1
|
Wang D, Wei J, Yuan X, Chen Z, Wang L, Geng Y, Zhang J, Wang Y. Transcriptome and comparative chloroplast genome analysis of Taxus yunnanensis individuals with high and low paclitaxel yield. Heliyon 2024; 10:e27223. [PMID: 38455575 PMCID: PMC10918223 DOI: 10.1016/j.heliyon.2024.e27223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Paclitaxel is a potent anti-cancer drug that is mainly produced through semi-synthesis, which still requires plant materials as precursors. The content of paclitaxel and 10-deacetyl baccatin III (10-DAB) in Taxus yunnanensis has been found to differ from that of other Taxus species, but there is little research on the mechanism underlying the variation in paclitaxel content in T. yunnanensis of different provenances. In this experiment, the contents of taxoids and precursors in twigs between a high paclitaxel-yielding individual (TG) and a low paclitaxel-yielding individual (TD) of T. yunnanensis were compared, and comparative analyses of transcriptomes as well as chloroplast genomes were performed. High-performance liquid chromatography (HPLC) detection showed that 10-DAB and baccatin III contents in TG were 18 and 47 times those in TD, respectively. Transcriptomic analysis results indicated that genes encoding key enzymes in the paclitaxel biosynthesis pathway, such as taxane 10-β-hydroxylase (T10βH), 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT), and debenzoyl paclitaxel N-benzoyl transferase (DBTNBT), exhibited higher expression levels in TG. Additionally, qRT-PCR showed that the relative expression level of T10βH and DBAT in TG were 29 and 13 times those in TD, respectively. In addition, six putative transcription factors were identified that may be involved in paclitaxel biosynthesis from transcriptome data. Comparative analysis of plastid genomes showed that the TD chloroplast contained a duplicate of rps12, leading to a longer plastid genome length in TD relative to TG. Fifteen mutation hotspot regions were identified between the two plastid genomes that can serve as candidate DNA barcodes for identifying high-paclitaxel-yield individuals. This experiment provides insight into the difference in paclitaxel accumulation among different provenances of T. yunnanensis individuals.
Collapse
Affiliation(s)
- Dong Wang
- College of Forestry, Southwest Forestry University, Kunming, 650224, China
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jiansheng Wei
- Haba Snow Mountain Provincial Nature Reserve Management and Protection Bureau, Diqing, 674402, China
| | - Xiaolong Yuan
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Zhonghua Chen
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Lei Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yunfen Geng
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Jinfeng Zhang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Yi Wang
- Laboratory of Forest Plant Cultivation and Utilization, The Key Laboratory of Rare and Endangered Forest Plants of State Forestry Administration, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| |
Collapse
|
2
|
Choudhury S. Computational analysis of the AP2/ERF family in crops genome. BMC Genomics 2024; 25:102. [PMID: 38262942 PMCID: PMC10807240 DOI: 10.1186/s12864-024-09970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The Apetala 2/ethylene-responsive factor family has diverse functions that enhance development and torment resistance in the plant genome. In variation, the ethylene-responsive factor (ERF) family of TF's genes is extensive in the crop genome. Generally, the plant-specific ethylene-responsive factor family may divided by the dehydration-responsive element-binding (DREB) subfamily. So, the AP2/ERF super-family demonstrated the repeated AP2 domain during growth. The sole AP2 domain function represents abiotic stress resistance. Also, the AP2 with B3 domain enhances during the replication of brassinosteroid. OBJECTIVE The study objective is to investigate the Apetala 2/ethylene-responsive factor family in a model organism of the Arabidopsis thaliana for comparative analysis towards Solanum lycopersicum (Tomato), Brassica juncea (Indian and Chinese mustard), Zea mays L. (Maize) and Oryza sativa (Indian and Japanese Rice). So, examinations of the large AP2/ERF super-family are mandatory to explore the Apetala 2 (AP2) family, ERF family, DREB subfamily, and RAV family involved during growth and abiotic stress stimuli in crops. METHODS Therefore, perform bioinformatics and computational methods to the current knowledge of the Apetala 2/ethylene-responsive factor family and their subfamilies in the crop genome. This method may be valuable for functional analysis of particular genes and their families in the plant genome. RESULTS Observation data provided evidence of the Apetala 2/ethylene-responsive factor (AP2/ERF) super-family and their sub-family present in Arabidopsis thaliana (Dicots) and compared with Solanum lycopersicum (Dicots), Brassica juncea (Dicots), Zea mays L. (Monocots) and Oryza sativa (Monocots). Also, remarks genes in Oryza sativa. This report upgraded the Apetala 2/ethylene-responsive factor (AP2/ERF) family in the crop genome. So, the analysis documented the conserved domain, motifs, and phylogenetic tree towards Dicots and Monocots species. Those outcomes will be valuable for future studies of the defensive Apetala 2/ethylene-responsive factor family in crops. CONCLUSION Therefore, the study concluded that the several species-specific TF genes in the Apetala 2/ethylene-responsive factor (AP2/ERF) family in Arabidopsis thaliana and compared with crop-species of Solanum lycopersicum, Brassica juncea, Zea mays L. and Oryza sativa. Those plant-specific genes regulate during growth and abiotic stress control in plants.
Collapse
Affiliation(s)
- Shouhartha Choudhury
- Har Gobind Khorana School of Life Sciences, Assam University, Silchar-788011, Assam, India.
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India.
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, Assam, India.
| |
Collapse
|
3
|
Liu Y, Zhang D, Xu Y, Yi Y. How the xerophytic moss Pogonatum inflexum tolerates desiccation. PLANT CELL REPORTS 2024; 43:39. [PMID: 38231303 DOI: 10.1007/s00299-023-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
KEY MESSAGE Desiccation-tolerant process of xerophytic moss Pogonatum inflexum were identified through de novo transcriptome assembly , morphological structure and physiology analysis. Pogonatum inflexum (Lindb.) Lac. is a typical xerophytic moss and have been widely used in gardening and micro-landscape. However, the mechanisms underlying desiccation tolerance are still unclear. In this study, morphological, physiological and trancriptomic analyses of P. inflexum to tolerate desiccation were carried out. Our results indicate that P. inflexum increase osmoregulation substances, shut down photosynthesis, and alter the content of membrane lipid fatty acids in response to desiccation, and the genes involved in these biological processes were changes in expression after desiccation. 12 h is the threshold for P. inflexum to tolerate desiccation and its photosynthesis has not been damaged within 12 h of desiccation and can still recover after rewater. We also proved that the gametocyte of P. inflexum has the ability to absorb and transport water, and contains lignin-synthesis genes in response to tolerant desiccation. Our findings not only explain the mechanisms of P. inflexum during desiccation, but also provide some attractive candidate genes for genetic breeding.
Collapse
Affiliation(s)
- Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Daqing Zhang
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yongmei Xu
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yanjun Yi
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
4
|
Guo M, Lv H, Chen H, Dong S, Zhang J, Liu W, He L, Ma Y, Yu H, Chen S, Luo H. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:13-26. [PMID: 38375043 PMCID: PMC10874775 DOI: 10.1016/j.chmed.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2024] Open
Abstract
Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.
Collapse
Affiliation(s)
- Miaoxian Guo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haizhou Lv
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongyu Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianhong Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanjing Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liu He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yimian Ma
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shilin Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
5
|
Yang H, Wang F, An W, Gu Y, Jiang Y, Guo H, Liu M, Peng J, Jiang B, Wan X, Chen L, Huang X, He F, Zhu P. Comparative Metabolomics and Transcriptome Analysis Reveal the Fragrance-Related Metabolite Formation in Phoebe zhennan Wood. Molecules 2023; 28:7047. [PMID: 37894523 PMCID: PMC10608883 DOI: 10.3390/molecules28207047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nanmu (Phoebe zhennan) has a unique fragrance and is a high-quality tree species for forest conservation. The types and contents of volatile compounds in different tissues of nanmu wood are different, and the study of its volatile metabolites can help us to understand the source of its fragrance and functions. In order to explore the metabolites related to the wood fragrance of nanmu and to find out the unique volatile substances in the heartwood, gas chromatography-mass spectrometry (GC-MS) was performed to analyze the non-targeted metabolomics in five radial tissues from the sapwood to the heartwood of nanmu. A total of 53 volatile metabolites belonging to 11 classes were detected in all tissues, including terpenes, aromatic hydrocarbons, organoheterocyclics, phenols, esters, organic acids, alcohols, alkaloids, alkane, indoles derivatives, and others. And most of the volatile metabolites were identified for the first time in nanmu wood. Among them, terpenes and aromatic hydrocarbons were the main volatile components. In addition, 22 differential metabolites were screened from HW and SW, HW, and TZ via metabolomic analysis. Among these DAMs, three volatile metabolites (cadinene, a sesquiterpenoid; p-cymene, a monoterpenoid; 1,3,5-triisopropylbenzene, an aromatic hydrocarbon) contributed heavily to the characteristic fragrance of the heartwood. Additionally, the expression of transcripts showed that the unigenes in the terpenoid biosynthesis pathway were especially up-regulated in the SW. Therefore, we speculated that fragrance-related metabolites were synthesized in SW and then deposited in heartwood during sapwood transformed to heartwood. The expression levels of transcription factors (e.g., WRKY, C2H2, NAC) acted as the major regulatory factors in the synthesis of terpenoid. The results lay the foundations for further studies on the formation mechanism of fragrance components in nanmu wood and also provide a reference for the further development and utilization of nanmu wood.
Collapse
Affiliation(s)
- Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Fang Wang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Wenna An
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Yunjie Gu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; (M.L.); (J.P.)
| | - Yongze Jiang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Hongying Guo
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China; (H.G.); (B.J.)
| | - Minhao Liu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; (M.L.); (J.P.)
| | - Jian Peng
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; (M.L.); (J.P.)
| | - Bo Jiang
- Sichuan Academy of Grassland Sciences, Chengdu 610041, China; (H.G.); (B.J.)
- Du Fu Thatched Cottage Museum, Chengdu 610001, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Xiong Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Fang He
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| | - Peng Zhu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Rainy Area of West China Plantation Ecosystem Permanent Scientific Research Base, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (F.W.); (W.A.); (Y.J.); (X.W.); (L.C.); (X.H.); (F.H.)
| |
Collapse
|
6
|
Shoji T, Sugawara S, Mori T, Kobayashi M, Kusano M, Saito K. Induced production of specialized steroids by transcriptional reprogramming in Petunia hybrida. PNAS NEXUS 2023; 2:pgad326. [PMID: 37920550 PMCID: PMC10619512 DOI: 10.1093/pnasnexus/pgad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
Plants produce specialized metabolites with defensive properties that are often synthesized through the coordinated regulation of metabolic genes by transcription factors in various biological contexts. In this study, we investigated the regulatory function of the transcription factor PhERF1 from petunia (Petunia hybrida), which belongs to a small group of ETHYLENE RESPONSE FACTOR (ERF) family members that regulate the biosynthesis of bioactive alkaloids and terpenoids in various plant lineages. We examined the effects of transiently overexpressing PhERF1 in petunia leaves on the transcriptome and metabolome, demonstrating the production of a class of specialized steroids, petuniolides, and petuniasterones in these leaves. We also observed the activation of many metabolic genes, including those involved in sterol biosynthesis, as well as clustered genes that encode new metabolic enzymes, such as cytochrome P450 oxidoreductases, 2-oxoglutarate-dependent dioxygenases, and BAHD acyltransferases. Furthermore, we determined that PhERF1 transcriptionally induces downstream metabolic genes by recognizing specific cis-regulatory elements in their promoters. This study highlights the potential of evolutionarily conserved transcriptional regulators to induce the production of specialized products through transcriptional reprogramming.
Collapse
Affiliation(s)
- Tsubasa Shoji
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
7
|
Lan Y, Zhang K, Wang L, Liang X, Liu H, Zhang X, Jiang N, Wu M, Yan H, Xiang Y. The R2R3-MYB transcription factor OfMYB21 positively regulates linalool biosynthesis in Osmanthus fragrans flowers. Int J Biol Macromol 2023; 249:126099. [PMID: 37543267 DOI: 10.1016/j.ijbiomac.2023.126099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Osmanthus fragrans is a well-known landscape ornamental tree species for its pleasing floral fragrance and abundance of flowers. Linalool, the core floral volatiles of O. fragrans, has tremendous economic value in the pharmaceuticals, cleaning products and cosmetics industries. However, the transcriptional regulatory network for the biosynthesis of linalool in O. fragrans remains unclear. Here, OfMYB21, a potential transcription factor regulating the linalool synthetase OfTPS2, was identified using RNA-seq data and qRT-PCR analysis. Yeast one-hybrid, dual-luciferase and EMSA showed that OfMYB21 directly binds to the promoter of OfTPS2 and activates its expression. Overexpression of OfMYB21 in the petals of O. fragrans led to up-regulation of OfTPS2 and increased accumulation of linalool, while silencing of OfMYB21 led to down-regulation of OfTPS2 and decreased biosynthesis of linalool. Subsequently, yeast two-hybrid, pull-down and BiFC experiments showed that OfMYB21 interacts with JA signaling factors OfJAZ2/3 and OfMYC2. Interestingly, the interaction between OfMYC2 and OfMYB21 further enhanced the transcription of OfTPS2, whereas OfJAZ3 attenuated this effect. Overall, our studies provided novel finding on the regulatory mechanisms responsible for the biosynthesis of the volatile monoterpenoid linalool in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Honxia Liu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyue Zhang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Alcalde MA, Palazon J, Bonfill M, Hidalgo-Martinez D. Enhancing Centelloside Production in Centella asiatica Hairy Root Lines through Metabolic Engineering of Triterpene Biosynthetic Pathway Early Genes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3363. [PMID: 37836103 PMCID: PMC10574710 DOI: 10.3390/plants12193363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Centella asiatica is a medicinal plant with a rich tradition of use for its therapeutic properties. Among its bioactive compounds are centellosides, a group of triterpenoid secondary metabolites whose potent pharmacological activities have attracted significant attention. Metabolic engineering has emerged as a powerful biotechnological tool to enhance the production of target compounds. In this study, we explored the effects of overexpressing the squalene synthase (SQS) gene and transcription factor TSAR2 on various aspects of C. asiatica hairy root lines: the expression level of centelloside biosynthetic genes, morphological traits, as well as squalene, phytosterol, and centelloside content. Three distinct categories of transformed lines were obtained: LS, harboring At-SQS; LT, overexpressing TSAR2; and LST, simultaneously carrying both transgenes. These lines displayed noticeable alterations in morphological traits, including changes in branching rate and biomass production. Furthermore, we observed that the expression of T-DNA genes, particularly aux2 and rolC genes, significantly modulated the expression of pivotal genes involved in centelloside biosynthesis. Notably, the LS lines boasted an elevated centelloside content but concurrently displayed reduced phytosterol content, a finding that underscores the intriguing antagonistic relationship between phytosterol and triterpene pathways. Additionally, the inverse correlation between the centelloside content and morphological growth values observed in LS lines was countered by the action of TSAR2 in the LST and LT lines. This difference could be attributed to the simultaneous increase in the phytosterol content in the TSAR2-expressing lines, as these compounds are closely linked to root development. Overall, these discoveries offer valuable information for the biotechnological application of C. asiatica hairy roots and their potential to increase centelloside production.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
- Biotechnology, Health and Education Research Group, Posgraduate School, Cesar Vallejo University, Trujillo 13001, Peru
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| |
Collapse
|
9
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
10
|
Liu W, Wang T, Wang Y, Liang X, Han J, Hou R, Han D. The Transcription Factor MbWRKY46 in Malus baccata (L.) Borkh Mediate Cold and Drought Stress Responses. Int J Mol Sci 2023; 24:12468. [PMID: 37569844 PMCID: PMC10420220 DOI: 10.3390/ijms241512468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The living environment of plants is not static; as such, they will inevitably be threatened by various external factors for their growth and development. In order to ensure the healthy growth of plants, in addition to artificial interference, the most important and effective method is to rely on the role of transcription factors in the regulatory network of plant responses to abiotic stress. This study conducted bioinformatics analysis on the MbWRKY46 gene, which was obtained through gene cloning technology from Malus baccata (L.) Borkh, and found that the MbWRKY46 gene had a total length of 1068 bp and encodes 355 amino acids. The theoretical molecular weight (MW) of the MbWRKY46 protein was 39.76 kDa, the theoretical isoelectric point (pI) was 5.55, and the average hydrophilicity coefficient was -0.824. The subcellular localization results showed that it was located in the nucleus. After conducting stress resistance studies on it, it was found that the expression of MbWRKY46 was tissue specific, with the highest expression level in roots and old leaves. Low temperature and drought had a stronger induction effect on the expression of this gene. Under low temperature and drought treatment, the expression levels of several downstream genes related to low temperature and drought stress (AtKIN1, AtRD29A, AtCOR47A, AtDREB2A, AtERD10, AtRD29B) increased more significantly in transgenic Arabidopsis. This indicated that MbWRKY46 gene can be induced to upregulate expression in Arabidopsis under cold and water deficient environments. The results of this study have a certain reference value for the application of M. baccata MbWRKY46 in low-temperature and drought response, and provide a theoretical basis for further research on its function in the future.
Collapse
Affiliation(s)
- Wanda Liu
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Tianhe Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Yu Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Jilong Han
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Ruining Hou
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (Y.W.); (J.H.); (R.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
11
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
12
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
13
|
Wan H, Liu Y, Wang T, Jiang P, Wen W, Nie J. Comparative transcriptome and metabolome analysis identifies a citrus ERF transcription factor CsERF003 as flavonoid activator. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111762. [PMID: 37295731 DOI: 10.1016/j.plantsci.2023.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Transcription factor (TF) modulation is a promising strategy for plant flavonoid improvement. Here, we observed evident decreases in some major flavones and flavonols and the expression of some key related genes in a 'Newhall' navel orange mutant (MT) relative to the wild type (WT). A consistently downregulated ERF TF CsERF003 in MT could increase the contents of major flavonoids and the precursor phenylalanine when transiently overexpressed in citrus fruit. Overexpression of CsERF003 in 'Micro-Tom' tomato (OE) resulted in a darker and redder fruit color than wild type 'Micro-Tom' (WTm). Two major flavonoids, naringeninchalcone and kaempferolrutinoside, were averagely induced by 7.99- and 36.83-fold in OEs, respectively, while little change was observed in other polyphenols, such as caffeic acid, ferulic acid, and gallic acid. Key genes involved in the initiation of phenylpropanoid (PAL, 4CH, and 4CL) and flavonoid (CHS and CHI) biosynthesis were up-regulated, while most genes participating in the biosynthesis of other polyphenols, such as HCT and CCR, were down-regulated in OEs. Therefore, it could be concluded that carbon flux floods into the phenylpropanoid biosynthetic pathway and is then specifically directed for flavonoid biosynthesis. CsERF003 may be a potentially promising gene for fruit quality improvement and engineering of natural flavonoid components.
Collapse
Affiliation(s)
- Haoliang Wan
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihui Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Tongtong Wang
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Peng Jiang
- Qingdao Agriculture Products Quality and Safety Center, Qingdao, 266035, China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
14
|
Wang Y, Wang Z, Geng S, Du H, Chen B, Sun L, Wang G, Sha M, Dong T, Zhang X, Wang Q. Identification of the GDP-L-Galactose Phosphorylase Gene as a Candidate for the Regulation of Ascorbic Acid Content in Fruits of Capsicum annuum L. Int J Mol Sci 2023; 24:ijms24087529. [PMID: 37108695 PMCID: PMC10145300 DOI: 10.3390/ijms24087529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zheng Wang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sansheng Geng
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Heshan Du
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bin Chen
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liang Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoyun Wang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meihong Sha
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tingting Dong
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaofen Zhang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qian Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Optimization of Isolation and Transformation of Protoplasts from Uncaria rhynchophylla and Its Application to Transient Gene Expression Analysis. Int J Mol Sci 2023; 24:ijms24043633. [PMID: 36835049 PMCID: PMC9962833 DOI: 10.3390/ijms24043633] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Protoplast-based engineering has become an important tool for basic plant molecular biology research and developing genome-edited crops. Uncaria rhynchophylla is a traditional Chinese medicinal plant with a variety of pharmaceutically important indole alkaloids. In this study, an optimized protocol for U. rhynchophylla protoplast isolation, purification, and transient gene expression was developed. The best protoplast separation protocol was found to be 0.8 M D-mannitol, 1.25% Cellulase R-10, and 0.6% Macerozyme R-10 enzymolysis for 5 h at 26 °C in the dark with constant oscillation at 40 rpm/min. The protoplast yield was as high as 1.5 × 107 protoplasts/g fresh weight, and the survival rate of protoplasts was greater than 90%. Furthermore, polyethylene glycol (PEG)-mediated transient transformation of U. rhynchophylla protoplasts was investigated by optimizing different crucial factors affecting transfection efficiency, including plasmid DNA amount, PEG concentration, and transfection duration. The U. rhynchophylla protoplast transfection rate was highest (71%) when protoplasts were transfected overnight at 24 °C with the 40 µg of plasmid DNA for 40 min in a solution containing 40% PEG. This highly efficient protoplast-based transient expression system was used for subcellular localization of transcription factor UrWRKY37. Finally, a dual-luciferase assay was used to detect a transcription factor promoter interaction by co-expressing UrWRKY37 with a UrTDC-promoter reporter plasmid. Taken together, our optimized protocols provide a foundation for future molecular studies of gene function and expression in U. rhynchophylla.
Collapse
|
16
|
Xing B, Wan S, Su L, Riaz MW, Li L, Ju Y, Zhang W, Zheng Y, Shao Q. Two polyamines -responsive WRKY transcription factors from Anoectochilus roxburghii play opposite functions on flower development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111566. [PMID: 36513314 DOI: 10.1016/j.plantsci.2022.111566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Anoectochilus roxburghii is a rare and precious plant with medicinal and healthcare functions. Embryo abortion caused the lack of resources. Polyamine promoted its flowering and stress resistance in our previous study. But the mechanism remains unclear. The WRKY transcription factor family has been linked to a variety of biological processes in plants. In this study, two WRKY TFs (ArWRKY5 and ArWRKY20) of A. roxburghii, which showed significant response to Spd treatment, were identified and functionally analyzed. Tissue specific expression analyzation showed both of them mostly present in the flower. And ArWRKY5 expressed highest in the flower bud stage (-1 Flowering), while ArWRKY20 showed the highest expression in earlier flower bud stage (-2 Flowering) and the expression gradually decreased with flowering. The transcriptional activation activity assay and subcellular localization revealed that ArWRKY5 and ArWRKY20 were located in the nucleus and ArWRKY20 showed transcriptional activity. The heterologous expression of ArWRKY5 in Arabidopsis thaliana showed earlier flowering, while overexpression of ArWRKY20 delayed flowering. But the OE-ArWRKY20 lines had a robust body shape and a very significant increase in the number of rosette leaves. Furthermore, stamens and seed development were positively regulated by these two ArWRKYs. These results indicated that ArWRKY5 and ArWRKY20 not only play opposite roles in the floral development, but also regulate the plant growth and seed development in A. thaliana. But their specific biological functions and mechanism in A. roxburghii need to be investigated further.
Collapse
Affiliation(s)
- Bingcong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Siqi Wan
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liyang Su
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lihong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yulin Ju
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wangshu Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ying Zheng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
17
|
Kim S, Wengier DL, Ragland CJ, Sattely ES. Transcriptional Reactivation of Lignin Biosynthesis for the Heterologous Production of Etoposide Aglycone in Nicotiana benthamiana. ACS Synth Biol 2022; 11:3379-3387. [PMID: 36122905 PMCID: PMC9594330 DOI: 10.1021/acssynbio.2c00289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nicotiana benthamiana is a valuable plant chassis for heterologous production of medicinal plant natural products. This host is well suited for the processing of organelle-localized plant enzymes, and the conservation of the primary metabolism across the plant kingdom often provides required plant-specific precursor molecules that feed a given pathway. Despite this commonality in metabolism, limited precursor supply and/or competing host pathways can interfere with yields of heterologous products. Here, we use transient transcriptional reprogramming of endogenous N. benthamiana metabolism to drastically improve flux through the etoposide pathway derived from the medicinal plant Podophyllum spp. Specifically, coexpression of a single lignin-associated transcription factor, MYB85, with pathway genes results in unprecedented levels of heterologous product accumulation in N. benthamiana leaves: 1 mg/g dry weight (DW) of the etoposide aglycone, 35 mg/g DW (-)-deoxypodophyllotoxin, and 3.5 mg/g DW (-)-epipodophyllotoxin─up to two orders of magnitude above previously reported biosynthetic yields for the etoposide aglycone and eight times higher than what is observed for (-)-deoxypodophyllotoxin in the native medicinal plant. Unexpectedly, transient activation of lignin metabolism by transcription factor overexpression also reduces the production of undesired side products that likely result from competing N. benthamiana metabolism. Our work demonstrates that synthetic activation of lignin biosynthesis in leaf tissue is an effective strategy for optimizing the production of medicinal compounds derived from phenylpropanoid precursors in the plant chassis N. benthamiana. Furthermore, our results highlight the engineering value of MYB85, an early switch in lignin biosynthesis, for on-demand modulation of monolignol flux and support the role of MYB46 as a master regulator of lignin polymer deposition.
Collapse
Affiliation(s)
- Stacie
S. Kim
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Diego L. Wengier
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Carin J. Ragland
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Elizabeth S. Sattely
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States,Howard
Hughes Medical Institute, Stanford University, Stanford, California 94305, United States,
| |
Collapse
|
18
|
Niu B, Li Q, Fan L, Shi X, Liu Y, Zhuang Q, Qin X. De Novo Assembly of a Sarcocarp Transcriptome Set Identifies AaMYB1 as a Regulator of Anthocyanin Biosynthesis in Actinidia arguta var. purpurea. Int J Mol Sci 2022; 23:ijms232012120. [PMID: 36292977 PMCID: PMC9603036 DOI: 10.3390/ijms232012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The kiwifruit (Actinidia arguta var. purpurea) produces oval shaped fruits containing a slightly green or mauve outer exocarp and a purple-flesh endocarp with rows of tiny black seeds. The flesh color of the fruit results from a range of anthocyanin compounds, and is an important trait for kiwifruit consumers. To elucidate the molecular mechanisms involved in anthocyanin biosynthesis of the sarcocarp during A. arguta fruit development, de novo assembly and transcriptomic profile analyses were performed. Based on significant Gene Ontology (GO) biological terms, differentially expressed genes were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and amino acid metabolic processes. The genes closely related to anthocyanin biosynthesis, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and anthocyanidin synthase (ANS), displayed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed by qRT-PCR. Meanwhile, a series of transcription factor genes were identified among the DEGs. Through a correlation analysis. AaMYB1 was found to be significantly correlated with key genes of anthocyanin biosynthesis, especially with CHS. Through a transient expression assay, AaMYB1 induced anthocyanin accumulation in tobacco leaves. These data provide an important basis for exploring the related mechanisms of sarcocarp anthocyanin biosynthesis in A. arguta. This study will provide a strong foundation for functional studies on A. arguta and will facilitate improved breeding of A. arguta fruit.
Collapse
Affiliation(s)
- Bei Niu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Qiaohong Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Lijuan Fan
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuan Liu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Qiguo Zhuang
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Xiaobo Qin
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence:
| |
Collapse
|
19
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
20
|
Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Akebiatrifoliata: A Bioinformatics Study. Genes (Basel) 2022; 13:genes13091540. [PMID: 36140708 PMCID: PMC9498614 DOI: 10.3390/genes13091540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
WRKY transcription factors have been found in most plants and play an important role in regulating organ growth and disease response. Outlining the profile of WRKY genes is a very useful project for studying morphogenesis and resistance formation. In the present study, a total of 63 WRKY genes consisting of 13 class I, 41 class II, and 9 class III genes were identified from the newly published A. trifoliata genome, of which 62 were physically distributed on all 16 chromosomes. Structurally, two AkWRKY genes (AkWRKY6 and AkWRKY52) contained four domains, and AkWRKY17 lacked the typical heptapeptide structure. Evolutionarily, 42, 16, and 5 AkWRKY genes experienced whole genome duplication (WGD) or fragmentation, dispersed duplication, and tandem duplication, respectively; 28 Ka/Ks values of 30 pairs of homologous genes were far lower than 1, while those of orthologous gene pairs between AkWRKY41 and AkWRKY52 reached up to 2.07. Transcriptome analysis showed that many of the genes were generally expressed at a low level in 12 fruit samples consisting of three tissues, including rind, flesh, and seeds, at four developmental stages, and interaction analysis between AkWRKY and AkNBS genes containing W-boxes suggested that AkWRKY24 could play a role in plant disease resistance by positively regulating AkNBS18. In summary, the WRKY gene family of A. trifoliata was systemically characterized for the first time, and the data and information obtained regarding AkWRKY could be very useful in further theoretically elucidating the molecular mechanisms of plant development and response to pathogens and practically improving favorable traits such as disease resistance.
Collapse
|
21
|
Qiao Z, Kong Q, Tee WT, Lim ARQ, Teo MX, Olieric V, Low PM, Yang Y, Qian G, Ma W, Gao YG. Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis. SCIENCE ADVANCES 2022; 8:eabq1211. [PMID: 36001661 PMCID: PMC9401623 DOI: 10.1126/sciadv.abq1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/08/2022] [Indexed: 05/20/2023]
Abstract
Vegetable oils are not only major components of human diet but also vital for industrial applications. WRINKLED1 (WRI1) is a pivotal transcription factor governing plant oil biosynthesis, but the underlying DNA-binding mechanism remains incompletely understood. Here, we resolved the structure of Arabidopsis WRI1 (AtWRI1) with its cognate double-stranded DNA (dsDNA), revealing two antiparallel β sheets in the tandem AP2 domains that intercalate into the adjacent major grooves of dsDNA to determine the sequence recognition specificity. We showed that AtWRI1 represented a previously unidentified structural fold and DNA-binding mode. Mutations of the key residues interacting with DNA element affected its binding affinity and oil biosynthesis when these variants were transiently expressed in tobacco leaves. Seed oil content was enhanced in stable transgenic wri1-1 expressing an AtWRI1 variant (W74R). Together, our findings offer a structural basis explaining WRI1 recognition and binding of DNA and suggest an alternative strategy to increase oil yield in crops through WRI1 bioengineering.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Miao Xuan Teo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
- Corresponding author. (Y.-G.G.); (W.M.)
| |
Collapse
|
22
|
Wu Z, Singh SK, Lyu R, Pattanaik S, Wang Y, Li Y, Yuan L, Liu Y. Metabolic engineering to enhance the accumulation of bioactive flavonoids licochalcone A and echinatin in Glycyrrhiza inflata (Licorice) hairy roots. FRONTIERS IN PLANT SCIENCE 2022; 13:932594. [PMID: 36061790 PMCID: PMC9434314 DOI: 10.3389/fpls.2022.932594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
Echinatin and licochalcone A (LCA) are valuable chalcones preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata). The licorice chalcones (licochalcones) are valued for their anti-inflammatory, antimicrobial, and antioxidant properties and have been widely used in cosmetic, pharmaceutical, and food industries. However, echinatin and LCA are accumulated in low quantities, and the biosynthesis and regulation of licochalcones have not been fully elucidated. In this study, we explored the potential of a R2R3-MYB transcription factor (TF) AtMYB12, a known regulator of flavonoid biosynthesis in Arabidopsis, for metabolic engineering of the bioactive flavonoids in G. inflata hairy roots. Overexpression of AtMYB12 in the hairy roots greatly enhanced the production of total flavonoids (threefold), echinatin (twofold), and LCA (fivefold). RNA-seq analysis of AtMYB12-overexpressing hairy roots revealed that expression of phenylpropanoid/flavonoid pathway genes, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3'-hydroxylase (F3'H), is significantly induced compared to the control. Transient promoter activity assay indicated that AtMYB12 activates the GiCHS1 promoter in plant cells, and mutation to the MYB-binding motif in the GiCHS1 promoter abolished activation. In addition, transcriptomic analysis revealed that AtMYB12 overexpression reprograms carbohydrate metabolism likely to increase carbon flux into flavonoid biosynthesis. Further, AtMYB12 activated the biotic defense pathways possibly by activating the salicylic acid and jasmonic acid signaling, as well as by upregulating WRKY TFs. The transcriptome of AtMYB12-overexpressing hairy roots serves as a valuable source in the identification of potential candidate genes involved in LCA biosynthesis. Taken together, our findings suggest that AtMYB12 is an effective gene for metabolic engineering of valuable bioactive flavonoids in plants.
Collapse
Affiliation(s)
- Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Sørensen M, Andersen-Ranberg J, Hankamer B, Møller BL. Circular biomanufacturing through harvesting solar energy and CO 2. TRENDS IN PLANT SCIENCE 2022; 27:655-673. [PMID: 35396170 DOI: 10.1016/j.tplants.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO2. Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Andersen-Ranberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Gomez-Cano F, Chu YH, Cruz-Gomez M, Abdullah HM, Lee YS, Schnell DJ, Grotewold E. Exploring Camelina sativa lipid metabolism regulation by combining gene co-expression and DNA affinity purification analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:589-606. [PMID: 35064997 DOI: 10.1111/tpj.15682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Camelina (Camelina sativa) is an annual oilseed plant that is gaining momentum as a biofuel cover crop. Understanding gene regulatory networks is essential to deciphering plant metabolic pathways, including lipid metabolism. Here, we take advantage of a growing collection of gene expression datasets to predict transcription factors (TFs) associated with the control of Camelina lipid metabolism. We identified approximately 350 TFs highly co-expressed with lipid-related genes (LRGs). These TFs are highly represented in the MYB, AP2/ERF, bZIP, and bHLH families, including a significant number of homologs of well-known Arabidopsis lipid and seed developmental regulators. After prioritizing the top 22 TFs for further validation, we identified DNA-binding sites and predicted target genes for 16 out of the 22 TFs tested using DNA affinity purification followed by sequencing (DAP-seq). Enrichment analyses of targets supported the co-expression prediction for most TF candidates, and the comparison to Arabidopsis revealed some common themes, but also aspects unique to Camelina. Within the top potential lipid regulators, we identified CsaMYB1, CsaABI3AVP1-2, CsaHB1, CsaNAC2, CsaMYB3, and CsaNAC1 as likely involved in the control of seed fatty acid elongation and CsaABI3AVP1-2 and CsabZIP1 as potential regulators of the synthesis and degradation of triacylglycerols (TAGs), respectively. Altogether, the integration of co-expression data and DNA-binding assays permitted us to generate a high-confidence and short list of Camelina TFs involved in the control of lipid metabolism during seed development.
Collapse
Affiliation(s)
- Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Mariel Cruz-Gomez
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Hesham M Abdullah
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 212, Biochemistry Building, East Lansing, MI, 48824-6473, USA
| |
Collapse
|
25
|
Mahoney JD, Wang S, Iorio LA, Wegrzyn JL, Dorris M, Martin D, Bolling BW, Brand MH, Wang H. De novo assembly of a fruit transcriptome set identifies AmMYB10 as a key regulator of anthocyanin biosynthesis in Aronia melanocarpa. BMC PLANT BIOLOGY 2022; 22:143. [PMID: 35337270 PMCID: PMC8951710 DOI: 10.1186/s12870-022-03518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Aronia is a group of deciduous fruiting shrubs, of the Rosaceae family, native to eastern North America. Interest in Aronia has increased because of the high levels of dietary antioxidants in Aronia fruits. Using Illumina RNA-seq transcriptome analysis, this study investigates the molecular mechanisms of polyphenol biosynthesis during Aronia fruit development. Six A. melanocarpa (diploid) accessions were collected at four fruit developmental stages. De novo assembly was performed with 341 million clean reads from 24 samples and assembled into 90,008 transcripts with an average length of 801 bp. The transcriptome had 96.1% complete according to Benchmarking Universal Single-Copy Orthologs (BUSCOs). The differentially expressed genes (DEGs) were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and polysaccharide metabolic processes based on significant Gene Ontology (GO) biological terms. The expression of ten anthocyanin biosynthetic genes showed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed using qRT-PCR expression analyses. Additionally, transcription factor genes were identified among the DEGs. Using a transient expression assay, we confirmed that AmMYB10 induces anthocyanin biosynthesis. The de novo transcriptome data provides a valuable resource for the understanding the molecular mechanisms of fruit anthocyanin biosynthesis in Aronia and species of the Rosaceae family.
Collapse
Affiliation(s)
- Jonathan D Mahoney
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Sining Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Liam A Iorio
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Matthew Dorris
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Derek Martin
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin, Madison, WI, 53706, USA
| | - Mark H Brand
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
26
|
Lim ARQ, Kong Q, Singh SK, Guo L, Yuan L, Ma W. Sunflower WRINKLED1 Plays a Key Role in Transcriptional Regulation of Oil Biosynthesis. Int J Mol Sci 2022; 23:ijms23063054. [PMID: 35328473 PMCID: PMC8951541 DOI: 10.3390/ijms23063054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Sunflower (Helianthus annuus) is one of the most important oilseed crops worldwide. However, the transcriptional regulation underlying oil accumulation in sunflower is not fully understood. WRINKLED1 (WRI1) is an essential transcription factor governing oil accumulation in plant cells. Here, we identify and characterize a sunflower ortholog of WRI1 (HaWRI1), which is highly expressed in developing seeds. Transient production of HaWRI1 stimulated substantial oil accumulation in Nicotiana benthamiana leaves. Dual-luciferase reporter assay, electrophoretic mobility shift assay, fatty acid quantification, and gene expression analysis demonstrate that HaWRI1 acts as a pivotal transcription factor controlling the expression of genes involved in late glycolysis and fatty acid biosynthesis. HaWRI1 directly binds to the cis-element, AW-box, in the promoter of biotin carboxyl carrier protein isoform 2 (BCCP2). In addition, we characterize an 80 amino-acid C-terminal domain of HaWRI1 that is crucial for transactivation. Moreover, seed-specific overexpression of HaWRI1 in Arabidopsis plants leads to enhanced seed oil content as well as upregulation of the genes involved in fatty acid biosynthesis. Taken together, our work demonstrates that HaWRI1 plays a pivotal role in the transcriptional control of seed oil accumulation, providing a potential target for bioengineering sunflower oil yield improvement.
Collapse
Affiliation(s)
- Audrey R. Q. Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
| | - Sanjay K. Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; (S.K.S.); (L.Y.)
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (A.R.Q.L.); (Q.K.)
- Correspondence:
| |
Collapse
|
27
|
Fu L, Zhang Z, Wang H, Zhao X, Su L, Geng L, Lu Y, Tong B, Liu Q, Jiang X. Genome-wide analysis of BURP genes and identification of a BURP-V gene RcBURP4 in Rosa chinensis. PLANT CELL REPORTS 2022; 41:395-413. [PMID: 34820714 DOI: 10.1007/s00299-021-02815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Nine RcBURPs have been identified in Rosa chinensis, and overexpression of RcBURP4 increased ABA, NaCl sensitivity, and drought tolerance in transgenic Arabidopsis. BURP proteins are unique to plants and may contribute greatly to growth, development, and stress responses of plants. Despite the vital role of BURP proteins, little is known about these proteins in rose (Rosa spp.). In the present study, nine genes belonging to the BURP family in R. chinensis were identified using multiple bioinformatic approaches against the rose genome database. The nine RcBURPs, with diverse structures, were located on all chromosomes of the rose genome, except for Chr2 and Chr3. Phylogenic analysis revealed that these RcBURPs can be classified into eight subfamilies, including BNM2-like, PG1β-like, USP-like, RD22-like, BURP-V, BURP-VI, BURP-VII, and BURP-VIII. Conserved motif and exon-intron analyses indicated a conserved pattern within the same subfamily. The presumed cis-regulatory elements (CREs) within the promoter region of each RcBURP were analyzed and the results showed that all RcBURPs contained different types of CREs, including abiotic stress-, light response-, phytohormones response-, and plant growth and development-related CREs. Transcriptomic analysis revealed that a BURP-V member, RcBURP4, was induced in rose leaves and roots under mild and severe drought treatments. We then overexpressed RcBURP4 in Arabidopsis and examined its role under abscisic acid (ABA), NaCl, polyethylene glycol (PEG), and drought treatments. Nine stress-responsive genes expression were changed in RcBURP4-overexpressing leaves and roots. Furthermore, RcBURP4-silenced rose plants exhibited decreased tolerance to dehydration. The results obtained from this study provide the first comprehensive overview of RcBURPs and highlight the importance of RcBURP4 in rose plant.
Collapse
Affiliation(s)
- Lufeng Fu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Zhujun Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Hai Wang
- College of Landscape, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Zhao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lin Su
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lifang Geng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, 250102, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, 250102, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China.
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
28
|
Qu D, Wu F, Zhao X, Zhu D, Gu L, Yang L, Zhao W, Sun Y, Yang J, Tian W, Su H, Wang L. A bZIP transcription factor VabZIP12 from blueberry induced by dark septate endocyte improving the salt tolerance of transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111135. [PMID: 35067305 DOI: 10.1016/j.plantsci.2021.111135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Dark septate endophytes (DSEs) have attracted much attention due to their positive roles in plant growth as well as resistance to various abiotic stresses. However, there are no reports on the molecular mechanisms of DSE fungi to improve salt tolerance in plants. In this study, the blueberry seedlings inoculated with T010, a beneficial DSE fungus reported previously, grew more vigorously than the non-inoculated control under salt stress. Physiological indicators showed that T010 inoculation increased antioxidant activities of blueberry roots. To explore its molecular mechanism, we focused on the bZIP TFs VabZIP12, who was highly up-regulated with T010 inoculation under salt stress. Further studies showed that VabZIP12, as a transcription activator, could combine both G-Box 1 and G-Box 2 motifs. Moreover, overexpression of VabZIP12 enhanced salt stress tolerance through increasing the activities of the enzymatic antioxidants in the transgenic Arabidopsis with up-regulation the related genes. These results indicated that the induction of VabZIP12 contribute to improving the tolerance of blueberry to salt stress by T010 inoculation.
Collapse
Affiliation(s)
- Dehui Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dongzi Zhu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, 271000, China
| | - Liang Gu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, 271000, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Weiwei Zhao
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yadong Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Wei Tian
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai, 264025, China.
| |
Collapse
|
29
|
Dar NA, Mir MA, Mir JI, Mansoor S, Showkat W, Parihar TJ, Haq SAU, Wani SH, Zaffar G, Masoodi KZ. MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Mol Biol Rep 2022; 49:5353-5364. [PMID: 35088377 DOI: 10.1007/s11033-021-07077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
AIM Anthocyanin, an essential ingredient of functional foods, is present in a wide range of plants, including black carrots. The current investigation was carried out to analyse the effect of cold stress on the expression of major anthocyanins and anthocyanin biosynthetic pathway genes, MYB6 and LDOX-1. METHODS AND RESULTS Five cultivated carrot genotypes belonging to the eastern group, having anthocyanin pigment, were used in the current study. The qRT-PCR analysis revealed that relative gene expression of transcription factor MYB-6 and LDOX1gene was highly expressed upon cold stress compared to non-stress samples. High-performance liquid chromatography-based quantification of Cyanidin 3-O-glucoside (Kuromanin chloride), Ferulic acid, 3,5-Dimethoxy-4-hydroxycinnamic acid (Sinapic acid), and Rutin revealed a significant increase in these major anthocyanins in response to cold stress when compared to control plants. CONCLUSION We conclude that MYB6 and LDOX1 gene expression increases upon cold stress, which induces accumulation of major anthocyanins in purple black carrot and suggests a possible cross-link between cold stress and anthocyanin biosynthesis in purple black carrot.
Collapse
Affiliation(s)
- Niyaz A Dar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Mudasir A Mir
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Javid I Mir
- Central Institute of Temperate Horticulture, Rangreth, Srinagar, Jammu and Kashmir, 191132, India
| | - Sheikh Mansoor
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Wasia Showkat
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tasmeen J Parihar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Syed Anam Ul Haq
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, SKUAST-Kashmir, Khudwani, Jammu and Kashmir, 192101, India
| | - Gul Zaffar
- Division of Plant Breeding & Genetics, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
30
|
Huang Y, Xie FJ, Cao X, Li MY. Research progress in biosynthesis and regulation of plant terpenoids. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ying Huang
- Department of Horticulture, College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, PR China
| | - Fang-Jie Xie
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xue Cao
- Department of Horticulture, College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, PR China
| | - Meng-Yao Li
- Department of Horticulture, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
31
|
Cao X, Xu L, Wang J, Dong M, Xu C, Kai G, Wan W, Jiang J. Endophytic fungus Pseudodidymocyrtis lobariellae KL27 promotes taxol biosynthesis and accumulation in Taxus chinensis. BMC PLANT BIOLOGY 2022; 22:12. [PMID: 34979929 PMCID: PMC8722197 DOI: 10.1186/s12870-021-03396-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Taxol from Taxus species is a precious drug used for the treatment of cancer and can effectively inhibit the proliferation of cancer cells. However, the growth of Taxus plants is very slow and the content of taxol is quite low. Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. RESULTS Here, an endophytic fungus KL27 was isolated from T. chinensis, and identified as Pseudodidymocyrtis lobariellae. The fermentation broth of KL27 (KL27-FB) could significantly promote the accumulation of taxol in needles of T. chinensis, reaching 0.361 ± 0.082 mg/g·DW (dry weight) at 7 days after KL27-FB treatment, which is 3.26-fold increase as compared to the control. The RNA-seq and qRT-PCR showed that KL27-FB could significantly increase the expression of key genes involved in the upstream pathway of terpene synthesis (such as DXS and DXR) and those in the taxol biosynthesis pathway (such as GGPPS, TS, T5OH, TAT, T10OH, T14OH, T2OH, TBT, DBAT and PAM), especially at the early stage of the stimulation. Moreover, the activation of jasmonic acid (JA) biosynthesis and JA signal transduction, and its crosstalk with other hormones, such as gibberellin acid (GA), ethylene (ET) and salicylic acid (SA), explained the elevation of most of the differential expressed genes related to taxol biosynthesis pathway. Moreover, TF (transcriptional factor)-encoding genes, including MYBs, ethylene-responsive transcription factors (ERFs) and basic/helix-loop-helix (bHLH), were detected as differential expressed genes after KL27-FB treatment, further suggested that the regulation of hormone signaling on genes of taxol biosynthesis was mediated by TFs. CONCLUSIONS Our results indicated that fermentation broth of endophytic fungus KL27-FB could effectively enhance the accumulation of taxol in T. chinensis needles by regulating the phytohormone metabolism and signal transduction and further up-regulating the expression of multiple key genes involved in taxol biosynthesis. This study provides new insight into the regulatory mechanism of how endophytic fungus promotes the production and accumulation of taxol in Taxus sp.
Collapse
Affiliation(s)
- Xiaoying Cao
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Lingxia Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Jingyi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Mengmeng Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Chunyan Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Wen Wan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Jihong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China.
| |
Collapse
|
32
|
Alós E, Rey F, Gil JV, Rodrigo MJ, Zacarias L. Ascorbic Acid Content and Transcriptional Profiling of Genes Involved in Its Metabolism during Development of Petals, Leaves, and Fruits of Orange ( Citrus sinensis cv. Valencia Late). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122590. [PMID: 34961061 PMCID: PMC8707836 DOI: 10.3390/plants10122590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 05/13/2023]
Abstract
Citrus fruit is one of the most important contributors to the ascorbic acid (AsA) intake in humans. Here, we report a comparative analysis of AsA content and transcriptional changes of genes related to its metabolism during development of petals, leaves and fruits of Valencia Late oranges (Citrus sinensis). Petals of close flowers and at anthesis contained the highest concentration of AsA. In fruits, AsA content in the flavedo reached a maximum at color break, whereas the pulp accumulated lower levels and experienced minor fluctuations during development. AsA levels in leaves were similar to those in the flavedo at breaker stage. The transcriptional profiling of AsA biosynthetic, degradation, and recycling genes revealed a complex and specific interplay of the different pathways for each tissue. The D-galacturonic acid pathway appeared to be relevant in petals, whereas in leaves the L-galactose pathway (GGP and GME) also contributed to AsA accumulation. In the flavedo, AsA content was positively correlated with the expression of GGP of the L-galactose pathway and negatively with DHAR1 gene of the recycling pathway. In the pulp, AsA appeared to be mainly controlled by the coordination among the D-galacturonic acid pathway and the MIOX and GalDH genes. Analysis of the promoters of AsA metabolism genes revealed a number of cis-acting elements related to developmental signals, but their functionalities remain to be investigated.
Collapse
Affiliation(s)
- Enriqueta Alós
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - Florencia Rey
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - José Vicente Gil
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
- Food Technology Area, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - María Jesús Rodrigo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
| | - Lorenzo Zacarias
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Valencia, Spain; (E.A.); (F.R.); (J.V.G.); (M.J.R.)
- Correspondence: ; Tel.: +34-96-3900022
| |
Collapse
|
33
|
Di P, Wang P, Yan M, Han P, Huang X, Yin L, Yan Y, Xu Y, Wang Y. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng. BMC Genomics 2021; 22:834. [PMID: 34794386 PMCID: PMC8600734 DOI: 10.1186/s12864-021-08145-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China. .,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Min Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Peng Han
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Xinyi Huang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Le Yin
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yan Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yonghua Xu
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China.
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| |
Collapse
|
34
|
Jamshidi Kandjani O, Rahbar-Shahrouziasl M, Alizadeh AA, Hamzeh-Mivehroud M, Dastmalchi S. Identification of Novel Mutations in Arabidopsis thaliana DOF 4.2 Coding Gene. Adv Pharm Bull 2021; 11:557-563. [PMID: 34513631 PMCID: PMC8421617 DOI: 10.34172/apb.2021.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: DOF (DNA-binding with One Finger) proteins are plant-specific transcription factors which mediate numerous biological processes. The purpose of the current study is to report new naturally occurring mutations in the gene encoding for one of the members of DOF proteins named DOF 4.2. Methods: The expression of zinc finger domain of DOF 4.2 (DOF 4.2-ZF) was investigated by first synthesis of cDNA library using different parts of Arabidopsis thaliana plant. Then the coding sequence for zinc finger domain of DOF 4.2 protein was prepared using nested PCR experiment and cloned into pGEX-6P-1 expression vector. Finally, the prepared construct was used for protein expression. Furthermore, molecular dynamics (MD) simulation was carried out to predict DNA binding affinity of DOF 4.2-ZF using AMBER package. Results: For the first time a new variant of DOF 4.2-ZF protein with three mutations was detected. One of the mutations is silent while the other two mutations lead to amino acid replacement (S18G) as well as introduction of a stop codon ultimately resulting in a truncated protein production. In order to investigate whether the truncated form is able to recognize DNA binding motif, MD simulations were carried out and the results showed that the chance of binding of DOF 4.2-ZF protein to cognate DNA in its truncated form is very low. Conclusion: The findings demonstrated that the observed mutations adversely affect the DNA binding ability of the truncated form of DOF4.2 if it is expressed in the mutant variant of A. thaliana used in this study.
Collapse
Affiliation(s)
| | - Mahdieh Rahbar-Shahrouziasl
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Liu Y, Zhu P, Cai S, Haughn G, Page JE. Three novel transcription factors involved in cannabinoid biosynthesis in Cannabis sativa L. PLANT MOLECULAR BIOLOGY 2021; 106:49-65. [PMID: 33625643 DOI: 10.1007/s11103-021-01129-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Three novel transcription factors were successfully identified and shown to interact with the trichome-specific THCAS promoter regulatory region. Cannabinoids are important secondary metabolites present in Cannabis sativa L. (cannabis). One cannabinoid that has received considerable attention, 9-tetrahydrocannabinol (THC), is derived from Delta-9-Tetrahydrocannabinolic acid (THCA) and responsible for the mood-altering and pain-relieving effects of cannabis. A detailed understanding of transcriptional control of THCA synthase (THCAS) is currently lacking. The primary site of cannabinoid biosynthesis is the glandular trichomes that form on female flowers. Transcription factors (TFs) have been shown to play an important role in secondary-metabolite biosynthesis and glandular trichome formation in Artemisia annua, Solanum lycopersicum and Humulus lupulus. However, analogous information is not available for cannabis. Here, we characterize a 548 bp fragment of the THCAS promoter and regulatory region that drives trichome-specific expression. Using this promoter fragment in a yeast-one-hybrid screen, we identified 3 novel TFs (CsAP2L1, CsWRKY1 and CsMYB1) and provided evidence that these 3 TFs regulate the THCAS promoter in planta. The O-Box element within the proximal region of the THCAS promoter is necessary for CsAP2L1-induced transcriptional activation of THCAS promoter. Similar to THCAS, the genes for all three TFs have trichome-specific expression, and subcellular localization of the TFs indicates that all three proteins are in the nucleus. CsAP2L1 and THCAS exhibit a similar temporal, spatial and strain-specific gene expression profiles, while those expression patterns of CsWRKY1 and CsMYB1 are opposite from THCAS. Our results identify CsAP2L1 playing a positive role in the regulation of THCAS expression, while CsWRKY1 and CsMYB1 may serve as negative regulators of THCAS expression.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Anandia Labs, Vancouver, BC, V6T 1Z4, Canada.
| | - Panpan Zhu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Cai
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jonathan E Page
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Anandia Labs, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
37
|
Basharat S, Huang Z, Gong M, Lv X, Ahmed A, Hussain I, Li J, Du G, Liu L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Genome-wide identification of AP2/ERF transcription factor-encoding genes in California poppy (Eschscholzia californica) and their expression profiles in response to methyl jasmonate. Sci Rep 2020; 10:18066. [PMID: 33093564 PMCID: PMC7582171 DOI: 10.1038/s41598-020-75069-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
With respect to the biosynthesis of plant alkaloids, that of benzylisoquinoline alkaloids (BIAs) has been the most investigated at the molecular level. Previous investigations have shown that the biosynthesis of BIAs is comprehensively regulated by WRKY and bHLH transcription factors, while promoter analyses of biosynthesis enzyme-encoding genes have also implicated the involvement of members of the APETALA2/ethylene responsive factor (AP2/ERF) superfamily. To investigate the physiological roles of AP2/ERF transcription factors in BIA biosynthesis, 134 AP2/ERF genes were annotated using the draft genome sequence data of Eschscholzia californica (California poppy) together with transcriptomic data. Phylogenetic analysis revealed that these genes could be classified into 20 AP2, 5 RAV, 47 DREB, 60 ERF and 2 Soloist family members. Gene structure, conserved motif and orthologous analyses were also carried out. Gene expression profiling via RNA sequencing in response to methyl jasmonate (MeJA) indicated that approximately 20 EcAP2/ERF genes, including 10 group IX genes, were upregulated by MeJA, with an increase in the expression of the transcription factor-encoding gene EcbHLH1 and the biosynthesis enzyme-encoding genes Ec6OMT and EcCYP719A5. Further quantitative RT-PCR confirmed the MeJA responsiveness of the EcAP2/ERF genes, i.e., the increased expression of 9 group IX, 2 group X and 2 group III ERF subfamily genes. Transactivation activity of group IX EcAP2/ERFs was also confirmed by a luciferase reporter assay in conjunction with the promoters of the Ec6OMT and EcCYP719A5 genes. The physiological roles of AP2/ERF genes in BIA biosynthesis and their evolution in the regulation of alkaloid biosynthesis are discussed.
Collapse
|
39
|
Shi J, Zhang X, Zhang Y, Lin X, Li B, Chen Z. Integrated metabolomic and transcriptomic strategies to understand the effects of dark stress on tea callus flavonoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:549-559. [PMID: 32846390 DOI: 10.1016/j.plaphy.2020.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 05/18/2023]
Abstract
Flavonoid biosynthesis is a crucial secondary metabolism process for tea plants. Its metabolism is affected by multiple environmental factors, especially light. Shade, also known as dark stress (DS), is generally used during cultivation to improve tea quality by influencing the flavonoid accumulation. To explore the molecular mechanisms of flavonoid biosynthesis under DS, metabolomics and transcriptomics (METR) analyses were performed in tea callus via culturing the plants in vitro using 12 h light/12 h dark cycles (A) or completely dark (B) conditions for 30 days. In total, 161 differential metabolic products (DMPs) and 3592 differential expression genes (DEGs) were identified. The major flavonoids including epicatechin gallate, catechin gallate, gallocatechin-catechin, cyanidin 3-O-glucoside and the total of catechin, anthocyanin and proanthocyanidin contents were all remarkably down-regulated in tea callus under DS. Meanwhile, 9 genes including CsPAL, Cs4CL, CsCHS, CsFLS, CsDFR, CsANS, CsLAR, CsANR, and CsUFGT determined to be responsible for the flavonoid biosynthesis. In addition, 2 transcription factors (TFs) including CsMYBT1 and CsMYBT2 verified to play key role in regulation the flavonoid biosynthesis. These results helped us further understand the underlying molecular mechanism of flavonoid metabolism in tea plants.
Collapse
Affiliation(s)
- Jing Shi
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China
| | - Xue Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
40
|
Ahmed RF, Irfan M, Shakir HA, Khan M, Chen L. Engineering drought tolerance in plants by modification of transcription and signalling factors. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Rida Fatima Ahmed
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Abdullah Shakir
- Department of Zoology, Faculty of life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Department of Zoology, Faculty of life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Lijing Chen
- Department of Biotechnology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
41
|
Wang W, Celton JM, Buck-Sorlin G, Balzergue S, Bucher E, Laurens F. Skin Color in Apple Fruit ( Malus × domestica): Genetic and Epigenetic Insights. EPIGENOMES 2020; 4:epigenomes4030013. [PMID: 34968286 PMCID: PMC8594686 DOI: 10.3390/epigenomes4030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Apple skin color is an important trait for organoleptic quality. In fact, it has a major influence on consumer choice. Skin color is, thus, one of the most important criteria taken into account by breeders. For apples, most novel varieties are so-called "mutants" or "sports" that have been identified in clonal populations. Indeed, many "sports" exist that show distinct phenotypic differences compared to the varieties from which they originated. These differences affect a limited number of traits of economic importance, including skin color. Until recently, the detailed genetic or epigenetic changes resulting in heritable phenotypic changes in sports was largely unknown. Recent technological advances and the availability of several high-quality apple genomes now provide the bases to understand the exact nature of the underlying molecular changes that are responsible for the observed phenotypic changes observed in sports. The present review investigates the molecular nature of sports affected in apple skin color giving arguments in favor of the genetic or epigenetic explanatory models.
Collapse
Affiliation(s)
- Wuqian Wang
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Jean-Marc Celton
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Gerhard Buck-Sorlin
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Sandrine Balzergue
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland;
| | - François Laurens
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
- Correspondence:
| |
Collapse
|
42
|
Chandran H, Meena M, Barupal T, Sharma K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00450. [PMID: 32373483 PMCID: PMC7193120 DOI: 10.1016/j.btre.2020.e00450] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Plants have been used throughout the world for its medicinal powers since ancient time. The pharmacological properties of plants are based on their phytochemical components especially the secondary metabolites which are outstanding sources of value added bioactive compounds. Secondary metabolites have complex chemical composition and are produced in response to various forms of stress to perform different physiological tasks in plants. They are used in pharmaceutical industries, cosmetics, dietary supplements, fragrances, flavors, dyes, etc. Extended use of these metabolites in various industrial sectors has initiated a need to focus research on increasing the production by employing plant tissue culture (PTC) techniques and optimizing their large scale production using bioreactors. PTC techniques being independent of climatic and geographical conditions will provide an incessant, sustainable, economical and viable production of secondary metabolites. This review article intends to assess the advantages of using plant tissue culture, distribution of important secondary metabolites in plant families, strategies involved for optimal metabolite production and the industrial importance of selected secondary metabolites.
Collapse
Affiliation(s)
- Hema Chandran
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tansukh Barupal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Kanika Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
43
|
Sabzehzari M, Zeinali M, Naghavi MR. Alternative sources and metabolic engineering of Taxol: Advances and future perspectives. Biotechnol Adv 2020; 43:107569. [PMID: 32446923 DOI: 10.1016/j.biotechadv.2020.107569] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Paclitaxel is one of the strong plant-derived anti-cancer drugs that was first isolated from the Pacific yew. Despite many paclitaxel's clinical successes, the limited accessibility of paclitaxel for clinical trials is recognized as the most important challenge. Thus, researchers are continuously trying to find the innovative ways to meet the community's need for this medicine. In the first step, the alternative sources for Taxol supply were recognized, such as Taxus genus, other plant genera, and endophytic fungi. In the next step, the biosynthetic pathways of Taxol or related metabolites were manipulated in the original organisms, or introduced to heterologous systems and then were manipulated in them. Here, a range of metabolic manipulating approaches have been successfully developed to redirect the metabolic flux toward Taxol, including promoter engineering, enzyme engineering, overexpressing the bottleneck enzymes, over- or down-regulation of transcription factors, activation of the cryptic genes, removing/minimizing the flux for competing pathways, tunable regulation of the metabolic pathway, and increasing the supplies of precursors. In this review, we discuss research progress on the alternative Taxol sources and its metabolic manipulating, and we suggest recent challenges and future perspectives.
Collapse
Affiliation(s)
- Mohammad Sabzehzari
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Masoumeh Zeinali
- Department of Agronomy and Plant Breeding, Faculty of Agricultural, University of Mohaghegh Ardabili, Iran
| | - Mohammad Reza Naghavi
- Division of Plant Molecular Genetics, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| |
Collapse
|
44
|
Zhong C, Tang Y, Pang B, Li X, Yang Y, Deng J, Feng C, Li L, Ren G, Wang Y, Peng J, Sun S, Liang S, Wang X. The R2R3-MYB transcription factor GhMYB1a regulates flavonol and anthocyanin accumulation in Gerbera hybrida. HORTICULTURE RESEARCH 2020; 7:78. [PMID: 32435501 PMCID: PMC7237480 DOI: 10.1038/s41438-020-0296-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Anthocyanins and flavonols have vital roles in flower coloration, plant development, and defense. Because anthocyanins and flavonols share the same subcellular localization and common biosynthetic substrates, these pathways may compete for substrates. However, the mechanism regulating this potential competition remains unclear. Here, we identified GhMYB1a, an R2R3-MYB transcription factor involved in the regulation of anthocyanin and flavonol accumulation in gerbera (Gerberahybrida). GhMYB1a shares high sequence similarity with that of other characterized regulators of flavonol biosynthesis. In addition, GhMYB1a is also phylogenetically grouped with these proteins. The overexpression of GhMYB1a in gerbera and tobacco (Nicotianatabacum) resulted in decreased anthocyanin accumulation and increased accumulation of flavonols by upregulating the structural genes involved in flavonol biosynthesis. We further found that GhMYB1a functions as a homodimer instead of interacting with basic helix-loop-helix cofactors. These results suggest that GhMYB1a is involved in regulating the anthocyanin and flavonol metabolic pathways through precise regulation of gene expression. The functional characterization of GhMYB1a provides insight into the biosynthesis and regulation of flavonols and anthocyanins.
Collapse
Affiliation(s)
- Chunmei Zhong
- College of Forestry and Landscape Architecture; Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P.R. China, South China Agricultural University, Guangzhou, 510642 China
| | - Yi Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Bin Pang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xukun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Yuping Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jing Deng
- College of Forestry and Landscape Architecture; Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P.R. China, South China Agricultural University, Guangzhou, 510642 China
| | - Chengyong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Lingfei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004 China
| | - Guiping Ren
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jianzong Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shulan Sun
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Shan Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
45
|
Zhong MS, Jiang H, Cao Y, Wang YX, You CX, Li YY, Hao YJ. MdCER2 conferred to wax accumulation and increased drought tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:277-285. [PMID: 32088579 DOI: 10.1016/j.plaphy.2020.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
Drought can activate many stress responses in plant growth and development, including the synthesis of epidermal wax and the induction of abscisic acid (ABA), and increased wax accumulation will improve plant drought resistance. Therefore, an examination of wax biosynthesis genes could help to better understand the molecular mechanism of environmental factors regulating wax biosynthesis and the wax associated stress response. Here, we identified the MdCER2 gene from the 'Gala' (Malus× domestica Borkh.) variety of domestic apple, which is a homolog of Arabidopsis AtCER2. It possesses a transferase domain and the protein localizes on the cell membrane. The MdCER2 gene was constitutively expressed in apple tissues and was induced by drought treatment. Finally, we transformed the MdCER2 gene into Arabidopsis to identify its function, and found ectopic expression of MdCER2 promoted accumulation of cuticular wax in both leaves and stems, decreased water loss and permeability in leaves, increased lateral root number, changed plant ABA sensitivity, and increased drought resistance.
Collapse
Affiliation(s)
- Ming-Shuang Zhong
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Cao
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yong-Xu Wang
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
46
|
Abril AG, Rama JLR, Sánchez-Pérez A, Villa TG. Prokaryotic sigma factors and their transcriptional counterparts in Archaea and Eukarya. Appl Microbiol Biotechnol 2020; 104:4289-4302. [PMID: 32232532 DOI: 10.1007/s00253-020-10577-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
RNA polymerases (RNAPs) carry out transcription in the three domains of life, Bacteria, Archaea, and Eukarya. Transcription initiation is highly regulated by a variety of transcription factors, whose number and subunit complexity increase during evolution. This process is regulated in Bacteria by the σ factor, while the three eukaryotic RNAPs require a complex set of transcription factors (TFs) and a TATA-binding protein (TBP). The archaeal transcription system appears to be an ancestral version of the eukaryotic RNAPII, requiring transcription factor B (TFB), TBP, and transcription factor E (TFE). The function of the bacterial sigma (σ) factor has been correlated to the roles played by the eukaryotic RNAP II and the archaeal RNAP. In addition, σ factors, TFB, and TFIIB all contain multiple DNA binding helix-turn-helix (HTH) structural motifs; although TFIIB and TFB display two HTH domains, while the bacterial σ factor spans 4 HTH motifs. The sequence similarities and structure alignments of the bacterial σ factor, eukaryotic TFIIB, and archaeal TFB evidence that these three proteins are homologs.Key Points• Transcription initiation is highly regulated by TFs.• Transcription is finely regulated in all domains of life by different sets of TFs.• Specific TFs in Bacteria, Eukarya and Archaea are homologs.
Collapse
Affiliation(s)
- Ana G Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis R Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - A Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
47
|
Sarkar MAR, Watanabe S, Suzuki A, Hashimoto F, Anai T. Identification of novel MYB transcription factors involved in the isoflavone biosynthetic pathway by using the combination screening system with agroinfiltration and hairy root transformation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:241-251. [PMID: 31983878 PMCID: PMC6978502 DOI: 10.5511/plantbiotechnology.19.1025a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/25/2019] [Indexed: 05/20/2023]
Abstract
Soybean isoflavones are functionally important secondary metabolites that are mainly accumulated in seeds. Their biosynthetic processes are regulated coordinately at the transcriptional level; however, screening systems for key transcription factors (TFs) are limited. Here we developed a combination screening system comprising a simple agroinfiltration assay and a robust hairy root transformation assay. First, we screened for candidate MYB TFs that could activate the promoters of the chalcone synthase (CHS) gene GmCHS8 and the isoflavone synthase (IFS) genes GmIFS1 and GmIFS2 in the isoflavone biosynthetic pathway. In the agroinfiltration assay, we co-transformed a LjUbi (Lotus japonicus polyubiquitin gene) promoter-fused MYB gene with target promoter-fused GUS (β-glucuronidase) gene constructs, and identified three genes (GmMYB102, GmMYB280, and GmMYB502) as candidate regulators of isoflavone biosynthesis. We then evaluated the functional regulatory role of identified three MYB genes in isoflavone biosynthesis using hairy roots transformation assay in soybean for the accumulation of isoflavones. Three candidate MYB genes showed an increased accumulation of total isoflavones in hairy root transgenic lines. Accumulation of total isoflavones in the three MYB-overexpressing lines was approximately 2-to 4-folds more than that in the vector control, confirming their possible role to regulate isoflavone biosynthesis. However, the significant accumulation of authentic GmCHS8, GmIFS1, and GmIFS2 transcripts could not be observed except for the GmMYB502-overexpressing line. Therefore, the analysis of isoflavone accumulation in transgenic hairy root was effective for evaluation of transactivation activity of MYB TFs for isoflavone biosynthetic genes. Our results demonstrate a simple and robust system that can potentially identify the function of orphan TFs in diverse plant metabolic pathways.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Satoshi Watanabe
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Akihiro Suzuki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Fumio Hashimoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Toyoaki Anai
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
- E-mail: Tel & Fax: +81-952-28-8725
| |
Collapse
|
48
|
Xie S, Qiao X, Chen H, Nan H, Zhang Z. Coordinated Regulation of Grape Berry Flesh Color by Transcriptional Activators and Repressors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11815-11824. [PMID: 31550160 DOI: 10.1021/acs.jafc.9b05234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Yan73 is a teinturier Vitis vinifera variety with red berry flesh, but the molecular mechanisms underlying its flesh coloration remain unclear. We analyzed the flavonoid metabolic and transcriptome profiles of Yan73 berry red and white flesh using HPLC-ESI-MS/MS and RNA-sequencing technologies. Anthocyanins are the main flavonoids responsible for Yan73 berry flesh color, and the coloration is coordinately regulated by the VvMYBA1 transcriptional activator and VvMYBC2-L1 transcriptional repressor. Furthermore, yeast one- and two-hybrid, dual luciferase, and bimolecular fluorescence complementation assays suggested that VvMYBA1 positively regulates Yan73 berry flesh color via interactions with VvWDR1 and the activation of the VvCHI3, VvOMT, and VvGST4 promoters, whereas VvMYBC2-L1 negatively regulates Yan73 berry flesh color, possibly by competing with the R2R3-MYB transcriptional activators for bHLH partners or by repressing VvOMT and VvGST4 expression. Our findings provide new insights into the molecular mechanisms regulating grape flesh color.
Collapse
Affiliation(s)
- Sha Xie
- College of Enology , Northwest A&F University , No. 22 Xinong Road , Yangling , Shaanxi 712100 , China
| | - Xinlong Qiao
- Laboratory of Interdisciplinary Research Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Huawei Chen
- College of Enology , Northwest A&F University , No. 22 Xinong Road , Yangling , Shaanxi 712100 , China
| | - Hao Nan
- College of Life Sciences , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Zhenwen Zhang
- College of Enology , Northwest A&F University , No. 22 Xinong Road , Yangling , Shaanxi 712100 , China
- Shaanxi Engineering Research Center for Viti-Viniculture , Yangling , Shaanxi 712100 , China
| |
Collapse
|
49
|
Cao L, Lu X, Zhang P, Wang G, Wei L, Wang T. Systematic Analysis of Differentially Expressed Maize ZmbZIP Genes between Drought and Rewatering Transcriptome Reveals bZIP Family Members Involved in Abiotic Stress Responses. Int J Mol Sci 2019; 20:ijms20174103. [PMID: 31443483 PMCID: PMC6747360 DOI: 10.3390/ijms20174103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/04/2022] Open
Abstract
The basic leucine zipper (bZIP) family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few bZIPs have been functionally characterized. In this paper, 54 maize bZIP genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize bZIP family. Spatio-temporal expression analyses showed that bZIP genes are widely expressed during maize development. We identified 10 core ZmbZIPs involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that ZmbZIP17, -33, -42, and -45 are nuclear proteins. These results provide the basis for future functional genomic studies on bZIP TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.
Collapse
Affiliation(s)
- Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guorui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Li Wei
- National Engineering Research Centre for Wheat, Zhengzhou 450002, China.
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
50
|
Wang T, Yang B, Guan Q, Chen X, Zhong Z, Huang W, Zhu W, Tian J. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC PLANT BIOLOGY 2019; 19:198. [PMID: 31088368 PMCID: PMC6518806 DOI: 10.1186/s12870-019-1803-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica. RESULTS In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. CONCLUSIONS Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.
Collapse
Affiliation(s)
- Tantan Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Bingxian Yang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Qijie Guan
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Xi Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Zhuoheng Zhong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Huang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Jingkui Tian
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|