1
|
Sanders JH, Taiwo KM, Adekanye GA, Bali A, Zhang Y, Paulsen CE. Calmodulin binding is required for calcium mediated TRPA1 desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627969. [PMID: 39713425 PMCID: PMC11661184 DOI: 10.1101/2024.12.11.627969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Calcium (Ca2+) ions affect nearly all aspects of biology. Excessive Ca2+ entry is cytotoxic and Ca2+-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca2+-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca2+ regulation with initial channel potentiation followed by rapid desensitization. The molecular mechanisms of TRPA1 Ca2+ regulation and whether CaM plays a role remain elusive. We find that TRPA1 binds CaM best at basal Ca2+ concentration, that they co-localize in resting cells, and that CaM suppresses TRPA1 activity. Combining biochemical, biophysical, modeling, NMR spectroscopy, and functional approaches, we identify an evolutionarily conserved, high-affinity CaM binding element in the distal TRPA1 C-terminus (DCTCaMBE). Genetic or biochemical perturbation of Ca2+/CaM binding to the TRPA1 DCTCaMBE yields hyperactive channels that exhibit drastic slowing of desensitization with no effect on potentiation. Ca2+/CaM TRPA1 regulation does not require the N-lobe, raising the possibility that CaM is not the Ca2+ sensor, per se. Higher extracellular Ca2+ can partially rescue slowed desensitization suggesting Ca2+/CaM binding to the TRPA1 DCTCaMBE primes an intrinsic TRPA1 Ca2+ binding site that, upon binding Ca2+, triggers rapid desensitization. Collectively, our results identify a critical regulatory element in an unstructured TRPA1 region highlighting the importance of these domains, they reveal Ca2+/CaM is an essential TRPA1 auxiliary subunit required for rapid desensitization that establishes proper channel function with implications for all future TRPA1 work, and they uncover a mechanism for receptor regulation by Ca2+/CaM that expands the scope of CaM biology.
Collapse
Affiliation(s)
- Justin H. Sanders
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kehinde M. Taiwo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Glory A. Adekanye
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yuekang Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Candice E. Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2024:10.1007/s12264-024-01272-5. [PMID: 39266936 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
3
|
Wei D, Birla H, Dou Y, Mei Y, Huo X, Whitehead V, Osei-Owusu P, Feske S, Patafio G, Tao Y, Hu H. PGE2 Potentiates Orai1-Mediated Calcium Entry Contributing to Peripheral Sensitization. J Neurosci 2024; 44:e0329232023. [PMID: 37952941 PMCID: PMC10851687 DOI: 10.1523/jneurosci.0329-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.
Collapse
Affiliation(s)
- Dongyu Wei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Yixiao Mei
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Xiaodong Huo
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Victoria Whitehead
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Patrick Osei-Owusu
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, New York 10016
| | - Giovanna Patafio
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Yuanxiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
- Department of Anesthesiology, Rutgers New Jersey Medical School Newark, Newark, New Jersey 07103
| |
Collapse
|
4
|
Wang W, Wang Q, Huang J, Li H, Li F, Li X, Liu R, Xu M, Chen J, Mao Y, Ma L. Store-operated calcium entry mediates hyperalgesic responses during neuropathy. FEBS Open Bio 2023; 13:2020-2034. [PMID: 37606998 PMCID: PMC10626277 DOI: 10.1002/2211-5463.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023] Open
Abstract
Neuropathic pain (NP), resulting from nerve injury, alters neural plasticity in spinal cord and brain via the release of inflammatory mediators. The remodeling of store-operated calcium entry (SOCE) involves the refilling of calcium in the endoplasmic reticulum via STIM1 and Orai1 proteins and is crucial for maintaining neural plasticity and neurotransmitter release. The mechanism underlying SOCE-mediated NP remains largely unknown. In this study, we found SOCE-mediated calcium refilling was significantly higher during neuropathic pain, and the major component Orai1 was specifically co-localized with neuronal markers. Intrathecal injection of SOCE antagonist SKF96365 remarkably alleviated nerve injury- and formalin-induced pain and suppressed c-Fos expression in response to innocuous mechanical stimulation. RNA sequencing revealed that SKF96365 altered the expression of spinal transcription factors, including Fos, Junb, and Socs3, during neuropathic pain. In order to identify the genes critical for SKF96365-induced effects, we performed weighted gene co-expression network analysis (WGCNA) to identify the genes most correlated with paw withdrawal latency phenotypes. Of the 16 modules, MEsalmon module was the most highly correlated with SKF96365 induced effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the enriched genes of MEsalmon module were significantly related to Toll-like receptor signaling, steroid biosynthesis, and chemokine signaling, which may mediate the analgesic effect caused by SKF9636 treatment. Additionally, the SOCE antagonist YM-58483 produced similar analgesic effects in nerve injury- and formalin-induced pain. Our results suggest that manipulation of spinal SOCE signaling might be a promising target for pain relief by regulating neurotransmitter production and spinal transcription factor expression.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| | - Qiru Wang
- Department of PharmacyFudan University Shanghai Cancer Center, Minhang BranchShanghaiChina
| | - Jinlu Huang
- Department of PharmacyShanghai Jiao Tong University Affiliated Sixth People's HospitalChina
| | - Hong Li
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fangjie Li
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Li
- Department of Laboratory MedicineChanghai HospitalShanghaiChina
| | - Ruimei Liu
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ming Xu
- Department of Digital and Cosmetic Dentistry, School & Hospital of StomatologyTongji UniversityShanghaiChina
| | - Jinghong Chen
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| | - Yemeng Mao
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| | - Le Ma
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersChina
| |
Collapse
|
5
|
Son GY, Tu NH, Santi MD, Lopez SL, Souza Bomfim GH, Vinu M, Zhou F, Chaloemtoem A, Alhariri R, Idaghdour Y, Khanna R, Ye Y, Lacruz RS. The Ca 2+ channel ORAI1 is a regulator of oral cancer growth and nociceptive pain. Sci Signal 2023; 16:eadf9535. [PMID: 37669398 PMCID: PMC10747475 DOI: 10.1126/scisignal.adf9535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Oral cancer causes pain associated with cancer progression. We report here that the function of the Ca2+ channel ORAI1 is an important regulator of oral cancer pain. ORAI1 was highly expressed in tumor samples from patients with oral cancer, and ORAI1 activation caused sustained Ca2+ influx in human oral cancer cells. RNA-seq analysis showed that ORAI1 regulated many genes encoding oral cancer markers such as metalloproteases (MMPs) and pain modulators. Compared with control cells, oral cancer cells lacking ORAI1 formed smaller tumors that elicited decreased allodynia when inoculated into mouse paws. Exposure of trigeminal ganglia neurons to MMP1 evoked an increase in action potentials. These data demonstrate an important role of ORAI1 in oral cancer progression and pain, potentially by controlling MMP1 abundance.
Collapse
Affiliation(s)
- Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| | - Nguyen Huu Tu
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Maria Daniela Santi
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Santiago Loya Lopez
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | | | - Manikandan Vinu
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Fang Zhou
- Department of Pathology, New York University Langone Health, New York, NY 10010
| | - Ariya Chaloemtoem
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rama Alhariri
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Yi Ye
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| |
Collapse
|
6
|
Fonseca MDC, Marazzi-Diniz PHS, Leite MF, Ehrlich BE. Calcium signaling in chemotherapy-induced neuropathy. Cell Calcium 2023; 113:102762. [PMID: 37244172 DOI: 10.1016/j.ceca.2023.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Alterations in calcium (Ca2+) signaling is a major mechanism in the development of chemotherapy-induced peripheral neuropathy (CIPN), a side effect caused by multiple chemotherapy regimens. CIPN is associated with numbness and incessant tingling in hands and feet which diminishes quality of life during treatment. In up to 50% of survivors, CIPN is essentially irreversible. There are no approved, disease-modifying treatments for CIPN. The only recourse for oncologists is to modify the chemotherapy dose, a situation that can compromise optimal chemotherapy and impact patient outcomes. Here we focus on taxanes and other chemotherapeutic agents that work by altering microtubule assemblies to kill cancer cells, but also have off-target toxicities. There have been many molecular mechanisms proposed to explain the effects of microtubule-disrupting drugs. In neurons, an initiating step in the off-target effects of treatment by taxane is binding to neuronal calcium sensor 1 (NCS1), a sensitive Ca2+ sensor protein that maintains the resting Ca2+ concentration and dynamically enhances responses to cellular stimuli. The taxane/NCS1 interaction causes a Ca2+ surge that starts a pathophysiological cascade of consequences. This same mechanism contributes to other conditions including chemotherapy-induced cognitive impairment. Strategies to prevent the Ca2+ surge are the foundation of current work.
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Paulo H S Marazzi-Diniz
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M Fatima Leite
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Barbara E Ehrlich
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
7
|
Bouron A. Neuronal Store-Operated Calcium Channels. Mol Neurobiol 2023:10.1007/s12035-023-03352-5. [PMID: 37118324 DOI: 10.1007/s12035-023-03352-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
The endoplasmic reticulum (ER) is the major intracellular calcium (Ca2+) storage compartment in eukaryotic cells. In most instances, the mobilization of Ca2+ from this store is followed by a delayed and sustained uptake of Ca2+ through Ca2+-permeable channels of the cell surface named store-operated Ca2+ channels (SOCCs). This gives rise to a store-operated Ca2+ entry (SOCE) that has been thoroughly investigated in electrically non-excitable cells where it is the principal regulated Ca2+ entry pathway. The existence of this Ca2+ route in neurons has long been a matter of debate. However, a growing body of experimental evidence indicates that the recruitment of Ca2+ from neuronal ER Ca2+ stores generates a SOCE. The present review summarizes the main studies supporting the presence of a depletion-dependent Ca2+ entry in neurons. It also addresses the question of the molecular composition of neuronal SOCCs, their expression, pharmacological properties, as well as their physiological relevance.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, 38000, Grenoble, France.
| |
Collapse
|
8
|
Chang YC, Lo YC, Chang HS, Lin HC, Chiu CC, Chen YF. An efficient cellular image-based platform for high-content screening of neuroprotective agents against chemotherapy-induced neuropathy. Neurotoxicology 2023; 96:118-128. [PMID: 37086979 DOI: 10.1016/j.neuro.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect, with no approved therapy for prevention or treatment. Here, we aimed to establish a high-content image platform based on the neurite outgrowth of dorsal root ganglia (DRG)-derived neuron cells for the discovery of neuroprotective agents against paclitaxel-induced CIPN. ND7/23 cells, an immortalized hybrid DRG cell line, were maturely differentiated by induction with nerve growth factor and upregulation of intracellular cAMP levels. High-content image analyses of the neurofilament-stained neurite network showed that paclitaxel disrupted the neurite outgrowth of well-differentiated ND7/23 DRG neuron cells, recapitulating characteristic effects of paclitaxel on primary cultured DRG neurons. This process coincided with the upregulated activity of store-operated Ca2+ entry, similar to those found in rodent models of paclitaxel-induced CIPN. The previously identified neuroprotective agents, minoxidil and 8-Br-cyclic adenosine monophosphate ribose (8-Br-cADPR), attenuated the reduction in total neurite outgrowth in paclitaxel-damaged ND7/23 cells. Additionally, the total neurite outgrowth of well-differentiated ND7/23 cells was concentration-dependently reduced by the neurotoxic chemotherapeutic agents, oxaliplatin and bortezomib, but not the less neurotoxic 5-fluorouracil. We demonstrated that high-content analyses of neurite morphology in well-differentiated DRG neuron-derived cells provide an effective, reproducible, and high-throughput strategy for developing therapeutics against CIPN.
Collapse
Affiliation(s)
- Yang-Chen Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Ching Lin
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, School of Life Science, Kaohsiung Medical University, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Buijs TJ, Vilar B, Tan C, McNaughton PA. STIM1 and ORAI1 form a novel cold transduction mechanism in sensory and sympathetic neurons. EMBO J 2023; 42:e111348. [PMID: 36524441 PMCID: PMC9890232 DOI: 10.15252/embj.2022111348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Moderate coolness is sensed by TRPM8 ion channels in peripheral sensory nerves, but the mechanism by which noxious cold is detected remains elusive. Here, we show that somatosensory and sympathetic neurons express two distinct mechanisms to detect noxious cold. In the first, inhibition by cold of a background outward current causes membrane depolarization that activates an inward current through voltage-dependent calcium (CaV ) channels. A second cold-activated mechanism is independent of membrane voltage, is inhibited by blockers of ORAI ion channels and by downregulation of STIM1, and is recapitulated in HEK293 cells by co-expression of ORAI1 and STIM1. Using total internal reflection fluorescence microscopy we found that cold causes STIM1 to aggregate with and activate ORAI1 ion channels, in a mechanism similar to that underlying store-operated calcium entry (SOCE), but directly activated by cold and not by emptying of calcium stores. This novel mechanism may explain the phenomenon of cold-induced vasodilation (CIVD), in which extreme cold increases blood flow in order to preserve the integrity of peripheral tissues.
Collapse
Affiliation(s)
- Tamara J Buijs
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
- Present address:
Department of Synapse and Network DevelopmentNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Bruno Vilar
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
| | - Chun‐Hsiang Tan
- Department of PharmacologyUniversity of CambridgeCambridgeUK
- Present address:
Department of NeurologyKaohsiung Medical University HospitalKaohsiungTaiwan
- Present address:
Graduate Institute of Clinical Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | | |
Collapse
|
10
|
Tsujikawa S, DeMeulenaere KE, Centeno MV, Ghazisaeidi S, Martin ME, Tapies MR, Maneshi MM, Yamashita M, Stauderman KA, Apkarian AV, Salter MW, Prakriya M. Regulation of neuropathic pain by microglial Orai1 channels. SCIENCE ADVANCES 2023; 9:eade7002. [PMID: 36706180 PMCID: PMC9883051 DOI: 10.1126/sciadv.ade7002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/23/2022] [Indexed: 06/01/2023]
Abstract
Microglia are important mediators of neuroinflammation, which underlies neuropathic pain. However, the molecular checkpoints controlling microglial reactivity are not well-understood. Here, we investigated the role of Orai1 channels for microglia-mediated neuroinflammation following nerve injury and find that deletion of Orai1 in microglia attenuates Ca2+ signaling and the production of inflammatory cytokines by proalgesic agonists. Conditional deletion of Orai1 attenuated microglial proliferation in the dorsal horn, spinal cytokine levels, and potentiation of excitatory neurotransmission following peripheral nerve injury. These cellular effects were accompanied by mitigation of pain hyperalgesia in microglial Orai1 knockout mice. A small-molecule Orai1 inhibitor, CM4620, similarly mitigated allodynia in male mice. Unexpectedly, these protective effects were not seen in female mice, revealing sexual dimorphism in Orai1 regulation of microglial reactivity and hyperalgesia. Together, these findings indicate that Orai1 channels are key regulators of the sexually dimorphic role of microglia for the neuroinflammation that underlies neuropathic pain.
Collapse
Affiliation(s)
- Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kaitlyn E. DeMeulenaere
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maria V. Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Megan E. Martin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Martinna R. Tapies
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mohammad M. Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Apkar V. Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Wang Q, #, Zhang Y, #, Du Q, Zhao X, Wang W, Zhai Q, Xiang M. SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:39-48. [PMID: 36575932 PMCID: PMC9806642 DOI: 10.4196/kjpp.2023.27.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022]
Abstract
Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Store-operated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 μg. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.
Collapse
Affiliation(s)
- Qiru Wang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - #
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Yang Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China
| | - #
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Xinjie Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China
| | - Wei Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| | - Ming Xiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, China,Correspondence Ming Xiang, E-mail: , Qing Zhai, E-mail: , Wei Wang, E-mail:
| |
Collapse
|
12
|
Kozak JA. Suppression of Store-operated Calcium Entry Channels and Cytokine Release by Cannabinoids. FUNCTION 2022; 3:zqac044. [PMID: 36168590 PMCID: PMC9508850 DOI: 10.1093/function/zqac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
13
|
Faouzi M, Wakano C, Monteilh-Zoller MK, Neupane RP, Starkus JG, Neupane JB, Cullen AJ, Johnson BE, Fleig A, Penner R. Acidic Cannabinoids Suppress Proinflammatory Cytokine Release by Blocking Store-operated Calcium Entry. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac033. [PMID: 35910331 PMCID: PMC9334010 DOI: 10.1093/function/zqac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Cannabis sativa has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined. In this study we provide the first comprehensive overview of the effects of whole-plant Cannabis extracts and various pure cannabinoids on store-operated calcium (Ca2+) entry (SOCE) in several different immune cell lines. Store-operated Ca2+ entry is one of the most significant Ca2+ influx mechanisms in immune cells, and it is critical for the activation of T lymphocytes, leading to the release of proinflammatory cytokines and mediating inflammation and T cell proliferation, key mechanisms for maintaining chronic pain. While the two major cannabinoids cannabidiol and trans-Δ9-tetrahydrocannabinol were largely ineffective in inhibiting SOCE, we report for the first time that several minor cannabinoids, mainly the carboxylic acid derivatives and particularly cannabigerolic acid, demonstrated high potency against SOCE by blocking calcium release-activated calcium currents. Moreover, we show that this inhibition of SOCE resulted in a decrease of nuclear factor of activated T-cells activation and Interleukin 2 production in human T lymphocytes. Taken together, these results indicate that cannabinoid-mediated inhibition of a proinflammatory target such as SOCE may at least partially explain the anti-inflammatory and analgesic effects of Cannabis.
Collapse
Affiliation(s)
| | | | | | - Ram P Neupane
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - John G Starkus
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Brandon E Johnson
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA,Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | |
Collapse
|
14
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
15
|
Photopharmacological modulation of native CRAC channels using azoboronate photoswitches. Proc Natl Acad Sci U S A 2022; 119:e2118160119. [PMID: 35312368 PMCID: PMC9060504 DOI: 10.1073/pnas.2118160119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Calcium release–activated calcium (CRAC) channels play key roles in the regulation of cellular signaling, transcription, and migration. Here, we describe the design, chemical synthesis, and characterization of photoswitchable channel inhibitors that can be switched on and off depending on the wavelength of light used. We use the compounds to induce light-dependent modulation of channel activity and downstream gene expression in human immune cells. We further expand the usage of the compounds to control seeding of cancer cells in target tissue and regulation of response to noxious stimuli in vivo in mice. Store-operated calcium entry through calcium release–activated calcium (CRAC) channels replenishes intracellular calcium stores and plays a critical role in cellular calcium signaling. CRAC channels are activated by tightly regulated interaction between the endoplasmic reticulum (ER) calcium sensor STIM proteins and plasma membrane (PM) Orai channels. Our current understanding of the role of STIM–Orai-dependent calcium signals under physiologically relevant conditions remains limited in part due to a lack of spatiotemporally precise methods for direct manipulation of endogenous CRAC channels. Here, we report the synthesis and characterization of azoboronate light-operated CRAC channel inhibitors (LOCIs) that allow for a dynamic and fully reversible remote modulation of the function of native CRAC channels using ultraviolet (UV) and visible light. We demonstrate the use of LOCI-1 to modulate gene expression in T lymphocytes, cancer cell seeding at metastatic sites, and pain-related behavior.
Collapse
|
16
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
17
|
Zhou Z, Mao M, Cai X, Zhu W, Sun J. Store-Operated Calcium Channels Contribute to Remifentanil-Induced Postoperative Hyperalgesia via Phosphorylation of CaMKIIα in Rats. J Pain Res 2021; 14:3289-3299. [PMID: 34703304 PMCID: PMC8536888 DOI: 10.2147/jpr.s333297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The mechanisms of remifentanil-induced postoperative hyperalgesia (RIPH) remain unclear. Store-operated calcium channels (SOCCs) are mainly comprised of stromal interaction molecules 1 (STIM1) and pore-forming subunits (Orai1). They were found to take a pivotal part in Ca2+-dependent procedures and involved in the development of central sensitization and pain. Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα), regulated by Ca2+/calmodulin complex, has been shown to have a crucial role in RIPH. This study aims to determine whether SOCCs contribute to RIPH via activating CaMKIIα. Materials and Methods Intra-operative infusion of remifentanil (1.0 µg kg−1 min−1, 60 min) was used to establish a RIPH rat model. The SOCCs blocker (YM-58483) was applied intrathecally to confirm the results. Animal behavioral tests including paw withdrawal thermal latency (PWTL) and paw withdrawal mechanical threshold (PWMT) were performed at −24, 2, 6, 24, 48 h after incision and remifentanil treatments. The protein expression of STIM1, Orai1, CaMKIIα, and p-CaMKIIα was assayed with Western blot, and the number of STIM1 and Orai1 positive cells was shown by immunofluorescence. Results Remifentanil administration significantly induced postoperative mechanical and thermal hyperalgesia, as well as increased STIM1 and Orai1 protein expression in the spinal dorsal horn. Furthermore, the intrathecal administration of YM-58483 effectively alleviated remifentanil-induced postoperative mechanical and thermal hyperalgesia according to the behavioral tests. In addition, YM-58483 suppressed the phosphorylation of CaMKIIα but had no effect on the expression of STIM1 and Orai1. Conclusion Our study demonstrated that SOCCs are involved in RIPH. The over-expressed STIM1 and Orai1 in the spinal cord contribute to RIPH via mediating the phosphorylation of CaMKIIα. Blockade of SOCCs may provide an effective therapeutic approach for RIPH.
Collapse
Affiliation(s)
- Zhenhui Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Mao
- Department of Anesthesiology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xuechun Cai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
19
|
N Rosalez M, Estevez-Fregoso E, Alatorre A, Abad-García A, A Soriano-Ursúa M. 2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor. Curr Mol Pharmacol 2020; 13:57-75. [PMID: 31654521 DOI: 10.2174/1874467212666191025145429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects. OBJECTIVE To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease. METHODS In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems. RESULTS Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species. CONCLUSION The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.
Collapse
Affiliation(s)
- Melvin N Rosalez
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Elizabeth Estevez-Fregoso
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Alberto Alatorre
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Antonio Abad-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| |
Collapse
|
20
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
21
|
Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK 1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochem Int 2018; 122:106-119. [PMID: 30453005 DOI: 10.1016/j.neuint.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
To characterize mechanisms involved in neurokinin type 1 receptor (NK1R)-mediated emesis, we investigated the brainstem emetic signaling pathways following treating least shrews with the selective NK1R agonist GR73632. In addition to episodes of vomiting over a 30-min observation period, a significant increase in substance P-immunoreactivity in the emetic brainstem dorsal motor nucleus of the vagus (DMNX) occurred at 15 min post an intraperitoneal (i.p.) injection GR73632 (5 mg/kg). In addition, time-dependent upregulation of phosphorylation of several emesis -associated protein kinases occurred in the brainstem. In fact, Western blots demonstrated significant phosphorylations of Ca2+/calmodulin kinase IIα (CaMKIIα), extracellular signal-regulated protein kinase1/2 (ERK1/2), protein kinase B (Akt) as well as α and βII isoforms of protein kinase C (PKCα/βII). Moreover, enhanced phospho-ERK1/2 immunoreactivity was also observed in both brainstem slices containing the dorsal vagal complex emetic nuclei as well as in jejunal sections from the shrew small intestine. Furthermore, our behavioral findings demonstrated that the following agents suppressed vomiting evoked by GR73632 in a dose-dependent manner: i) the NK1R antagonist netupitant (i.p.); ii) the L-type Ca2+ channel (LTCC) antagonist nifedipine (subcutaneous, s.c.); iii) the inositol trisphosphate receptor (IP3R) antagonist 2-APB (i.p.); iv) store-operated Ca2+ entry inhibitors YM-58483 and MRS-1845, (i.p.); v) the ERK1/2 pathway inhibitor U0126 (i.p.); vi) the PKC inhibitor GF109203X (i.p.); and vii) the inhibitor of phosphatidylinositol 3-kinase (PI3K)-Akt pathway LY294002 (i.p.). Moreover, NK1R, LTCC, and IP3R are required for GR73632-evoked CaMKIIα, ERK1/2, Akt and PKCα/βII phosphorylation. In addition, evoked ERK1/2 phosphorylation was sensitive to inhibitors of PKC and PI3K. These findings indicate that the LTCC/IP3R-dependent PI3K/PKCα/βII-ERK1/2 signaling pathways are involved in NK1R-mediated vomiting.
Collapse
|
22
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
23
|
Mei Y, Barrett JE, Hu H. Calcium release-activated calcium channels and pain. Cell Calcium 2018; 74:180-185. [PMID: 30096536 DOI: 10.1016/j.ceca.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain.
Collapse
Affiliation(s)
- Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA 19102, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
24
|
Miyoshi M, Liu S, Morizane A, Takemasa E, Suzuki Y, Kiyoi T, Maeyama K, Mogi M. Efficacy of constant long-term delivery of YM-58483 for the treatment of rheumatoid arthritis. Eur J Pharmacol 2018; 824:89-98. [PMID: 29428471 DOI: 10.1016/j.ejphar.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the efficacy and safety of YM-58483, a small molecular antagonist of Ca2+ release-activated Ca2+ (CRAC) channels, for the treatment of rheumatoid arthritis (RA), in vivo and ex vivo. YM-58483 was continuously injected subcutaneously in a collagen-induced arthritis (CIA) mouS.E.M.odel using an implanted osmotic pump. The severity of CIA was evaluated using the following parameters: body weight, hind paw volume, clinical score, histological analysis, cytokine levels, Ca2+ influx, and specific IgG production. The efficacy of long-term application of YM-58483 was also verified ex vivo in RA patient-derived peripheral blood monocytes. Assessment of the clinical severity of CIA, cytokine profile in serum and joint protein extracts, and specific IgG production showed that continuous application of YM-58483 suppressed synovial inflammation by inhibiting immune cell activity. Chemical screening and hepatography indicated that long-term subcutaneous delivery of YM-58483 was safer than oral administration for systemic application. Moreover, constant preincubation with YM-58483 at an IC50 of 0.1-1 nM altered proinflammatory cytokine production ex vivo in peripheral T cells derived from RA patients. Our findings suggest that continuous long-term application of appropriate CRAC inhibitors such as YM-58483 is a potential therapeutic strategy for global immunosuppression in RA.
Collapse
Affiliation(s)
- Maya Miyoshi
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan
| | - Shuang Liu
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan.
| | - Asuka Morizane
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan
| | - Erika Takemasa
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan
| | - Yashuyuki Suzuki
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan
| | - Takeshi Kiyoi
- Department of Bioscience, Integrated Center for Sciences, Ehime University, Shitsukawa, Toon-shi, Ehime, Japan
| | - Kazutaka Maeyama
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan
| | - Masaki Mogi
- Ehime University Graduate School of Medicine, Shitsugawa, Toon-shi, Ehime, Japan
| |
Collapse
|
25
|
Wei D, Mei Y, Xia J, Hu H. Orai1 and Orai3 Mediate Store-Operated Calcium Entry Contributing to Neuronal Excitability in Dorsal Root Ganglion Neurons. Front Cell Neurosci 2017; 11:400. [PMID: 29311831 PMCID: PMC5742109 DOI: 10.3389/fncel.2017.00400] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023] Open
Abstract
Store-operated calcium channels (SOCs) are highly calcium-selective channels that mediate calcium entry in various cell types. We have previously reported that intraplantar injection of YM-58483 (a SOC inhibitor) attenuates chronic pain. A previous study has reported that the function of SOCs in dorsal root ganglia (DRG) is enhanced after nerve injury, suggesting that SOCs may play a peripheral role in chronic pain. However, the expression, functional distribution and significance of the SOC family in DRG neurons remain elusive and the key components that mediate SOC entry (SOCE) are still controversial. Here, we demonstrated that the SOC family (STIM1, STIM2, Orai1, Orai2, and Orai3) was expressed in DRGs and STIM1 was mainly present in small- and medium-sized DRG neurons. Using confocal live cell imaging, Ca2+ imaging and electrophysiology techniques, we demonstrated that depletion of the endoplasmic reticulum Ca2+ stores induced STIM1 and STIM2 translocation, and that inhibition of STIM1 or blockage of Orai channels with pharmacological tools attenuated SOCE and SOC currents. Using the small inhibitory RNA knockdown approach, we identified STIM1, STIM2, Orai1, and Orai3 as the key components of SOCs mediating SOCE in DRG neurons. Importantly, activation of SOCs by thapsigargin induced plasma membrane depolarization and increased neuronal excitability, which were completely abolished by inhibition of SOCs or double knockdown of Orai1 and Orai3. Our findings suggest that SOCs exert an excitatory action in DRG neurons and provide a potential peripheral mechanism for modulation of pain hypersensitivity by SOC inhibition.
Collapse
Affiliation(s)
| | | | | | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Orai1 Plays a Crucial Role in Central Sensitization by Modulating Neuronal Excitability. J Neurosci 2017; 38:887-900. [PMID: 29229703 DOI: 10.1523/jneurosci.3007-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Pathological pain is a common and debilitating condition that is often poorly managed. Central sensitization is an important mechanism underlying pathological pain. However, candidate molecules involved in central sensitization remain unclear. Store-operated calcium channels (SOCs) mediate important calcium signals in nonexcitable and excitable cells. SOCs have been implicated in a wide variety of human pathophysiological conditions, including immunodeficiency, occlusive vascular diseases, and cancer. However, the role of SOCs in CNS disorders has been relatively unexplored. Orai1, a key component of SOCs, is expressed in the human and rodent spinal cord dorsal horn, but its functional significance in dorsal horn neurons is poorly understood. Here we sought to explore a potential role of Orai1 in the modulation of neuronal excitability and A-type potassium channels involved in pain plasticity. Using both male and female Orai1 knock-out mice, we found that activation of Orai1 increased neuronal excitability and reduced A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway in dorsal horn neurons. Orai1 deficiency significantly decreased acute pain induced by noxious stimuli, nearly eliminated the second phase of formalin-induced nociceptive response, markedly attenuated carrageenan-induced ipsilateral pain hypersensitivity and abolished carrageenan-induced contralateral mechanical allodynia. Consistently, carrageenan-induced increase in neuronal excitability was abolished in the dorsal horn from Orai1 mutant mice. These findings uncover a novel signaling pathway involved in the pain process and central sensitization. Our study also reveals a novel link among Orai1, ERK, A-type potassium channels, and neuronal excitability.SIGNIFICANCE STATEMENT Orai1 is a key component of store-operated calcium channels (SOCs) in many cell types. It has been implicated in such pathological conditions as immunodeficiency, autoimmunity, and cancer. However, the role of Orai1 in CNS disorders remains poorly understood. The functional significance of Orai1 in neurons is elusive. Here we demonstrate that activation of Orai1 modulates neuronal excitability and Kv4-containing A-type potassium channels via the protein kinase C-extracellular signal-regulated protein kinase (PKC-ERK) pathway. Genetic knock-out of Orai1 nearly eliminates the second phase of formalin-induced pain and markedly attenuates carrageenan-induced pain hypersensitivity and neuronal excitability. These findings reveal a novel link between Orai1 and neuronal excitability and advance our understanding of central sensitization.
Collapse
|
27
|
Qi Z, Wang Y, Zhou H, Liang N, Yang L, Liu L, Zhang W. The Central Analgesic Mechanism of YM-58483 in Attenuating Neuropathic Pain in Rats. Cell Mol Neurobiol 2016; 36:1035-43. [PMID: 26514127 DOI: 10.1007/s10571-015-0292-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
Abstract
Calcium channel antagonists are commonly used to treat neuropathic pain. Their analgesic effects rely on inhibiting long-term potentiation, and neurotransmitters release in the spinal cord. Store-operated Ca(2+)channels (SOCCs) are highly Ca(2+)-selective cation channels broadly expressed in non-excitable cells and some excitable cells. Recent studies have shown that the potent inhibitor of SOCCs, YM-58483, has analgesic effects on neuropathic pain, but its mechanism is unclear. This experiment performed on spinal nerve ligation (SNL)-induced neuropathic pain model in rats tries to explore the mechanism, whereby YM-58483 attenuates neuropathic pain. The left L5 was ligated to produce the SNL neuropathic pain model in male Sprague-Dawley rats. The withdrawal threshold of rats was measured by the up-down method and Hargreaves' method before and after intrathecal administration of YM-58483 and vehicle. The SOCCs in the spinal dorsal horn were located by immunofluorescence. The expression of phosphorylated ERK and phosphorylated CREB, CD11b, and GFAP proteins in spinal level was tested by Western blot, while the release of proinflammatory cytokines (IL-1β, TNF-α, PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). Intrathecal YM-58483 at the concentration of 300 μM (1.5 nmol) and 1000 μM (10 nmol) produced a significant central analgesic effect on the SNL rats, compared with control + vehicle (n = 7, P < 0.001). However, both could not prevent the development of neuropathic pain, compared with normal + saline (P < 0.001). Immunofluorescent staining revealed that Orai1 and STIM1 (the two key components of SOCCs) were located in the spinal dorsal horn neurons. Western blot showed that YM-58483 could decrease the levels of P-ERK and P-CREB (n = 10, #P < 0.05), without affecting the expression of CD11b and GFAP (n = 10, #P > 0.05). YM-58483 also inhibited the release of spinal cord IL-1β, TNF-α, and PGE2, compared with control + vehicle (n = 5, #P < 0.001). The analgesic mechanism of YM-58483 may be via inhibiting central ERK/CREB signaling in the neurons and decreasing central IL-1β, TNF-α, and PGE2 release to reduce neuronal excitability in the spinal dorsal horn of the SNL rats.
Collapse
Affiliation(s)
- Zeyou Qi
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Yaping Wang
- Second Xiang-Ya Hospital of Central South University, Changsha, China.
| | - Haocheng Zhou
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Na Liang
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Lin Yang
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Lei Liu
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| | - Wei Zhang
- Second Xiang-Ya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Manners MT, Ertel A, Tian Y, Ajit SK. Genome-wide redistribution of MeCP2 in dorsal root ganglia after peripheral nerve injury. Epigenetics Chromatin 2016; 9:23. [PMID: 27279901 PMCID: PMC4897807 DOI: 10.1186/s13072-016-0073-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Methyl-CpG-binding protein 2 (MeCP2), a protein with affinity for methylated cytosines, is crucial for neuronal development and function. MeCP2 regulates gene expression through activation, repression and chromatin remodeling. Mutations in MeCP2 cause Rett syndrome, and these patients display impaired nociception. We observed an increase in MeCP2 expression in mouse dorsal root ganglia (DRG) after peripheral nerve injury. The functional implication of increased MeCP2 is largely unknown. To identify regions of the genome bound by MeCP2 in the DRG and the changes induced by nerve injury, a chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) was performed 4 weeks after spared nerve injury (SNI). Results While the number of binding sites across the genome remained similar in the SNI model and sham control, SNI induced the redistribution of MeCP2 to transcriptionally relevant regions. To determine how differential binding of MeCP2 can affect gene expression in the DRG, we investigated mmu-miR-126, a microRNA locus that had enriched MeCP2 binding in the SNI model. Enriched MeCP2 binding to miR-126 locus after nerve injury repressed miR-126 expression, and this was not mediated by alterations in methylation pattern at the miR-126 locus. Downregulation of miR-126 resulted in the upregulation of its two target genes Dnmt1 and Vegfa in Neuro 2A cells and in SNI model compared to control. These target genes were significantly downregulated in Mecp2-null mice compared to wild-type littermates, indicating a regulatory role for MeCP2 in activating Dnmt1 and Vegfa expression. Intrathecal delivery of miR-126 was not sufficient to reverse nerve injury-induced mechanical and thermal hypersensitivity, but decreased Dnmt1 and Vegfa expression in the DRG. Conclusions Our study shows a regulatory role for MeCP2 in that changes in global redistribution can result in direct and indirect modulation of gene expression in the DRG. Alterations in genome-wide binding of MeCP2 therefore provide a molecular basis for a better understanding of epigenetic regulation-induced molecular changes underlying nerve injury. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0073-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa T Manners
- Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Philadelphia, PA 19102 USA
| | - Adam Ertel
- Cancer Genomics Laboratory, Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Yuzhen Tian
- Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Philadelphia, PA 19102 USA
| | - Seena K Ajit
- Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop 488, Philadelphia, PA 19102 USA
| |
Collapse
|
29
|
Gao X, Xia J, Munoz FM, Manners MT, Pan R, Meucci O, Dai Y, Hu H. STIMs and Orai1 regulate cytokine production in spinal astrocytes. J Neuroinflammation 2016; 13:126. [PMID: 27245842 PMCID: PMC4886427 DOI: 10.1186/s12974-016-0594-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background Our previous study demonstrated that a store-operated calcium channel (SOCC) inhibitor (YM-58483) has central analgesic effects. However, the cellular and molecular mechanisms of such effects remain to be determined. It is well-known that glial cells play important roles in central sensitization. SOC entry (SOCE) has been implicated in many cell types including cortical astrocytes. However, the role of the SOCC family in the function of astrocytes has not been determined. Here, we thoroughly investigated the expression and the functional significance of SOCCs in spinal astrocytes. Methods Primary cultured astrocytes were prepared from neonatal (P2–P3) CD1 mice. Expressions of mRNAs and proteins were respectively assessed by real-time PCR and Western blot analysis. SOCE was measured using a calcium imaging system. Live-cell STIM1 translocation was detected using a confocal microscope. Cytokine levels were measured by the enzyme-linked immunosorbent assay. Results We found that the SOCC family is expressed in spinal astrocytes and that depletion of calcium stores from the endoplasmic reticulum by cyclopiazonic acid (CPA) resulted in a large sustained calcium entry, which was blocked by SOCC inhibitors. Using the siRNA knockdown approach, we identified STIM1 and Orai1 as primary components of SOCCs in spinal astrocytes. We also observed thapsigargin (TG)- or CPA-induced puncta formation of STIM1 and Orai1. In addition, activation of SOCCs remarkably promoted TNF-α and IL-6 production in spinal astrocytes, which were greatly attenuated by knockdown of STIM1 or Orai1. Importantly, knockdown of STIM2 and Orai1 dramatically decreased lipopolysaccharide-induced TNF-α and IL-6 production without changing cell viability. Conclusions This study presents the first evidence that STIM1, STIM2, and Orai1 mediate SOCE and are involved in cytokine production in spinal astrocytes. Our findings provide the basis for future assessment of SOCCs in pain and other central nervous system disorders associated with abnormal astrocyte activities.
Collapse
Affiliation(s)
- Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Frances M Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Melissa T Manners
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Rong Pan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
30
|
Park R, Ji JD. Calcium channels: the potential therapeutic targets for inflammatory bone destruction of rheumatoid arthritis. Inflamm Res 2016; 65:347-54. [PMID: 26852086 DOI: 10.1007/s00011-016-0920-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/23/2016] [Accepted: 01/26/2016] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Inflammatory bone resorption causes progressive joint destruction which ultimately leads to functional disability in rheumatoid arthritis (RA). The primary cell responsible for bone resorption is the osteoclast, which means it is a potential therapeutic target against bone destruction. In fact, experimental and clinical findings suggest that blockade of osteoclast differentiation and function is highly effective in inhibiting bone destruction in RA. DISCUSSION AND CONCLUSION In this report, we show several lines of experimental evidence which suggest that a variety of Ca(2+) channels are essential in osteoclast differentiation and function, and present a hypothesis that modulation of Ca(2+) channels is a highly effective therapeutic strategy in preventing osteoclast-induced structural damage in RA.
Collapse
Affiliation(s)
- Robin Park
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul, 136-705, South Korea
| | - Jong Dae Ji
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul, 136-705, South Korea.
| |
Collapse
|
31
|
Munoz F, Hu H. The Role of Store-operated Calcium Channels in Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:139-51. [PMID: 26920011 DOI: 10.1016/bs.apha.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Store-operated calcium channels (SOCCs) are calcium-selective cation channels. Recently, there has been explosive growth in establishing the molecular mechanisms that mediate store-operated Ca(2+) entry (SOCE) and the role of this process in normal cellular function and disease states. SOCCs and its components appear to play an important role in many Ca(2+)-dependent processes in nonexcitable cells and are implicated in several possible disorders including allergies, multiple sclerosis, cancer, and inflammatory bowel disease. Recent studies have shown that SOCCs are expressed in the central nervous system (CNS) and involved in neuronal functions and pathological conditions, including chronic pain. In this chapter, we discuss SOCE and its physiological and pathological roles in the CNS. More specifically, we discuss the expression and function of SOCCs and their downstream signaling mechanisms under chronic pain conditions.
Collapse
Affiliation(s)
- Frances Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Zhong W, Chebolu S, Darmani NA. Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew. Neuropharmacology 2015; 103:195-210. [PMID: 26631534 DOI: 10.1016/j.neuropharm.2015.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
Abstract
Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non-effective doses of netupitant and palonosetron exhibited additive antiemetic efficacy. A low-dose combination of nifedipine and 2-APB plus dantrolene mixture completely abolished thapsigargin-evoked vomiting, CaMKII-ERK1/2 activation and SP elevation. In addition, pretreatment with KN93 or PD98059 suppressed thapsigargin-induced increases in SP and ERK1/2 activation. Intracerebroventricular injection of netupitant suppressed vomiting caused by thapsigargin which suggests that the principal site of evoked emesis is the brainstem. In sum, this is the first study to demonstrate that thapsigargin causes vomiting via the activation of the Ca(2+)-CaMKII-ERK1/2 cascade, which is associated with an increase in the brainstem tissue content of SP, and the evoked emesis occurs through SP-induced activation of neurokinin-1 receptors.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA.
| |
Collapse
|
33
|
Majewski L, Kuznicki J. SOCE in neurons: Signaling or just refilling? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1940-52. [DOI: 10.1016/j.bbamcr.2015.01.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
|
34
|
Manners MT, Tian Y, Zhou Z, Ajit SK. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Bio 2015; 5:733-40. [PMID: 26448907 PMCID: PMC4571540 DOI: 10.1016/j.fob.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 12/31/2022] Open
Abstract
Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG. MeCP2-mediated regulation of Bdnf in the DRG could contribute to altered pain sensitivity.
Collapse
Key Words
- +/Y, male wild-type littermate control for either MeCP2 T158A knock in mouse or Mecp2-null mouse
- 3′UTR, three prime untranslated region
- ATF3, activating transcription factor 3
- BDNF
- BDNF, brain derived neurotrophic factor
- CFA, complete Freund’s adjuvant
- DRG, dorsal root ganglia
- L4/L5, 4th or 5th lumbar vertebra
- MeCP2
- MeCP2 T158A/Y, male MeCP2 T158A knock in mouse
- MeCP2, methyl-CpG-binding protein 2
- Neuropathic pain
- RTT, Rett syndrome
- SNI, spared nerve injury
- T158A, threonine 158 conversion to alanine
- TrkB, tropomyosin receptor kinase B
- miRNA
- −/Y, male Mecp2-null mouse
Collapse
Affiliation(s)
- Melissa T Manners
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Yuzhen Tian
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Seena K Ajit
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
35
|
Gao XH, Gao R, Tian YZ, McGonigle P, Barrett JE, Dai Y, Hu H. A store-operated calcium channel inhibitor attenuates collagen-induced arthritis. Br J Pharmacol 2015; 172:2991-3002. [PMID: 25651822 DOI: 10.1111/bph.13104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Store-operated calcium (SOC) channels are thought to play a critical role in immune responses, inflammatory diseases and chronic pain. The aim of this study was to explore the potential role and mechanisms of SOC channels in collagen-induced arthritis (CIA). EXPERIMENTAL APPROACH The CIA mouse model was used to examine the effects of the SOC channel inhibitor YM-58483 on CIA and arthritic pain. Hargreaves' and von Frey hair tests were conducted to measure thermal and mechanical sensitivities of hind paws. elisa was performed to measure cytokine production, and haematoxylin and eosin staining was used to assess knee histological changes. Western blot analysis was performed to examine protein levels. KEY RESULTS Pretreatment with 5 or 10 mg · kg(-1) of YM-58483 reduced the incidence of CIA, prevented the development of inflammation and pain hypersensitivity and other signs and features of arthritis disease. Similarly, treatment with YM-58483 after the onset of CIA: (i) reversed the clinical scores; (ii) reduced paw oedema; (iii) attenuated mechanical and thermal hypersensitivity; (iv) improved spontaneous motor activity; (v) decreased periphery production of IL-1β, IL-6 and TNF-α; and (vi) reduced spinal activation of ERK and calmodulin-dependent PKII (CaMKIIα). CONCLUSIONS AND IMPLICATIONS This study provides the first evidence that inhibition of SOC entry prevents and relieves rheumatoid arthritis (RA) and arthritic pain. These effects are probably mediated by a reduction in cytokine levels in the periphery and activation of ERK and CaMKIIα in the spinal cord. These results suggest that SOC channels are potential drug targets for the treatment of RA.
Collapse
Affiliation(s)
- X H Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - R Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Z Tian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - P McGonigle
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - J E Barrett
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - H Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Xia J, Pan R, Gao X, Meucci O, Hu H. Native store-operated calcium channels are functionally expressed in mouse spinal cord dorsal horn neurons and regulate resting calcium homeostasis. J Physiol 2014; 592:3443-61. [PMID: 24860175 DOI: 10.1113/jphysiol.2014.275065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Store-operated calcium channels (SOCs) are calcium-selective cation channels that mediate calcium entry in many different cell types. Store-operated calcium entry (SOCE) is involved in various cellular functions. Increasing evidence suggests that impairment of SOCE is responsible for numerous disorders. A previous study demonstrated that YM-58483, a potent SOC inhibitor, strongly attenuates chronic pain by systemic or intrathecal injection and completely blocks the second phase of formalin-induced spontaneous nocifensive behaviour, suggesting a potential role of SOCs in central sensitization. However, the expression of SOCs, their molecular identity and function in spinal cord dorsal horn neurons remain elusive. Here, we demonstrate that SOCs are expressed in dorsal horn neurons. Depletion of calcium stores from the endoplasmic reticulum (ER) induced large sustained calcium entry, which was blocked by SOC inhibitors, but not by voltage-gated calcium channel blockers. Depletion of ER calcium stores activated inward calcium-selective currents, which was reduced by replacing Ca(2+) with Ba(2+) and reversed by SOC inhibitors. Using the small inhibitory RNA knockdown approach, we identified both STIM1 and STIM2 as important mediators of SOCE and SOC current, and Orai1 as a key component of the Ca(2+) release-activated Ca(2+) channels in dorsal horn neurons. Knockdown of STIM1, STIM2 or Orai1 decreased resting Ca(2+) levels. We also found that activation of neurokinin 1 receptors led to SOCE and activation of SOCs produced an excitatory action in dorsal horn neurons. Our findings reveal that a novel SOC signal is present in dorsal horn neurons and may play an important role in pain transmission.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Rong Pan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, USA Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
37
|
Gao X, Lu Q, Chou G, Wang Z, Pan R, Xia Y, Hu H, Dai Y. Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur J Pain 2014; 18:939-48. [DOI: 10.1002/j.1532-2149.2013.00439.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- X. Gao
- State Key Laboratory of Natural Medicines; Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing China
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia USA
| | - Q. Lu
- State Key Laboratory of Natural Medicines; Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing China
| | - G. Chou
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; China
| | - Z. Wang
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; China
| | - R. Pan
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia USA
| | - Y. Xia
- State Key Laboratory of Natural Medicines; Department of Chinese Materia Medica Analysis; China Pharmaceutical University; Nanjing China
| | - H. Hu
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia USA
| | - Y. Dai
- State Key Laboratory of Natural Medicines; Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing China
| |
Collapse
|
38
|
|