmei Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jose F Velasquez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Patrick M Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Mustafa S, Evans S, Barry B, Barratt D, Wang Y, Lin C, Wang X, Hutchinson MR. Toll-Like Receptor 4 in Pain: Bridging Molecules-to-Cells-to-Systems. Handb Exp Pharmacol 2022; 276:239-273. [PMID: 35434749 DOI: 10.1007/164_2022_587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain impacts the lives of billions of people around the world - both directly and indirectly. It is complex and transcends beyond an unpleasant sensory experience to encompass emotional experiences. To date, there are no successful treatments for sufferers of chronic pain. Although opioids do not provide any benefit to chronic pain sufferers, they are still prescribed, often resulting in more complications such as hyperalgesia and dependence. In order to develop effective and safe medications to manage, and perhaps even treat pain, it is important to evaluate novel contributors to pain pathologies. As such, in this chapter we review the role of Toll-like receptor 4, a receptor of the innate immune system, that continues to gain substantial attention in the field of pain research. Positioned in the nexus of the neuro and immune systems, TLR4 may provide one of the missing pieces in understanding the complexities of pain. Here we consider how TLR4 enables a mechanistical understanding of pain as a multidimensional biopsychosocial state from molecules to cells to systems and back again.
Collapse
Affiliation(s)
- Sanam Mustafa
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.
| | - Samuel Evans
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Barry
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel Barratt
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mark R Hutchinson
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Aal-Aaboda M, Abu Raghif AR, Hadi NR. Effect of Lipopolysaccharide from Rhodobacter sphaeroides on Inflammatory Pathway and Oxidative Stress in Renal Ischemia/Reperfusion Injury in Male Rats. ARCHIVES OF RAZI INSTITUTE 2021; 76:1013-1024. [PMID: 35096337 PMCID: PMC8791000 DOI: 10.22092/ari.2021.356003.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 01/24/2023]
Abstract
Ischemia/reperfusion injury (IRI) is caused by a sudden temporary impairment of the blood flow to the particular organ. The IRI of the kidneys is one of the main causes of acute kidney injury. A vigorous inflammatory and oxidative stress response to hypoxia and reperfusion usually happens as IRI consequences that disturb the organ function. The current study aimed to investigate the effect of antagonizing toll-like receptors (TLRs) effects by lipopolysaccharide obtained from Rhodobacter sphaeroides (LPS-RS) on this critical condition. In total, 28 adult male Wistar rats were divided into four groups (n=7) as follows: the sham group which underwent only laparotomy; control group that underwent laparotomy and IRI induction; vehicle group which was similar to the control group plus vehicle treatment, LPS-RS group that was similar to the control group but was pretreated with 0.5 mg/kg of LPS-RS. The results of the current research showed that LPS-RS reduced interleukin-1β, interleukin-6, tumor necrosis factor α, and 8-isoprostane levels, compared to the control IRI group. However, LPS-RS did not ameliorate the kidney injury as manifested by the elevated levels of urea, creatinine, and neutrophil gelatinase-associated lipocalin. Taken together, the present study demonstrated that LPS-RS at the tested dose failed to offer a renoprotective effect against the IRI in rats.
Collapse
Affiliation(s)
- M Aal-Aaboda
- Department of Pharmacology, Faculty of Pharmacy, University of Misan, Amarah, Iraq
| | - A. R Abu Raghif
- Department of Pharmacology, Faculty of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - N. R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
22
|
Han X, Shao J, Ren X, Li Y, Yu W, Lin C, Li L, Sun Y, Xu B, Luo H, Zhu C, Cao J, Li Z. The different mechanisms of peripheral and central TLR4 on chronic postsurgical pain in rats. J Anat 2021; 239:111-124. [PMID: 33730389 PMCID: PMC8197940 DOI: 10.1111/joa.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic postsurgical pain (CPSP) is a common complication after surgery; however, the underlying mechanisms of CPSP are poorly understood. As one of the most important inflammatory pathways, the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway plays an important role in chronic pain. However, the precise role of the TLR4/NF-κB signaling pathway in CPSP remains unclear. In the present study, we established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR) and verified the effects and mechanisms of central and peripheral TLR4 and NF-κB on hyperalgesia in SMIR rats. The results showed that TLR4 expression was increased in both the spinal dorsal horn and dorsal root ganglia (DRGs) of SMIR rats. However, the TLR4 expression pattern in the spinal cord was different from that in DRGs. In the spinal cord, TLR4 was expressed in both neurons and microglia, whereas it was expressed in neurons but not in satellite glial cells in DRGs. Further results demonstrate that the central and peripheral TLR4/NF-κB signaling pathway is involved in the SMIR-induced CPSP by different mechanisms. In the peripheral nervous system, we revealed that the TLR4/NF-κB signaling pathway induced upregulation of voltage-gated sodium channel 1.7 (Nav1.7) in DRGs, triggering peripheral hyperalgesia in SMIR-induced CPSP. In the central nervous system, the TLR4/NF-κB signaling pathway participated in SMIR-induced CPSP by activating microglia in the spinal cord. Ultimately, our findings demonstrated that activation of the peripheral and central TLR4/NF-κB signaling pathway involved in the development of SMIR-induced CPSP.
Collapse
Affiliation(s)
- Xuemin Han
- The Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Children’s Hospital of Soochow UniversitySoochowChina
| | - Jinping Shao
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Xiuhua Ren
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Yaru Li
- The Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Wenli Yu
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Caihong Lin
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Lei Li
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Yanyan Sun
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Bo Xu
- Department of AnesthesiologyGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Huan Luo
- Klinik für AugenheilkundeCharité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthGermany
| | - Changlian Zhu
- Center for Brain Repair and RehabilitationInstitute of Neuroscience and PhysiologyGothenburg UniversityGothenburgSweden
| | - Jing Cao
- Department of Human AnatomySchool of Basic MedicineZhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Zhisong Li
- The Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
23
|
Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system. Support Care Cancer 2021; 29:6841-6850. [PMID: 34003380 DOI: 10.1007/s00520-021-06269-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Chemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone. MATERIALS AND METHODS Twenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining. RESULTS The mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats. CONCLUSION This study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.
Collapse
|
24
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
25
|
Iannotta M, Belardo C, Trotta MC, Iannotti FA, Vitale RM, Maisto R, Boccella S, Infantino R, Ricciardi F, Mirto BF, Ferraraccio F, Panarese I, Amodeo P, Tunisi L, Cristino L, D’Amico M, di Marzo V, Luongo L, Maione S, Guida F. N-palmitoyl-D-glucosamine, a Natural Monosaccharide-Based Glycolipid, Inhibits TLR4 and Prevents LPS-Induced Inflammation and Neuropathic Pain in Mice. Int J Mol Sci 2021; 22:ijms22031491. [PMID: 33540826 PMCID: PMC7867376 DOI: 10.3390/ijms22031491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.
Collapse
Affiliation(s)
- Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Rosa Maisto
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Flavia Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Benito Fabio Mirto
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Franca Ferraraccio
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.F.); (I.P.)
| | - Iacopo Panarese
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.F.); (I.P.)
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Lea Tunisi
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Luigia Cristino
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
| | - Michele D’Amico
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
| | - Vincenzo di Marzo
- Institute of Biomolecular Chemistry (ICB) of National Research Council (CNR), 80078 Pozzuoli, Italy; (F.A.I.); (R.M.V.); (P.A.); (L.T.); (L.C.); (V.d.M.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agriculture and Food Science, Universitè Laval, Quebec City, QC G1V 0A6, Canada
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- I.R.C.S.S., Neuromed, 86077 Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- I.R.C.S.S., Neuromed, 86077 Pozzilli, Italy
- Correspondence: (S.M.); (F.G.); Tel.: +39-0815667658 (F.G.)
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.I.); (C.B.); (M.C.T.); (R.M.); (S.B.); (R.I.); (F.R.); (B.F.M.); (M.D.); (L.L.)
- Correspondence: (S.M.); (F.G.); Tel.: +39-0815667658 (F.G.)
| |
Collapse
|
26
|
Peripheral Mechanisms of Neuropathic Pain-the Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14020077. [PMID: 33498496 PMCID: PMC7909513 DOI: 10.3390/ph14020077] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
Collapse
|
27
|
Ma C, Zhang M, Liu L, Zhang P, Liu D, Zheng X, Zhong X, Wang G. Low-dose cannabinoid receptor 2 agonist induces microglial activation in a cancer pain-morphine tolerance rat model. Life Sci 2021; 264:118635. [PMID: 33131746 DOI: 10.1016/j.lfs.2020.118635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
AIMS Cancer pain seriously affects the life quality of patients. Morphine is commonly used for cancer pain, but tolerance development limits its clinical administration. Central immune signaling is important in the development of cancer pain and morphine tolerance. Cannabinoid receptor 2 (CB2) inhibits cancer pain and morphine tolerance by regulating central immune signaling. In the present study, we investigated the mechanisms of central immune signaling involved in morphine tolerance inhibition by the CB2 agonist AM1241 in cancer pain treatment. MAIN METHODS Rats were implanted with tumor cells and divided into 4 groups: Vehicle (PBS), 0.07 μg AM1241, 0.03 μg AM1241, and AM630 (10 μg) + AM1241 (0.07 μg). All groups received morphine (20 μg/day, i.t.) for 8 days. AM630 (CB2 antagonist) was intrathecally injected 30 min before AM1241, and AM1241 was intrathecally injected 30 min before morphine. The spinal cord (SC) and dorsal root ganglion (DRG) were collected to determine the expression of Toll-like receptor 4 (TLR4), the p38 mitogen-activated protein kinase (MAPK), microglial markers, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α. KEY FINDINGS The expression of TLR4, p38 MAPK, microglial markers, IL-1β, and TNF-α was significantly higher in AM1241-pretreated groups than in the vehicle group (P < 0.05). No difference in microglial markers, IL-1β, and TNF-α expression was detected in the AM630 + AM1241 group compared with the vehicle group. SIGNIFICANCE Our results suggest that in a cancer pain-morphine tolerance model, an i.t. non-analgesic dose of AM1241 induces microglial activation and IL-1β TNF-α upregulation in SC and DRG via the CB2 receptor pathway.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dandan Liu
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Zheng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuelai Zhong
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China; Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
28
|
Santoni M, Miccini F, Battelli N. Gut microbiota, immunity and pain. Immunol Lett 2020; 229:44-47. [PMID: 33248167 DOI: 10.1016/j.imlet.2020.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
The interplay between microbiota and nervous system has been associated with a variety of diseases, including stress, anxiety, depression and cognition. The growing body of evidences on the essential role of gut microbiota in modulating acute and chronic pain has opened a new frontier for pain management. Gut microbiota is involved in the development of visceral, inflammatory and neuropathic pain. Bacterial alterations due to chronic opioid administration have been directly related to the development of drug tolerance, which can be potentially restored by the use of probiotics and antibiotics. In this review we describe the mechanisms underlying the brain/gut axis and the relationship between gut microbiota, immunity and pain.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy.
| | - Francesca Miccini
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| | - Nicola Battelli
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| |
Collapse
|
29
|
Molecular Mechanisms of Sex-Related Differences in Arthritis and Associated Pain. Int J Mol Sci 2020; 21:ijms21217938. [PMID: 33114670 PMCID: PMC7663489 DOI: 10.3390/ijms21217938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical conditions leading to chronic pain show important sex-related differences in the prevalence, severity, and degree of functional disability. Decades of epidemiological and clinical studies have demonstrated that women are more sensitive to pain than men. Arthritis, including rheumatoid arthritis (RA) and osteoarthritis (OA), is much more prevalent in females and accounts for the majority of pain arising from musculoskeletal conditions. It is therefore important to understand the mechanisms governing sex-dependent differences in chronic pain, including arthritis pain. However, research into the mechanisms underlying the sex-related differences in arthritis-induced pain is still in its infancy due to the bias in biomedical research performed largely in male subjects and animals. In this review, we discuss current advances in both clinical and preclinical research regarding sex-related differences in the development or severity of arthritis and associated pain. In addition, sex-related differences in biological and molecular mechanisms underlying the pathogenesis of arthritis pain, elucidated based on clinical and preclinical findings, are reviewed.
Collapse
|
30
|
Park H, Hong J, Yin Y, Joo Y, Kim Y, Shin J, Kwon HH, Shin N, Shin HJ, Beom J, Kim DW, Kim J. TAP2, a peptide antagonist of Toll-like receptor 4, attenuates pain and cartilage degradation in a monoiodoacetate-induced arthritis rat model. Sci Rep 2020; 10:17451. [PMID: 33060735 PMCID: PMC7567100 DOI: 10.1038/s41598-020-74544-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Because inflammation in osteoarthritis (OA) is related to the Toll-like receptor 4 (TLR4) signaling cascades, TLR4 is a reasonable target for developing therapeutics for OA. Thus, we investigated whether TAP2, a peptide antagonist of TLR4, reduces the monoiodoacetate (MIA)-induced arthritic pain and cartilage degradation in rats. TLR4 expression of human OA chondrocytes and synoviocytes and the knee joint tissue of MIA-induced arthritis were evaluated. MIA-induced arthritic model using Sprague–Dawley rats (6 week-old-male) were treated with TAP2, a TLR4 antagonist, and evaluated with behavioral test, immunohistochemistry, and quantitative PCR. TLR4 was highly expressed in the knee joints of patients with OA and the MIA-induced rat model. Further, a single intraarticular injection of TAP2 (25 nmol/rat) molecules targeting TLR4 on day 7 after MIA injection dramatically attenuated pain behavior for about 3 weeks and reduced cartilage loss in the knee joints and microglial activation in the spinal dorsal horns. Likewise, the mRNA levels of TNFα and IL-1β, reactive oxygen species, and the expression of MMP13 in the knee joints of TAP2-treated rats was significantly decreased by TAP2 treatment compared with the control. Moreover, interestingly, the duration of OA pain relief by TAP2 was much longer than that of chemical TLR4 antagonists, such as C34 and M62812. In conclusion, TAP2 could effectively attenuate MIA-induced arthritis in rats by blocking TLR4 and its successive inflammatory cytokines and MMP13. Therefore, TAP2 could be a prospective therapeutic to treat patients with OA.
Collapse
Affiliation(s)
- Hyewon Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jinpyo Hong
- Department of Neuroscience and Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yuhua Yin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yongbum Joo
- Department of Orthopedics, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Youngmo Kim
- Department of Orthopedics, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea. .,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Jinhyun Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
31
|
Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways. Inflamm Res 2020; 69:1257-1270. [PMID: 33037469 DOI: 10.1007/s00011-020-01407-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE AND DESIGN Methyl gallate (MG) is a prevalent polyphenol in the plant kingdom, which may be related to the effects of several medicinal plants. Although it is widely reported that polyphenols have therapeutic effects, there are few studies demonstrating that MG has anti-inflammatory action. This study aimed to investigate the molecular mechanism behind the anti-inflammatory activity of MG and its effect on hyperalgesia. METHODS Swiss mice were pretreated orally with different doses of MG and subjected to i.pl. injection of zymosan to induce paw edema. RAW264.7 macrophages and BMDMs stimulated with different TLR agonists such as zymosan, LPS, or Pam3CSK4 were used to investigate the molecular mechanisms of MG RESULTS: MG inhibits zymosan-induced paw edema and hyperalgesia and modulates molecular pathways crucial for inflammation development. Pretreatment with MG inhibited cytokines production and NF-κB activity by RAW 264.7 cells stimulated with zymosan, Pam3CSK4 or LPS, but not with PMA. Moreover, pretreatment with MG decreased IκB degradation, nuclear translocation of NF-κBp65, c-jun and c-fos and ERK1/2, p38 and JNK phosphorylation. CONCLUSION Thus, the results of this study demonstrate that MG has a promising anti-inflammatory effect and suggests an explanation of its mechanism of action through the inhibition of NF-κB signaling and the MAPK pathway.
Collapse
|
32
|
The neuropathic phenotype of the K/BxN transgenic mouse with spontaneous arthritis: pain, nerve sprouting and joint remodeling. Sci Rep 2020; 10:15596. [PMID: 32973194 PMCID: PMC7515905 DOI: 10.1038/s41598-020-72441-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023] Open
Abstract
The adult K/BxN transgenic mouse develops spontaneous autoimmune arthritis with joint remodeling and profound bone loss. We report that both males and females display a severe sustained tactile allodynia which is reduced by gabapentin but not the potent cyclooxygenase inhibitor ketorolac. In dorsal horn, males and females show increased GFAP+ astrocytic cells; however, only males demonstrate an increase in Iba1+ microglia. In dorsal root ganglia (DRG), there is an increase in CGRP+, TH+, and Iba1+ (macrophage) labeling, but no increase in ATF3+ cells. At the ankle there is increased CGRP+, TH+, and GAP-43+ fiber synovial innervation. Thus, based on the changes in dorsal horn, DRG and peripheral innervation, we suggest that the adult K/BxN transgenic arthritic mice display a neuropathic phenotype, an assertion consistent with the analgesic pharmacology seen in this animal. These results indicate the relevance of this model to our understanding of the nociceptive processing which underlies the chronic pain state that evolves secondary to persistent joint inflammation.
Collapse
|
33
|
Pain Mechanism in Rheumatoid Arthritis: From Cytokines to Central Sensitization. Mediators Inflamm 2020; 2020:2076328. [PMID: 33005097 PMCID: PMC7503123 DOI: 10.1155/2020/2076328] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is the most common symptom in patients with rheumatoid arthritis (RA). Although in recent years, through the implementation of targeted treatment and the introduction of disease-modifying antirheumatic drugs (DMARDs), the treatment of RA patients has made a significant progress, a large proportion of patients still feel pain. Finding appropriate treatment to alleviate the pain is very important for RA patients. Current research showed that, in addition to inflammation, RA pain involves peripheral sensitization and abnormalities in the central nervous system (CNS) pain regulatory mechanisms. This review summarized the literature on pain mechanisms of RA published in recent years. A better understanding of pain mechanisms will help to develop new analgesic targets and deploy new and existing therapies.
Collapse
|
34
|
Blom AB, van den Bosch MH, Blaney Davidson EN, Roth J, Vogl T, van de Loo FA, Koenders M, van der Kraan PM, Geven EJ, van Lent PL. The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis. Arthritis Res Ther 2020; 22:199. [PMID: 32854769 PMCID: PMC7457270 DOI: 10.1186/s13075-020-02295-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023] Open
Abstract
Background Synovitis-associated pain is mediated by inflammatory factors that may include S100A8/9, which is able to stimulate nociceptive neurons via Toll-like receptor 4. In this study, we investigated the role of S100A9 in pain response during acute synovitis. Methods Acute synovitis was induced by streptococcal cell wall (SCW) injection in the knee joint of C57Bl/6 (WT) and S100A9−/− mice. The expression of S100A8/A9 was determined in serum and synovium by ELISA and immunohistochemistry. Inflammation was investigated by 99mTc accumulation, synovial cytokine release, and histology at days 1, 2, and 7. To assess pain, weight distribution, gait analysis, and mechanical allodynia were monitored. Activation markers in afferent neurons were determined by qPCR and immunohistochemistry in the dorsal root ganglia (DRG). Differences between groups were tested using a one-way or two-way analysis of variance (ANOVA). Differences in histology were tested with a non-parametric Mann–Whitney U test. p values lower than 0.05 were considered significant. Results Intra-articular SCW injection resulted in increased synovial expression and serum levels of S100A8/A9 at day 1. These increased levels, however, did not contribute to the development of inflammation, since this was equal in S100A9−/− mice. WT mice showed a significantly decreased percentage of weight bearing on the SCW hind paw on day 1, while S100A9−/− mice showed no reduction. Gait analysis showed increased “limping” behavior in WT, but not S100A9−/− mice. Mechanical allodynia was observed but not different between WT and S100A9−/− when measuring paw withdrawal threshold. The gene expression of neuron activation markers NAV1.7, ATF3, and GAP43 in DRG was significantly increased in arthritic WT mice at day 1 but not in S100A9−/− mice. Conclusions S100A8/9, released from the synovium upon inflammation, is an important mediator of pain response in the knee during the acute phase of inflammation.
Collapse
Affiliation(s)
- Arjen B Blom
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| | - Martijn H van den Bosch
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Esmeralda N Blaney Davidson
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Fons A van de Loo
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Marije Koenders
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Edwin J Geven
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Peter L van Lent
- Experimental Rheumatology, Radboud university medical center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Zhang W, Yu T, Cui X, Yu H, Li X. Analgesic effect of dexmedetomidine in rats after chronic constriction injury by mediating microRNA‐101 expression and the E2F2–TLR4–NF‐κB axis. Exp Physiol 2020; 105:1588-1597. [PMID: 32706450 DOI: 10.1113/ep088596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Tingting Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xiangyan Cui
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Hong Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xinbai Li
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| |
Collapse
|
36
|
Staats Pires A, Tan VX, Heng B, Guillemin GJ, Latini A. Kynurenine and Tetrahydrobiopterin Pathways Crosstalk in Pain Hypersensitivity. Front Neurosci 2020; 14:620. [PMID: 32694973 PMCID: PMC7338796 DOI: 10.3389/fnins.2020.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
37
|
Filippini HF, Molska GR, Zanjir M, Arudchelvan Y, Gong SG, Campos MM, Avivi-Arber L, Sessle BJ. Toll-Like Receptor 4 in the Rat Caudal Medulla Mediates Tooth Pulp Inflammatory Pain. Front Neurosci 2020; 14:643. [PMID: 32655361 PMCID: PMC7324534 DOI: 10.3389/fnins.2020.00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The aims of this study were to investigate if Toll-like receptor 4 (TLR4) is expressed in the medullary dorsal horn (MDH) and if medullary application of a TLR4 antagonist (lipopolysaccharides from Rhodobacter sphaeroides, LPS-RS) can attenuate changes in nociceptive sensorimotor responses or TLR4 expression that might be evoked by mustard oil (MO) application to the right maxillary first molar tooth pulp. Of 41 adult male Sprague-Dawley rats used in the study, 23 received intrathecal application of the TLR4 antagonist LPS-RS (25 μg/10 μl; LPS-RS group) or isotonic saline (10 μl; vehicle control group) 10 min before pulpal application of MO (95%; 0.2 μl). Bilateral electromyographic (EMG) activities of the anterior digastric and masseter muscles were recorded continuously before and until 15 min after the MO application to the pulp. In 6 of these 23 rats and an additional 18 rats, the caudal medulla containing the ipsilateral and contralateral MDH was removed after euthanasia for subsequent Western Blot analysis of TLR4 expression in LPS-RS (n = 8) and vehicle (n = 8) groups and a naïve group (n = 8). The % change from baseline in the MO-evoked EMG activities within the anterior digastric muscles were significantly smaller in the LPS-RS group than the control group (two-way ANOVA, post hoc Bonferroni, P < 0.0001). Western Blot analysis revealed similar levels of TLR4 expression in the caudal medulla of the naïve, vehicle and LPS-RS groups. These novel findings suggest that TLR4 signaling in the caudal medulla may mediate MO-induced acute dental inflammatory pain in rats.
Collapse
Affiliation(s)
- Helena F Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciência da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Maryam Zanjir
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Maria M Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciência da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Limor Avivi-Arber
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Barry J Sessle
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Departament of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis Cartilage 2020; 28:562-571. [PMID: 31862470 PMCID: PMC6951330 DOI: 10.1016/j.joca.2019.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
In this narrative review, we discuss the emerging role of innate immunity in osteoarthritis (OA) joint pain. First, we give a brief description of the pain pathway in the context of OA. Then we consider how neuro-immune signaling pathways may promote OA pain. First, activation of neuronal Pattern Recognition Receptors by mediators released in a damaged joint can result in direct excitation of nociceptors, as well as in production of chemokines and cytokines. Secondly, indirect neuro-immune signaling may occur when innate immune cells produce algogenic factors, including chemokines and cytokines, that act on the pain pathway. Neuro-immune crosstalk occurs at different levels of the pathway, starting in the joint but also in the innervating dorsal root ganglia and in the dorsal horn. Synovitis is characterized by recruitment of immune cells, including macrophages, mast cells, and CD4+ lymphocytes, which may contribute to nociceptor sensitization and OA pain through production of algogenic factors that amplify the activation of sensory neurons. We discuss examples where this scenario has been suggested by findings in human OA and in animal models. Overall, increasing evidence suggests that innate immune pathways play an initiating as well as facilitating role in pain, but information on how these pathways operate in OA remains limited. Since these innate pathways are eminently targetable, future studies in this area may provide fruitful leads towards a better management of symptomatic OA.
Collapse
|
39
|
Miller YI, Navia-Pelaez JM, Corr M, Yaksh TL. Lipid rafts in glial cells: role in neuroinflammation and pain processing. J Lipid Res 2020; 61:655-666. [PMID: 31862695 PMCID: PMC7193960 DOI: 10.1194/jlr.tr119000468] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yury I Miller
- Departments of MedicineUniversity of California San Diego, La Jolla, CA. mailto:
| | | | - Maripat Corr
- Departments of MedicineUniversity of California San Diego, La Jolla, CA
| | - Tony L Yaksh
- Anesthesiology,University of California San Diego, La Jolla, CA
| |
Collapse
|
40
|
Wang TT, Xu XY, Lin W, Hu DD, Shi W, Jia X, Wang H, Song NJ, Zhang YQ, Zhang L. Activation of Different Heterodimers of TLR2 Distinctly Mediates Pain and Itch. Neuroscience 2020; 429:245-255. [DOI: 10.1016/j.neuroscience.2020.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
41
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
42
|
Miller RE, Scanzello CR, Malfait AM. An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Semin Immunopathol 2019; 41:583-594. [PMID: 31612243 DOI: 10.1007/s00281-019-00762-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a chronic progressive, painful disease of synovial joints, characterized by cartilage degradation, subchondral bone remodeling, osteophyte formation, and synovitis. It is now widely appreciated that the innate immune system, and in particular Toll-like receptors (TLRs), contributes to pathological changes in OA joint tissues. Furthermore, it is now also increasingly recognized that TLR signaling plays a key role in initiating and maintaining pain. Here, we reviewed the literature of the past 5 years with a focus on how TLRs may contribute to joint damage and pain in OA. We discuss biological effects of specific damage-associated molecular patterns (DAMPs) which act as TLR ligands in vitro, including direct effects on pain-sensing neurons. We then discuss the phenotype of transgenic mice that target TLR pathways, and provide evidence for a complex balance between pro- and anti-inflammatory signaling pathways activated by OA DAMPs. Finally, we summarize clinical evidence implicating TLRs in OA pathogenesis, including polymorphisms and surrogate markers of disease activity. Our review of the literature led us to propose a model where multi-directional crosstalk between connective tissue cells (chondrocytes, fibroblasts), innate immune cells, and sensory neurons in the affected joint may promote OA pathology and pain.
Collapse
Affiliation(s)
- Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 W Harrison Street, Chicago, IL, 60612, USA
| | - Carla R Scanzello
- Section of Rheumatology and Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center & Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, 1611 W Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
43
|
Macrophage Toll-like Receptor 9 Contributes to Chemotherapy-Induced Neuropathic Pain in Male Mice. J Neurosci 2019; 39:6848-6864. [PMID: 31270160 DOI: 10.1523/jneurosci.3257-18.2019] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. Baseline pain sensitivity was not affected in either Tlr9 mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of WT and Tlr4 KO mice but failed to do so in Tlr9 mutant mice. Moreover, Trpv1 KO or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or Tlr9 mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to DRGs in both sexes, and this infiltration was not affected by Tlr9 mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by Tlr9 mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by Tlr9 mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T-cell and B-cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells, such as macrophages into DRGs and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.
Collapse
|
44
|
Hore Z, Denk F. Neuroimmune interactions in chronic pain - An interdisciplinary perspective. Brain Behav Immun 2019; 79:56-62. [PMID: 31029795 DOI: 10.1016/j.bbi.2019.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that communication between the nervous and immune systems is involved in the development of chronic pain. At each level of the nervous system, immune cells have been reported to accompany and frequently mediate dysfunction of nociceptive circuitry; however the exact mechanisms are not fully understood. One way to speed up progress in this area is to increase interdisciplinary cross-talk. This review sets out to summarize what pain research has already learnt, or indeed might still learn, from examining peripheral and central nociceptive mechanisms using tools and perspectives from other fields like immunology, inflammation biology or the study of stress.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
45
|
Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol 2019; 15:483-490. [DOI: 10.1038/s41582-019-0216-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
|
46
|
|
47
|
Wu Y, Wang Y, Wang J, Fan Q, Zhu J, Yang L, Rong W. TLR4 mediates upregulation and sensitization of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate-induced colitis. Mol Pain 2019; 15:1744806919830018. [PMID: 30672380 PMCID: PMC6378437 DOI: 10.1177/1744806919830018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Elevated excitability of primary afferent neurons underlies chronic pain in patients with functional or inflammatory bowel diseases. Recent studies have established an essential role for an enhanced transient receptor potential vanilloid subtype 1 (TRPV1) signaling in mediating peripheral hyperalgesia in inflammatory conditions. Since colocalization of Toll-like receptor 4 (TLR4) and TRPV1 has been observed in primary afferents including the trigeminal sensory neurons and the dorsal root ganglion neurons, we test the hypothesis that TLR4 might regulate the expression and function of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate (TNBS)-induced colitis using the TLR4-deficient and the wild-type C57 mice. Despite having a higher disease activity index following administration of 2,4,6-trinitrobenzene sulfate, the TLR4-deficient mice showed less inflammatory infiltration in the colon than the wild-type mice. Increased expression of TLR4 and TRPV1 as well as increased density of capsaicin-induced TRPV1 current was observed in L4–S2 dorsal root ganglion neurons of the wild-type colitis mice till two weeks post 2,4,6-trinitrobenzene sulfate treatment. In comparison, the TLR4-deficient colitis mice had lower TRPV1 expression and TRPV1 current density in dorsal root ganglion neurons with lower abdominal withdrawal response scores during noxious colonic distensions. In the wild type but not in the TLR4-deficient dorsal root ganglion neurons, acute administration of the TLR4 agonist lipopolysaccharide increased the capsaicin-evoked TRPV1 current. In addition, we found that the canonical signaling downstream of TLR4 was activated in 2,4,6-trinitrobenzene sulfate-induced colitis in the wild type but not in the TLR4-deficient mice. These results indicate that TLR4 may play a major role in regulation of TRPV1 signaling and peripheral hyperalgesia in inflammatory conditions.
Collapse
Affiliation(s)
- Yingwei Wu
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China.,2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingping Wang
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Wang
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Fan
- 2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinyu Zhu
- 2 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liu Yang
- 3 Core Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifang Rong
- 1 Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Yin D, Chen Y, Li Y, Lu R, Wang B, Zhu S, Fan B, Xu Z. Interleukin-1 Receptor Associated Kinase 1 Mediates the Maintenance of Neuropathic Pain after Chronic Constriction Injury in Rats. Neurochem Res 2019; 44:1214-1227. [PMID: 30859436 DOI: 10.1007/s11064-019-02767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Neuropathic pain (NP) has complicated pathogenesis as it mainly involves a lesion or dysfunction of the somatosensory nervous system and its clinical treatment remains challenging. Chronic constriction injury (CCI) model is a widely used neuropathic pain model and involved in mechanisms including both nerve inflammatory and injury. Cytokines and their receptors play essential roles in the occurrence and persistence of neuropathic pain, but the underlying mechanisms have not well been understood. Therefore, Interleukin-1 receptor-associated kinase 1 (IRAK1) is chosen to explore the possible mechanisms of NP. In the present study, IRAK1 was found to persistently increase in the dorsal root ganglion (DRG) and spinal cord (SC) during CCI detected by western blot. The staining further confirmed that IRAK1 was mainly co-located in the DRG astrocytes or SC neurons, but less in the DRG microglia or SC astrocytes. Moreover, the region of increased IRAK1 expression was observed in superficial laminae of the spinal dorsal horn, which was the nociceptive neuronal expression domain, suggesting that IRAK1 may mediated CCI-induced pain by nociceptive primary afferent. In addition, intrathecal injection of Toll-like receptor 4 (TLR4) inhibitor or IRAK1 siRNA decreased the expression of IRAK1 accompanied with the alleviation of CCI-induced neuropathic pain. The upregulation of p-NF-κB expression was reversed by IRAK1 siRNA in SC, and intrathecal injection of p-NF-κB inhibitor relieved neuropathic pain. Taking together, targeting IRAK1 may be a potential treatment for chronic neuropathic pain.
Collapse
Affiliation(s)
- Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, 224400, Jiangsu, China
| | - Yonglin Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yao Li
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxiang Lu
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Binbin Wang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, China
| | - Bingbing Fan
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
49
|
Inhibition of spinal 15-LOX-1 attenuates TLR4-dependent, nonsteroidal anti-inflammatory drug-unresponsive hyperalgesia in male rats. Pain 2019; 159:2620-2629. [PMID: 30130298 DOI: 10.1097/j.pain.0000000000001373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although nonsteroidal anti-inflammatory drugs are the first line of therapeutics for the treatment of mild to moderate somatic pain, they are not generally considered to be effective for neuropathic pain. In the current study, direct activation of spinal Toll-like 4 receptors (TLR4) by the intrathecal (IT) administration of KDO2 lipid A (KLA), the active component of lipopolysaccharide, elicits a robust tactile allodynia that is unresponsive to cyclooxygenase inhibition, despite elevated expression of cyclooxygenase metabolites in the spinal cord. Intrathecal KLA increases 12-lipoxygenase-mediated hepoxilin production in the lumbar spinal cord, concurrent with expression of the tactile allodynia. The TLR4-induced hepoxilin production was also observed in primary spinal microglia, but not in astrocytes, and was accompanied by increased microglial expression of the 12/15-lipoxygenase enzyme 15-LOX-1. Intrathecal KLA-induced tactile allodynia was completely prevented by spinal pretreatment with the 12/15-lipoxygenase inhibitor CDC or a selective antibody targeting rat 15-LOX-1. Similarly, pretreatment with the selective inhibitors ML127 or ML351 both reduced activity of the rat homolog of 15-LOX-1 heterologously expressed in HEK-293T cells and completely abrogated nonsteroidal anti-inflammatory drug-unresponsive allodynia in vivo after IT KLA. Finally, spinal 12/15-lipoxygenase inhibition by nordihydroguaiaretic acid (NDGA) both prevents phase II formalin flinching and reverses formalin-induced persistent tactile allodynia. Taken together, these findings suggest that spinal TLR4-mediated hyperpathic states are mediated at least in part through activation of microglial 15-LOX-1.
Collapse
|
50
|
Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 2019; 33:131-139. [PMID: 30448975 PMCID: PMC6813778 DOI: 10.1007/s00540-018-2579-4] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
Inflammation is the body's response to injury and infection, involving a complex biological response of the somatosensory, immune, autonomic, and vascular systems. Inflammatory mediators such as prostaglandin, proinflammatory cytokines, and chemokines induce pain via direct activation of nociceptors, the primary sensory neurons that detect noxious stimuli. Neurogenic inflammation is triggered by nerve activation and results in neuropeptide release and rapid plasma extravasation and edema, contributing to pain conditions such as headache. Neuroinflammation is a localized inflammation in the peripheral nervous system (PNS) and central nervous system (CNS). A characteristic feature of neuroinflammation is the activation of glial cells in dorsal root ganglia, spinal cord, and brain which leads to the production of proinflammatory cytokines and chemokines in the PNS and CNS that drives peripheral sensitization and central sensitization. Here, we discuss the distinct roles of inflammation, neurogenic inflammation, and neuroinflammation in the regulation of different types of pain conditions, with a special focus on neuroinflammation in postoperative pain and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Megumi Matsuda
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, 3 Genome CT, MSRB3 Room 6148, Durham, NC, 27710, USA.
- Research Unit for the Neurobiology of Pain, Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, 3 Genome CT, MSRB3 Room 6148, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, 3 Genome CT, MSRB3 Room 6148, Durham, NC, 27710, USA.
| |
Collapse
|