1
|
Gong F, Jing W, Jin W, Liu H, Zhang Y, Wang R, Wei Y, Tang K, Jiang Y, Gao J, Sun X. RhMYC2 controls petal size through synergistic regulation of jasmonic acid and cytokinin signaling in rose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:459-472. [PMID: 39164914 DOI: 10.1111/tpj.16993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Petal size is determined by cell division and cell expansion. Jasmonic acid (JA) has been reported to be associated with floral development, but its regulatory mechanism affecting petal size remains unclear. Here, we reveal the vital role of JA in regulating petal size and the duration of the cell division phase via the key JA signaling component RhMYC2. We show that RhMYC2 expression is induced by exogenous treatment with methyl jasmonate and decreases from stage 0 to stage 2 of flower organ development, corresponding to the cell division phase. Furthermore, silencing RhMYC2 shortened the duration of the cell division phase, ultimately accelerating flowering opening and resulting in smaller petals. In addition, we determined that RhMYC2 controls cytokinin homeostasis in rose petals by directly activating the expression of the cytokinin biosynthetic gene LONELY GUY3 (RhLOG3) and repressing that of the cytokinin catabolism gene CYTOKININ OXIDASE/DEHYDROGENASE6 (RhCKX6). Silencing RhLOG3 shortened the duration of the cell division period and produced smaller petals, similar to RhMYC2 silencing. Our results underscore the synergistic effects of JA and cytokinin in regulating floral development, especially for petal size in roses.
Collapse
Affiliation(s)
- Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Weichan Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huwei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuanfei Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yinghao Wei
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kaiyang Tang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| |
Collapse
|
2
|
He C, Shou H. PHO1: linking phosphate nutrition translocation and floral signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4693-4696. [PMID: 39192696 PMCID: PMC11350078 DOI: 10.1093/jxb/erae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
This article comments on:
Dai S, Chen H, Shi Y, Xiao X, Xu L, Qin C, Zhu Y, Yi K, Lei M, Zeng H. 2024. PHOSPHATE1-mediated phosphate translocation from roots to shoots regulates floral transition in plants. Journal of Experimental Botany 75, 5054–5075. https://doi.org/10.1093/jxb/erae222
Collapse
Affiliation(s)
- Cunman He
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Huixia Shou
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| |
Collapse
|
3
|
Shi Y, Ackah M, Amoako FK, Zhao M, van der Puije GC, Zhao W. The Mechanism of the Development and Maintenance of Sexual Dimorphism in the Dioecious Mulberry Plant ( Morus alba). BIOLOGY 2024; 13:622. [PMID: 39194560 DOI: 10.3390/biology13080622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Intersexual differentiation is crucial for the speciation and maintenance of dioecious plants, but the underlying mechanisms, including the genes involved, are still poorly understood. Here, we focused on a typical dioicous plant Morus alba, to explore the molecular footprints relevant to sex evolution by revealing the differentially expressed genes (DEGs) between two sexes and the testing signals of selection for these DEGs. From the results, we found a total of 1543 DEGs. Interestingly, 333 and 66 genes expression were detected only in male and female inflorescences, respectively. Using comparative transcriptomics, the expression of 841 genes were found to be significantly higher in male than in female inflorescences and were mainly enriched in defense-related pathways including the biosynthesis of phenylpropanoids, cutin, suberine and waxes. Meanwhile, the expression of 702 genes was female-biased and largely enriched in pathways related to growth and development, such as carbohydrate metabolism, auxin signaling and cellular responses. In addition, 16.7% and 17.6% signals of selection were significantly detected in female- and male-biased genes, respectively, suggesting their non-negligible role in evolution. Our findings expanded the understanding of the molecular basis of intersexual differentiation and contribute to further research on sex evolution in dioecious plants.
Collapse
Affiliation(s)
- Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Grace C van der Puije
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
4
|
Xin H, Zhang L, Wang H, Zhu X. Dynamic transcriptome analysis provides molecular insights into underground floral differentiation in Adonis Amurensis Regel & Radde. BMC Genom Data 2024; 25:33. [PMID: 38515034 PMCID: PMC10956236 DOI: 10.1186/s12863-024-01220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Understanding flower developmental processes is a prerequisite for improving flowering 'plants' production. Adonis amurensis is a fascinating spring ephemeral plant that develops its flower organs underground. Nevertheless, knowledge of the molecular mechanisms driving this particular process is scarce. Herein, we examined transcriptional changes during underground flower differentiation in A. amurensis and unveiled key differently regulated genes and pathways. High-throughput RNA sequencing of meristems at different flower developmental stages, including flower primordium (FP), sepal stage (SE), perianth primordium (PE), stamen stage (ST), and pistil stage (PI), identified 303,234 unigenes that showed 44.79% similarity with sequences in Aquilegia coerulea. Correlations, principal component, and differentially expressed genes (DEGs) analyses revealed that few molecular changes occurred during the transition from PE to ST. Many DEGs exhibited stage-specific regulations. Transcription factor (TF) and phytohormone family genes are critical regulators of the floral differentiation process in A. amurensis. The most differentially regulated TFs were MADS, FAR1, MYBs, AP2/ERF, B3, C2H2, and LOBs. We filtered out 186 candidate genes for future functional studies, including 18 flowering/circadian-related, 32 phytohormone-related, and TF family genes. Our findings deepen our understanding of the underground flower differentiation process and offer critical resources to dissect its regulatory network in A. amurensis. These findings establish a foundational platform for researchers dedicated to exploring the unique phenotypic characteristics of this specific flowering modality and delving into the intricate molecular mechanisms underpinning its regulation and expression.
Collapse
Affiliation(s)
- Hui Xin
- School of Landscape Architecture, Changchun University, 6543 Weixing Road, Changchun, China
| | - Lifan Zhang
- College of Life Sciences, Tonghua Normal University, 950, Yucai Road, Tonghua, China
| | - Hongtao Wang
- College of Life Sciences, Tonghua Normal University, 950, Yucai Road, Tonghua, China
| | - Xingzun Zhu
- School of Landscape Architecture, Changchun University, 6543 Weixing Road, Changchun, China.
| |
Collapse
|
5
|
Long X, Yang W, Lv Y, Zhong X, Chen L, Li Q, Lv Z, Li Y, Cai Y, Yang H. The Histone Variant H3.3 Is Required for Plant Growth and Fertility in Arabidopsis. Int J Mol Sci 2024; 25:2549. [PMID: 38473796 DOI: 10.3390/ijms25052549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Histones are the core components of the eukaryote chromosome, and have been implicated in transcriptional gene regulation. There are three major isoforms of histone H3 in Arabidopsis. Studies have shown that the H3.3 variant is pivotal in modulating nucleosome structure and gene transcription. However, the function of H3.3 during development remains to be further investigated in plants. In this study, we disrupted all three H3.3 genes in Arabidopsis. Two triple mutants, h3.3cr-4 and h3.3cr-5, were created by the CRISPR/Cas9 system. The mutant plants displayed smaller rosettes and decreased fertility. The stunted growth of h3.3cr-4 may result from reduced expression of cell cycle regulators. The shorter stamen filaments, but not the fertile ability of the gametophytes, resulted in reduced fertility of h3.3cr-4. The transcriptome analysis suggested that the reduced filament elongation of h3.3cr-4 was probably caused by the ectopic expression of several JASMONATE-ZIM DOMAIN (JAZ) genes, which are the key repressors of the signaling pathway of the phytohormone jasmonic acid (JA). These observations suggest that the histone variant H3.3 promotes plant growth, including rosette growth and filament elongation.
Collapse
Affiliation(s)
- Xiaogang Long
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wandong Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoming Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Qin S, Li W, Zeng J, Huang Y, Cai Q. Rice tetraspanins express in specific domains of diverse tissues and regulate plant architecture and root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:892-908. [PMID: 37955978 DOI: 10.1111/tpj.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Tetraspanins (TETs) are small transmembrane scaffold proteins that distribute proteins into highly organized microdomains, consisting of adaptors and signaling proteins, which play important roles in various biological events. In plants, understanding of tetraspanin is limited to the Arabidopsis TET genes' expression pattern and their function in leaf and root growth. Here, we comprehensively analyzed all rice tetraspanin (OsTET) family members, including their gene expression pattern, protein topology, and subcellular localization. We found that the core domain of OsTETs is conserved and shares a similar topology of four membrane-spanning domains with animal and plant TETs. OsTET genes are partially overlapping expressed in diverse tissue domains in vegetative and reproductive organs. OsTET proteins preferentially targeted the endoplasmic reticulum. Mutation analysis showed that OsTET5, OsTET6, OsTET9, and OsTET10 regulated plant height and tillering, and that OsTET13 controlled root growth in association with the jasmonic acid pathway. In summary, our work provides systematic new insights into the function of OsTETs in rice growth and development, and the data provides valuable resources for future research.
Collapse
Affiliation(s)
- Shanshan Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Jiayue Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yifan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430072, China
| |
Collapse
|
7
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Kong L, Sun J, Jiang Z, Ren W, Wang Z, Zhang M, Liu X, Wang L, Ma W, Xu J. Identification and expression analysis of YABBY family genes in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2023; 18:2163069. [PMID: 36681901 PMCID: PMC9870009 DOI: 10.1080/15592324.2022.2163069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.
Collapse
Affiliation(s)
- Lingyang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaying Sun
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry,Northeast Forestry University, HarbinChina
| | - Weichao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Zhang
- School of Forestry,Northeast Forestry University, HarbinChina
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Traditional Chinese Medicine (TCM), Jiamusi, China
| | - Lijuan Wang
- Ophthalmology Hospital in Heilongjiang province, Harbin, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Forestry,Northeast Forestry University, HarbinChina
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jiao Xu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- College of Jiamusi, Heilongjiang University of Traditional Chinese Medicine (TCM), Jiamusi, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
9
|
Yue Y, Zhang X, Wang L, He J, Yang S, Li X, Yu Y, Yu R, Fan Y. Identification and Characterization of Jasmonic Acid Methyltransferase Involved in the Formation of Floral Methyl Jasmonate in Hedychium coronarium. PLANTS (BASEL, SWITZERLAND) 2023; 13:8. [PMID: 38202316 PMCID: PMC10780636 DOI: 10.3390/plants13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Hedychium coronarium is a popular ornamental flower in tropical and subtropical areas due to its elegant appearance and inviting fragrance. Methyl jasmonate (MeJA) is one of the volatile compounds in the blooming flowers of H. coronarium. However, the molecular mechanism underlying floral MeJA formation is still unclear in H. coronarium. In this study, a total of 12 SABATH family genes were identified in the genome of H. coronarium, and their encoded proteins range from 366 to 387 amino acids. Phylogenetic analysis revealed seven clades in the SABATH family and a JMT ortholog clade, including two HcSABATH members. Combined with expression profiling of HcSABATH members, HcJMT1 was identified as the top candidate gene for floral MeJA biosynthesis. In vitro enzyme assays showed that HcJMT1 can catalyze the production of MeJA from jasmonic acid. Gene expression analysis indicated that HcJMT1 exhibited the highest expression in the labella and lateral petals, the major sites of MeJA emission. During flower development, the two MeJA isomers, major isomers in the products of the HcJMT1 protein, were released after anthesis, in which stage HcJMT1 displayed high expression. Our results indicated that HcJMT1 is involved in the formation of floral MeJA in H. coronarium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Zhang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Jieling He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Shengnan Yang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Zumsteg J, Bossard E, Gourguillon L, Villette C, Heintz D. Comparison of nocturnal and diurnal metabolomes of rose flowers and leaves. Metabolomics 2023; 20:4. [PMID: 38066353 DOI: 10.1007/s11306-023-02063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Roses are one of the most essential ornamental flowers and are commonly used in perfumery, cosmetics, and food. They are rich in bioactive compounds, which are of interest for therapeutic effects. OBJECTIVES The objective of this study was to understand the kinds of changes that occur between the nocturnal and diurnal metabolism of rose and to suggest hypotheses. METHODS Reversed-phase ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry or triple quadrupole mass spectrometry (TQ MS/MS) was used for nontargeted metabolomics and hormonal profiling respectively. For metabolite annotation, accurate mass spectra were compared with those in databases. RESULTS The hormonal profile of flowers showed an increase in jasmonate at night, while that of leaves indicated an increase in the salicylic acid pathway. Nontargeted analyses of the flower revealed a switch in the plant's defense mechanisms from glycosylated metabolites during the day to acid metabolites at night. In leaves, a significant decrease in flavonoids was observed at night in favor of acid metabolism to maintain a level of protection. Moreover, it might be possible to place back some of the annotated molecules on the shikimate pathway. CONCLUSION The influence of day and night on the metabolome of rose flowers and leaves has been clearly demonstrated. The hormonal modulations occurring during the night and at day are consistent with the plant circadian cycle. A proposed management of the sesquiterpenoid and triterpenoid biosynthetic pathway may explain these changes in the flower. In leaves, the metabolic differences may reflect night-time regulation in favor of the salicylic acid pathway.
Collapse
Affiliation(s)
- Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Elodie Bossard
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Lorène Gourguillon
- Advanced Biobased and Bioinspired Ingredients, LVMH Recherche, 185 avenue de Verdun, 45804, Saint-Jean-de-Braye Cedex, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
11
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Olmedo P, Vidal J, Ponce E, Defilippi BG, Pérez-Donoso AG, Meneses C, Carpentier S, Pedreschi R, Campos-Vargas R. Proteomic and Low-Polar Metabolite Profiling Reveal Unique Dynamics in Fatty Acid Metabolism during Flower and Berry Development of Table Grapes. Int J Mol Sci 2023; 24:15360. [PMID: 37895040 PMCID: PMC10607693 DOI: 10.3390/ijms242015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Grapevine development and ripening are complex processes that involve several biochemical pathways, including fatty acid and lipid metabolism. Fatty acids are essential components of lipids, which play crucial roles in fruit maturation and flavor development. However, the dynamics of fatty acid metabolism in grape flowers and berries are poorly understood. In this study, we present those dynamics and investigate the mechanisms of fatty acid homeostasis on 'Thompson Seedless' berries using metabolomic and proteomic analyses. Low-polar metabolite profiling indicated a higher abundance of fatty acids at the pre-flowering and pre-veraison stages. Proteomic analyses revealed that grape flowers and berries display unique profiles of proteins involved in fatty acid biosynthesis, triacylglycerol assembly, fatty acid β-oxidation, and lipid signaling. These findings show, for the first time, that fatty acid metabolism also plays an important role in the development of non-oil-rich tissues, opening new perspectives about lipid function and its relation to berry quality.
Collapse
Affiliation(s)
- Patricio Olmedo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Juan Vidal
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Excequel Ponce
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Bruno G. Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santiago 8831314, Chile;
| | - Alonso G. Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.G.P.-D.); (C.M.)
| | - Claudio Meneses
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.G.P.-D.); (C.M.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry SYBIOMA, KU Leuven, B-3000 Leuven, Belgium;
- Bioversity International, Biodiversity for Food & Agriculture, B-3001 Leuven, Belgium
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile;
| |
Collapse
|
13
|
Li Y, Zhao M, Cai K, Liu L, Han R, Pei X, Zhang L, Zhao X. Phytohormone biosynthesis and transcriptional analyses provide insight into the main growth stage of male and female cones Pinus koraiensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1273409. [PMID: 37885661 PMCID: PMC10598626 DOI: 10.3389/fpls.2023.1273409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The cone is a crucial component of the whole life cycle of gymnosperm and an organ for sexual reproduction of gymnosperms. In Pinus koraiensis, the quantity and development process of male and female cones directly influence seed production, which in turn influences the tree's economic value. There are, however, due to the lack of genetic information and genomic data, the morphological development and molecular mechanism of female and male cones of P. koraiensis have not been analyzed. Long-term phenological observations were used in this study to document the main process of the growth of both male and female cones. Transcriptome sequencing and endogenous hormone levels at three critical developmental stages were then analyzed to identify the regulatory networks that control these stages of cones development. The most significant plant hormones influencing male and female cones growth were discovered to be gibberellin and brassinosteroids, according to measurements of endogenous hormone content. Additionally, transcriptome sequencing allowed the identification of 71,097 and 31,195 DEGs in male and female cones. The synthesis and control of plant hormones during cones growth were discovered via enrichment analysis of key enrichment pathways. FT and other flowering-related genes were discovered in the coexpression network of flower growth development, which contributed to the growth development of male and female cones of P. koraiensis. The findings of this work offer a cutting-edge foundation for understanding reproductive biology and the molecular mechanisms that control the growth development of male and female cones in P. koraiensis.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of Information Technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
Nguyen HT, Cheaib M, Fournel M, Rios M, Gantet P, Laplaze L, Guyomarc’h S, Riemann M, Heitz T, Petitot AS, Champion A. Genetic analysis of the rice jasmonate receptors reveals specialized functions for OsCOI2. PLoS One 2023; 18:e0291385. [PMID: 37682975 PMCID: PMC10490909 DOI: 10.1371/journal.pone.0291385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
COI1-mediated perception of jasmonate is critical for plant development and responses to environmental stresses. Monocots such as rice have two groups of COI genes due to gene duplication: OsCOI1a and OsCOI1b that are functionally equivalent to the dicotyledons COI1 and OsCOI2 whose function remains unclear. In order to assess the function of OsCOI2 and its functional redundancy with COI1 genes, we developed a series of rice mutants in the 3 genes OsCOI1a, OsCOI1b and OsCOI2 by CRISPR Cas9-mediated editing and characterized their phenotype and responses to jasmonate. Characterization of OsCOI2 uncovered its important roles in root, leaf and flower development. In particular, we show that crown root growth inhibition by jasmonate relies on OsCOI2 and not on OsCOI1a nor on OsCOI1b, revealing a major function for the non-canonical OsCOI2 in jasmonate-dependent control of rice root growth. Collectively, these results point to a specialized function of OsCOI2 in the regulation of plant development in rice and indicate that sub-functionalisation of jasmonate receptors has occurred in the monocot phylum.
Collapse
Affiliation(s)
| | | | - Marie Fournel
- DIADE, IRD, Univ Montpellier, Montpellier, France
- IBMP, CNRS, Univ Strasbourg, Strasbourg, France
| | - Maelle Rios
- DIADE, IRD, Univ Montpellier, Montpellier, France
| | | | | | | | - Michael Riemann
- Karlsruhe Institute of Technology, Botanical Institute, Karlsruhe, Germany
| | | | | | | |
Collapse
|
15
|
Jiang N, Feng MQ, Cheng LC, Kuang LH, Li CC, Yin ZP, Wang R, Xie KD, Guo WW, Wu XM. Spatiotemporal profiles of gene activity in stamen delineate nucleo-cytoplasmic interaction in a male-sterile somatic cybrid citrus. HORTICULTURE RESEARCH 2023; 10:uhad105. [PMID: 37577401 PMCID: PMC10419853 DOI: 10.1093/hr/uhad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Cytoplasmic male sterility (CMS) has long been used to produce seedless fruits in perennial woody crops like citrus. A male-sterile somatic cybrid citrus (G1 + HBP) was generated by protoplast fusion between a CMS callus parent 'Guoqing No. 1' Satsuma mandarin (Citrus unshiu, G1) and a fertile mesophyll parent Hirado Buntan pummelo (Citrus grandis, HBP). To uncover the male-sterile mechanism of G1 + HBP, we compared the transcriptome profiles of stamen organ and cell types at five stages between G1 + HBP and HBP, including the initial stamen primordia, enlarged stamen primordia, pollen mother cells, tetrads, and microspores captured by laser microdissection. The stamen organ and cell types showed distinct gene expression profiles. A majority of genes involved in stamen development were differentially expressed, especially CgAP3.2, which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1 + HBP compared with HBP. Jasmonic acid- and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia, and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1 + HBP. In contrast, the content of auxin biosynthesis metabolites was lower in G1 + HBP. The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia, meiocytes, and microspores, indicating the dysfunction of mitochondria in stamen organ and cell types of G1 + HBP. Taken together, the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development, and thus lead to male sterility in the citrus cybrid.
Collapse
Affiliation(s)
- Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Qi Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Hua Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao-Chao Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhao-Ping Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Lei S, Zhao L, Chen Y, Xu G. Identification and promoter analysis of a GA-stimulated transcript 1 gene from Jatropha curcas. PLANT CELL REPORTS 2023:10.1007/s00299-023-03034-5. [PMID: 37355482 DOI: 10.1007/s00299-023-03034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/26/2023]
Abstract
KEY MESSAGE Overexpression of JcGAST1 promotes plant growth but inhibits pistil development. The pyrimidine box and CGTCA motif of the JcGAST1 promoter were responsible for the GA and MeJA responses. Members of the gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in plant growth and development, particularly in flower induction and seed development. However, there is still relatively limited knowledge of GASA genes in Jatropha curcas. Herein, we identified a GASA family gene from Jatropha curcas, namely, JcGAST1, which encodes a protein containing a conserved GASA domain. Sequence alignment showed that the JcGAST1 protein shares 76% sequence identity and 80% sequence similarity with SlGAST1. JcGAST1 had higher expression and protein levels in the female flowers than in the male flowers. Overexpression of JcGAST1 in tobacco promotes plant growth but inhibits pistil development. JcGAST1 expression was upregulated by GA and downregulated by MeJA. Promoter analysis indicated that the pyrimidine box and CGTCA motif were the GA- and MeJA-responsive elements of the JcGAST1 promoter. Using a Y1H screen, six transcription factors were found to interact with the pyrimidine box, and three transcription factors were found to interact with the CGTCA motif. Overall, the results of this study improve our understanding of the JcGAST1 gene and provide useful information for further studies.
Collapse
Affiliation(s)
- Shikang Lei
- School of Traditional Chinese Medicine Resource/ Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Laboratory of Biology and Genetic Breeding, Guangzhou Academy of Agricultural Sciences, Guangzhou, 510000, China
| | | | - Yuqian Chen
- Institute for Forest Resources and Environment of Guizhou/College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Gang Xu
- School of Traditional Chinese Medicine Resource/ Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Zhang Y, Wei Y, Meng J, Wang Y, Nie S, Zhang Z, Wang H, Yang Y, Gao Y, Wu J, Li T, Liu X, Zhang H, Gu L. Chromosome-scale de novo genome assembly and annotation of three representative Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1490-1505. [PMID: 36971060 DOI: 10.1111/tpj.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 06/17/2023]
Abstract
Australian pine (Casuarina spp.) is extensively planted in tropical and subtropical regions for wood production, shelterbelts, environmental protection, and ecological restoration due to their superior biological characteristics, such as rapid growth, wind and salt tolerance, and nitrogen fixation. To analyze the genomic diversity of Casuarina, we sequenced the genomes and constructed de novo genome assemblies of the three most widely planted Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. We generated chromosome-scale genome sequences using both Pacific Biosciences (PacBio) Sequel sequencing and chromosome conformation capture technology (Hi-C). The total genome sizes for C. equisetifolia, C. glauca, and C. cunninghamiana are 268 942 579 bp, 296 631 783 bp, and 293 483 606 bp, respectively, of which 25.91, 27.15, and 27.74% were annotated as repetitive sequences. We annotated 23 162, 24 673, and 24 674 protein-coding genes in C. equisetifolia, C. glauca, and C. cunninghamiana, respectively. We then collected branchlets from male and female individuals for whole-genome bisulfite sequencing (BS-seq) to explore the epigenetic regulation of sex determination in these three species. Transcriptome sequencing (RNA-seq) revealed differential expression of phytohormone-related genes between male and female plants. In summary, we generated three chromosome-level genome assemblies and comprehensive DNA methylation and transcriptome datasets from both male and female material for three Casuarina species, providing a basis for the comprehensive investigation of genomic diversity and functional gene discovery of Casuarina in the future.
Collapse
Affiliation(s)
- Yong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yongcheng Wei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jingxiang Meng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yujiao Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Sen Nie
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian, 350012, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongkang Yang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tuhe Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuqing Liu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
18
|
Singh R, Shankar R, Yadav SK, Kumar V. Transcriptome analysis of ovules offers early developmental clues after fertilization in Cicer arietinum L.. 3 Biotech 2023; 13:177. [PMID: 37188294 PMCID: PMC10175530 DOI: 10.1007/s13205-023-03599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03599-8.
Collapse
Affiliation(s)
- Reetu Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | - Rama Shankar
- Department of Paediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503 USA
| | | | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
19
|
Zhang G, Hu Y, Pan X, Cao R, Hu Q, Fu R, Risalat H, Shang B. Effects of increased ozone on rice panicle morphology. iScience 2023; 26:106471. [PMID: 37096034 PMCID: PMC10122049 DOI: 10.1016/j.isci.2023.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Ground-level ozone threatens rice production, which provides staple food for more than half of the world's population. Improving the adaptability of rice crops to ozone pollution is essential to ending global hunger. Rice panicles not only affect grain yield and grain quality but also the adaptability of plants to environmental changes, but the effects of ozone on rice panicles are not well understood. Through an open top chamber experiment, we investigated the effects of long-term and short-term ozone on the traits of rice panicles, finding that both long-term and short-term ozone significantly reduced the number of panicle branches and spikelets in rice, and especially the fertility of spikelets in hybrid cultivar. The reduction in spikelet quantity and fertility because of ozone exposure is caused by changes in secondary branches and attached spikelet. These results suggest the potential for effective adaptation to ozone by altering breeding targets and developing growth stage-specific agricultural techniques.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yaxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoya Pan
- College of Environmental Science and Engineering, Donghua University, ShangHai 201620, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rong Cao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinan Hu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hamdulla Risalat
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
20
|
Rao S, Tian Y, Zhang C, Qin Y, Liu M, Niu S, Li Y, Chen J. The JASMONATE ZIM-domain-OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:443-457. [PMID: 36260345 DOI: 10.1093/jxb/erac418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Drought, which directly affects the yield of crops and trees, is a natural stress with a profound impact on the economy. Improving water use efficiency (WUE) and drought tolerance are relatively effective strategies to alleviate drought stress. OPEN STOMATA1 (OST1), at the core of abscisic acid (ABA) signaling, can improve WUE by regulating stomatal closure and photosynthesis. Methyl jasmonate (MeJA) and ABA crosstalk is considered to be involved in the response to drought stress, but the detailed molecular mechanism is insufficiently known. Here, Populus euphratica, which naturally grows in arid and semiarid regions, was selected as the species for studying MeJA and ABA crosstalk under drought. A yeast two-hybrid assay was performed using PeOST1 as bait and a nucleus-localized factor, JASMONATE ZIM-domain protein 2 (PeJAZ2), was found to participate in MeJA signaling by interacting with PeOST1. Overexpression of PeJAZ2 in poplar notably increased water deficit tolerance and WUE in both severe and mild drought stress by regulating ABA signaling rather than ABA synthesis. Furthermore, a PeJAZ2 overexpression line was shown to have greater ABA-induced stomatal closure and hydrogen peroxide (H2O2) production. Collectively, this evidence establishes a mechanism in which PeJAZ2 acts as a positive regulator in response to drought stress via ABA-induced stomatal closure caused by H2O2 production. Our study presents a new insight into the crosstalk of ABA and jasmonic acid signaling in regulating WUE and drought stress, providing a basis of the drought tolerance mechanism of P. euphratica.
Collapse
Affiliation(s)
- Shupei Rao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Yuru Tian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingzhi Qin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqin Liu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
- Public Analyses and Test Center of Laboratory Equipment Division, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Yue Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| | - Jinhuan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
A Tea Plant ( Camellia sinensis) FLOWERING LOCUS C-like Gene, CsFLC1, Is Correlated to Bud Dormancy and Triggers Early Flowering in Arabidopsis. Int J Mol Sci 2022; 23:ijms232415711. [PMID: 36555355 PMCID: PMC9779283 DOI: 10.3390/ijms232415711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Flowering and bud dormancy are crucial stages in the life cycle of perennial angiosperms in temperate climates. MADS-box family genes are involved in many plant growth and development processes. Here, we identified three MADS-box genes in tea plant belonging to the FLOWERING LOCUS C (CsFLC) family. We monitored CsFLC1 transcription throughout the year and found that CsFLC1 was expressed at a higher level during the winter bud dormancy and flowering phases. To clarify the function of CsFLC1, we developed transgenic Arabidopsis thaliana plants heterologously expressing 35S::CsFLC1. These lines bolted and bloomed earlier than the WT (Col-0), and the seed germination rate was inversely proportional to the increased CsFLC1 expression level. The RNA-seq of 35S::CsFLC1 transgenic Arabidopsis showed that many genes responding to ageing, flower development and leaf senescence were affected, and phytohormone-related pathways were especially enriched. According to the results of hormone content detection and RNA transcript level analysis, CsFLC1 controls flowering time possibly by regulating SOC1, AGL42, SEP3 and AP3 and hormone signaling, accumulation and metabolism. This is the first time a study has identified FLC-like genes and characterized CsFLC1 in tea plant. Our results suggest that CsFLC1 might play dual roles in flowering and winter bud dormancy and provide new insight into the molecular mechanisms of FLC in tea plants as well as other plant species.
Collapse
|
22
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
23
|
Villamil N, Sommervogel B, Pannell JR. Disentangling the effects of jasmonate and tissue loss on the sex allocation of an annual plant. FRONTIERS IN PLANT SCIENCE 2022; 13:812558. [PMID: 36119626 PMCID: PMC9478112 DOI: 10.3389/fpls.2022.812558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Selection through pollinators plays a major role in the evolution of reproductive traits. However, herbivory can also induce changes in plant sexual expression and sexual systems, potentially influencing conditions governing transitions between sexual systems. Previous work has shown that herbivory has a strong effect on sex allocation in the wind-pollinated annual plant Mercurialis annua, likely via responses to resource loss. It is also known that many plants respond to herbivory by inducing signaling, and endogenous responses to it, via the plant hormone jasmonate. Here, we attempt to uncouple the effects of herbivory on sex allocation in M. annua through resource limitation (tissue loss) versus plant responses to jasmonate hormone signaling. We used a two-factorial experiment with four treatment combinations: control, herbivory (25% chronic tissue loss), jasmonate, and combined herbivory and jasmonate. We estimated the effects of tissue loss and defense-inducing hormones on reproductive allocation, male reproductive effort, and sex allocation. Tissue loss caused plants to reduce their male reproductive effort, resulting in changes in total sex allocation. However, application of jasmonate after herbivory reversed its effect on male investment. Our results show that herbivory has consequences on plant sex expression and sex allocation, and that defense-related hormones such as jasmonate can buffer the impacts. We discuss the physiological mechanisms that might underpin the effects of herbivory on sex allocation, and their potential implications for the evolution of plant sexual systems.
Collapse
|
24
|
Mehra P, Pandey BK, Verma L, Prusty A, Singh AP, Sharma S, Malik N, Bennett MJ, Parida SK, Giri J, Tyagi AK. OsJAZ11 regulates spikelet and seed development in rice. PLANT DIRECT 2022; 6:e401. [PMID: 35582630 PMCID: PMC9090556 DOI: 10.1002/pld3.401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Seed size is one of the major determinants of seed weight and eventually, crop yield. As the global population is increasing beyond the capacity of current food production, enhancing seed size is a key target for crop breeders. Despite the identification of several genes and QTLs, current understanding about the molecular regulation of seed size/weight remains fragmentary. In the present study, we report novel role of a jasmonic acid (JA) signaling repressor, OsJAZ11 controlling rice seed width and weight. Transgenic rice lines overexpressing OsJAZ11 exhibited up to a 14% increase in seed width and ~30% increase in seed weight compared to wild type (WT). Constitutive expression of OsJAZ11 dramatically influenced spikelet morphogenesis leading to extra glume-like structures, open hull, and abnormal numbers of floral organs. Furthermore, overexpression lines accumulated higher JA levels in spikelets and developing seeds. Expression studies uncovered altered expression of JA biosynthesis/signaling and MADS box genes in overexpression lines compared to WT. Yeast two-hybrid and pull-down assays revealed that OsJAZ11 interacts with OsMADS29 and OsMADS68. Remarkably, expression of OsGW7, a key negative regulator of grain size, was significantly reduced in overexpression lines. We propose that OsJAZ11 participates in the regulation of seed size and spikelet development by coordinating the expression of JA-related, OsGW7 and MADS genes.
Collapse
Affiliation(s)
- Poonam Mehra
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - Bipin K. Pandey
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - Lokesh Verma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Ankita Prusty
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Ajit Pal Singh
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Shivam Sharma
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Naveen Malik
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Malcolm J. Bennett
- Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | - Jitender Giri
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Akhilesh K. Tyagi
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| |
Collapse
|
25
|
Sun B, Shang L, Li Y, Zhang Q, Chu Z, He S, Yang W, Ding X. Ectopic Expression of OsJAZs Alters Plant Defense and Development. Int J Mol Sci 2022; 23:ijms23094581. [PMID: 35562972 PMCID: PMC9103030 DOI: 10.3390/ijms23094581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
A key step in jasmonic acid (JA) signaling is the ligand-dependent assembly of a coreceptor complex comprising the F-box protein COI1 and JAZ transcriptional repressors. The assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which in turn bind and repress MYC transcription factors. Many studies on JAZs have been performed in Arabidopsis thaliana, but the function of JAZs in rice is largely unknown. To systematically reveal the function of OsJAZs, in this study, we compared the various phenotypes resulting from 13 OsJAZs via ectopic expression in Arabidopsis thaliana and the phenotypes of 12 AtJAZs overexpression (OE) lines. Phylogenetic analysis showed that the 25 proteins could be divided into three major groups. Yeast two-hybrid (Y2H) assays revealed that most OsJAZ proteins could form homodimers or heterodimers. The statistical results showed that the phenotypes of the OsJAZ OE plants were quite different from those of AtJAZ OE plants in terms of plant growth, development, and immunity. As an example, compared with other JAZ OE plants, OsJAZ11 OE plants exhibited a JA-insensitive phenotype and enhanced resistance to Pst DC3000. The protein stability after JA treatment of OsJAZ11 emphasized the specific function of the protein. This study aimed to explore the commonalities and characteristics of different JAZ proteins functions from a genetic perspective, and to screen genes with disease resistance value. Overall, the results of this study provide insights for further functional analysis of rice JAZ family proteins.
Collapse
Affiliation(s)
- Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Luyue Shang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Shengyang He
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Wei Yang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, College of Modern Agricultural, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (W.Y.); (X.D.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Correspondence: (W.Y.); (X.D.)
| |
Collapse
|
26
|
Basu U, Hegde VS, Daware A, Jha UC, Parida SK. Transcriptome landscape of early inflorescence developmental stages identifies key flowering time regulators in chickpea. PLANT MOLECULAR BIOLOGY 2022; 108:565-583. [PMID: 35106703 DOI: 10.1007/s11103-022-01247-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcriptome landscape during early inflorescence developmental stages identified candidate flowering time regulators including Early Flowering 3a. Further genomics approaches validated the role of this gene in flowering time regulation. The early stages of inflorescence development in plants are as crucial as the later floral developmental stages. Several traits, such as inflorescence architecture and flower developmental timings, are determined during those early stages. In chickpea, diverse forms of inflorescence architectures regarding meristem determinacy and the number of flowers per node are observed within the germplasm. Transcriptome analysis in four desi chickpea accessions with such unique inflorescence characteristics identifies the underlying shared regulatory events leading to inflorescence development. The vegetative to reproductive stage transition brings about major changes in the transcriptome landscape. The inflorescence development progression associated genes identified through co-expression network analysis includes both protein-coding genes and long non-coding RNAs (lncRNAs). Few lncRNAs identified in our study positively regulate flowering-related mRNA stability by acting competitively with miRNAs. Bulk segregrant analysis and association mapping narrowed down an InDel marker regulating flowering time in chickpea. Deletion of 11 bp in first exon of a negative flowering time regulator, Early Flowering 3a gene, leads to early flowering phenotype in chickpea. Understanding the key players involved in vegetative to reproductive stage transition and floral meristem development will be useful in manipulating flowering time and inflorescence architecture in chickpea and other legumes.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Venkatraman S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
27
|
Wu Q, Liu Y, Huang J. CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. Int J Mol Sci 2022; 23:ijms23042347. [PMID: 35216463 PMCID: PMC8877319 DOI: 10.3390/ijms23042347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.
Collapse
|
28
|
Nie G, Zhou J, Jiang Y, He J, Wang Y, Liao Z, Appiah C, Li D, Feng G, Huang L, Wang X, Zhang X. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. BMC PLANT BIOLOGY 2022; 22:68. [PMID: 35151272 PMCID: PMC8840555 DOI: 10.1186/s12870-021-03412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 05/05/2023]
Abstract
Methyl jasmonate (MeJA) plays a role in improving plant stress tolerance. The molecular mechanisms associated with heat tolerance mediated by MeJA are not fully understood in perennial grass species. The study was designed to explore transcriptomic mechanisms underlying heat tolerance by exogenous MeJA in perennial ryegrass (Lolium perenne L.) using RNA-seq. Transcriptomic profiling was performed on plants under normal temperature (CK), high temperature for 12 h (H), MeJA pretreatment (T), MeJA pretreatment + H (T-H), respectively. The analysis of differentially expressed genes (DEGs) showed that H resulted in the most DEGs and T had the least, compared with CK. Among them, the DEGs related to the response to oxygen-containing compound was higher in CKvsH, while many genes related to photosynthetic system were down-regulated. The DEGs related to plastid components was higher in CKvsT. GO and KEGG analysis showed that exogenous application of MeJA enriched photosynthesis related pathways under heat stress. Exogenous MeJA significantly increased the expression of genes involved in chlorophyll (Chl) biosynthesis and antioxidant metabolism, and decreased the expression of Chl degradation genes, as well as the expression of heat shock transcription factor - heat shock protein (HSF-HSP) network under heat stress. The results indicated that exogenous application of MeJA improved the heat tolerance of perennial ryegrass by mediating expression of genes in different pathways, such as Chl biosynthesis and degradation, antioxidant enzyme system, HSF-HSP network and JAs biosynthesis.
Collapse
Affiliation(s)
- Gang Nie
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Zhou
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jie He
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Wang
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongchao Liao
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Charlotte Appiah
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Li
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Wang
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- Department of Forage Breeding and Cultivation, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
29
|
Shen G, Wang WL. Circlize package in R and Analytic Hierarchy Process (AHP): Contribution values of ABCDE and AGL6 genes in the context of floral organ development. PLoS One 2022; 17:e0261232. [PMID: 35061694 PMCID: PMC8782415 DOI: 10.1371/journal.pone.0261232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The morphological diversity of floral organs can largely be attributed to functional divergence in the MADS-box gene family. Nonetheless, research based on the ABCDE model has yet to conclusively determine whether the AGAMOUS-LIKE 6 (AGL6) subgroup has a direct influence on floral organ development. In the current study, the ABCDE model was used to quantify the contributions of ABCDE and AGL6 genes in the emergence of floral organs. We determined that the flower formation contribution values of the ABCDE and AGL6 genes were as follows: A gene, 0.192; B gene, 0.231; CD gene, 0.192; E gene, 0.385; and AGL6, 0.077. As AGL6 does not directly influence floral structure formation, the contribution value of AGL6 to flower formation was low. Furthermore, the gradient values of the floral organs were as follows: sepals, 0.572; petals, 1.606; stamens, 2.409; and carpels, 2.288. We also performed detailed analysis of the ABCDE and AGL6 genes using the Circlize package in R. Our results suggest that these genes likely emerged in one of two orders: 1) B genes→CD genes→AGL6→E genes→A genes; or 2) B genes→CD genes→AGL6/E genes→A genes. We use the analytic hierarchy process (AHP) to prove the contribution values and gradient values of floral organs. This is the first study to understand the contribution values of ABCDE and AGL6 genes using the AHP and the Circlize package in R.
Collapse
Affiliation(s)
- Gangxu Shen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Lung Wang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
30
|
Li C, Dong N, Shen L, Lu M, Zhai J, Zhao Y, Chen L, Wan Z, Liu Z, Ren H, Wu S. Genome-wide identification and expression profile of YABBY genes in Averrhoa carambola. PeerJ 2022; 9:e12558. [PMID: 35036123 PMCID: PMC8740515 DOI: 10.7717/peerj.12558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Members of the plant-specific YABBY gene family are thought to play an important role in the development of leaf, flower, and fruit. The YABBY genes have been characterized and regarded as vital contributors to fruit development in Arabidopsis thaliana and tomato, in contrast to that in the important tropical economic fruit star fruit (Averrhoa carambola), even though its genome is available. Methods In the present study, a total of eight YABBY family genes (named from AcYABBY1 to AcYABBY8) were identified from the genome of star fruit, and their phylogenetic relationships, functional domains and motif compositions, physicochemical properties, chromosome locations, gene structures, protomer elements, collinear analysis, selective pressure, and expression profiles were further analyzed. Results Eight AcYABBY genes (AcYABBYs) were clustered into five clades and were distributed on five chromosomes, and all of them had undergone negative selection. Tandem and fragment duplications rather than WGD contributed to YABBY gene number in the star fruit. Expression profiles of AcYABBYs from different organs and developmental stages of fleshy fruit indicated that AcYABBY4 may play a specific role in regulating fruit size. These results emphasize the need for further studies on the functions of AcYABBYs in fruit development.
Collapse
Affiliation(s)
- Chengru Li
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Na Dong
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liming Shen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Meng Lu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junwen Zhai
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yamei Zhao
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lei Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiting Wan
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongjian Liu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Ren
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Shasha Wu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
31
|
Villamil N, Li X, Seddon E, Pannell JR. Simulated herbivory enhances leaky sex expression in the dioecious herb Mercurialis annua. ANNALS OF BOTANY 2022; 129:79-86. [PMID: 34668537 PMCID: PMC8829902 DOI: 10.1093/aob/mcab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Plant reproductive traits are widely understood to be responsive to the selective pressures exerted by pollinators, but there is also increasing evidence for an important role for antagonists such as herbivores in shaping these traits. Many dioecious species show leaky sex expression, with males and females occasionally producing flowers of the opposite sex. Here, we asked to what extent leakiness in sex expression in Mercurialis annua (Euphorbiaceae) might also be plastically responsive to simulated herbivory. This is important because enhanced leakiness in dioecious populations could lead to a shift in both the mating system and in the conditions for transitions between combined and separate sexes. METHODS We examined the effect of simulated herbivory on the sexual expression of males and females of M. annua in two experiments in which different levels of simulated herbivory led to enhanced leakiness in both sexes. KEY RESULTS We showed that leaky sex expression in both males and females of the wind-pollinated dioecious herb M. annua is enhanced in response to simulated herbivory, increasing the probability for and the degree of leakiness in both sexes. We also found that leakiness was greater in larger females but not in larger males. CONCLUSIONS We discuss hypotheses for a possible functional link between herbivory and leaky sex expression, and consider what simulated herbivory-induced leakiness might imply for the evolutionary ecology of plant reproductive systems, especially the breakdown of dioecy and the evolution of hermaphroditism.
Collapse
Affiliation(s)
- Nora Villamil
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
| | - Xinji Li
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
| | - Emily Seddon
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
- Vegetation Ecologist, NatureServe, Boulder, CO 80301, USA
| | - John R Pannell
- Department of Ecology and Evolution, Université de Lausanne, Switzerland
| |
Collapse
|
32
|
Pandey DK, Chaudhary B. Transcriptional loss of domestication-driven cytoskeletal GhPRF1 gene causes defective floral and fiber development in cotton (Gossypium). PLANT MOLECULAR BIOLOGY 2021; 107:519-532. [PMID: 34606035 DOI: 10.1007/s11103-021-01200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Constitutive- and fiber-specific RNAi of GhPRF1 gene illustrated strong correlation between domestication-driven profilin genes and floral/fiber architecture in cotton. During morpho-transformation of short-fuzz of wild cotton into the elongating spinnable fibers under the millennia of human selection, actin-polymerizing cytoskeletal profilin genes had undergone significant sequence alterations and spatiotemporal shift in their transcription levels. To comprehend the expression dynamics of profilin genes with their phenotypic implications, transgenic expression modulation of cotton profilin 1 (GhPRF1) gene was performed in the constitutive- and fiber-specific manner in Coker 310FR cotton cultivar. The constitutive GhPRF1-RNAi lines (35S:GhPRF1-RNAi) exhibited distorted 'monadelphous' staminal-tube, reduced pollen-viability and poorly developed fibers, whereas floral and fiber development of fiber-specific GhPRF1-RNAi lines showed no abnormalities. Moreover, the fiber-specific GhPRF1 overexpression lines (FBP7:GhPRF1-Ox) showed increased emergence of fiber-initials on the ovule surface, on the contrary to no fiber-initials in fiber-specific RNAi lines (FBP7:GhPRF1-RNAi). Interestingly, the average seed weight and fiber weight of FBP7:GhPRF1-Ox lines increased > 60% and > 38%, respectively, compared with FBP7:GhPRF1-RNAi lines and untransformed control seeds. On a molecular basis, the aberrant floral and fiber development of 35S:GhPRF1-RNAi lines was largely associated with sugar metabolism and hormone-signaling mechanisms. These observations illustrated the strong correlation between domestication-driven GhPRF genes, and floral/fiber development in cotton. Also, the enhanced agronomic traits in GhPRF1-Ox lines of cotton empowered us to recognize their imperative roles, and their future deployment for the sustainable cotton crop improvement.
Collapse
Affiliation(s)
- Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP, 201312, India
- Amity Institute of Biotechnology, Amity University, Ranchi, JH, 834001, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP, 201312, India.
| |
Collapse
|
33
|
Cao L, Tian J, Liu Y, Chen X, Li S, Persson S, Lu D, Chen M, Luo Z, Zhang D, Yuan Z. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1083-1096. [PMID: 34538009 DOI: 10.1111/tpj.15496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates (JAs) are key phytohormones that regulate plant responses and development. JASMONATE-ZIM DOMAIN (JAZ) proteins safeguard JA signaling by repressing JA-responsive gene expression in the absence of JA. However, the interaction and cooperative roles of JAZ repressors remain unclear during plant development. Here, we found that OsJAZ6 interacts with OsJAZ1 depending on a single amino acid in the so-called ZIM domain of OsJAZ6 in rice JA signaling transduction and JA-regulated rice spikelet development. In vivo protein distribution analysis revealed that the OsJAZ6 content is efficiently regulated during spikelet development, and biochemical and genetic evidence showed that OsJAZ6 is more sensitive to JA-mediated degradation than OsJAZ1. Through over- and mis-expression experiments, we further showed that the protein stability and levels of OsJAZ6 orchestrate the output of JA signaling during rice spikelet development. A possible mechanism, which outlines how OsJAZ repressors interact and function synergistically in specifying JA signaling output through degradation titration, is also discussed.
Collapse
Affiliation(s)
- Lichun Cao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Tian
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilin Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siqi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
34
|
Bustos‐Segura C, Hernández‐Cumplido J, Traine J, Benrey B. Herbivory and jasmonate treatment affect reproductive traits in wild Lima bean, but without transgenerational effects. AMERICAN JOURNAL OF BOTANY 2021; 108:2096-2104. [PMID: 34693514 PMCID: PMC9297984 DOI: 10.1002/ajb2.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
PREMISE Plant responses to herbivores and their elicitors include changes in traits associated with phenology, defense, and reproduction. Induced responses by chewing herbivores are known to be hormonally mediated by the jasmonate pathway and can cascade and affect late-season seed predators and pollinators. Moreover, herbivore-induced plant responses can be transmitted to the next generation. Whether herbivore-induced transgenerational effects also apply to phenological traits is less well understood. METHODS Here, we explored responses of wild lima bean plants (Phaseolus lunatus) to herbivory and jasmonate treatment and possible transgenerational effects of herbivore-induced early flowering. In a controlled field experiment, we exposed lima bean plants to herbivory by leaf beetles or methyl jasmonate sprays (MJ). We then compared plant development, phenology, reproductive fitness and seed traits among these treatments and undamaged, untreated control plants. RESULTS We found that MJ and leaf herbivory induced similar responses, with treated plants growing less, flowering earlier, and producing fewer seeds than undamaged plants. However, seed size, phenolics and cyanogenic glycosides concentrations did not differ among treatments. Seed germination rates and flowering time of the offspring were similar among maternal treatments. CONCLUSIONS Overall, the results confirm that responses of lima bean to herbivory by leaf beetles are mediated by jasmonate; however, effects on phenological traits are not transmitted to the next generation. We discuss why transgenerational effects of herbivory might be restricted to traits that directly target herbivores.
Collapse
Affiliation(s)
- Carlos Bustos‐Segura
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelRue Emile‐Argand 112000Switzerland
| | | | - Juan Traine
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelRue Emile‐Argand 112000Switzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelRue Emile‐Argand 112000Switzerland
| |
Collapse
|
35
|
Ke L, Wang Y, Schäfer M, Städler T, Zeng R, Fabian J, Pulido H, De Moraes CM, Song Y, Xu S. Transcriptomic Profiling Reveals Shared Signalling Networks Between Flower Development and Herbivory-Induced Responses in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:722810. [PMID: 34630470 PMCID: PMC8493932 DOI: 10.3389/fpls.2021.722810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 06/02/2023]
Abstract
Most flowering plants must defend themselves against herbivores for survival and attract pollinators for reproduction. Although traits involved in plant defence and pollinator attraction are often localised in leaves and flowers, respectively, they will show a diffuse evolution if they share the same molecular machinery and regulatory networks. We performed RNA-sequencing to characterise and compare transcriptomic changes involved in herbivory-induced defences and flower development, in tomato leaves and flowers, respectively. We found that both the herbivory-induced responses and flower development involved alterations in jasmonic acid signalling, suppression of primary metabolism and reprogramming of secondary metabolism. We identified 411 genes that were involved in both processes, a number significantly higher than expected by chance. Genetic manipulation of key regulators of induced defences also led to the expression changes in the same genes in both leaves and flowers. Targeted metabolomic analysis showed that among closely related tomato species, jasmonic acid and α-tomatine are correlated in flower buds and herbivory-induced leaves. These findings suggest that herbivory-induced responses and flower development share a common molecular machinery and likely have coevolved in nature.
Collapse
Affiliation(s)
- Lanlan Ke
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Yangzi Wang
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Martin Schäfer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Thomas Städler
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jörg Fabian
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Hannier Pulido
- Department of Environmental Systems Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
36
|
Xu DB, Ma YN, Qin TF, Tang WL, Qi XW, Wang X, Liu RC, Fang HL, Chen ZQ, Liang CY, Wu W. Transcriptome-Wide Identification and Characterization of the JAZ Gene Family in Mentha canadensis L. Int J Mol Sci 2021; 22:ijms22168859. [PMID: 34445565 PMCID: PMC8396335 DOI: 10.3390/ijms22168859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1–McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.
Collapse
Affiliation(s)
- Dong-Bei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| | - Ya-Nan Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Teng-Fei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China;
| | - Wei-Lin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Xi-Wu Qi
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Rui-Cen Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
| | - Hai-Ling Fang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Ze-Qun Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
| | - Cheng-Yuan Liang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China; (Y.-N.M.); (X.-W.Q.); (H.-L.F.); (Z.-Q.C.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.-L.T.); (X.W.); (R.-C.L.)
- Correspondence: (D.-B.X.); (C.-Y.L.); (W.W.)
| |
Collapse
|
37
|
Zhang W, Luo X, Zhang AY, Ma CY, Sun K, Zhang TT, Dai CC. Jasmonate signaling restricts root soluble sugar accumulation and drives root-fungus symbiosis loss at flowering by antagonizing gibberellin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110940. [PMID: 34134852 DOI: 10.1016/j.plantsci.2021.110940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate restricts accumulation of constitutive and fungus-induced root soluble sugars at flowering stage, and thus reduces root beneficial fungal colonization, but little is known about how these are achieved. To determine whether jasmonate-mediated depletion of soluble sugars is the result of direct phytohormonal cross-talk or indirect induced defensive secondary metabolism, we first profiled soluble sugar and tryptophan (Trp)-derived defensive secondary metabolites in the roots of wild-type and jasmonate signaling-impaired Arabidopsis thaliana at flowering upon a beneficial fungus Phomopsis liquidambaris inoculation. Next, jasmonate and gibberellin signaling were manipulated to determine the relationship between jasmonate and gibberellin, and to quantify the effects of these phytohormones on fungal colonization degree, soluble sugar accumulation, Trp-derived secondary metabolites production, and sugar source-sink transport and metabolism. Gibberellin complementation increased Ph. liquidambaris colonization and rescued jasmonate-dependent root soluble sugar depletion and phloem sugar transport and root invertase activity without influencing jasmonate-induced Trp-derived secondary metabolites production at flowering. Furthermore, jasmonate signaling antagonized gibberellin biosynthesis in Ph. liquidambaris-inoculated roots. Our results suggest a phytohormonal antagonism model that jasmonate signaling restricts root soluble sugar accumulation through antagonizing gibberellin biosynthesis rather than through promoting Trp-derived secondary metabolites production and thus drives beneficial fungal colonization decline at flowering.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting-Ting Zhang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
38
|
Mondo JM, Agre PA, Asiedu R, Akoroda MO, Asfaw A. Genome-Wide Association Studies for Sex Determination and Cross-Compatibility in Water Yam ( Dioscorea alata L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1412. [PMID: 34371615 PMCID: PMC8309230 DOI: 10.3390/plants10071412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Yam (Dioscorea spp.) species are predominantly dioecious, with male and female flowers borne on separate individuals. Cross-pollination is, therefore, essential for gene flow among and within yam species to achieve breeding objectives. Understanding genetic mechanisms underlying sex determination and cross-compatibility is crucial for planning a successful hybridization program. This study used the genome-wide association study (GWAS) approach for identifying genomic regions linked to sex and cross-compatibility in water yam (Dioscorea alata L.). We identified 54 markers linked to flower sex determination, among which 53 markers were on chromosome 6 and one on chromosome 11. Our result ascertained that D. alata is characterized by the male heterogametic sex determination system (XX/XY). The cross-compatibility indices, average crossability rate (ACR) and percentage high crossability (PHC), were controlled by loci on chromosomes 1, 6 and 17. Of the significant loci, SNPs located on chromosomes 1 and 17 were the most promising for ACR and PHC, respectively, and should be validated for use in D. alata hybridization activities to predict cross-compatibility success. A total of 61 putative gene/protein families with direct or indirect influence on plant reproduction were annotated in chromosomic regions controlling the target traits. This study provides valuable insights into the genetic control of D. alata sexual reproduction. It opens an avenue for developing genomic tools for predicting hybridization success in water yam breeding programs.
Collapse
Affiliation(s)
- Jean M. Mondo
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
- Institute of Life and Earth Sciences, Pan African University, University of Ibadan, Ibadan 200284, Nigeria
- Department of Crop Production, Université Evangélique en Afrique (UEA), Bukavu 3323, Democratic Republic of the Congo
| | - Paterne A. Agre
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
| | | | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan 5320, Nigeria; (J.M.M.); (R.A.); (A.A.)
| |
Collapse
|
39
|
Iqbal S, Pan Z, Hayat F, Bai Y, Coulibaly D, Ali S, Ni X, Shi T, Gao Z. Comprehensive transcriptome profiling to identify genes involved in pistil abortion of Japanese apricot. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1191-1204. [PMID: 34177144 PMCID: PMC8212332 DOI: 10.1007/s12298-021-01019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Flower development exists as a key period in the angiosperms life cycle and the proper development is considered with its reproductive success. Pistil abortion is one of the widely distributed aspects of berry plants and its basic mechanism in Japanese apricot is quite unclear and needs thorough investigation. The present study was carried out to get a deep insight into the pistil abortion mechanism in Japanese apricot using a transcriptomic approach. A large number of DEGs were identified from different development stages of normal and abortive pistils. Pair-wise comparison analysis was performed as LY1 vs DQD1, LY2 vs DQD2, and LY3 vs DQD3 and produced 3590, 2085, and 2286 transcripts, respectively. The Gene Ontology (GO) showed that different metabolic processes, plant hormones, developmental processes, and photosystem-related genes were involved in pistil abortion. The pathway analysis revealed significant enrichment of plant hormone's signal transduction and circadian rhythm pathways. Furthermore, transcription factors such as MYB, MADS-box, and NAC family showed lower expression in abortive pistils. The current study presents a new strategy for advanced research and understanding of the pistil abortion process in Japanese apricot and provides a possible reference for other deciduous fruit trees.
Collapse
Affiliation(s)
- Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Zhenpeng Pan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Faisal Hayat
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Daouda Coulibaly
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Xiaopeng Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
40
|
Guang Y, Luo S, Ahammed GJ, Xiao X, Li J, Zhou Y, Yang Y. The OPR gene family in watermelon: Genome-wide identification and expression profiling under hormone treatments and root-knot nematode infection. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:80-88. [PMID: 33275831 DOI: 10.1111/plb.13225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
The enzyme 12-oxo-phytodienoic acid reductase (OPR) is important in the jasmonic acid (JA) biosynthesis pathway and thus plays a vital role in plant defence. However, systematic and comprehensive analyses of OPR genes in watermelon and their roles in defence responses are extremely limited. The physicochemical properties, phylogenetic tree, gene structure and cis-acting elements of watermelon OPR genes were analysed using bioinformatics, and qRT-PCR and RNA-Seq were applied to assay expression of OPR genes in watermelon. A total of five OPR family genes were identified in watermelon, which were unevenly distributed across the four chromosomes. Phylogenetic analysis assigned OPR members from different plant species to five subfamilies (OPRI-OPRV). The motif compositions of OPR members were relatively conserved. Expression analysis using qRT-PCR revealed that ClOPR genes, except for ClOPR5, were highly expressed in the flower and fruit. RNA-seq analysis showed that the ClOPR genes had different expression patterns during flesh and rind development. Furthermore, the ClOPR genes, particularly ClOPR2 and ClOPR4, were significantly upregulated by exogenous JA, salicylic acid (SA) and ethylene (ET) treatments. In addition, red light induced expression of ClOPR2 and ClOPR4 in leaves and roots of root-knot nematode (RKN)-infected watermelon plants, suggesting their involvement in red light-induced defence against RKN. These results provide a theoretical basis for elucidating the diverse functions of OPR family genes in watermelon.
Collapse
Affiliation(s)
- Y Guang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - S Luo
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - G J Ahammed
- College of Horticulture and Plant Proection, Henan University of Science and Technology, Luoyang, 471023, China
| | - X Xiao
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - J Li
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Zhou
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
41
|
Millard PS, Kragelund BB, Burow M. Evolution of A bHLH Interaction Motif. Int J Mol Sci 2021; 22:E447. [PMID: 33466276 PMCID: PMC7794824 DOI: 10.3390/ijms22010447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered proteins and regions with their associated short linear motifs play key roles in transcriptional regulation. The disordered MYC-interaction motif (MIM) mediates interactions between MYC and MYB transcription factors in Arabidopsis thaliana that are critical for constitutive and induced glucosinolate (GLS) biosynthesis. GLSs comprise a class of plant defense compounds that evolved in the ancestor of the Brassicales order. We used a diverse set of search strategies to discover additional occurrences of the MIM in other proteins and in other organisms and evaluate the findings by means of structural predictions, interaction assays, and biophysical experiments. Our search revealed numerous MIM instances spread throughout the angiosperm lineage. Experiments verify that several of the newly discovered MIM-containing proteins interact with MYC TFs. Only hits found within the same transcription factor family and having similar characteristics could be validated, indicating that structural predictions and sequence similarity are good indicators of whether the presence of a MIM mediates interaction. The experimentally validated MIMs are found in organisms outside the Brassicales order, showing that MIM function is broader than regulating GLS biosynthesis.
Collapse
Affiliation(s)
- Peter S. Millard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (P.S.M.); (B.B.K.)
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Birthe B. Kragelund
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (P.S.M.); (B.B.K.)
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
42
|
Li N, Meng Z, Tao M, Wang Y, Zhang Y, Li S, Gao W, Deng C. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics 2020; 21:850. [PMID: 33256615 PMCID: PMC7708156 DOI: 10.1186/s12864-020-07277-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Dioecious spinach (Spinacia oleracea L.), a commercial and nutritional vegetable crop, serves as a model for studying the mechanisms of sex determination and differentiation in plants. However, this mechanism is still unclear. Herein, based on PacBio Iso-seq and Illumina RNA-seq data, comparative transcriptome analysis of male and female flowers were performed to explore the sex differentiation mechanism in spinach. Results Compared with published genome of spinach, 10,800 transcripts were newly annotated; alternative splicing, alternative polyadenylation and lncRNA were analyzed for the first time, increasing the diversity of spinach transcriptome. A total of 2965 differentially expressed genes were identified between female and male flowers at three early development stages. The differential expression of RNA splicing-related genes, polyadenylation-related genes and lncRNAs suggested the involvement of alternative splicing, alternative polyadenylation and lncRNA in sex differentiation. Moreover, 1946 male-biased genes and 961 female-biased genes were found and several candidate genes related to gender development were identified, providing new clues to reveal the mechanism of sex differentiation. In addition, weighted gene co-expression network analysis showed that auxin and gibberellin were the common crucial factors in regulating female or male flower development; however, the closely co-expressed genes of these two factors were different between male and female flower, which may result in spinach sex differentiation. Conclusions In this study, 10,800 transcripts were newly annotated, and the alternative splicing, alternative polyadenylation and long-noncoding RNA were comprehensively analyzed for the first time in spinach, providing valuable information for functional genome study. Moreover, candidate genes related to gender development were identified, shedding new insight on studying the mechanism of sex determination and differentiation in plant. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07277-4.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ziwei Meng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Minjie Tao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yueyuan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
43
|
Xu CJ, Zhao ML, Chen MS, Xu ZF. Silencing of the Ortholog of DEFECTIVE IN ANTHER DEHISCENCE 1 Gene in the Woody Perennial Jatropha curcas Alters Flower and Fruit Development. Int J Mol Sci 2020; 21:ijms21238923. [PMID: 33255510 PMCID: PMC7727821 DOI: 10.3390/ijms21238923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/12/2023] Open
Abstract
DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.
Collapse
Affiliation(s)
- Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| |
Collapse
|
44
|
Qin X, Zhang W, Dong X, Tian S, Zhang P, Zhao Y, Wang Y, Yan J, Yue B. Identification of fertility-related genes for maize CMS-S via Bulked Segregant RNA-Seq. PeerJ 2020; 8:e10015. [PMID: 33062436 PMCID: PMC7532766 DOI: 10.7717/peerj.10015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023] Open
Abstract
Cytoplasmic male sterility (CMS) is extensively used in maize hybrid production, and identification of genes related to fertility restoration for CMS is important for hybrid breeding. The fertility restoration of S type CMS is governed by several loci with major and minor effects, while the mechanism of fertility restoration for CMS-S is still unknown. In this study, BSR-Seq was conducted with two backcrossing populations with the fertility restoration genes, Rf3 and Rf10, respectively. Genetic mapping via BSR-Seq verified the positions of the two loci. A total of 353 and 176 differentially expressed genes (DEGs) between the male fertility and male sterile pools were identified in the populations with Rf3 and Rf10, respectively. In total, 265 DEGs were co-expressed in the two populations, which were up-regulated in the fertile plants, and they might be related to male fertility involving in anther or pollen development. Moreover, 35 and seven DEGs were specifically up-regulated in the fertile plants of the population with Rf3 and Rf10, respectively. Function analysis of these DEGs revealed that jasmonic acid (JA) signal pathway might be involved in the Rf3 mediated fertility restoration for CMS-S, while the small ubiquitin-related modifier system could play a role in the fertility restoration of Rf10.
Collapse
Affiliation(s)
- Xiner Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xue Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shike Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Wang
- Industrial Crops Research Institution, Heilongjiang Academy of Land Reclamation of Sciences, Haerbin, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bing Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Li Q, Zhang L, Pan F, Guo W, Chen B, Yang H, Wang G, Li X. Transcriptomic analysis reveals ethylene signal transduction genes involved in pistil development of pumpkin. PeerJ 2020; 8:e9677. [PMID: 32879792 PMCID: PMC7442037 DOI: 10.7717/peerj.9677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
Development of female flowers is an important process that directly affects the yield of Cucubits. Little information is available on the sex determination and development of female flowers in pumpkin, a typical monoecious plant. In the present study, we used aborted and normal pistils of pumpkin for RNA-Seq analysis and determined the differentially expressed genes (DEGs) to gain insights into the molecular mechanism underlying pistil development in pumpkin. A total of 3,817 DEGs were identified, among which 1,341 were upregulated and 2,476 were downregulated. The results of transcriptome analysis were confirmed by real-time quantitative RT-PCR. KEGG enrichment analysis showed that the DEGs were significantly enriched in plant hormone signal transduction and phenylpropanoid biosynthesis pathway. Eighty-four DEGs were enriched in the plant hormone signal transduction pathway, which accounted for 12.54% of the significant DEGs, and most of them were annotated as predicted ethylene responsive or insensitive transcription factor genes. Furthermore, the expression levels of four ethylene signal transduction genes in different flower structures (female calyx, pistil, male calyx, stamen, leaf, and ovary) were investigated. The ethyleneresponsive DNA binding factor, ERDBF3, and ethylene responsive transcription factor, ERTF10, showed the highest expression in pistils and the lowest expression in stamens, and their expression levels were 78- and 162-times more than that in stamens, respectively. These results suggest that plant hormone signal transduction genes, especially ethylene signal transduction genes, play an important role in the development of pistils in pumpkin. Our study provides a theoretical basis for further understanding of the mechanism of regulation of ethylene signal transduction genes in pistil development and sex determination in pumpkin.
Collapse
Affiliation(s)
- Qingfei Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Li Zhang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Feifei Pan
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Weili Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Bihua Chen
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Helian Yang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Guangyin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Xinzheng Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| |
Collapse
|
46
|
Yang J, Fei K, Chen J, Wang Z, Zhang W, Zhang J. Jasmonates alleviate spikelet‐opening impairment caused by high temperature stress during anthesis of photo‐thermo‐sensitive genic male sterile rice lines. Food Energy Secur 2020. [DOI: 10.1002/fes3.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Keqi Fei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Jing Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology Agricultural College of Yangzhou University Yangzhou China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
47
|
Yi R, Yan J, Xie D. Light promotes jasmonate biosynthesis to regulate photomorphogenesis in Arabidopsis. SCIENCE CHINA. LIFE SCIENCES 2020; 63:943-952. [PMID: 31974860 DOI: 10.1007/s11427-019-1584-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 01/19/2023]
Abstract
Light acts as the pivotal external environment cue to modulate plant growth and development. Seeds germinate in the soil without light to undergo skotomorphogenesis with rapidly elongating hypocotyls that facilitate emergence from the soil, while seedlings upon light exposure undergo photomorphogenesis with significantly inhibited hypocotyl elongation that benefits plants to stand up firmly and cope with the changing environment. In this study, we demonstrate that light promotes jasmonate (JA) biosynthesis to inhibit hypocotyl elongation and orchestrate seedling photomorphogenesis in Arabidopsis. We showed that JAinhibition on hypocotyl elongation is dependent on JA receptor COI1 and signaling components such as repressor proteins JAZs and transcription activators MYC2/MYC3/MYC4. Furthermore, we found that MYC2/MYC3/MYC4 activate the expression of photomorphogenesis regulator HY5 to repress cell elongation-related genes (such as SAUR62 and EXP2) essential for seedling photomorphogenesis. Our findings provide a novel insight into molecular mechanisms underlying how plants integrate light signal with hormone pathway to establish seedling photomorphogenesis.
Collapse
Affiliation(s)
- Rong Yi
- College of Life Sciences, Peking University, Beijing, 100871, China.,MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianbin Yan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
48
|
Mauck KE, Chesnais Q. A synthesis of virus-vector associations reveals important deficiencies in studies on host and vector manipulation by plant viruses. Virus Res 2020; 285:197957. [PMID: 32380208 DOI: 10.1016/j.virusres.2020.197957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Plant viruses face many challenges in agricultural environments. Although crop fields appear to be abundant resources for these pathogens, it may be difficult for viruses to "escape" from crop environments prior to host senescence or harvesting. One way for viruses to increase the odds of persisting outside of agricultural fields across seasons is by evolving traits that increase transmission opportunities between crops and wild plant communities. There is accumulating evidence that some viruses can achieve this by manipulating crop plant phenotypes in ways that enhance transmission by vectors. Putative manipulations occur through alteration of plant cues (color, size, texture, foliar volatiles, in-leaf metabolites, defenses, and leaf cuticles) that mediate vector orientation, feeding, and dispersal behaviors. Virus effects on host phenotypes are not uniform but appear to exhibit convergence depending on virus traits underlying transmission, particularly the duration of probing and feeding required to acquire and inoculate distinct types of plant viruses. This shared congruence in manipulation strategies and mechanisms across divergent virus lineages suggests that such effects may be adaptive. To discern if this is the case, researchers must consider molecular and environmental constraints on virus evolution, including those imposed by insect vectors from organismal to landscape scales. In this review, we synthesize applied research on vector-borne virus transmission in laboratory and field settings to identify the main factors determining transmission opportunities for plant viruses, and thus, selection pressure to evolve manipulative traits. We then examine these outputs in the context of studies reporting putative instances of plant virus manipulation. Our synthesis reveals important disconnects between virus manipulation studies and actual selection pressures imposed by vectors in real-world contexts.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA; Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| |
Collapse
|
49
|
Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:273-288. [PMID: 31741037 DOI: 10.1007/s00299-019-02490-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
ZmMYC2 was identified as the key regulator of JA signaling in maize and exhibited diverse functions through binding to many gene promoters as well as enhanced JA signaling in transgenic Arabidopsis. The plant hormone jasmonate (JA) extensively coordinates plant growth, development and defensive responses. MYC2 is the master regulator of JA signaling and has been widely studied in many plant species. However, little is known about this transcription factor in maize. Here, we identified one maize transcription factor with amino acid identity of 47% to the well-studied Arabidopsis AtMYC2, named as ZmMYC2. Gene expression analysis demonstrated inducible expression patterns of ZmMYC2 in response to multiple plant hormone treatments, as well as biotic and abiotic stresses. The yeast two-hybrid assay indicated physical interaction among ZmMYC2 and JA signal repressors ZmJAZ14, ZmJAZ17, AtJAZ1 and AtJAZ9. ZmMYC2 overexpression in Arabidopsis myc2myc3myc4 restored the sensitivity to JA treatment, resulting in shorter root growth and inducible anthocyanin accumulation. Furthermore, overexpression of ZmMYC2 in Arabidopsis elevated resistance to Botrytis cinerea. Further ChIP-Seq analysis revealed diverse regulatory roles of ZmMYC2 in maize, especially in the signaling crosstalk between JA and auxin. Hence, we identified ZmMYC2 and characterized its roles in regulating JA-mediated growth, development and defense responses.
Collapse
Affiliation(s)
- Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Panpan Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
50
|
Identification and Characterization of circRNAs Responsive to Methyl Jasmonate in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21030792. [PMID: 31991793 PMCID: PMC7037704 DOI: 10.3390/ijms21030792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs with covalently closed continuous loop structures that are formed by 3′–5′ ligation during splicing. These molecules are involved in diverse physiological and developmental processes in eukaryotic cells. Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. However, the roles of circRNAs in the JA regulatory network are unclear. In this study, we performed high-throughput sequencing of Arabidopsis thaliana at 24 h, 48 h, and 96 h after methyl JA (MeJA) treatment. A total of 8588 circRNAs, which were distributed on almost all chromosomes, were identified, and the majority of circRNAs had lengths between 200 and 800 bp. We identified 385 differentially expressed circRNAs (DEcircRNAs) by comparing data between MeJA-treated and untreated samples. Gene Ontology (GO) enrichment analysis of the host genes that produced the DEcircRNAs showed that the DEcircRNAs are mainly involved in response to stimulation and metabolism. Additionally, some DEcircRNAs were predicted to act as miRNA decoys. Eight DEcircRNAs were validated by qRT-PCR with divergent primers, and the junction sites of five DEcircRNAs were validated by PCR analysis and Sanger sequencing. Our results provide insight into the potential roles of circRNAs in the MeJA regulation network.
Collapse
|