1
|
Andrade MF, Fabris-Moraes W, Pacheco-Barrios K, Fregni F. Effect of Neurostimulation on Chronic Pancreatic Pain: A Systematic Review. Neuromodulation 2024:S1094-7159(24)00667-6. [PMID: 39365205 DOI: 10.1016/j.neurom.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Chronic pancreatic pain is one of the most severe causes of visceral pain, and treatment response is often limited. Neurostimulation techniques have been investigated for chronic pain syndromes once there are pathophysiological reasons to believe that these methods activate descending pain inhibitory systems. Considering this, we designed this systematic literature review to investigate the evidence on neuromodulation techniques as a treatment for chronic pancreatic pain. MATERIALS AND METHODS We performed a literature search using the databases MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and Embase until April 2024. The included studies used neurostimulation techniques in participants with chronic pancreatic pain and reported pain-related outcomes, with a focus on pain scales and opioid intake. Two reviewers screened and extracted data, and a third reviewer resolved discrepancies. We assessed the risk of bias using the Jadad scale. The authors then grouped the findings by the target of the neurostimulation, cortex, spinal cord, or peripheral nerves; described the findings qualitatively in the results section, including qualitative data reported by the articles; and calculated effect sizes of pain-related outcomes. RESULTS A total of 22 studies were included (7 randomized clinical trials [RCTs], 14 case series, and 1 survey), including a total of 257 clinical trial participants. The two outcomes most commonly reported were pain, measured by the visual analogue scale (VAS), numeric rating scale (NRS), and pressure pain threshold scores, and opioid intake. Two RCTs investigated repetitive transcranial magnetic stimulation (rTMS), showing a reduction of 36% (±16) (d = 2.25; 95% CI, 0.66-3.83) and 27.2% (±24.5%) (d = 2.594; 95% CI, 1.303-3.885) in VAS pain scale. In another clinical trial, transcranial direct-current stimulation (tDCS) and transcranial pulsed current stimulation were not observed to effect a significant reduction in VAS pain (χ2 = 5.87; p = 0.12). However, a complete remission was reported in one tDCS case. Spinal cord stimulation (SCS) and dorsal root ganglion stimulation were performed in a survey and 11 case series, showing major pain decrease and diminished opioid use in 90% of participants after successful implantation; most studies had follow-up periods of months to years. Two noninvasive vagal nerve stimulation (VNS) RCTs showed no significant pain reduction in pain thresholds or VAS (d = 0.916; 95% CI, -0.005 to 1.838; and d = 0.17; -0.86 to 1.20; p = 0.72; respectively). Splanchnic nerve stimulation in one case report showed complete pain reduction accompanied by discontinuation of oral morphine and fentanyl lozenges and a 95% decrease in fentanyl patch use. Two RCTs investigated transcutaneous electrical nerve stimulation (TENS). One found a significant pain reduction effect with the NRS (d = 1.481; 95% CI, 1.82-1.143), and decreased opioid use, while the other RCT did not show significant benefit. Additionally, one case report with TENS showed pain improvement that was not quantitatively measured. DISCUSSION The neuromodulation techniques of rTMS and SCS showed the most consistent potential as a treatment method for chronic pancreatic pain. However, the studies have notable limitations, and SCS has had no clinical trials. For VNS, we have two RCTs that showed a non-statistically significant improvement; we believe that both studies had a lack of power issue and suggest a gap in the literature for new RCTs exploring this modality. Additionally, tDCS and TENS showed mixed results. Another important insight was that opioid intake decrease is a common trend among most studies included and that adverse effects were rarely reported. To further elucidate the potential of these neurostimulation techniques, we suggest the development of new clinical trials with larger samples and adequate sham controls.
Collapse
Affiliation(s)
- Maria F Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter Fabris-Moraes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Research Unit for the Generation and Synthesis of Evidence in Health, Vice-Rectorate for Research, San Ignacio de Loyola University, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Betti S, Badioli M, Dalbagno D, Garofalo S, di Pellegrino G, Starita F. Topographically selective motor inhibition under threat of pain. Pain 2024; 165:00006396-990000000-00633. [PMID: 38916518 PMCID: PMC11562763 DOI: 10.1097/j.pain.0000000000003301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
ABSTRACT Pain-related motor adaptations may be enacted predictively at the mere threat of pain, before pain occurrence. Yet, in humans, the neurophysiological mechanisms underlying motor adaptations in anticipation of pain remain poorly understood. We tracked the evolution of changes in corticospinal excitability (CSE) as healthy adults learned to anticipate the occurrence of lateralized, muscle-specific pain to the upper limb. Using a Pavlovian threat conditioning task, different visual stimuli predicted pain to the right or left forearm (experiment 1) or hand (experiment 2). During stimuli presentation before pain occurrence, single-pulse transcranial magnetic stimulation was applied over the left primary motor cortex to probe CSE and elicit motor evoked potentials from target right forearm and hand muscles. The correlation between participants' trait anxiety and CSE was also assessed. Results showed that threat of pain triggered corticospinal inhibition specifically in the limb where pain was expected. In addition, corticospinal inhibition was modulated relative to the threatened muscle, with threat of pain to the forearm inhibiting the forearm and hand muscles, whereas threat of pain to the hand inhibited the hand muscle only. Finally, stronger corticospinal inhibition correlated with greater trait anxiety. These results advance the mechanistic understanding of pain processes showing that pain-related motor adaptations are enacted at the mere threat of pain, as sets of anticipatory, topographically organized motor changes that are associated with the expected pain and are shaped by individual anxiety levels. Including such anticipatory motor changes into models of pain may lead to new treatments for pain-related disorders.
Collapse
Affiliation(s)
- Sonia Betti
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Badioli
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Daniela Dalbagno
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Sara Garofalo
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Giuseppe di Pellegrino
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Francesca Starita
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| |
Collapse
|
3
|
Caumo W, Lopes Ramos R, Vicuña Serrano P, da Silveira Alves CF, Medeiros L, Ramalho L, Tomeddi R, Bruck S, Boher L, Sanches PRS, Silva DP, Ls Torres I, Fregni F. Efficacy of Home-Based Transcranial Direct Current Stimulation Over the Primary Motor Cortex and Dorsolateral Prefrontal Cortex in the Disability Due to Pain in Fibromyalgia: A Factorial Sham-Randomized Clinical Study. THE JOURNAL OF PAIN 2024; 25:376-392. [PMID: 37689323 DOI: 10.1016/j.jpain.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
This randomized, double-blind, controlled clinical trial compared the effectiveness of home-based-(HB) active transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex (l-DLPFC) or primary motor cortex (M1) with their respective sham-(s)-tDCS to determine whether a-tDCS would be more effective than s-tDCS in reducing pain and improving disability due to pain. The study included 102 patients with fibromyalgia aged 30 to 65 years old randomly assigned to 1 of 4 tDCS groups using a ratio of 2:1:2:1. The groups included l-DLPFC (a-tDCS, n = 34) and (s-tDCS, n = 17), or tDCS on the M1 (a-tDCS, n = 34) or (s-tDCS, n = 17). Patients self-administered 20 sessions of tDCS, with 2 mA for 20 minutes each day under remote supervision after in-person training. The Mixed Model for Repeated Measurements revealed that a-tDCS on DLPFC significantly reduced pain scores by 36.53% compared to 25.79% in s-tDCS. From baseline to the fourth week of treatment, a-tDCS on M1 reduced pain scores by 45.89% compared to 22.92% over s-tDCS. A generalized linear model showed a significant improvement in the disability scale in the groups that received a-tDCS compared to s-tDCS over M1 20.54% versus 2.49% (χ2 = 11.06, df = 1, P < .001]), while on DLPFC the improvement was 14.29% and 5.77%, with a borderline significance (χ2 = 3.19, df = 1, P = .06]), respectively. A higher reduction in serum brain-derived neurotrophic factor from baseline to treatment end was positively correlated with decreased pain scores regardless of the treatment group. The application of a-tDCS over M1 increased the heat pain threshold and the function of the descending pain inhibitory system. PERSPECTIVE: These findings provide important insights: (1) HB-tDCS has effectively reduced pain scores and improved disability due to fibromyalgia. (2) The study provides evidence that HB-a-tDCS is a viable and effective therapeutic approach. (3) HB-a-tDCS over M1 improved the function of the descending pain inhibitory system and increased the heat pain threshold. Finally, our findings also emphasize that brain-derived neurotrophic factor, as an index of neuroplasticity, may serve as a valuable marker associated with changes in clinical pain measures. TRIAL REGISTRATION: Number NCT03843203.
Collapse
Affiliation(s)
- Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rael Lopes Ramos
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paul Vicuña Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liciane Medeiros
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Pain Pharmacology and Neuromodulation Laboratory, Preclinical Investigations, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Postgraduate Program in Health and Human Development, La Salle University, Canoas, Rio Grande do Sul, Brazil
| | - Leticia Ramalho
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafalea Tomeddi
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samara Bruck
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Boher
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo R S Sanches
- Laboratory of Biomedical Engineer at HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danton P Silva
- Laboratory of Biomedical Engineer at HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Iraci Ls Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Pain Pharmacology and Neuromodulation Laboratory, Preclinical Investigations, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
5
|
Herrero Babiloni A, Jodoin M, Provost C, Charlebois-Plante C, De Koninck BP, Apinis-Deshaies A, Lavigne GJ, De Beaumont L. Females with painful temporomandibular disorders present higher intracortical facilitation relative to pain-free controls. Clin Oral Investig 2023; 28:12. [PMID: 38129743 DOI: 10.1007/s00784-023-05412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study aimed to investigate cortical excitability differences in the primary motor cortex (M1) hand representation between individuals with temporomandibular disorders (TMD) and healthy controls. We assessed resting motor thresholds, motor-evoked potentials (MEPs), intracortical inhibition, and intracortical facilitation and explored potential associations with clinical and psychosocial characteristics in the TMD group. MATERIALS AND METHODS We recruited 36 female participants with TMD and 17 pain-free controls. Transcranial magnetic stimulation (TMS) was used to assess M1 cortical excitability. Correlations between clinical and psychosocial factors and cortical excitability measures were also evaluated. RESULTS Patients with TMD showed significantly higher intracortical facilitation at 12 ms (z = 1.98, p = 0.048) and 15 ms (z = 2.65, p = 0.008) when compared to controls. Correlations revealed associations between intracortical facilitation and pain interference, sleep quality, depressive symptoms, and pain catastrophizing in the TMD group. CONCLUSIONS Females with TMD exhibit heightened motor cortex intracortical facilitation in the hand representation, potentially indicating altered cortical excitability beyond the motor face area. This suggests a role for cortical excitability in TMD pathophysiology, influenced by psychosocial factors. CLINICAL RELEVANCE Understanding cortical excitability in TMD may inform targeted interventions. Psychosocial variables may play a role in cortical excitability, emphasizing the multidimensional nature of TMD-related pain. Further research is needed to confirm and expand upon these findings, with potential implications for the management of TMD and related pain conditions.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada.
| | - Marianne Jodoin
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Catherine Provost
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
| | - Camille Charlebois-Plante
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Beatrice P De Koninck
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Amelie Apinis-Deshaies
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
| | - Gilles J Lavigne
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Yang R, Xiong B, Wang M, Wu Y, Gao Y, Xu Y, Deng H, Pan W, Wang W. Gamma Knife surgery and deep brain stimulation of the centromedian nucleus for chronic pain: A systematic review. Asian J Surg 2023; 46:3437-3446. [PMID: 37422388 DOI: 10.1016/j.asjsur.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023] Open
Abstract
Chronic pain has been a major problem in personal quality of life and social economy, causing psychological disorders in people and a larger amount of money loss in society. Some targets were adopted for chronic pain, but the efficacy of the CM nucleus for pain was still unclear. A systematic review was performed to summarize GK surgery and DBS of the CM nucleus for chronic pain. PubMed, Embase and Medline were searched to review all studies discussing GK surgery and DBS on the CM nucleus for chronic pain. Studies that were review, meet, conference, not English or not the therapy of pain were excluded. Demographic characteristics, surgery parameters and outcomes of pain relief were selected. In total, 101 patients across 12 studies were included. The median age of most patients ranged from 44.3 to 80 years when the duration of pain ranged from 5 months to 8 years. This review showed varied results of 30%-100% pain reduction across studies. The difference in the effect between GK surgery and DBS cannot be judged. Moreover, three retrospective articles related to GK surgery of the CM nucleus for trigeminal neuralgia presented an average pain relief rate of 34.6-82.5%. Four studies reported adverse effects in a small number of patients. GK surgery and DBS of the CM nucleus might be promising therapeutic approaches for chronic refractory pain. More rigorous studies and larger samples with longer follow-up periods are needed to support the effectiveness and safety.
Collapse
Affiliation(s)
- Ruiqing Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
7
|
Motzkin JC, Kanungo I, D’Esposito M, Shirvalkar P. Network targets for therapeutic brain stimulation: towards personalized therapy for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1156108. [PMID: 37363755 PMCID: PMC10286871 DOI: 10.3389/fpain.2023.1156108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Precision neuromodulation of central brain circuits is a promising emerging therapeutic modality for a variety of neuropsychiatric disorders. Reliably identifying in whom, where, and in what context to provide brain stimulation for optimal pain relief are fundamental challenges limiting the widespread implementation of central neuromodulation treatments for chronic pain. Current approaches to brain stimulation target empirically derived regions of interest to the disorder or targets with strong connections to these regions. However, complex, multidimensional experiences like chronic pain are more closely linked to patterns of coordinated activity across distributed large-scale functional networks. Recent advances in precision network neuroscience indicate that these networks are highly variable in their neuroanatomical organization across individuals. Here we review accumulating evidence that variable central representations of pain will likely pose a major barrier to implementation of population-derived analgesic brain stimulation targets. We propose network-level estimates as a more valid, robust, and reliable way to stratify personalized candidate regions. Finally, we review key background, methods, and implications for developing network topology-informed brain stimulation targets for chronic pain.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
| | - Ishan Kanungo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Prasad Shirvalkar
- Departments of Neurology and Anesthesia and Perioperative Care (Pain Management), University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Szymoniuk M, Chin JH, Domagalski Ł, Biszewski M, Jóźwik K, Kamieniak P. Brain stimulation for chronic pain management: a narrative review of analgesic mechanisms and clinical evidence. Neurosurg Rev 2023; 46:127. [PMID: 37247036 PMCID: PMC10227133 DOI: 10.1007/s10143-023-02032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Chronic pain constitutes one of the most common chronic complaints that people experience. According to the International Association for the Study of Pain, chronic pain is defined as pain that persists or recurs longer than 3 months. Chronic pain has a significant impact on individuals' well-being and psychosocial health and the economy of healthcare systems as well. Despite the availability of numerous therapeutic modalities, treatment of chronic pain can be challenging. Only about 30% of individuals with non-cancer chronic pain achieve improvement from standard pharmacological treatment. Therefore, numerous therapeutic approaches were proposed as a potential treatment for chronic pain including non-opioid pharmacological agents, nerve blocks, acupuncture, cannabidiol, stem cells, exosomes, and neurostimulation techniques. Although some neurostimulation methods such as spinal cord stimulation were successfully introduced into clinical practice as a therapy for chronic pain, the current evidence for brain stimulation efficacy in the treatment of chronic pain remains unclear. Hence, this narrative literature review aimed to give an up-to-date overview of brain stimulation methods, including deep brain stimulation, motor cortex stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, cranial electrotherapy stimulation, and reduced impedance non-invasive cortical electrostimulation as a potential treatment for chronic pain.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Jia-Hsuan Chin
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Łukasz Domagalski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland.
| | - Mateusz Biszewski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Jóźwik
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Assis DV, Campos ACP, Paschoa AFN, Santos TF, Fonoff ET, Pagano RL. Systemic and Peripheral Mechanisms of Cortical Stimulation-Induced Analgesia and Refractoriness in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24097796. [PMID: 37175503 PMCID: PMC10177944 DOI: 10.3390/ijms24097796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Epidural motor cortex stimulation (MCS) is an effective treatment for refractory neuropathic pain; however, some individuals are unresponsive. In this study, we correlated the effectiveness of MCS and refractoriness with the expression of cytokines, neurotrophins, and nociceptive mediators in the dorsal root ganglion (DRG), sciatic nerve, and plasma of rats with sciatic neuropathy. MCS inhibited hyperalgesia and allodynia in two-thirds of the animals (responsive group), and one-third did not respond (refractory group). Chronic constriction injury (CCI) increased IL-1β in the nerve and DRG, inhibited IL-4, IL-10, and IL-17A in the nerve, decreased β-endorphin, and enhanced substance P in the plasma, compared to the control. Responsive animals showed decreased NGF and increased IL-6 in the nerve, accompanied by restoration of local IL-10 and IL-17A and systemic β-endorphin. Refractory animals showed increased TNF-α and decreased IFNγ in the nerve, along with decreased TNF-α and IL-17A in the DRG, maintaining low levels of systemic β-endorphin. Our findings suggest that the effectiveness of MCS depends on local control of inflammatory and neurotrophic changes, accompanied by recovery of the opioidergic system observed in neuropathic conditions. So, understanding the refractoriness to MCS may guide an improvement in the efficacy of the technique, thus benefiting patients with persistent neuropathic pain.
Collapse
Affiliation(s)
- Danielle V Assis
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | | | - Amanda F N Paschoa
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Talita F Santos
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Erich T Fonoff
- Division of Functional Neurosurgery, Department of Neurology, University of Sao Paulo Medical School, São Paulo 05402-000, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| |
Collapse
|
10
|
Chen F, Zhang S, Li P, Xu K, Liu C, Geng B, Piao R, Liu P. Disruption of Periaqueductal Gray-default Mode Network Functional Connectivity in Patients with Crohn's Disease with Abdominal Pain. Neuroscience 2023; 517:96-104. [PMID: 36898497 DOI: 10.1016/j.neuroscience.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Abdominal pain in Crohn's disease (CD) has been known to be associated with changes in the central nervous system. The periaqueductal gray (PAG) plays a well-established role in pain processing. However, the role of PAG-related network and the effect of pain on the network in CD remain unclear.Resting-state functional magnetic imaging (fMRI) data were collected from 24 CD patients in remission with abdominal pain, 24 CD patients without abdominal pain and 28 healthy controls (HCs). Using the subregions of PAG (dorsomedial (dmPAG), dorsolateral (dlPAG), lateral (lPAG) and ventrolateral (vlPAG)) as seeds, the seed-based FC maps were calculated and one-way analysis of variance (ANOVA) was performed to investigate the differences among the three groups.Results showed that the group differences were mainly involved in the FC of the vlPAG with the precuneus, medial prefrontal cortex (mPFC) as well as orbitofrontal cortex (OFC), and the FC of the right lateral PAG (lPAG) with the precuneus, inferior parietal lobule (IPL), angular gyrus and premotor cortex. The FC values of all these regions decreased successively in the order of HCs, CD without abdominal pain and CD with abdominal pain. The pain score was negatively correlated with the FC of the l/vlPAG with the precuneus, angular gyrus and mPFC in CD patients with abdominal pain.This study implicated the disrupt communication between the PAG and the default mode network (DMN). These findings complemented neuroimaging evidence for the pathophysiology of visceral pain in CD patients.
Collapse
Affiliation(s)
- Fenrong Chen
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xi'an 710003, China
| | - Shuming Zhang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Pengyu Li
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Ke Xu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Chengxiang Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Bowen Geng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Ruiqing Piao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Engineering Research Center of Molecular and NeuroImaging, Ministry of Education, China.
| |
Collapse
|
11
|
Noninvasive Brain Stimulation for Cancer Pain Management in Nonbrain Malignancy: A Meta-Analysis. Eur J Cancer Care (Engl) 2023. [DOI: 10.1155/2023/5612061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Purpose. Noninvasive brain stimulation (NIBS) has been reported to have analgesic effects on fibromyalgia and chronic neuropathic pain; however, its effects on cancer pain have yet to be determined. The present study aimed to evaluate the effects of NIBS on patients with pain secondary to nonbrain malignancy. Methods. Electronic databases including PubMed, Embase, Cochrane Library, and Web of Science were searched from inception through June 5th, 2022. Parallel, randomized, placebo-controlled studies were included that enrolled adult patients with cancer pain, except for that caused by brain tumors, compared NIBS with placebo stimulation, and reported sufficient data for performing meta-analysis. Results. Four parallel, randomized, sham-controlled studies were included: two of repetitive transcranial magnetic stimulation (rTMS), one of transcranial direct current stimulation (tDCS), and one of cranial electrical stimulation (CES). rTMS significantly improved pain in the subgroup analysis (standardized mean difference (SMD): −1.148, 95% confidence interval (CI): −1.660 to −0.637, (
)), while NIBS was not benefited in reducing pain intensity (SMD: −0.632, 95% CI: −1.356 to 0.092, p = 0.087). Also, NIBS significantly improved depressive symptoms (SMD: −0.665, 95% CI: −1.178 to −0.153, p = 0.011), especially in the form of rTMS (SMD: −0.875, 95% CI: −1.356 to −0.395,
) and tDCS (SMD: −1.082, 95% CI: −1.746 to −0.418, p = 0.001). Conclusion. rTMS significantly improved pain secondary to nonbrain malignancy apart from other forms of NIBS without major adverse events.
Collapse
|
12
|
Islam J, KC E, So KH, Kim S, Kim HK, Park YY, Park YS. Modulation of trigeminal neuropathic pain by optogenetic inhibition of posterior hypothalamus in CCI-ION rat. Sci Rep 2023; 13:489. [PMID: 36627362 PMCID: PMC9831989 DOI: 10.1038/s41598-023-27610-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Posterior hypothalamus (PH), an important part of the descending pain processing pathway, has been found to be activated in trigeminal autonomic cephalalgias. However, there are very few studies conducted and information regarding its implications in trigeminal neuropathic pain (TNP). Therefore, we aimed to ascertain whether optogenetic inhibition of PH could affect the outcomes of a chronic constriction injury in the infraorbital nerve (CCI-ION) rat model. Animals were divided into the TNP animal, sham, and naive-control groups. CCI-ION surgery was performed to mimic TNP symptoms, and the optogenetic or null virus was injected into the ipsilateral PH. In vivo single-unit extracellular recordings were obtained from both the ipsilateral ventrolateral periaqueductal gray (vlPAG) and contralateral ventral posteromedial (VPM) thalamus in stimulation "OFF" and "ON" conditions. Alterations in behavioral responses during the stimulation-OFF and stimulation-ON states were examined. We observed that optogenetic inhibition of the PH considerably improved behavioral responses in TNP animals. We found increased and decreased firing activity in the vlPAG and VPM thalamus, respectively, during optogenetic inhibition of the PH. Inhibiting PH attenuates trigeminal pain signal transmission by modulating the vlPAG and trigeminal nucleus caudalis, thereby providing evidence of the therapeutic potential of PH in TNP management.
Collapse
Affiliation(s)
- Jaisan Islam
- grid.254229.a0000 0000 9611 0917Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina KC
- grid.254229.a0000 0000 9611 0917Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyoung Ha So
- grid.254229.a0000 0000 9611 0917Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea ,grid.31501.360000 0004 0470 5905Bio-Max/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, Republic of Korea
| | - Soochong Kim
- grid.254229.a0000 0000 9611 0917Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyong Kyu Kim
- grid.254229.a0000 0000 9611 0917Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoon Young Park
- grid.411725.40000 0004 1794 4809Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea. .,Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea. .,Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea. .,Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
13
|
Review of the Treatments for Central Neuropathic Pain. Brain Sci 2022; 12:brainsci12121727. [PMID: 36552186 PMCID: PMC9775950 DOI: 10.3390/brainsci12121727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Central neuropathic pain (CNP) affects millions worldwide, with an estimated prevalence of around 10% globally. Although there are a wide variety of treatment options available, due to the complex and multidimensional nature in which CNP arises and presents symptomatically, many patients still experience painful symptoms. Pharmaceutical, surgical, non-invasive, cognitive and combination treatment options offer a generalized starting point for alleviating symptoms; however, a more customized approach may provide greater benefit. Here, we comment on the current treatment options that exist for CNP and further suggest the need for additional research regarding the use of biomarkers to help individualize treatment options for patients.
Collapse
|
14
|
Yu WY, Yang QH, Wang XQ. The mechanism of exercise for pain management in Parkinson's disease. Front Mol Neurosci 2022; 15:1039302. [PMID: 36438185 PMCID: PMC9684336 DOI: 10.3389/fnmol.2022.1039302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 08/03/2023] Open
Abstract
The research and clinical applications of exercise therapy to the treatment of Parkinson's disease (PD) are increasing. Pain is among the important symptoms affecting the daily motor function and quality of life of PD patients. This paper reviewed the progress of research on different exercise therapies for the management of pain caused by PD and described the role and mechanism of exercise therapy for pain relief. Aerobic exercise, strength exercise, and mind-body exercise play an effective role in pain management in PD patients. The pain suffered by PD patients is divided into central neuropathic, peripheral neuropathic, and nociceptive pain. Different types of pain may coexist with different mechanistic backgrounds and treatments. The analgesic mechanisms of exercise intervention in PD-induced pain include altered cortical excitability and synaptic plasticity, the attenuation of neuronal apoptosis, and dopaminergic and non-dopaminergic analgesic pathways, as well as the inhibition of oxidative stress. Current studies related to exercise interventions for PD-induced pain suffer from small sample sizes and inadequate research of analgesic mechanisms. The neurophysiological effects of exercise, such as neuroplasticity, attenuation of neuronal apoptosis, and dopaminergic analgesic pathway provide a sound biological mechanism for using exercise in pain management. However, large, well-designed randomized controlled trials with improved methods and reporting are needed to evaluate the long-term efficacy and cost-effectiveness of exercise therapy for PD pain.
Collapse
Affiliation(s)
- Wen-Ye Yu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangtishang Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
15
|
Chang TT, Chang YH, Du SH, Chen PJ, Wang XQ. Non-invasive brain neuromodulation techniques for chronic low back pain. Front Mol Neurosci 2022; 15:1032617. [PMID: 36340685 PMCID: PMC9627199 DOI: 10.3389/fnmol.2022.1032617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Structural and functional changes of the brain occur in many chronic pain conditions, including chronic low back pain (CLBP), and these brain abnormalities can be reversed by effective treatment. Research on the clinical applications of non-invasive brain neuromodulation (NIBS) techniques for chronic pain is increasing. Unfortunately, little is known about the effectiveness of NIBS on CLBP, which limits its application in clinical pain management. Therefore, we summarized the effectiveness and limitations of NIBS techniques on CLBP management and described the effects and mechanisms of NIBS approaches on CLBP in this review. Overall, NIBS may be effective for the treatment of CLBP. And the analgesic mechanisms of NIBS for CLBP may involve the regulation of pain signal pathway, synaptic plasticity, neuroprotective effect, neuroinflammation modulation, and variations in cerebral blood flow and metabolism. Current NIBS studies for CLBP have limitations, such as small sample size, relative low quality of evidence, and lack of mechanistic studies. Further studies on the effect of NIBS are needed, especially randomized controlled trials with high quality and large sample size.
Collapse
Affiliation(s)
- Tian-Tian Chang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Hao Chang
- Department of Luoyang Postgraduate Training, Henan University of Traditional Chinese Medicine, Luoyang, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Pei-Jie Chen,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
16
|
Ramasawmy P, Khalid S, Petzke F, Antal A. Pain reduction in fibromyalgia syndrome through pairing transcranial direct current stimulation and mindfulness meditation: A randomized, double-blinded, sham-controlled pilot clinical trial. Front Med (Lausanne) 2022; 9:908133. [PMID: 36314032 PMCID: PMC9596988 DOI: 10.3389/fmed.2022.908133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background This double-blinded, randomized and sham-controlled pilot clinical trial aimed to investigate the preliminary clinical efficacy and feasibility of combining mindfulness meditation (MM) and transcranial direct current stimulation (tDCS) for pain and associated symptoms in patients with fibromyalgia syndrome (FMS). Methods Included FMS patients (age: 33 to 70) were randomized to three different groups to receive either ten daily sessions of anodal tDCS over the left primary motor cortex paired with MM for 20 min (active + MM, n = 10), sham tDCS combined with MM (sham + MM, n = 10) or no intervention (NoT, n = 10). Patients in the bimodal therapy groups received a week of training in MM prior to the stimulation. Participants reported pain intensity, the primary outcome, by filling in a pain diary daily throughout the whole study. They were also evaluated for quality of life, pressure pain sensitivity, psychological wellbeing, sleep quality and sleep quantity. Assessments were performed at three time points (baseline, immediately after treatment and one-month follow-up). Results Participants in the active + MM group did not exhibit reduced pain intensity following the bimodal therapy compared to controls. Patients in active group demonstrated clinically meaningful and significantly higher quality of life following the therapeutic intervention than other groups. There was no significant difference among groups regarding pressure pain sensitivity, sleep parameters and psychological scales. The combined treatment was well tolerated among participants, with no serious adverse effects. Conclusion This study was the first to pair these two effective non-pharmacological therapies for pain management in FMS. In the light of an underpowered sample size, repetitive anodal tDCS combined with MM did not improve pain or FMS-associated symptoms. However, patients in the active + MM group reported higher quality of life than the control groups. Studies with more participants and longer follow-ups are required to confirm our findings. Clinical trial registration [www.drks.de], identifier [DRKS00023490].
Collapse
Affiliation(s)
- Perianen Ramasawmy
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Sarah Khalid
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Frank Petzke
- Department of Anesthesiology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
17
|
Lee JY, You T, Lee CH, Im GH, Seo H, Woo CW, Kim SG. Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Curr Biol 2022; 32:2834-2847.e5. [PMID: 35609604 DOI: 10.1016/j.cub.2022.04.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Although pain-related excessive fear is known to be a key factor in chronic pain disability, which involves the anterior cingulate cortex (ACC), little is known about the downstream circuits of the ACC for fear avoidance in pain processing. Using behavioral experiments and functional magnetic resonance imaging with optogenetics at 15.2 T, we demonstrate that the ACC is a part of the abnormal circuit changes in chronic pain and its downstream circuits are closely related to modulating sensorimotor integration and generating active movement rather than carrying sensory information. The projection from the ACC to the dorsolateral and lateral parts of the periaqueductal gray (dl/lPAG) especially enhances both reflexive and active avoidance behavior toward pain. Collectively, our results indicate that increased signals from the ACC to the dl/lPAG might be critical for excessive fear avoidance in chronic pain disability.
Collapse
Affiliation(s)
- Jeong-Yun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
| | - Taeyi You
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choong-Hee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Heewon Seo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44704, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
19
|
Wu B, Zhou L, Chen C, Wang J, Hu LI, Wang X. Effects of Exercise-induced Hypoalgesia and Its Neural Mechanisms. Med Sci Sports Exerc 2022; 54:220-231. [PMID: 34468414 DOI: 10.1249/mss.0000000000002781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Exercise-induced hypoalgesia is frequently documented in the literature. However, the underlying neural mechanism of this phenomenon remains unclear. Here, we explored the effects of different intensities of isometric exercise on pain perception with a randomized controlled design and investigated its neural mechanisms through tracing the dynamic changes of heat-evoked brain responses. METHODS Forty-eight participants were randomly assigned to one of the three groups with different exercise intensities (i.e., high, low, and control). Their subjective pain reports and brain responses elicited by heat stimuli before and after exercise were assessed. RESULTS We observed 1) the increased pressure pain thresholds and heat pain thresholds on the dorsal surface of the hand and the biceps brachii muscle of the exercised limb (closed to the contracting muscle), and the decreased pressure pain ratings at the indexed finger of the unexercised limb; 2) more reduction of pain sensitivity on both the biceps brachii muscle and the dorsal surface of the hand induced by the high-intensity isometric exercise than the low-intensity isometric exercise; and 3) both the high-intensity and the low-intensity isometric exercise induced the reduction of N2 amplitudes and N2-P2 peak-to-peak amplitudes, as well as the reduction of event-related potential magnitudes elicited by the heat stimuli on the exercised limb. CONCLUSIONS The hypoalgesic effects induced by the isometric exercise were not only localized to the moving part of the body but also can be extended to the distal part of the body. The exercise intensities play a vital role in modulating these effects. Exercise-induced hypoalgesia could be related to the modulation of nociceptive information transmission via a spinal gating mechanism and also rely on a top-down descending pain inhibitory mechanism.
Collapse
Affiliation(s)
| | - Lili Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, CHINA
| | - Changcheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, CHINA
| | - Juan Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, CHINA
| | | | | |
Collapse
|
20
|
Ramos-Fresnedo A, Perez-Vega C, Domingo RA, Cheshire WP, Middlebrooks EH, Grewal SS. Motor Cortex Stimulation for Pain: A Narrative Review of Indications, Techniques, and Outcomes. Neuromodulation 2022; 25:211-221. [DOI: 10.1016/j.neurom.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
21
|
Choo YJ, Kwak SG, Chang MC. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Managing Fibromyalgia: A Systematic Meta-Analysis. PAIN MEDICINE 2022; 23:1272-1282. [PMID: 34983056 DOI: 10.1093/pm/pnab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVE In fibromyalgia, central sensitization is a key mechanism, and repetitive transcranial magnetic stimulation (rTMS) has been reported to potentially manage symptoms of fibromyalgia. In this meta-analysis, we evaluated the therapeutic effect of rTMS in patients with fibromyalgia according to stimulation locations and follow-up time points. METHODS We searched the MEDLINE, Cochrane, Embase, Scopus, Cumulative Index to Nursing and Allied Health Literature, and Web of Science databases for articles published from January 1, 1990 to August 26, 2021, including randomized controlled studies investigating the effectiveness of rTMS on managing fibromyalgia. RESULTS In total, 10 papers and 299 participants were included. The high-frequency rTMS on the left primary motor cortex (Lt. M1) had a significant effect on pain reduction immediately and 1-4 weeks after the end of the session but had no significant effect after 5-12 weeks. Additionally, after high-frequency rTMS sessions on the Lt. M1, the effect on patients' quality of life (QoL) appeared late at 5-12 weeks of follow-up. In contrast, high-frequency rTMS on the left dorsolateral prefrontal cortex (Lt. DLPFC) did not reduce pain from fibromyalgia. The effect on controlling the affective problem was not observed after rTMS treatment on both the Lt. M1 and Lt. DLPFC. CONCLUSIONS High-frequency rTMS had a positive pain-reducing effect immediately and at 1-4 weeks after completing the rTMS sessions, and the patients' QoL improved after 5-12 weeks. However, Lt. DLPFC stimulation was not effective in controlling fibromyalgia symptoms.
Collapse
Affiliation(s)
- Yoo Jin Choo
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
22
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
23
|
Negrini-Ferrari SE, Medeiros P, Malvestio RB, de Oliveira Silva M, Medeiros AC, Coimbra NC, Machado HR, de Freitas RL. The primary motor cortex electrical and chemical stimulation attenuates the chronic neuropathic pain by activation of the periaqueductal grey matter: The role of NMDA receptors. Behav Brain Res 2021; 415:113522. [PMID: 34391797 DOI: 10.1016/j.bbr.2021.113522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Motor cortex stimulation (MCS) is proper as a non-pharmacological therapy for patients with chronic and neuropathic pain (NP). AIMS This work aims to investigate if the MCS in the primary motor cortex (M1) produces analgesia and how the MCS could interfere in the MCS-induced analgesia. Also, to elucidate if the persistent activation of N-methyl-d-aspartic acid receptor (NMDAr) in the periaqueductal grey matter (PAG) can contribute to central sensitisation of the NP. METHODS Male Wistar rats were submitted to the von Frey test to evaluate the mechanical allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve. The MCS was performed with low-frequency (20 μA, 100 Hz) currents during 15 s by a deep brain stimulation (DBS) device. Moreover, the effect of M1-treatment with an NMDAr agonist (at 2, 4, and 8 nmol) was investigated in CCI rats. The PAG dorsomedial column (dmPAG) was pretreated with the NMDAr antagonist LY 235959 (at 8 nmol), followed by MCS. RESULTS The MCS decreased the mechanical allodynia in rats with chronic NP. The M1-treatment with an NMDA agonist at 2 and 8 nmol reduced the mechanical allodynia in CCI rats. In addition, dmPAG-pretreatment with LY 235959 at 8 nmol attenuated the mechanical allodynia evoked by MCS. CONCLUSION The M1 cortex glutamatergic system is involved in the modulation of chronic NP. The analgesic effect of MCS may depend on glutamate signaling recruitting NMDAr located on PAG neurons in rodents with chronic NP.
Collapse
Affiliation(s)
- Sylmara Esther Negrini-Ferrari
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Priscila Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Braghetto Malvestio
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariana de Oliveira Silva
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Carolina Medeiros
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Helio Rubens Machado
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Brain Protection Laboratory in Childhood, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neurosciences of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil; Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
24
|
Yao J, Li X, Zhang W, Lin X, Lyu X, Lou W, Peng W. Analgesia induced by anodal tDCS and high-frequency tRNS over the motor cortex: Immediate and sustained effects on pain perception. Brain Stimul 2021; 14:1174-1183. [PMID: 34371209 DOI: 10.1016/j.brs.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Many studies have shown effects of anodal transcranial direct current stimulation (a-tDCS) and high-frequency transcranial random noise stimulation (tRNS) on elevating cortical excitability. Moreover, tRNS with a direct current (DC)-offset is more likely to lead to increases in cortical excitability than solely tRNS. While a-tDCS over primary motor cortex (M1) has been shown to attenuate pain perception, tRNS + DC-offset may prove as an effective means for pain relief. OBJECTIVE This study aimed to examine effects of a-tDCS and high-frequency tRNS + DC-offset over M1 on pain expectation and perception, and assess whether these effects could be influenced by the certainty of pain expectation. METHODS Using a double-blinded and sham-controlled design, 150 healthy participants were recruited to receive a single-session a-tDCS, high-frequency tRNS + DC-offset, or sham stimulation over M1. The expectation and perception of electrical stimulation in certain and uncertain contexts were assessed at baseline, immediately after, and 30 min after stimulation. RESULTS Compared with sham stimulation, a-tDCS induced immediate analgesic effects that were greater when the stimulation outcome was expected with uncertainty; tRNS induced immediate and sustained analgesic effects that were mediated by decreasing pain expectation. Nevertheless, we found no strong evidence for tRNS being more effective for attenuating pain than a-tDCS. CONCLUSIONS The analgesic effects of a-tDCS and tRNS showed different temporal courses, which could be related to the more sustained effectiveness of high-frequency tRNS + DC-offset in elevating cortical excitability. Moreover, expectations of pain intensity should be taken into consideration to maximize the benefits of neuromodulation.
Collapse
Affiliation(s)
- Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenyun Zhang
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xinxin Lin
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaohan Lyu
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
25
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
26
|
Dongyang L, Fernandes AM, da Cunha PHM, Tibes R, Sato J, Listik C, Dale C, Kubota GT, Galhardoni R, Teixeira MJ, Aparecida da Silva V, Rosi J, Ciampi de Andrade D. Posterior-superior insular deep transcranial magnetic stimulation alleviates peripheral neuropathic pain - A pilot double-blind, randomized cross-over study. Neurophysiol Clin 2021; 51:291-302. [PMID: 34175192 DOI: 10.1016/j.neucli.2021.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Peripheral neuropathic pain (pNeP) is prevalent, and current treatments, including drugs and motor cortex repetitive transcranial magnetic stimulation (rTMS) leave a substantial proportion of patients with suboptimal pain relief. METHODS We explored the intensity and short-term duration of the analgesic effects produced in pNeP patients by 5 days of neuronavigated deep rTMS targeting the posterior superior insula (PSI) with a double-cone coil in a sham-controlled randomized cross-over trial. RESULTS Thirty-one pNeP patients received induction series of five active or sham consecutive sessions of daily deep-rTMS to the PSI in a randomized sequence, with a washout period of at least 21 days between series. The primary outcome [number of responders (>50% pain intensity reduction from baseline in a numerical rating scale ranging from 0 to 10)] was significantly higher after real (58.1%) compared to sham (19.4%) stimulation (p = 0.002). The number needed to treat was 2.6, and the effect size was 0.97 [95% CI (0.6; 1.3)]. One week after the 5th stimulation day, pain scores were no longer different between groups, and no difference in neuropathic pain characteristics and interference with daily living were present. No major side effects occurred, and milder adverse events (i.e., short-lived headaches after stimulation) were reported in both groups. Blinding was effective, and analgesic effects were not affected by sequence of the stimulation series (active-first or sham-first), age, sex or pain duration of participants. DISCUSSION PSI deep-rTMS was safe in refractory pNeP and was able to provide significant pain intensity reduction after a five-day induction series of treatments. Post-hoc assessment of neuronavigation targeting confirmed deep-rTMS was delivered within the boundaries of the PSI in all participants. CONCLUSION PSI deep-rTMS provided significant pain relief during 5-day induction sessions compared to sham stimulation.
Collapse
Affiliation(s)
- Liu Dongyang
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Ana Mércia Fernandes
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Pedro Henrique Martins da Cunha
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Raissa Tibes
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - João Sato
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Clarice Listik
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Camila Dale
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Gabriel Taricani Kubota
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Ricardo Galhardoni
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Manoel Jacobsen Teixeira
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Valquíria Aparecida da Silva
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Jefferson Rosi
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil
| | - Daniel Ciampi de Andrade
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, P.O. Box: 05403-900, São Paulo, SP, Brazil; Pain Center Instituto do Câncer Octavio Frias de Oliveira, University of São Paulo, Avenida Dr. Arnaldo 251, P.O. Box: 01246-000, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Lu J, Yang L, Xu Y, Ai L, Chen J, Xiong F, Hu L, Chen H, Liu J, Yan X, Huang H, Chen L, Yu C. The Modulatory Effect of Motor Cortex Astrocytes on Diabetic Neuropathic Pain. J Neurosci 2021; 41:5287-5302. [PMID: 33753547 PMCID: PMC8211549 DOI: 10.1523/jneurosci.2566-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes characterized by persistent pain. Emerging evidence links astrocytes to mechanical nociceptive processing, and the motor cortex (MCx) is a cerebral cortex region that is known to play a key role in pain regulation. However, the association between MCx astrocytes and DNP pathogenesis remains largely unexplored. Here, we studied this association using designer receptors exclusively activated by designer drugs to specifically manipulate MCx astrocytes. We proved that the selective inhibition of MCx astrocytes reduced DNP in streptozocin (STZ)-induced DNP models and discovered a potential mechanism by which astrocytes release cytokines, including TNF-α and IL-1β, to increase neuronal activation in the MCx, thereby regulating pain. Together, these results demonstrate a pivotal role for MCx astrocytes in DNP pathogenesis and provide new insight into DNP treatment strategies.
Collapse
Affiliation(s)
- Jingshan Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lijing Ai
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Fangfang Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lihuan Hu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Huoshu Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiyuan Liu
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiongbin Yan
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
28
|
Li X, Yao J, Zhang W, Chen S, Peng W. Effects of transcranial direct current stimulation on experimental pain perception: A systematic review and meta-analysis. Clin Neurophysiol 2021; 132:2163-2175. [PMID: 34284252 DOI: 10.1016/j.clinph.2021.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Many studies have examined the effectiveness of transcranial direct current stimulation (tDCS) on human pain perception in both healthy populations and pain patients. Nevertheless, studies have yielded conflicting results, likely due to differences in stimulation parameters, experimental paradigms, and outcome measures. Human experimental pain models that utilize indices of pain in response to well-controlled noxious stimuli can avoid many confounds present in clinical data. This study aimed to assess the robustness of tDCS effects on experimental pain perception among healthy populations. METHODS We conducted three meta-analyses that analyzed tDCS effects on ratings of perceived pain intensity to suprathreshold noxious stimuli, pain threshold and tolerance. RESULTS The meta-analyses showed a statically significant tDCS effect on attenuating pain-intensity ratings to suprathreshold noxious stimuli. In contrast, tDCS effects on pain threshold and pain tolerance were statistically non-significant. Moderator analysis further suggested that stimulation parameters (active electrode size and current density) and experimental pain modality moderated the effectiveness of tDCS in attenuating pain-intensity ratings. CONCLUSION The effectiveness of tDCS on attenuating experimental pain perception depends on both stimulation parameters of tDCS and the modality of experimental pain. SIGNIFICANCE This study provides some theoretical basis for the application of tDCS in pain management.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Wenyun Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
29
|
Gan Z, Li H, Naser PV, Oswald MJ, Kuner R. Suppression of neuropathic pain and comorbidities by recurrent cycles of repetitive transcranial direct current motor cortex stimulation in mice. Sci Rep 2021; 11:9735. [PMID: 33958647 PMCID: PMC8102487 DOI: 10.1038/s41598-021-89122-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial, minimally-invasive stimulation of the primary motor cortex (M1) has recently emerged to show promise in treating clinically refractory neuropathic pain. However, there is a major need for improving efficacy, reducing variability and understanding mechanisms. Rodent models hold promise in helping to overcome these obstacles. However, there still remains a major divide between clinical and preclinical studies with respect to stimulation programs, analysis of pain as a multidimensional sensory-affective-motivational state and lack of focus on chronic phases of established pain. Here, we employed direct transcranial M1 stimulation (M1 tDCS) either as a single 5-day block or recurring blocks of repetitive stimulation over early or chronic phases of peripherally-induced neuropathic pain in mice. We report that repeated blocks of stimulation reverse established neuropathic mechanical allodynia more strongly than a single 5-day regime and also suppress cold allodynia, aversive behavior and anxiety without adversely affecting motor function over a long period. Activity mapping revealed highly selective alterations in the posterior insula, periaqueductal gray subdivisions and superficial spinal laminae in reversal of mechanical allodynia. Our preclinical data reveal multimodal analgesia and improvement in quality of life by multiple blocks of M1 tDCS and uncover underlying brain networks, thus helping promote clinical translation.
Collapse
Affiliation(s)
- Zheng Gan
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Han Li
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Paul Vincent Naser
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Manfred Josef Oswald
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Increased substance P and synaptic remodeling occur in the trigeminal sensory system with sustained osteoarthritic temporomandibular joint sensitivity. Pain Rep 2021; 6:e911. [PMID: 33977183 PMCID: PMC8104398 DOI: 10.1097/pr9.0000000000000911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Increased substance P and a loss of inhibitory synapses occurs within the brain's trigeminal sensory system with persistent, but not transient, temporomandibular joint sensitivity. Introduction: Temporomandibular joint (TMJ) pain is among the most prevalent musculoskeletal conditions and can result from atypical joint loading. Although TMJ pain is typically self-resolving, 15% of patients develop chronic TMJ pain that is recalcitrant to therapy and may be attributed to changes in pain processing centers. Although TMJ overloading induces pain and osteoarthritis, whether neuronal modifications in the trigeminal sensory system contribute to persistent TMJ pain is unknown. Objective: This study investigates changes in excitatory neuropeptides and synaptic transmission proteins in cases of transient and persistent TMJ sensitivity in a rat model. Methods: Rats underwent repeated jaw loading that produces transient (2N-load) or persistent (3.5N-load) sensitivity. In both groups, immunolabeling was used to assess substance P in the spinal trigeminal nucleus caudalis (Sp5C) and glutamate transporter 1 in the ventroposteriomedial thalamus early after loading. Synaptosomal Western blots were used to measure synaptic proteins in the caudal medulla and thalamus at a later time after loading. Results: Substance P increases transiently in the Sp5C early after loading that induces persistent sensitivity. However, glutamate transporter 1 is unchanged in the ventroposteriomedial thalamus. At a later time, synaptosomal Western blots show loss of the presynaptic tethering protein, synapsin, and the inhibitory scaffolding protein, gephyrin, in the thalamus with persistent, but not transient, sensitivity. No changes are identified in synapsin, phosphorylated synapsin, homer, or gephyrin in the caudal medulla. Conclusions: Substance P in the Sp5C and later loss of inhibitory synapses in the thalamus likely contribute to, or indicate, persistent TMJ pain.
Collapse
|
31
|
Repetitive non-invasive prefrontal stimulation reverses neuropathic pain via neural remodelling in mice. Prog Neurobiol 2021; 201:102009. [PMID: 33621593 DOI: 10.1016/j.pneurobio.2021.102009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/31/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Chronic neuropathic pain presents a major challenge to pharmacological therapy and neurostimulation-based alternatives are gaining interest. Although invasive and non-invasive motor cortex stimulation has been the focus of several studies, very little is known about the potential of targeting the prefrontal cortex. This study was designed to elucidate the analgesic potential of prefrontal stimulation in a translational context and to uncover the neural underpinnings thereof. Here, we report that non-invasive, repetitive direct anodal current transcranial stimulation (tDCS) of the prefrontal cortex exerted analgesia in mice with neuropathic pain for longer than a week. When applied at chronic stages of neuropathic pain, prefrontal tDCS reversed established allodynia and suppressed aversion and anxiety-related behaviours. Activity mapping as well as in vivo electrophysiological analyses revealed that although the cortex responds to acute tDCS with major excitation, repetitive prefrontal tDCS brings about large-scale silencing of cortical activity. Different classes of different classes of GABAergic interneurons and classes of excitatory neurons differs dramatically between single, acute vs and repetitive tDCS. Repetitive prefrontal tDCS alters basal activity as well as responsivity of a discrete set of distant cortical and sub-cortical areas to tactile stimuli, namely the rostral anterior cingulate cortex, the insular cortex, the ventrolateral periaqueductal grey and the spinal dorsal horn. This study thus makes a strong case for harnessing prefrontal cortical modulation for non-invasive transcranial stimulation paradigms to achieve long-lasting pain relief in established neuropathic pain states and provides valuable insights gained on neural mechanistic underpinnings of prefrontal tDCS in neuropathic pain.
Collapse
|
32
|
Chehade HD, Kobaïter-Maarrawi S, Komboz F, Farhat JP, Magnin M, Garcia-Larrea L, Maarrawi J. Somatosensory Thalamic Activity Modulation by Posterior Insular Stimulation: Cues to Clinical Application Based on Comparison of Frequencies in a Cat Model. Neuromodulation 2020; 24:229-239. [PMID: 33340196 DOI: 10.1111/ner.13343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The posterior insula (PI) has been proposed as a potential neurostimulation target for neuropathic pain relief as it represents a key-structure in pain processing. However, currently available data remain inconclusive as to efficient stimulation parameters. OBJECTIVE As frequency was shown to be the most correlated parameter to pain relief, this study aims to evaluate the potential modulatory effects of low frequency (LF-IS, 50 Hz) and high-frequency (HF-IS, 150 Hz) posterior insular stimulation on the activity of somatosensory thalamic nuclei. MATERIALS AND METHODS Epidural bipolar electrodes were placed over the PI of healthy adult cats, and extracellular single-unit activities of nociceptive (NS), nonnociceptive (NN), and wide dynamic range (WDR) thalamic cells were recorded within the ventral posterolateral nucleus and the medial division of the thalamic posterior complex. Mean discharge frequency and burst firing mode were analyzed before and after either LF-IS or HF-IS. RESULTS LF-IS showed a significant thalamic modulatory effects increasing the firing rate of NN cells (p ≤ 0.03) and decreasing the burst firing of NS cells (p ≤ 0.03), independently of the thalamic nucleus. Conversely, HF-IS did not induce any change in firing properties of the three recorded cell types. CONCLUSION These data indicate that 50 Hz IS could be a better candidate to control neuropathic pain.
Collapse
Affiliation(s)
- Hiba-Douja Chehade
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Sandra Kobaïter-Maarrawi
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Fares Komboz
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jean-Paul Farhat
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Michel Magnin
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Luis Garcia-Larrea
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Maarrawi
- Laboratory of Research in Neuroscience - Pôle technologie santé - Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
33
|
Chang MC, Kwak SG, Park D. The effect of rTMS in the management of pain associated with CRPS. Transl Neurosci 2020; 11:363-370. [PMID: 33335776 PMCID: PMC7711855 DOI: 10.1515/tnsci-2020-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023] Open
Abstract
Background Therapeutic management of pain in patients with complex regional pain syndrome (CRPS) is challenging. Repetitive transcranial magnetic stimulation (rTMS) has analgesic effects on several types of pain. However, its effect on CRPS has not been elucidated clearly. Therefore, we conducted a meta-analysis of the available clinical studies on rTMS treatment in patients with CRPS. Materials and methods A comprehensive literature search was conducted using the PubMed, EMBASE, Cochrane Library, and SCOPUS databases. We included studies published up to February 09, 2020, that fulfilled our inclusion and exclusion criteria. Data regarding measurement of pain using the visual analog scale before and after rTMS treatment were collected to perform the meta-analysis. The meta-analysis was performed using Comprehensive Meta-analysis Version 2. Results A total of three studies (one randomized controlled trial and two prospective observational studies) involving 41 patients were included in this meta-analysis. No significant reduction in pain was observed immediately after one rTMS treatment session or immediately after the entire schedule of rTMS treatment sessions (5 or 10 sessions; P > 0.05). However, pain significantly reduced 1 week after the entire schedule of rTMS sessions (P < 0.001). Conclusion rTMS appears to have a functional analgesic effect in patients with CRPS.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojinsunhwando-ro, Dong-gu, 44033, Ulsan, Republic of Korea
| |
Collapse
|
34
|
Pacheco-Barrios K, Meng X, Fregni F. Neuromodulation Techniques in Phantom Limb Pain: A Systematic Review and Meta-analysis. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:2310-2322. [PMID: 32176286 PMCID: PMC7593798 DOI: 10.1093/pm/pnaa039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the effects of neuromodulation techniques in adults with phantom limb pain (PLP). METHODS A systematic search was performed, comprising randomized controlled trials (RCTs) and quasi-experimental (QE) studies that were published from database inception to February 2019 and that measured the effects of neuromodulation in adults with PLP. Hedge's g effect size (ES) and 95% confidence intervals were calculated, and random-effects meta-analyses were performed. RESULTS Fourteen studies (nine RCTs and five QE noncontrolled studies) were included. The meta-analysis of RCTs showed significant effects for i) excitatory primary motor cortex (M1) stimulation in reducing pain after stimulation (ES = -1.36, 95% confidence interval [CI] = -2.26 to -0.45); ii) anodal M1 transcranial direct current stimulation (tDCS) in lowering pain after stimulation (ES = -1.50, 95% CI = -2.05 to 0.95), and one-week follow-up (ES = -1.04, 95% CI = -1.64 to 0.45). The meta-analysis of noncontrolled QE studies demonstrated a high rate of pain reduction after stimulation with transcutaneous electrical nerve stimulation (rate = 67%, 95% CI = 60% to 73%) and at one-year follow-up with deep brain stimulation (rate = 73%, 95% CI = 63% to 82%). CONCLUSIONS The evidence from RCTs suggests that excitatory M1 stimulation-specifically, anodal M1 tDCS-has a significant short-term effect in reducing pain scale scores in PLP. Various neuromodulation techniques appear to have a significant and positive impact on PLP, but due to the limited amount of data, it is not possible to draw more definite conclusions.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Xianguo Meng
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Shandong First Medical University & Shandong Academy of Medical Sciences, College of Sport Medicine and Rehabilitation, Jinan, Shandong Province, P.R. China
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Sekine N, Okada-Ogawa A, Asano S, Takanezawa D, Nishihara C, Tanabe N, Imamura Y. Analgesic effect of gum chewing in patients with burning mouth syndrome. J Oral Sci 2020; 62:387-392. [PMID: 32893197 DOI: 10.2334/josnusd.19-0501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The cause of burning mouth syndrome (BMS) is unknown. Although no effective treatment has been established, BMS patients frequently chew gum to alleviate pain. To identify the cause and new treatments for BMS, this study investigated the psychophysical and pharmacological properties of gum chewing to better understand its pain-relieving effects. In this prospective, blinded study, plasma catecholamine and serotonin levels and Profile of Mood States (POMS) scores were assessed after gum chewing or simulated chewing in 40 women (20 BMS patients and 20 age-matched controls). Visual analogue scale (VAS) scores for pain decreased significantly in BMS patients after gum chewing and simulated chewing. Moreover, resting VAS scores of BMS patients were significantly positively correlated with plasma adrenaline level. Furthermore, gum chewing was significantly correlated with lower plasma adrenaline level, VAS score, and tension-anxiety score. These results suggest that adrenaline is important in the pathogenesis of BMS pain and that the analgesic effect of gum chewing is induced through the potential effects of anxiety reduction, although this effect might not be specific to BMS. In addition, the analgesic effect of gum chewing was not induced solely by chewing motion.
Collapse
Affiliation(s)
- Naohiko Sekine
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Orofacial Pain Clinic, Nihon University Dental Hospital.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Sayaka Asano
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Chisa Nishihara
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Orofacial Pain Clinic, Nihon University Dental Hospital.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
36
|
Pacheco-Barrios K, Cardenas-Rojas A, Thibaut A, Costa B, Ferreira I, Caumo W, Fregni F. Methods and strategies of tDCS for the treatment of pain: current status and future directions. Expert Rev Med Devices 2020; 17:879-898. [PMID: 32845195 PMCID: PMC7674241 DOI: 10.1080/17434440.2020.1816168] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique that has been widely studied for the treatment of chronic pain. It is considered a promising and safe alternative pain therapy. Different targets have been tested, each having their own particular mechanisms for modulating pain perception. AREAS COVERED We discuss the current state of the art of tDCS to manage pain and future strategies to optimize tDCS' effects. Current strategies include primary motor cortex tDCS, prefrontal tDCS and tDCS combined with behavioral interventions while future strategies, on the other hand, include high-intensity tDCS, transcutaneous spinal direct current stimulation, cerebellar tDCS, home-based tDCS, and tDCS with extended number of sessions. EXPERT COMMENTARY It has been shown that the stimulation of the prefrontal and primary motor cortex is efficient for pain reduction while a few other new strategies, such as high-intensity tDCS and network-based tDCS, are believed to induce strong neuroplastic effects, although the underlying neural mechanisms still need to be fully uncovered. Hence, conventional tDCS approaches demonstrated promising effects to manage pain and new strategies are under development to enhance tDCS effects and make this approach more easily available by using, for instance, home-based devices.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aurore Thibaut
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Coma Science Group, GIGA Consciousness, University of Liege, Liège, Belgium
| | - Beatriz Costa
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Isadora Ferreira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wolnei Caumo
- Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA), Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Islam J, Kc E, Oh BH, Kim S, Hyun SH, Park YS. Optogenetic stimulation of the motor cortex alleviates neuropathic pain in rats of infraorbital nerve injury with/without CGRP knock-down. J Headache Pain 2020; 21:106. [PMID: 32847499 PMCID: PMC7448516 DOI: 10.1186/s10194-020-01174-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous studies have reported that electrical stimulation of the motor cortex is effective in reducing trigeminal neuropathic pain; however, the effects of optical motor cortex stimulation remain unclear. OBJECTIVE The present study aimed to investigate whether optical stimulation of the primary motor cortex can modulate chronic neuropathic pain in rats with infraorbital nerve constriction injury. METHODS Animals were randomly divided into a trigeminal neuralgia group, a sham group, and a control group. Trigeminal neuropathic pain was generated via constriction of the infraorbital nerve and animals were treated via selective inhibition of calcitonin gene-related peptide in the trigeminal ganglion. We assessed alterations in behavioral responses in the pre-stimulation, stimulation, and post-stimulation conditions. In vivo extracellular recordings were obtained from the ventral posteromedial nucleus of the thalamus, and viral and α-CGRP expression were investigated in the primary motor cortex and trigeminal ganglion, respectively. RESULTS We found that optogenetic stimulation significantly improved pain behaviors in the trigeminal neuralgia animals and it provided more significant improvement with inhibited α-CGRP state than active α-CGRP state. Electrophysiological recordings revealed decreases in abnormal thalamic firing during the stimulation-on condition. CONCLUSION Our findings suggest that optical motor cortex stimulation can alleviate pain behaviors in a rat model of trigeminal neuropathic pain. Transmission of trigeminal pain signals can be modulated via knock-down of α-CGRP and optical motor cortex stimulation.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Elina Kc
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byeong Ho Oh
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, South Korea
| | - Soochong Kim
- ISCRM, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sang-Hwan Hyun
- ISCRM, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, South Korea.
- ISCRM, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, South Korea.
| |
Collapse
|
38
|
Meeker TJ, Jupudi R, Lenz FA, Greenspan JD. New Developments in Non-invasive Brain Stimulation in Chronic Pain. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:280-292. [PMID: 33473332 DOI: 10.1007/s40141-020-00260-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review The goal of this review is to present a summary of the recent literature of a non-invasive brain stimulation (NIBS) to alleviate pain in people with chronic pain syndromes. This article reviews the current evidence for the use of transcranial direct current (tDCS) and repetitive transcranial magnetic stimulation (rTMS) to improve outcomes in chronic pain. Finally, we introduce the reader to novel stimulation methods that may improve therapeutic outcomes in chronic pain. Recent Findings While tDCS is approved for treatment of fibromyalgia in Canada and the European Union, no NIBS method is currently approved for chronic pain in the United States. Increasing sample sizes in randomized clinical trials (RCTs) seems the most efficient way to increase confidence in initial promising results. Trends at funding agencies reveal increased interest and support for NIBS such as recent Requests for Application from the National Institutes of Health. NIBS in conjunction with cognitive behavioral therapy and physical therapy may enhance outcomes in chronic pain. Novel stimulation methods, such as transcranial ultrasound stimulation, await rigorous study in chronic pain.
Collapse
Affiliation(s)
- Timothy J Meeker
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| | - Rithvic Jupudi
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Frederik A Lenz
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Joel D Greenspan
- Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
39
|
Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep 2020; 10:7195. [PMID: 32346080 PMCID: PMC7189245 DOI: 10.1038/s41598-020-64177-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/10/2020] [Indexed: 01/21/2023] Open
Abstract
Invasive motor Cortex Stimulation (iMCS) was introduced in the 1990's for the treatment of chronic neuropathic orofacial pain (CNOP), although its effectiveness remains doubtful. However, CNOP is known to be a heterogeneous group of orofacial pain disorders, which can lead to different responses to iMCS. Therefore, this paper investigated (1) whether the effectiveness of iMCS is significantly different among different CNOP disorders and (2) whether other confounding factors can be impacting iMCS results in CNOP. A systematic review and meta-analysis using a linear mixed-model was performed. Twenty-three papers were included, totaling 140 CNOP patients. Heterogeneity of the studies showed to be 55.8%. A visual analogue scale (VAS) measured median pain relief of 66.5% (ranging from 0-100%) was found. Linear mixed-model analysis showed that patients suffering from trigeminal neuralgia responded significantly more favorable to iMCS than patients suffering from dysfunctional pain syndromes (p = 0.030). Also, patients suffering from CNOP caused by (supra)nuclear lesions responded marginally significantly better to iMCS than patients suffering from CNOP due to trigeminal nerve lesions (p = 0.049). No other confounding factors were elucidated. This meta-analysis showed that patients suffering from trigeminal neuralgia and patients suffering from (supra)nuclear lesions causing CNOP responded significantly more favorable than others on iMCS. No other confounding factors were found relevant.
Collapse
|
40
|
Hughes SW, Ward G, Strutton PH. Anodal transcranial direct current stimulation over the primary motor cortex attenuates capsaicin‐induced dynamic mechanical allodynia and mechanical pain sensitivity in humans. Eur J Pain 2020; 24:1130-1137. [DOI: 10.1002/ejp.1557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sam W. Hughes
- The Nick Davey Laboratory Faculty of Medicine Imperial College London London UK
| | - Grace Ward
- The Nick Davey Laboratory Faculty of Medicine Imperial College London London UK
| | - Paul H. Strutton
- The Nick Davey Laboratory Faculty of Medicine Imperial College London London UK
| |
Collapse
|
41
|
Yang S, Chang MC. Effect of Repetitive Transcranial Magnetic Stimulation on Pain Management: A Systematic Narrative Review. Front Neurol 2020; 11:114. [PMID: 32132973 PMCID: PMC7040236 DOI: 10.3389/fneur.2020.00114] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, clinicians have been using repetitive transcranial magnetic stimulation (rTMS) for treating various pain conditions. This systematic narrative review aimed to examine the use and efficacy of rTMS for controlling various pain conditions. A PubMed search was conducted for articles that were published until June 7, 2019 and used rTMS for pain alleviation. The key search phrase for identifying potentially relevant articles was (repetitive transcranial magnetic stimulation AND pain). The following inclusion criteria were applied for article selection: (1) patients with pain, (2) rTMS was applied for pain management, and (3) follow-up evaluations were performed after rTMS stimulation to assess the reduction in pain. Review articles were excluded. Overall, 1,030 potentially relevant articles were identified. After reading the titles and abstracts and assessing eligibility based on the full-text articles, 106 publications were finally included in our analysis. Overall, our findings suggested that rTMS is beneficial for treating neuropathic pain of various origins, such as central pain, pain from peripheral nerve disorders, fibromyalgia, and migraine. Although data on the use of rTMS for orofacial pain, including trigeminal neuralgia, phantom pain, low back pain, myofascial pain syndrome, pelvic pain, and complex regional pain syndrome, were promising, there was insufficient evidence to determine the efficacy of rTMS for treating these conditions. Therefore, further studies are needed to validate the effects of rTMS on pain relief in these conditions. Overall, this review will help guide clinicians in making informed decisions regarding whether rTMS is an appropriate option for managing various pain conditions.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman's University Seoul Hospital, Ewha Woman's University School of Medicine, Seoul, South Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
42
|
Cury RG, Teixeira MJ, Galhardoni R, Silva V, Iglesio R, França C, Arnaut D, Fonoff ET, Barbosa ER, Ciampi de Andrade D. Connectivity Patterns of Subthalamic Stimulation Influence Pain Outcomes in Parkinson's Disease. Front Neurol 2020; 11:9. [PMID: 32116998 PMCID: PMC7028764 DOI: 10.3389/fneur.2020.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Pain is highly prevalent in Parkinson's disease and is associated with significant reduction in health-related quality of life. Subthalamic deep brain stimulation can produce significant pain relief in a subset of patients after surgery. However, the mechanism by which deep brain stimulation modulates sensory function in Parkinson's disease remains uncertain. Objective: To describe the motor and pain outcomes of deep brain stimulation applied to a series of patients with Parkinson's disease and to determine whether the structural connectivity between the volume of tissue activated and different regions of the brain was associated with the changes of these outcomes after surgery. Methods: Data from a long-term prospective cohort of 32 Parkinson's disease patients with subthalamic stimulation were combined with available human connectome to identify connections consistently associated with clinical improvement (Unified Parkinson Disease Rating Scale), pain intensity, and experimental cold pain threshold after surgery. Results: The connectivity between the volume of tissue activated and a distributed network of sensory brain regions (prefrontal, insular and cingulate cortex, and postcentral gyrus) was inversely correlated with pain intensity improvement and reduced sensitivity to cold pain after surgery (p < 0.01). The connectivity strength with the supplementary motor area positively correlated with motor and pain threshold improvement (p < 0.05). Conclusions: These data suggest that the pattern of the connectivity between the region stimulated and specific brain cortical area might be responsible, in part, for the successful control of motor and pain symptoms by subthalamic deep brain stimulation in Parkinson's disease.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Galhardoni
- Transcranial Magnetic Stimulation Laboratory, Psychiatry Institute, University of São Paulo, São Paulo, Brazil
| | - Valquiria Silva
- Transcranial Magnetic Stimulation Laboratory, Psychiatry Institute, University of São Paulo, São Paulo, Brazil.,Department of Neurology, Pain Center, LIM 62, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Iglesio
- Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carina França
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Débora Arnaut
- Department of Neurology, Pain Center, LIM 62, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Erich Talamoni Fonoff
- Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Department of Neurology, Pain Center, LIM 62, School of Medicine, University of São Paulo, São Paulo, Brazil.,Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Henssen D, Giesen E, van der Heiden M, Kerperien M, Lange S, van Cappellen van Walsum AM, Kurt E, van Dongen R, Schutter D, Vissers K. A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals. Neurosci Lett 2020; 719:134489. [DOI: 10.1016/j.neulet.2019.134489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023]
|
44
|
Bismuth J, Vialatte F, Lefaucheur JP. Relieving peripheral neuropathic pain by increasing the power-ratio of low-β over high-β activities in the central cortical region with EEG-based neurofeedback: Study protocol for a controlled pilot trial (SMRPain study). Neurophysiol Clin 2020; 50:5-20. [DOI: 10.1016/j.neucli.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
|
45
|
Cha M, Lee KH, Lee BH. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep 2020; 10:943. [PMID: 31969638 PMCID: PMC6976635 DOI: 10.1038/s41598-020-57797-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Although astrocytes are known to regulate synaptic transmission and affect new memory formation by influencing long-term potentiation and functional synaptic plasticity, their role in pain modulation is poorly understood. Motor cortex stimulation (MCS) has been used to reduce neuropathic pain through the incertothalamic pathway, including the primary motor cortex (M1) and the zona incerta (ZI). However, there has been no in-depth study of these modulatory effects and region-specific changes in neural plasticity. In this study, we investigated the effects of MCS-induced pain modulation as well as the relationship between the ZI neuroplasticity and MCS-induced pain alleviation in neuropathic pain (NP). MCS-induced threshold changes were evaluated after daily MCS. Then, the morphological changes of glial cells were compared by tissue staining. In order to quantify the neuroplasticity, MAP2, PSD95, and synapsin in the ZI and M1 were measured and analyzed with western blot. In behavioral test, repetitive MCS reduced NP in nerve-injured rats. We also observed recovered GFAP expression in the NP with MCS rats. In the NP with sham MCS rats, increased CD68 level was observed. In the NP with MCS group, increased mGluR1 expression was observed. Analysis of synaptogenesis-related molecules in the M1 and ZI revealed that synaptic changes occured in the M1, and increased astrocytes in the ZI were more closely associated with pain alleviation after MCS. Our findings suggest that MCS may modulate the astrocyte activities in the ZI and synaptic changes in the M1. Our results may provide new insight into the important and numerous roles of astrocytes in the formation and function.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Brain Research Institute, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
46
|
de Andrade EM, Martinez RCR, Pagano RL, Lopes PSS, Auada AVV, Gouveia FV, Antunes GF, Assis DV, Lebrun I, Fonoff ET. Neurochemical effects of motor cortex stimulation in the periaqueductal gray during neuropathic pain. J Neurosurg 2020; 132:239-251. [PMID: 30611141 DOI: 10.3171/2018.7.jns173239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/24/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Motor cortex stimulation (MCS) is a neurosurgical technique used to treat patients with refractory neuropathic pain syndromes. MCS activates the periaqueductal gray (PAG) matter, which is one of the major centers of the descending pain inhibitory system. However, the neurochemical mechanisms in the PAG that underlie the analgesic effect of MCS have not yet been described. The main goal of this study was to investigate the neurochemical mechanisms involved in the analgesic effect induced by MCS in neuropathic pain. Specifically, we investigated the release of γ-aminobutyric acid (GABA), glycine, and glutamate in the PAG and performed pharmacological antagonism experiments to validate of our findings. METHODS Male Wistar rats with surgically induced chronic constriction of the sciatic nerve, along with sham-operated rats and naive rats, were implanted with both unilateral transdural electrodes in the motor cortex and a microdialysis guide cannula in the PAG and subjected to MCS. The MCS was delivered in single 15-minute sessions. Neurotransmitter release was evaluated in the PAG before, during, and after MCS. Quantification of the neurotransmitters GABA, glycine, and glutamate was performed using a high-performance liquid chromatography system. The mechanical nociceptive threshold was evaluated initially, on the 14th day following the surgery, and during the MCS. In another group of neuropathic rats, once the analgesic effect after MCS was confirmed by the mechanical nociceptive test, rats were microinjected with saline or a glycine antagonist (strychnine), a GABA antagonist (bicuculline), or a combination of glycine and GABA antagonists (strychnine+bicuculline) and reevaluated for the mechanical nociceptive threshold during MCS. RESULTS MCS reversed the hyperalgesia induced by peripheral neuropathy in the rats with chronic sciatic nerve constriction and induced a significant increase in the glycine and GABA levels in the PAG in comparison with the naive and sham-treated rats. The glutamate levels remained stable under all conditions. The antagonism of glycine, GABA, and the combination of glycine and GABA reversed the MCS-induced analgesia. CONCLUSIONS These results suggest that the neurotransmitters glycine and GABA released in the PAG may be involved in the analgesia induced by cortical stimulation in animals with neuropathic pain. Further investigation of the mechanisms involved in MCS-induced analgesia may contribute to clinical improvements for the treatment of persistent neuropathic pain syndromes.
Collapse
Affiliation(s)
- Emerson Magno de Andrade
- 1Department of Neurology, School of Medicine, University of São Paulo
- 2Laboratory of Neuroscience, Hospital Sirio-Libanes; and
| | | | | | | | - Aline V V Auada
- 3Biochemistry and Biophysics Laboratory, Butantan Institute, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ivo Lebrun
- 3Biochemistry and Biophysics Laboratory, Butantan Institute, University of São Paulo, São Paulo, Brazil
| | - Erich T Fonoff
- 1Department of Neurology, School of Medicine, University of São Paulo
- 2Laboratory of Neuroscience, Hospital Sirio-Libanes; and
| |
Collapse
|
47
|
Islam J, Kc E, Oh BH, Moon HC, Park YS. Pain modulation effect on motor cortex after optogenetic stimulation in shPKCγ knockdown dorsal root ganglion-compressed Sprague-Dawley rat model. Mol Pain 2020; 16:1744806920943685. [PMID: 32865105 PMCID: PMC7466896 DOI: 10.1177/1744806920943685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain can be generated by chronic compression of dorsal root ganglion (CCD). Stimulation of primary motor cortex can disrupt the nociceptive sensory signal at dorsal root ganglion level and reduce pain behaviors. But the mechanism behind it is still implicit. Protein kinase C gamma is known as an essential enzyme for the development of neuropathic pain, and specific inhibitor of protein kinase C gamma can disrupt the sensory signal and reduce pain behaviors. Optogenetic stimulation has been emerged as a new and promising conducive method for refractory neuropathic pain. The aim of this study was to provide evidence whether optical stimulation of primary motor cortex can modulate chronic neuropathic pain in CCD rat model. Animals were randomly divided into CCD group, sham group, and control group. Dorsal root ganglion-compressed neuropathic pain model was established in animals, and knocking down of protein kinase C gamma was also accomplished. Pain behavioral scores were significantly improved in the short hairpin Protein Kinase C gamma knockdown CCD animals during optic stimulation. Ventral posterolateral thalamic firing inhibition was also observed during light stimulation on motor cortex in CCD animal. We assessed alteration of pain behaviors in pre-light off, stimulation-light on, and post-light off state. In vivo extracellular recording of the ventral posterolateral thalamus, viral expression in the primary motor cortex, and protein kinase C gamma expression in dorsal root ganglion were investigated. So, optical cortico-thalamic inhibition by motor cortex stimulation can improve neuropathic pain behaviors in CCD animal, and knocking down of protein kinase C gamma plays a conducive role in the process. This study provides feasibility for in vivo optogenetic stimulation on primary motor cortex of dorsal root ganglion-initiated neuropathic pain.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
| | - Elina Kc
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
| | - Byeong Ho Oh
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Chungbuk National University Hospital, Republic of Korea
| | - Hyeong Cheol Moon
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Republic of Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Chungbuk National University Hospital, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Republic of Korea
| |
Collapse
|
48
|
Han F, Liu H, Wang K, Yang J, Yang L, Liu J, Zhang M, Dun W. Correlation Between Thalamus-Related Functional Connectivity and Serum BDNF Levels During the Periovulatory Phase of Primary Dysmenorrhea. Front Hum Neurosci 2019; 13:333. [PMID: 31632254 PMCID: PMC6779153 DOI: 10.3389/fnhum.2019.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/09/2019] [Indexed: 01/30/2023] Open
Abstract
The thalamus is a key region for the transmission of nociceptive information in the central modulation of pain and has been studied in the setting of numerous chronic pain conditions. Brain-derived neurotrophic factor (BDNF) is considered an important modulator for mediating nociceptive pathways in chronic pain. The present study aimed to investigate whether there was thalamus-related abnormal functional connectivity or relevant serum BDNF level alterations during periovulation in long-term primary dysmenorrhea (PDM). Thalamic subregions were defined according to the Human Brainnetome Atlas. Functional connectivity analyses were performed in 36 patients in the periovulatory phase and 29 age-, education-, and gender-matched healthy controls. Serum BDNF levels were evaluated by enzyme-linked immunosorbent assay and a significantly higher BDNF level was detected in PDM patients. Compared with HCs, PDM patients had abnormal functional connectivity of thalamic-subregions, mainly involving with prefrontal cortex, sensorimotor cortex, and temporal cortex. In addition, the functional connectivity of thalamic-subregions showed significant interactive effect correlated with serum BDNF level between PDM and HCs. It has been suggested that there were maladaptive or adoptive alteration associated with chronic menstrual pain even without the ongoing menstrual pain. BDNF might play a role in the development and chronicity of central nervous system dysfunction. These findings provided more accurate information about the involvement of the thalamus in the pathophysiology of PDM.
Collapse
Affiliation(s)
- Fang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongjuan Liu
- Department of Intensive Care Unit, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Wang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Yang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Yang
- Department of Medical Imaging, Chong Qing Medical University, Chong Qing, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanghuan Dun
- Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
49
|
Mendonça MD, Seromenho-Santos A, Caetano A, Reizinho C. Motor cortex stimulation for refractory demyelinating disease-associated trigeminal neuralgia. CEPHALALGIA REPORTS 2019. [DOI: 10.1177/2515816319866149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Patients with demyelinating diseases (DDs) such as multiple sclerosis have a 20-fold higher risk of developing trigeminal neuralgia (TN). DD-related TN is more frequently refractory to the usual medical and surgical treatment. We report the case of a 57-year-old man presenting to our neurology outpatient clinic with a 12-year history of medical and surgical refractory TN associated with demyelinating lesions on magnetic resonance imaging. After a new failure of pharmacological treatment with oxcarbazepine, pregabalin, baclofen, and duloxetine, motor cortex stimulation (MCS) was performed, and the patient remained mostly pain-free, without any pharmacological treatment during the 3.5 years of follow-up. MCS may be a useful approach for DD-related refractory TN, and further studies can clarify its role in TN management.
Collapse
Affiliation(s)
- Marcelo D Mendonça
- Serviço de Neurologia, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alexandra Seromenho-Santos
- Department of Anatomy, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Serviço de Neurocirurgia, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - André Caetano
- Serviço de Neurologia, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Carla Reizinho
- Serviço de Neurocirurgia, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| |
Collapse
|
50
|
Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan JD. Non-invasive Motor Cortex Neuromodulation Reduces Secondary Hyperalgesia and Enhances Activation of the Descending Pain Modulatory Network. Front Neurosci 2019; 13:467. [PMID: 31139047 PMCID: PMC6519323 DOI: 10.3389/fnins.2019.00467] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
Central sensitization is a driving mechanism in many chronic pain patients, and manifests as hyperalgesia and allodynia beyond any apparent injury. Recent studies have demonstrated analgesic effects of motor cortex (M1) stimulation in several chronic pain disorders, yet its neural mechanisms remain uncertain. We evaluated whether anodal M1 transcranial direct current stimulation (tDCS) would mitigate central sensitization as measured by indices of secondary hyperalgesia. We used a capsaicin-heat pain model to elicit secondary mechanical hyperalgesia in 27 healthy subjects. In an assessor and subject-blind randomized, sham-controlled, crossover trial, anodal M1 tDCS decreased the intensity of pinprick hyperalgesia more than cathodal or sham tDCS. To elucidate the mechanism driving analgesia, subjects underwent fMRI of painful mechanical stimuli prior to and following induction of the pain model, after receiving M1 tDCS. We hypothesized that anodal M1 tDCS would enhance engagement of a descending pain modulatory (DPM) network in response to mechanical stimuli. Anodal tDCS normalized the effects of central sensitization on neurophysiological responses to mechanical pain in the medial prefrontal cortex, pregenual anterior cingulate cortex, and periaqueductal gray, important regions in the DPM network. Taken together, these results provide support for the hypothesis that anodal M1-tDCS reduces central sensitization-induced hyperalgesia through the DPM network in humans.
Collapse
Affiliation(s)
- Timothy J. Meeker
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shariq A. Khan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Joel D. Greenspan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|