1
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
2
|
Hou L, Liu J, Yuan Y, Ding Y. Role of the NOD1/Rip2 Signaling Pathway in Macrophage Inflammatory Activation Induced by ox-LDL. Cardiol Res Pract 2024; 2024:7601261. [PMID: 39640499 PMCID: PMC11620810 DOI: 10.1155/crp/7601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Aim: This study aimed to investigate the impact of the NOD1/Rip2 signaling pathway on macrophage inflammatory activation and polarity switching in ox-LDL-induced THP-1-derived macrophages. Methods: THP-1-derived macrophages were stimulated with various concentrations (10, 25, or 50 mg/L) of ox-LDL for different durations (8, 16, or 24 h). Quantitative real-time PCR was used to measure the mRNA expression of NOD1, Rip2, IL-10, IL-12, iNOS, and Arg-1. Western blotting was used to determine the protein levels of NOD1 and Rip2. The secretion of TNF-α and MCP-1 in the cell culture supernatants was measured via ELISA. Rip2 siRNA was used to inhibit the NOD1/Rip2 signaling pathway. Oil Red O staining was employed to visualize foam cell formation. CD86, CD80, and CD163 membrane molecules were analyzed via FACS. Results: After exposure to ox-LDL, the expression levels of NOD1 and Rip2 mRNAs and proteins in THP-1-derived macrophages increased in a dose- and time-dependent manner. This upregulation was accompanied by increased concentrations of TNF-α and MCP-1 in the cell culture supernatants. The effects of NOD1 and Rip2 expression upregulation were mitigated by Rip2 siRNA, as evidenced by decreased concentrations of TNF-α and MCP-1. Furthermore, ox-LDL downregulated the expression of M2 macrophage markers CD163, IL-12, and Arg-1 and upregulated the expression of M1 macrophage markers CD86, CD80, IL-10, and iNOS. The inhibition of Rip2 by siRNA reversed these effects and prevented the formation of foam cells. Conclusion: Our data show that the NOD1/RIP2 signaling pathway regulates the inflammatory activation of macrophages induced by ox-LDL and controls the macrophage polarity switch.
Collapse
Affiliation(s)
- Liang Hou
- Department of Cardiology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Jinli Liu
- Second Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhui Yuan
- Cancer Center, Dalian Medical University, Dalian, China
| | - Yanchun Ding
- Second Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB, Nicastro ALM, Soares ÉN, da Cunha Lima BF, Rodrigues BM, Maricato JT, Okuda LH, de Sairre MI, Prado CM, Ureshino RP, Stilhano RS. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14:10696. [PMID: 38730068 PMCID: PMC11087556 DOI: 10.1038/s41598-024-61662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Gabriela Cruz Pereira
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tamires Alves Nunes
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arthur Luiz Miranda Nicastro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | | | | | - Beatriz Moreira Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Liria Hiromi Okuda
- Biological Institute, Agriculture and Supply Department, São Paulo, SP, Brazil
| | - Mirela Inês de Sairre
- Human and Natural Sciences Center, Federal University of ABC (UFABC), São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil.
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil.
| |
Collapse
|
5
|
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res 2024; 38:2361-2387. [PMID: 38429891 DOI: 10.1002/ptr.8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 03/03/2024]
Abstract
As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Department of Pharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| |
Collapse
|
6
|
Xie S, Galimberti F, Olmastroni E, Luscher TF, Carugo S, Catapano AL, Casula M. Effect of lipid-lowering therapies on C-reactive protein levels: a comprehensive meta-analysis of randomized controlled trials. Cardiovasc Res 2024; 120:333-344. [PMID: 38373008 PMCID: PMC10981526 DOI: 10.1093/cvr/cvae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024] Open
Abstract
Chronic low-degree inflammation is a hallmark of atherosclerotic cardiovascular (CV) disease. To assess the effect of lipid-lowering therapies on C-reactive protein (CRP), a biomarker of inflammation, we conducted a meta-analysis according to the PRISMA guidelines. Databases were searched from inception to July 2023. Inclusion criteria were: (i) randomized controlled trials (RCTs) in human, Phase II, III, or IV; (ii) English language; (iii) comparing the effect of lipid-lowering drugs vs. placebo; (iv) reporting the effects on CRP levels; (v) with intervention duration of more than 3 weeks; (vi) and sample size (for both intervention and control group) over than 100 subjects. The between-group (treatment-placebo) CRP absolute mean differences and 95% confidence intervals were calculated for each drug class separately. A total of 171 668 subjects from 53 RCTs were included. CRP levels (mg/L) were significantly decreased by statins [-0.65 (-0.87 to -0.43), bempedoic acid; -0.43 (-0.67 to -0.20), ezetimibe; -0.28 (-0.48 to -0.08)], and omega-3 fatty acids [omega3FAs, -0.27 (-0.52 to -0.01)]. CRP was reduced by -0.40 (-1.17 to 0.38) with fibrates, although not statistically significant. A slight increase of CRP concentration was observed for proprotein convertase subtilisin/kexin type 9 inhibitors [0.11 (0.07-0.14)] and cholesteryl-ester transfer protein inhibitors [0.10 (0.00-0.21)], the latter being not statistically significant. Meta-regression analysis did not show a significant correlation between changes in CRP and LDL cholesterol (LDL-C) or triglycerides. Statins, bempedoic acid, ezetimibe, and omega3FAs significantly reduce serum CRP concentration, independently of LDL-C reductions. The impact of this anti-inflammatory effect in terms of CV prevention needs further investigation.
Collapse
Affiliation(s)
- Sining Xie
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
| | - Federica Galimberti
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Thomas F Luscher
- Center for Molecular Cardiology, University Zurich, Wagistrasse 12, 8952 Schlieren (Zurich), Switzerland
- Cardiac Unit, Royal Brompton and Harefield Hospitals GSTT, Imperial College and King’s College London, Sydney Street, SW3 6NP London, UK
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, University of Milan, via della Commenda 19, 20122 Milan, Italy
- Cardiology Unit, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan, via Francesco Sforza 28, 20122 Milan, Italy
| | - Alberico L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20033 Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto San Giovanni (Milan), Italy
| |
Collapse
|
7
|
Buzzelli L, Segreti A, Di Gioia D, Lemme E, Squeo MR, Nenna A, Di Gioia G. Alternative lipid lowering strategies: State-of-the-art review of red yeast rice. Fitoterapia 2024; 172:105719. [PMID: 37931717 DOI: 10.1016/j.fitote.2023.105719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Red yeast rice (RYR) is an entirely natural product that originates from the fermentation of white rice (Oryza sativa) with a yeast, mainly Monascus Purpureus, and has been part of traditional Chinese medicine and diet since ancient times. It has generated great interest in recent years in the context of cardiovascular (CV) prevention due to its ability to inhibit endogenous cholesterol production, helping to achieve and maintain optimal plasma lipid concentrations. This review aims to make an extensive 360-degree assessment and summary of the whole currently available scientific evidence about RYR, starting with its biochemical composition, passing through a historical reconstruction of all the studies that have evaluated its efficacy and safety in cholesterol-lowering action, with a focus on CV outcomes, and ultimately addressing its other relevant clinical effects. We also discuss its possible therapeutic role, alone or in combination with other nutraceuticals, in different clinical scenarios, taking into account the positions of major scientific documents on the issue, and describe the articulate legal controversies that have characterized the regulation of its use up to the present day. RYR preparations have been proven safe and effective in improving lipid profile, with a potential role in reducing cardiovascular risk. They can be considered as additional supportive agents in the armamentarium of lipid-modifying therapies.
Collapse
Affiliation(s)
- Lorenzo Buzzelli
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Andrea Segreti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Daniela Di Gioia
- Farmacia del Corso, Via Federico II, 50, 71036 Lucera, Foggia, Italy
| | - Erika Lemme
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Maria Rosaria Squeo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giuseppe Di Gioia
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis, 15, 00135 Rome, Italy; Institute of Sport Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy.
| |
Collapse
|
8
|
Bołdys A, Bułdak Ł, Maligłówka M, Surma S, Okopień B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1789. [PMID: 37893507 PMCID: PMC10608225 DOI: 10.3390/medicina59101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Metabolic-associated Fatty Liver Disease is one of the outstanding challenges in gastroenterology. The increasing incidence of the disease is undoubtedly connected with the ongoing obesity pandemic. The lack of specific symptoms in the early phases and the grave complications of the disease require an active approach to prompt diagnosis and treatment. Therapeutic lifestyle changes should be introduced in a great majority of patients; but, in many cases, the adherence is not satisfactory. There is a great need for an effective pharmacological therapy for Metabolic-Associated Fatty Liver Disease, especially before the onset of steatohepatitis. Currently, there are no specific recommendations on the selection of drugs to treat liver steatosis and prevent patients from progression toward more advanced stages (steatohepatitis, cirrhosis, and cancer). Therefore, in this Review, we provide data on the clinical efficacy of therapeutic interventions that might improve the course of Metabolic-Associated Fatty Liver Disease. These include the drugs used in the treatment of obesity and hyperlipidemias, as well as affecting the gut microbiota and endocrine system, and other experimental approaches, including functional foods. Finally, we provide advice on the selection of drugs for patients with concomitant Metabolic-Associated Fatty Liver Disease.
Collapse
Affiliation(s)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
9
|
Surma S, Sahebkar A, Banach M. Nutrition, Nutraceuticals and Bioactive Compounds in the Prevention and Fight against Inflammation. Nutrients 2023; 15:2629. [PMID: 37299592 PMCID: PMC10255072 DOI: 10.3390/nu15112629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic low-grade systemic inflammation is a key factor involved in the pathogenesis of many diseases and their complications (Figure 1) [...].
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
- Polish Lipid Association (PoLA), Sterlinga 27/29/205, 90-212 Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Maciej Banach
- Polish Lipid Association (PoLA), Sterlinga 27/29/205, 90-212 Lodz, Poland
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93-338 Lodz, Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 565-G, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Buniowska-Olejnik M, Urbański J, Mykhalevych A, Bieganowski P, Znamirowska-Piotrowska A, Kačániová M, Banach M. The influence of curcumin additives on the viability of probiotic bacteria, antibacterial activity against pathogenic microorganisms, and quality indicators of low-fat yogurt. Front Nutr 2023; 10:1118752. [PMID: 37077903 PMCID: PMC10106739 DOI: 10.3389/fnut.2023.1118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Curcumin is a nutraceutical with unique anti-inflammatory, anti-oxidative, and antimicrobial properties. In this study, we aimed to examine the advantages of the use of water dispersible and highly bioavailable form of standardized turmeric extract (Curcuma longa L.)-NOMICU® L-100 (N) in the formulation of probiotic yogurt in comparison with the standard turmeric extract (TE). The antimicrobial activity of both supplements was studied and compared in the context of gram-positive and gram-negative bacteria, yeasts, and fungi. The N maintains the level of Bifidobacterium animalis subsp. lactis BB-2 in yogurt at the recommended level (7-9 log CFU/g) throughout the storage period. NOMICU® L-100 also has a higher inhibitory capacity for the growth of yeast and fungi. The evaluation of quality indicators of yogurt with N and TE at the level of 0.2% proves that yogurt with N has original taste properties. A lower degree of syneresis was noted for yogurt with TE (0.2%), but its sensory properties are unacceptable to the consumer due to the appearance of a bitter taste. In conclusion, based on the obtained results, it has been proven that the use of NOMICU® L-100 (0.2%) in the composition of yogurt provides a product of functional direction with stable quality and safety indicators, which can be stored for at least 28 days.
Collapse
Affiliation(s)
- Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszów, Rzeszów, Poland
| | - Jakub Urbański
- Food Studies, SWPS University, Warsaw, Poland
- Dairy Biotechnologies Ltd., Puławy, Poland
| | - Artur Mykhalevych
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Kyiv, Ukraine
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszów, Rzeszów, Poland
| | - Miroslava Kačániová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Rzeszów, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Góra, Zielona Góra, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
| |
Collapse
|
11
|
Abbasifard M, Jamialahmadi T, Reiner Ž, Eid AH, Sahebkar A. The effect of nuts consumption on circulating oxidized low-density lipoproteins: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1678-1687. [PMID: 36856053 DOI: 10.1002/ptr.7787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/06/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
This systematic review and meta-analysis evaluated the effect of nuts in decreasing circulating levels of oxidized low-density lipoproteins (ox-LDL). A literature search was performed of major electronic databases (MEDLINE/PubMed, Scopus, and ISI Web of Science) from inception up to November 15th, 2021 to find randomized controlled trials (RCTs) evaluating the effect of different nuts on circulating levels of ox-LDL. The effect size was determined using standardized mean difference (SMD) and corresponding 95% confidence intervals (CI). Evaluation of funnel plot, Begg's rank correlation, and Egger's weighted regression tests were used to assess the presence of publication bias in the meta-analysis. This systematic review and meta-analysis included 15 RCTs involving 997 subjects. Meta-analysis showed that nuts significantly decreased serum levels of ox-LDL. Besides, meta-regression results of the association between confounders such as duration of nuts consumption or delta LDL-cholesterol and levels of ox-LDL, were not significant. The correlation between nuts type and ox-LDL levels was significant in subgroup analyses suggesting the most significant effect of pistachios consumption on reducing the circulating concentrations of ox-LDL. To conclude, nuts consumption decreases the circulating concentrations of ox-LDL which might be beneficial for the prevention and/or progression of ASCVD.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk? Metabolites 2023; 13:metabo13020145. [PMID: 36837764 PMCID: PMC9964413 DOI: 10.3390/metabo13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Plant sterols are molecules that are structurally similar to cholesterol and provided only as dietary sources (e.g., vegetables, fruits, nuts, cereals) since they cannot be synthesized by humans. Sterol-enriched diets (≥2 g/day) may decrease total and low-density lipoprotein cholesterol concentrations by 5-10%, either alone or when added to statins, since they antagonize dietary cholesterol absorption in the intestine. On the other hand, increased serum phytosterol concentrations, (including when associated with sitosterolemia, a rare genetic defect) may contribute to atherosclerotic risk, although a threshold for such a role has not been established. Medications such as ezetimibe may effectively reduce cholesterol and phytosterol absorption. Whether the therapeutic approach associated with the reduction of phytosterol absorption is also translated into a reduction in a patient's residual cardiovascular risk needs to be established.
Collapse
|
13
|
Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187:106596. [PMID: 36473629 DOI: 10.1016/j.phrs.2022.106596] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of premature death worldwide. Inflammation and its biomarkers, like C-reactive protein (CRP), among the risk factors, such as hypertension, lipid disorders, and diabetes, may be also responsible for the residual cardiovascular disease (CVD) risk. Modern lipid-lowering treatment with statins, ezetimibe, PCSK9 inhibitors, or bempedoic acid does not fully protect against inflammation. The recommendations of the International Lipid Expert Panel (ILEP) indicate selected nutraceuticals with anti-inflammatory properties. Diet may have a significant impact on inflammation. Especially interesting in the context of inflammation is the consumption of coffee and tea. These drinks in many observational studies significantly reduced cardiovascular risk and mortality. The question is whether the anti-inflammatory effects of these drinks contribute significantly to the observed clinical effects. Thus, in this narrative review, we primarily discuss the anti-inflammatory properties of consuming tea and coffee. Based on a comprehensive analysis of the studies and their meta-analyses, inconsistent results were obtained, which makes it impossible to conclusively state how clinically significant the potential anti-inflammatory properties of black and green tea and coffee are. A number of confounding factors can cause the inconsistency of the available results. Consumption of tea and coffee appears to increase adiponectin concentrations, decrease reactive oxygen species, decrease low density lipoprotein (LDL) cholesterol concentrations (effect of green tea, etc.). Despite the still uncertain anti-inflammatory effect of tea and coffee, we recommend their consumption as a part of the healthy diet.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland; Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland.
| |
Collapse
|
14
|
Singla RK, De R, Efferth T, Mezzetti B, Sahab Uddin M, Ntie-Kang F, Wang D, Schultz F, Kharat KR, Devkota HP, Battino M, Sur D, Lordan R, Patnaik SS, Tsagkaris C, Sai CS, Tripathi SK, Găman MA, Ahmed MEO, González-Burgos E, Babiaka SB, Paswan SK, Odimegwu JI, Akram F, Simal-Gandara J, Urquiza MS, Tikhonov A, Mondal H, Singla S, Lonardo SD, Mulholland EJ, Cenanovic M, Maigoro AY, Giampieri F, Lee S, Tzvetkov NT, Louka AM, Verma P, Chopra H, Olea SP, Khan J, Alvarez Suarez JM, Zheng X, Tomczyk M, Sabnani MK, Medina CDV, Khalid GM, Boyina HK, Georgiev MI, Supuran CT, Sobarzo-Sánchez E, Fan TP, Pittala V, Sureda A, Braidy N, Russo GL, Vacca RA, Banach M, Lizard G, Zarrouk A, Hammami S, Orhan IE, Aggarwal BB, Perry G, Miller MJ, Heinrich M, Bishayee A, Kijjoa A, Arkells N, Bredt D, Wink M, Fiebich BL, Kiran G, Yeung AWK, Gupta GK, Santini A, Lucarini M, Durazzo A, El-Demerdash A, Dinkova-Kostova AT, Cifuentes A, Souto EB, Zubair MAM, Badhe P, Echeverría J, Horbańczuk JO, Horbanczuk OK, Sheridan H, Sheshe SM, Witkowska AM, Abu-Reidah IM, Riaz M, Ullah H, Oladipupo AR, Lopez V, Sethiya NK, Shrestha BG, Ravanan P, Gupta SC, Alzahrani QE, Dama Sreedhar P, Xiao J, Moosavi MA, Subramani PA, Singh AK, Chettupalli AK, Patra JK, Singh G, Karpiński TM, Al-Rimawi F, Abiri R, Ahmed AF, Barreca D, Vats S, Amrani S, Fimognari C, Mocan A, Hritcu L, Semwal P, Shiblur Rahaman M, Emerald M, Akinrinde AS, Singh A, Joshi A, Joshi T, Khan SY, Balla GOA, Lu A, Pai SR, Ghzaiel I, Acar N, Es-Safi NE, Zengin G, Kureshi AA, Sharma AK, Baral B, Rani N, Jeandet P, Gulati M, Kapoor B, Mohanta YK, Emam-Djomeh Z, Onuku R, Depew JR, Atrooz OM, Goh BH, Andrade JC, Konwar B, Shine VJ, Ferreira JMLD, Ahmad J, Chaturvedi VK, Skalicka-Woźniak K, Sharma R, Gautam RK, Granica S, Parisi S, Kumar R, Atanasov AG, Shen B. The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154520. [PMID: 36334386 DOI: 10.1016/j.phymed.2022.154520] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | - Ronita De
- ICMR-National Institute of Cholera and Enteric Diseases, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata, West Bengal 700010, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences (D3A) Università Politecnica Delle Marche Ancona, IT, Italy
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Dongdong Wang
- Centre for Metabolism, Obesity, and Diabetes Research, Department of Medicine, McMaster University, HSC 4N71, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Fabien Schultz
- Technical University of Berlin, Institute of Biotechnology, Faculty III - Process Sciences, Gustav-Meyer-Allee 25, Berlin 13355, Germany; Neubrandenburg University of Applied Sciences, Department of Agriculture and Food Sciences, Brodaer Str. 2, Neubrandenburg 17033, Germany
| | | | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, Japan
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona 60131, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Daniel Sur
- Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Sourav S Patnaik
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | | | - Chandragiri Siva Sai
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Gomati Nagar, Lucknow, Uttar Pradesh 226010, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, National Institute of Technology Rourkela, Odisha-769008, India
| | - Mihnea-Alexandru Găman
- ″Carol Davila" University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, Bucharest, Romania; Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 258 Fundeni Road, Bucharest, Romania
| | - Mosa E O Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al Neelain University, Khartoum, Sudan
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, University Complutense of Madrid, Spain
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | | | | | - Faizan Akram
- Bahawalpur College of Pharmacy (BCP), Bahawalpur Medical and Dental College (BMDC), Bahawalpur, Pakistan
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Ourense E-32004, Spain
| | | | - Aleksei Tikhonov
- Translational Research Laboratory in Immunotherapy, Gustave Roussy, Villejuif, France
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Sara Di Lonardo
- Research Institute on Terrestrial Ecosystems-Italian National Research Council (IRET-CNR), Via Madonna del Piano 10, Sesto Fiorentino Fi 50019, Italy
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Somerville College, University of Oxford, Oxford, United Kingdom
| | | | | | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Soojin Lee
- Department of Bioscience and Biotechnology, Chungnam National University, Republic of Korea
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Bulgaria
| | | | - Pritt Verma
- Department of Pharmacology, CSIR-NBRI, Lucknow, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - José M Alvarez Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador
| | - Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, Białystok 15-230, Poland
| | - Manoj Kumar Sabnani
- The University of Texas at Arlington, United States; Alloy Therapeutics, United States
| | | | - Garba M Khalid
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University, Belfast BT9, United Kingdom
| | - Hemanth Kumar Boyina
- School of Pharmacy, Department of Pharmacology, Anurag University, Venkatapur, Medchal, Hyderabad, Telangana 500088, India
| | - Milen I Georgiev
- Laboratory of Metabolomics, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Tai-Ping Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Valeria Pittala
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, Health Research Institute of Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma, Balearic Islands E-07122, Spain
| | - Nady Braidy
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino 83100, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari 70126, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Gérard Lizard
- Université de Bourgogne / Inserm, Laboratoire Bio-PeroxIL, Faculté des Sciences Gabriel, 6 Boulevard Gabriel, Dijon 21000 France
| | - Amira Zarrouk
- University of Monastir (Tunisia), Faculty of Medicine, LR-NAFS 'Nutrition - Functional Food & Vascular Health', Tunisia
| | - Sonia Hammami
- University of Monastir (Tunisia), Faculty of Medicine, LR-NAFS 'Nutrition - Functional Food & Vascular Health', Tunisia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | | | - George Perry
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas, United States
| | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States
| | - Anake Kijjoa
- Instituto de Ciências Biomédicas Abel Salazar e CIIMAR, Universidade do Porto, Portugal
| | - Nicolas Arkells
- International Natural Product Sciences Taskforce (INSPT), United States
| | | | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg 69120, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab, India
| | - Antonello Santini
- University of Napoli Federico II, Department of Pharmacy. Via D Montesano 49, Napoli 80131, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546 00178 Rome, Italy
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546 00178 Rome, Italy
| | - Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | | | - Pravin Badhe
- Swalife Foundation, India; Swalife Biotech Ltd, Ireland; Sinhgad College of Pharmacy, Vadgaon (BK) Pune Maharashtra India
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec 05-552, Poland
| | - Olaf K Horbanczuk
- Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW) 159c Nowoursynowska, Warsaw 02-776, Poland
| | - Helen Sheridan
- The NatPro Centre. Trinity College Dublin. Dublin 2, Ireland
| | | | | | - Ibrahim M Abu-Reidah
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook A2H 5G4, Canada
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Akolade R Oladipupo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Nigeria; Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Víctor Lopez
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
| | | | | | - Palaniyandi Ravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India
| | - Qushmua E Alzahrani
- Department of Pharmacy/Nursing Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) Brazil, Sana Catarina, Joinville, Brazil
| | | | | | - Mohammad Amin Moosavi
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetics Engineering and Biotechnology, Tehran P.O. Box: 14965/161, Iran
| | - Parasuraman Aiya Subramani
- Independent Researcher, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India - 600048. formerly, Pallavaram, Chennai 600117, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002 India
| | | | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Gopal Singh
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, Poznań 61-712, Poland
| | | | - Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Università degli Studi di Messina, Messina, Italy
| | - Sharad Vats
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Said Amrani
- Laboratoire de Biologie et de Physiologie des Organismes, Faculté des Sciences Biologiques, USTHB, Bab Ezzouar, Alger, Algeria
| | | | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, Iasi 700506, Romania
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Mila Emerald
- PHYTOCEUTICALS International™ & NOVOTEK Global Solutions™, Canada
| | - Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ashima Joshi
- Sardar Bhagwan Singh University, Balawala, Dehradun, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), India
| | - Shafaat Yar Khan
- Research Lab III, Hematology & Vascular Biology, Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Gareeballah Osman Adam Balla
- Department of Pharmacology, College of Veterinary Medicine, Sudan University of Science and Technology, Hilat Kuku, Khartoum North P.O. Box No. 204, Sudan
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, HongKong, China
| | - Sandeep Ramchandra Pai
- Department of Botany, Rayat Shikshan Sanstha's, Dada Patil Mahavidyalaya, Karjat, Maharashtra, India
| | - Imen Ghzaiel
- Université de Bourgogne, Inserm, Laboratoire Bio - PeroxIL, Faculté des Sciences Gabriel, 6 Boulevard Gabriel, Dijon 21000 France; University Tunis El Manar, Tunis, Tunisia
| | | | - Nour Eddine Es-Safi
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Azazahemad A Kureshi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | | | - Neeraj Rani
- Department of Pharmaceutical Sciences, Chaudhary Bansilal University, Bhiwani, Haryana, India
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection, USC INRAe 1488, Reims, France
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH 1) Phagwara, Punjab 144411 India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH 1) Phagwara, Punjab 144411 India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Kling Road, Baridua, Ri-Bhoi, Meghalaya 793101, India
| | | | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nigeria
| | | | - Omar M Atrooz
- Department of Biological Sciences, Mutah University, Jordan
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jose Carlos Andrade
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, Gandra, Portugal
| | | | - V J Shine
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rupesh K Gautam
- Deparment of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Rau-Indore-453331, India
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Poland
| | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Kerala State, India
| | - Rishabh Kumar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria; Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, Vienna 1090, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Magdalenka 05-552, Poland.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Panighel G, Ferrarese I, Lupo MG, Sut S, Dall'Acqua S, Ferri N. Investigating the in vitro mode of action of okra (Abelmoschus esculentus) as hypocholesterolemic, anti-inflammatory, and antioxidant food. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100126. [PMID: 35937040 PMCID: PMC9352527 DOI: 10.1016/j.fochms.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Okra leaf butanol extract and fruit extract induce the LDLR expression in human hepatoma cell line Huh7. Okra leaf butanol extract reduced the mRNA levels of proinflammatory cytokines IL-1β, IL-6 and TNF-α in THP1-derived macrophages. Okra fruit extract showed a sequestering ability of cholic acid providing an additional mechanism of hypocholesterolemic activity. Leaf ethyl acetate extract exerted significant antioxidant activity with IC50 comparable to ascorbic acid.
Okra (Abelmoschus esculentus) have been introduced as food relatively recently in Europe. It is native to India and one of the most important vegetables in Nigeria. The leaves can be consumed but also the fruit is rich in nutrients and bioactive compounds (i.e., dietary fiber, vitamins, oils, polysaccharides, polyphenols) and several health promoting actions have been ascribed, including a lipid-lowering properties. In this work the effects of fruit and leaf extracts on expression of key mediators of cholesterol metabolism, i.e., the low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), were investigated in human hepatoma cell line Huh7. Furthermore, effects on proinflammatory cytokines (IL-1β, IL-6 and TNF-α) expressed by THP1-derived macrophages were studied to assess potential anti-inflammatory actions. Okra fruit extract significantly induced the mRNA and protein levels of the LDLR by 1.4 ± 0.3 and 4.8 ± 1.5-fold, respectively without any significant modification of PCSK9 expression. In addition, fruit extract showed a significant sequestering ability of cholic acid. Leaf butanol extract exerted similar action by inducing the expression of both the LDLR (+3.1 ± 1.6-fold vs control) and PCSK9 (+1.3 ± 0.4-fold vs control). The evaluation of the potential anti-inflammatory effect revealed a significant action of leaf butanol extract with reduced mRNA levels of IL-1β (−28 ± 8 % vs control), IL-6 (−11 ± 1 % vs control) and TNF-α (−43 ± 8 % vs control), while fruit extract did not show any anti-inflammatory activity. Finally, leaf ethyl acetate extract showed a significant antioxidant capacity comparable to ascorbic acid. Taken together, we provided evidence that leaf butanol extract and, more effectively, fruit extract induced the LDLR expression, effect that may explain the previously reported hypocholesterolemic action of okra. In addition, okra’s extracts reduced the expression of pro-inflammatory cytokines from THP1-derived macrophages, an effect that may suggest a vascular protective action of okra.
Collapse
|
16
|
Allicin and Capsaicin Ameliorated Hypercholesterolemia by Upregulating LDLR and Downregulating PCSK9 Expression in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232214299. [PMID: 36430776 PMCID: PMC9695077 DOI: 10.3390/ijms232214299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Hypercholesterolemia is a common cause of cardiovascular diseases (CVDs). Although allicin and capsaicin possess hypolipidemic effects through several molecular mechanisms, their effects on LDLR and PCSK9 expression are still unknown. This study aimed to investigate the effects of allicin and capsaicin on LDLR and PCSK9 expression in HepG2 cells. The effects of allicin and capsaicin on cell viability were evaluated by MTT assay and trypan blue exclusion assay. Low-density lipoprotein receptor (LDLR) levels and LDL uptake were determined by flow cytometry and confocal laser scanning microscopy (CLSM), respectively. RT-qPCR and Western blot analyses were performed to evaluate the expression of PCSK9, LDLR, SREBP-2, and HNF1α. ELISA was used to measure PCSK9 levels in culture media. Allicin and capsaicin increased the protein expression levels of LDLR via activation of the transcription factor SREBP2. However, allicin and capsaicin decreased the expression of PCSK9 protein and the secretion of PCSK9 in culture media via the suppression of HNF1α. Moreover, allicin and capsaicin increased LDL uptake into HepG2 cells. The efficacies of the hypolipidemic effects of allicin (200 µM) and capsaicin (200 µM) were comparable to that of atorvastatin (10 µM) in this study. In conclusion, allicin and capsaicin possessed hypolipidemic effects via the upregulation of LDLR and downregulation of PCSK9 expression, thereby enhancing LDL uptake into HepG2 cells. This indicates that allicin and capsaicin should be used as potent supplements to ameliorate hypercholesterolemia.
Collapse
|
17
|
Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, Dheer D, Sharma A, Sangnim T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022; 14:4637. [PMID: 36364899 PMCID: PMC9654660 DOI: 10.3390/nu14214637] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
Nutraceuticals are the nourishing components (hybrid of nutrition and pharmaceuticals) that are biologically active and possess capability for maintaining optimal health and benefits. These products play a significant role in human health care and its endurance, most importantly for the future therapeutic development. Nutraceuticals have received recognition due to their nutritional benefits along with therapeutic effects and safety profile. Nutraceuticals are globally growing in the field of services such as health care promotion, disease reduction, etc. Various drug nutraceutical interactions have also been elaborated with various examples in this review. Several patents on nutraceuticals in agricultural applications and in various diseases have been stated in the last section of review, which confirms the exponential growth of nutraceuticals' market value. Nutraceuticals have been used not only for nutrition but also as a support therapy for the prevention and treatment of various diseases, such as to reduce side effects of cancer chemotherapy and radiotherapy. Diverse novel nanoformulation approaches tend to overcome challenges involved in formulation development of nutraceuticals. Prior information on various interactions with drugs may help in preventing any deleterious effects of nutraceuticals products. Nanotechnology also leads to the generation of micronized dietary products and other nutraceutical supplements with improved health benefits. In this review article, the latest key findings (clinical studies) on nutraceuticals that show the therapeutic action of nutraceutical's bioactive molecules on various diseases have also been discussed.
Collapse
Affiliation(s)
- Vivek Puri
- School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Manju Nagpal
- College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Inderbir Singh
- College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Manjinder Singh
- College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Gitika Arora Dhingra
- NCRD’s Sterling Institute of Pharmacy, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Pathum Thani 12110, Tanyaburi, Thailand
| | - Divya Dheer
- School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Ameya Sharma
- School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Muang, Thailand
| |
Collapse
|
18
|
Awad K, Zaki MM, Mohammed M, Lewek J, Lavie CJ, Banach M. Effect of the Renin-Angiotensin System Inhibitors on Inflammatory Markers: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Mayo Clin Proc 2022; 97:1808-1823. [PMID: 36202494 DOI: 10.1016/j.mayocp.2022.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/01/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To synthesize more conclusive evidence on the anti-inflammatory effects of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). METHODS PubMed, Scopus, and Embase were searched from inception until March 1, 2021. We included randomized controlled trials (RCTs) that assessed the effect of ACEIs or ARBs, compared with placebo, on any of the following markers: C-reactive protein (CRP), interleukin 6 (IL-6), or tumor necrosis factor α (TNF-α). Mean changes in the levels of these markers were pooled as a weighted mean difference (WMD) with a 95% CI. RESULTS Thirty-two RCTs (n=3489 patients) were included in the final analysis. Overall pooled analysis suggested that ACEIs significantly reduced plasma levels of CRP (WMD, -0.54 [95% CI, -0.88 to -0.21]; P=.002; I2=96%), IL-6 (WMD, -0.84 [95% CI, -1.03 to -0.64]; P<.001; I2=0%), and TNF-α (WMD, -12.75 [95% CI, -17.20 to -8.29]; P<.001; I2=99%). Moreover, ARBs showed a significant reduction only in IL-6 (WMD, -1.34 [95% CI, -2.65 to -0.04]; P=.04; I2=85%) and did not significantly affect CRP (P=.15) or TNF-α (P=.97) levels. The lowering effect of ACEIs on CRP levels remained significant with enalapril (P=.006) and perindopril (P=.01) as well as with a treatment duration of less than 24 weeks (WMD, -0.67 [95% CI, -1.07 to -0.27]; P=.001; I2=94%) and in patients with coronary artery disease (WMD, -0.75 [95% CI, -1.17 to -0.33]; P<.001; I2=96%). CONCLUSION Based on this meta-analysis, ACEIs showed a beneficial lowering effect on CRP, IL-6, and TNF-α, whereas ARBs were effective as a class in reduction of IL-6 only.
Collapse
Affiliation(s)
- Kamal Awad
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt; Zagazig University Hospitals, Zagazig, El-Sharkia, Egypt.
| | - Mahmoud Mohamed Zaki
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt; Zagazig University Hospitals, Zagazig, El-Sharkia, Egypt
| | - Maged Mohammed
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt; Zagazig University Hospitals, Zagazig, El-Sharkia, Egypt
| | - Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, Louisiana
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | | |
Collapse
|
19
|
Granato D. Functional foods to counterbalance low-grade inflammation and oxidative stress in cardiovascular diseases: a multilayered strategy combining food and health sciences. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Kavyani Z, Musazadeh V, Fathi S, Hossein Faghfouri A, Dehghan P, Sarmadi B. Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella meta-analysis. Int Immunopharmacol 2022; 111:109104. [PMID: 35914448 DOI: 10.1016/j.intimp.2022.109104] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Existing meta-analyses on omega-3 polyunsaturated fatty acids and their anti-inflammatory effects have reported uncertain findings. The current umbrella meta-analysis aimed to assess the findings of multiple meta-analyses on the efficacy of n-3 PUFAs on inflammatory biomarkers in adults with different health conditions. METHODS Using suitable keywords, articles published until December 2021 were searched in PubMed/Medline, Web of Science, Scopus, EMBASE, and Google Scholar. Meta-analyses investigating the impact of supplementation of n-3 PUFAs on inflammatory biomarkers in adults were included. We performed this meta-analysis using a random-effects model. RESULTS Overall, 32 meta-analyses were qualified in this umbrella meta-analysis. Our findings demonstrated that the n-3 PUFA supplementation significantly reduced serum C-reactive protein (CRP) (ES = -0.40; 95 % CI: -0.56, -0.24, p < 0.001; I2 = 89.5 %, p < 0.001), Tumour necrosis factor α (TNFα) (ES = -0.23; 95 % CI: -0.37, -0.08, p = 0.002; I2 = 60.1 %, p < 0.001), and interleukin 6 (IL-6) concentrations (ES = -0.22; 95 % CI: -0.39, -0.05, p = 0.010; I2 = 66.2 %, p < 0.001). CONCLUSION The current umbrella meta-analysis found that supplementation of n-3 PUFAs in adults can improve CRP, TNF-α, and IL-6 concentrations under various health conditions. n-3 PUFAs can be recommended as adjuvant anti-inflammatory agents.
Collapse
Affiliation(s)
- Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroor Fathi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahareh Sarmadi
- Department of Nutrition Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Banach M, Catapano AL, Cicero AFG, Escobar C, Foger B, Katsiki N, Latkovskis G, Rakowski M, Reiner Z, Sahebkar A, Sikand G, Penson PE, On Behalf Of The International Lipid Expert Panel Ilep. Red yeast rice for dyslipidaemias and cardiovascular risk reduction: A position paper of the International Lipid Expert Panel. Pharmacol Res 2022; 183:106370. [PMID: 35901940 DOI: 10.1016/j.phrs.2022.106370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/06/2023]
Abstract
The risk of atherosclerotic cardiovascular disease (ASCVD) is strongly related to lifetime exposure to low-density lipoprotein (LDL)-cholesterol in longitudinal studies. Lipid-lowering therapy (using statins, ezetimibe and PCSK9 inhibitors) substantially ameliorates the risk and is associated with long-term reduction in cardiovascular (CV) events. The robust evidence supporting these therapies supports their continued (and expanding) role in risk reduction. In addition to these 'conventional' therapeutics, while waiting for other innovative therapies, growing evidence supports the use of a range of 'nutraceuticals' (constituents of food prepared as pharmaceutical formulations) including preparations of red yeast rice (RYR), the product of yeast (Monascus purpureus) grown on rice, which is a constituent of food and is used in traditional Chinese medicine. The major active ingredient, monacolin K, is chemically identical to lovastatin. RYR preparations have been demonstrated to be safe and effective in reducing LDL-C, and CV events. However, surprisingly, RYR has received relatively little attention in international guidelines - and conventional drugs with the strongest evidence for event reduction should always be preferred in clinical practice. Nevertheless, the absence of recommendations relating to RYR may preclude the use of a product which may have clinical utility in particular groups of patients (who may anyway self-prescribe this product), what in the consequence might help to reduce population CV risk. This Position Paper of the International Lipid Expert Panel (ILEP) will use the best available evidence to give advice on the use of red-yeast rice in clinical practice.
Collapse
Affiliation(s)
- Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, Zielona Góra, Poland.
| | - Alberico L Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy; Department of Cardiovascular Medicine, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Arrigo F G Cicero
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy; Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Bernhard Foger
- Department of Internal Medicine, Rottal-Inn Klinik Pfarrkirchen, Germany
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Gustavs Latkovskis
- Institute of Cardiology and Regenerative Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia; Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Michal Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Lodz, Poland; Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Zeljko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Geeta Sikand
- Heart Disease Prevention Program, University of California Irvine, Irvine, CA, USA
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | |
Collapse
|
22
|
Maierean S, Webb R, Banach M, Mazidi M. The role of inflammation and the possibilities of inflammation reduction to prevent cardiovascular events. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac039. [PMID: 35919577 PMCID: PMC9271640 DOI: 10.1093/ehjopen/oeac039] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Chronic systemic inflammation is a risk factor for cardiovascular (CV) disease (CVD). Whether this relationship extends to subclinical inflammation, quantified by values of circulating markers associated with inflammation in the high range of the normal interval, remains debatable. This narrative review evaluates evidence exploring this relationship. A review of pharmacological and non-pharmacological interventions, including diet and lifestyle strategies, supplements, nutraceuticals, and other natural substances aimed at reducing inflammation was also conducted, since few reviews have synthesized this literature. PubMed and EMBASE were used to search the literature and several well-studied triggers of inflammation [oxidized LDL, Lp(a), as well as C-reactive protein (CRP)/high-sensitivity CRP (hs-CRP)] were included to increase sensitivity and address the lack of existing reviews summarizing their influence in the context of inflammation. All resulting references were assessed. Overall, there is good data supporting associations between circulating hs-CRP and CV outcomes. However, the same was not seen in studies evaluating triggers of inflammation, such as oxidized LDL or Lp(a). There is also insufficient evidence showing treatments to target inflammation and lead to reductions in hs-CRP result in improvements in CV outcomes, particularly in those with normal baseline levels of hs-CRP. Regarding pharmacological interventions, statins, bempedoic acid, and apabetalone significantly reduce circulating hs-CRP, unlike PCSK-9 inhibitors. A variety of natural substances and vitamins were also evaluated and none reduced hs-CRP. Regarding non-pharmacological interventions, weight loss was strongly associated with reductions in circulating hs-CRP, whereas various dietary interventions and exercise regimens were not, unless accompanied by weight loss.
Collapse
Affiliation(s)
- Serban Maierean
- Department of Medicine, University of Toronto , Toronto, ON , Canada
| | - Richard Webb
- Faculty of Science, Liverpool Hope University , Taggart Avenue, Liverpool , UK
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz , Rzgowska 281/289, Lodz 93-338 , Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI) , Rzgowska 281/289, Lodz 93-338 , Poland
- Cardiovascular Research Centre, University of Zielona Gora , Zyty 28, 65-046 Zielona Gora , Poland
| | - Mohsen Mazidi
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health , University of Oxford, Oxford , UK
- Department of Twin Research & Genetic Epidemiology, King’s College London , South Wing St Thomas’, London , UK
| |
Collapse
|
23
|
Ruscica M, Sirtori CR, Carugo S, Calder PC, Corsini A. OMEGA-3 AND CARDIOVASCULAR PREVENTION – IS THIS STILL A CHOICE? Pharmacol Res 2022; 182:106342. [DOI: 10.1016/j.phrs.2022.106342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
|
24
|
Azevedo L, Serafim MSM, Maltarollo VG, Grabrucker AM, Granato D. Atherosclerosis fate in the era of tailored functional foods: Evidence-based guidelines elicited from structure- and ligand-based approaches. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Cholesterol-Lowering Therapy in Patients at Low-to-Moderate Cardiovascular Risk. High Blood Press Cardiovasc Prev 2022; 29:327-336. [PMID: 35759179 PMCID: PMC9262762 DOI: 10.1007/s40292-022-00529-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is unanimously recognized as a major modifiable risk factor related to the development of atherosclerotic cardiovascular disease (ASCVD). Consistent evidence confirms that reducing LDL-C is associated with reduction of major adverse cardiovascular events (MACEs), with benefits proportionally related to initial individual CV risk and absolute reduction of LDL-C levels. The recent European guidelines on cardiovascular prevention have proposed a revised approach in cardiovascular risk evaluation, taking into account a renewed consideration of the interaction between risk factors and possible confounding factors (e.g., age). Although for patients considered to be at high and very high cardiovascular risk the need for stringent risk factors treatment is clearly stated, for those who are at low-to-moderate cardiovascular risk the issue is more debated. For those latter subjects, current guidelines indicate that risk factor treatment is generally not necessary, unless the impact of CV risk modifiers, lifetime CV risk and treatment benefit may be substantial. In addition, despite the estimated low-to-moderate short-term CV risk, the early appearance of even mild LDL-C level elevations may contribute to impair long-term CV prognosis. Therefore, encouraging the achievement of desired LDL-C goals through tailored conservative lifestyle changes and, if necessary, pharmacologic strategies should not be excluded categorically in all low-to-moderate risk individuals. In this review, we summarize the most recent evidence that may influence the choice to treat or not to treat LDL-C elevations in subjects at low-to-moderate risk and the suggested therapeutic tools aimed at achieving the recommended LDL-C goals.
Collapse
|
26
|
Penson PE, Bruckert E, Marais D, Reiner Ž, Pirro M, Sahebkar A, Bajraktari G, Mirrakhimov E, Rizzo M, Mikhailidis DP, Sachinidis A, Gaita D, Latkovskis G, Mazidi M, Toth PP, Pella D, Alnouri F, Postadzhiyan A, Yeh H, Mancini GJ, von Haehling S, Banach M. Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP). J Cachexia Sarcopenia Muscle 2022; 13:1596-1622. [PMID: 35969116 PMCID: PMC9178378 DOI: 10.1002/jcsm.12960] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Statin intolerance is a clinical syndrome whereby adverse effects (AEs) associated with statin therapy [most commonly statin-associated muscle symptoms (SAMS)] result in the discontinuation of therapy and consequently increase the risk of adverse cardiovascular outcomes. However, complete statin intolerance occurs in only a small minority of treated patients (estimated prevalence of only 3-5%). Many perceived AEs are misattributed (e.g. physical musculoskeletal injury and inflammatory myopathies), and subjective symptoms occur as a result of the fact that patients expect them to do so when taking medicines (the nocebo/drucebo effect)-what might be truth even for over 50% of all patients with muscle weakness/pain. Clear guidance is necessary to enable the optimal management of plasma in real-world clinical practice in patients who experience subjective AEs. In this Position Paper of the International Lipid Expert Panel (ILEP), we present a step-by-step patient-centred approach to the identification and management of SAMS with a particular focus on strategies to prevent and manage the nocebo/drucebo effect and to improve long-term compliance with lipid-lowering therapy.
Collapse
Affiliation(s)
- Peter E. Penson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
- Liverpool Centre for Cardiovascular ScienceLiverpoolUK
| | - Eric Bruckert
- Pitié‐Salpetrière Hospital and Sorbonne UniversityCardio metabolic InstituteParisFrance
| | - David Marais
- Chemical Pathology Division of the Department of PathologyUniversity of Cape Town Health Science FacultyCape TownSouth Africa
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre ZagrebSchool of Medicine University of ZagrebZagrebCroatia
| | - Matteo Pirro
- Department of MedicineUniversity of PerugiaPerugiaItaly
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Clinic of Cardiology, University Clinical Centre of Kosova, Medical FacultyUniversity of PrishtinaPrishtinaKosovo
| | - Gani Bajraktari
- Department of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Department of Internal DiseaseKyrgyz State Medical AcademyBishkekKyrgyzstan
| | - Erkin Mirrakhimov
- Department of Atherosclerosis and Coronary Heart DiseaseNational Center of Cardiology and Internal DiseasesBishkekKyrgyzstan
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
- Division of Endocrinology, Diabetes and Metabolism, School of MedicineUniversity of South CarolinaColumbiaSCUSA
| | - Dimitri P. Mikhailidis
- Department of Clinical BiochemistryUniversity College London Medical School, University College London (UCL)LondonUK
| | - Alexandros Sachinidis
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
- 2nd Propedeutic Department of Internal Medicine, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor BabesTimisoaraRomania
- Clinica de CardiologieInstitutul de Boli Cardiovasculare TimisoaraTimisoaraRomania
| | - Gustavs Latkovskis
- Pauls Stradins Clinical University HospitalRigaLatvia
- University of LatviaRigaLatvia
| | - Mohsen Mazidi
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Peter P. Toth
- CGH Medical CenterSterlingILUSA
- Cicarrone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Daniel Pella
- 2nd Department of Cardiology of the East Slovak Institute of Cardiovascular Disease and Faculty of MedicinePJ Safarik UniversityKosiceSlovak Republic
| | - Fahad Alnouri
- Cardiovascular Prevention Unit, Adult Cardiology DepartmentPrince Sultan Cardiac Centre RiyadhRiyadhSaudi Arabia
| | - Arman Postadzhiyan
- Department of General Medicine, Emergency University Hospital ‘St. Anna’Medical University of SofiaSofiaBulgaria
| | - Hung‐I Yeh
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - G.B. John Mancini
- Department of General Medicine, Emergency University Hospital ‘St. Anna’Medical University of SofiaSofiaBulgaria
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart CenterUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Maciej Banach
- Polish Moother's Memorial Hospital Research Institute (PMMHRI)LodzPoland
- Department of Preventive Cardiology and LipidologyMedical University of Lodz (MUL)LodzPoland
- Cardiovascular Research CentreUniversity of Zielona GoraZielona GoraPoland
| | | |
Collapse
|
27
|
Surma S, Sahebkar A, Urbański J, Penson PE, Banach M. Curcumin - The Nutraceutical With Pleiotropic Effects? Which Cardiometabolic Subjects Might Benefit the Most? Front Nutr 2022; 9:865497. [PMID: 35662932 PMCID: PMC9159377 DOI: 10.3389/fnut.2022.865497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Despite continuous advances in pharmacotherapy, atherosclerotic cardiovascular disease remains the world's leading killer. Atherosclerosis relates not only to an increased level of cholesterol, but involves the development of atherosclerotic plaques, which are formed as a result of processes including inflammation and oxidative stress. Therefore, in addition to the classical risk factors for ASCVD (such as type 2 diabetes, overweight, obesity, hypertension and metabolic syndrome), residual risk factors such as inflammation and oxidative stress should also be reduced. The most important intervention in ASCVD is prevention, which includes promoting a healthy diet based on products of natural origin. Curcumin, which is often present in the diet, has been demonstrate to confer several benefits to health. It has been shown in numerous clinical trials that curcumin exhibited anti-diabetic, lipid-lowering, antihypertensive, antioxidant and anti-inflammatory effects, as well as promoting weight loss. All this means that curcumin has a comprehensive impact on the most important risk factors of ASCVD and may be a beneficial support in the treatment of these diseases. Recently, it has also been shown that curcumin may have a beneficial effect on the course of SARS-CoV-2 infection and might be helpful in the prevention of long-COVID complications. The aim of this review is to summarize the current knowledge regarding the safety and efficacy of curcumin in the prevention and treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Gdańsk, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Peter E. Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Góra, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
- *Correspondence: Maciej Banach
| |
Collapse
|
28
|
Fan X, Han J, Zhang F, Chen W. Red yeast rice: a functional food used to reduce hyperlipidemia. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2043894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jun Han
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
29
|
Mohammed Basheeruddin Asdaq S, Yasmin F, Alsalman AJ, Al mohaini M, Kamal M, Al Hawaj MA, Alsalman KJ, Imran M, Sreeharsha N. Obviation of dyslipidemia by garlic oil and its organosulfur compound, diallyl disulphide, in experimental animals. Saudi J Biol Sci 2022; 29:2520-2525. [PMID: 35531198 PMCID: PMC9072925 DOI: 10.1016/j.sjbs.2021.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background and objectives Garlic and its number of preparations are known to be effective for treatment of dyslipidemia, but the data about the specific active constituents of the garlic on the possible therapeutic value is scarce. Therefore, the aim of this research was to evaluate the role of garlic oil (GO) and its active element, diallyl disulphide (DADS) for obviating dyslipidemia in animal model. Methods High fat diet (HFD) was given to animals to induce dyslipidemia. Animals of HFD groups were fed with atherogenic diet for 15 days prior to treatment. Animals in their respective groups received vehicle, GO (50 and 100 mg/kg), and DADS (4.47 and 8.94 mg/kg) for five consecutive days. Lipid profiles were estimated in serum, oxidant/antioxidant and liver profile were measured in liver tissue homogenate (LTH). Results Animals fed on HFD developed significant increase in the serum levels of triglycerides (TG), total cholesterol (TC), lactate dehydrogenase (LDL), malondialdehyde (MDA), glutathione peroxidase (GSHPx), glutathione (GSH), and glutathione disulfide (GSSG) that reduced significantly in groups that received GO and DADS treatments. Additionally, significant elevation in serum high density lipoprotein (HDL) level was observed in animals that received GO and DADS. Moreover, hepatic markers such as alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine transferase (ALT), that were abnormally altered by high fat diet, were significantly restored to almost normal values with GO and DADS treatments. Also, antioxidants such as superoxide dismutase (SOD), catalase (CAT), ferric reducing antioxidant power (FRAP), and total thiol (SH) levels in LTH were increased significantly in GO and DADS treated groups. When compared to DADS, GO showed better therapeutic effectiveness in terms of antihyperlipidemic and antioxidant properties. Conclusion In hyperlipidemic rats, garlic and its principal active component, diallyl disulphide, were effective in avoiding dyslipidemia and neutralizing reactive free radicals induced by a high fat diet. It's an intriguing observation that GO has a larger therapeutic influence than its active constituent, DADS. These findings suggest that other constituents, in addition to GO's DADS, are involved in the compound's synergistic antihyperlipidemic and antioxidant activities.
Collapse
Affiliation(s)
| | - Farhana Yasmin
- Department of Mathematics, College of Applied Sciences, AlMaarefa University, Dariyah, 13713 Riyadh, Saudi Arabia
- Corresponding author.
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohammed Al mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa, 31982, Saudi Arabia
- King Abdullah International Medical Research Center, Alahsa, 31982, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Ahsa 31982, Saudi Arabia
| | - Khaled J. Alsalman
- Pharmaceutical Care Department, Albatha General Hospital, Alodaid 36636, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| |
Collapse
|
30
|
Bernabe-Ortiz A, Carrillo-Larco RM, Gilman RH, Smeeth L, Checkley W, Miranda JJ. High-sensitivity C-reactive protein and all-cause mortality in four diverse populations: The CRONICAS Cohort Study. Ann Epidemiol 2022; 67:13-18. [PMID: 34923118 PMCID: PMC8960343 DOI: 10.1016/j.annepidem.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess the association between all-cause mortality and hs-CRP, based mainly on the cumulative burden approach. METHODS Cohort study with adults ≥35 years from general population, using hs-CRP at two timepoints: at baseline and 30 months later to establish different exposures: change over time, cumulative, and weighted cumulative hs-CRP. The outcome was all-cause mortality assessed 7 years later. Cox models were generated to quantify the association. RESULTS Data from 3,119 participants (mean age 55.6 years, and 51.2% females), were analyzed. During follow-up, 164 (5.6%) deaths occurred over 20,314.5 person-years, indicating an overall mortality rate of 8.1 per 1,000 person-years. In multivariable model, hs-CRP at baseline was associated with high risk of mortality (HR = 1.77; 95%CI: 1.28-2.46). Similarly, hs-CRP change over time (HR = 2.50; 95%CI: 1.46-4.29), as well as cumulative and weighted cumulative hs-CRP (HR = 2.05; 95%CI: 1.31-3.20) were associated with greater risk of all-cause mortality. The weighted cumulative hs-CRP had the best goodness-of-fit for mortality prediction. CONCLUSIONS In this cohort across diverse geographical low-resource settings, high levels of hs-CRP were strongly associated with all-cause mortality. Two measurements of hs-CRP are better than one to predict mortality, and the weighted cumulative approach had the best prognostic fit.
Collapse
Affiliation(s)
- Antonio Bernabe-Ortiz
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Rodrigo M. Carrillo-Larco
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Robert H. Gilman
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Liam Smeeth
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - William Checkley
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - J. Jaime Miranda
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
31
|
Yuan R, Yuan Y, Wang L, Xin Q, Wang Y, Shi W, Miao Y, Leng SX, Chen K, Cong W. Red Yeast Rice Preparations Reduce Mortality, Major Cardiovascular Adverse Events, and Risk Factors for Metabolic Syndrome: A Systematic Review and Meta-analysis. Front Pharmacol 2022; 13:744928. [PMID: 35264949 PMCID: PMC8899821 DOI: 10.3389/fphar.2022.744928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Metabolic syndrome (MetS) is characterized by the cooccurrence of obesity, insulin resistance, dyslipidaemia, and hypertension. Red yeast rice (RYR) preparations might be beneficial for the prevention and treatment of MetS. Objective: To implement a systematic review and meta-analysis to determine whether RYR preparations improve clinical endpoints and reduce risk factors for MetS. Methods: The PubMed, Cochrane Library, EMBASE, Scopus, China National Knowledge Infrastructure, Chinese VIP Information, and WanFang databases were searched for randomized controlled trials (published up to September 2020), and a meta-analysis was performed using fixed- or random-effects models. The primary outcome measures were mortality and major adverse cardiovascular events (MACEs), and the secondary outcome measures were biochemical parameters of blood glucose, blood lipids, and blood pressure. The registration number is CRD42020209186. Results: A total of 921 articles were identified, of which 30 articles were included in this article. RYR preparations group demonstrated significant improvements in MetS compared with control group. RYR preparations reduced the mortality and MACEs (RR = 0.62, 95% CI [0.49, 0.78]; RR = 0.54, 95% CI [0.43, 0.66]). In terms of blood glucose metabolism, fasting plasma glucose (FPG) (MD = -0.46 mmol/L, 95% CI [-0.71, -0.22]), haemoglobin A1c (HbA1c) (MD = -0.49, 95% CI [-0.71, -0.26]) and the homeostasis model assessment of insulin resistance (HOMA-IR) (MD = -0.93, 95% CI [-1.64, -0.21]) were decreased. Regarding the lipid metabolism, total cholesterol (TC) (MD = -0.74 mmol/L, 95% CI [-1.02, -0.46]), triglycerides (TG) (MD = -0.45 mmol/L, 95% CI [-0.70, -0.21]), and low-density lipoprotein cholesterol (LDL) (MD = -0.42 mmol/L, 95% CI [-0.78, -0.06]) were decreased, while high-density lipoprotein cholesterol (HDL) (MD = 0.14 mmol/L, 95% CI [0.09, 0.20]) was increased. Regarding blood pressure, the mean arterial pressure (MAP) (MD = -3.79 mmHg, 95% CI [-5.01, -2.57]) was decreased. In addition, RYR preparations did not increase the incidence of adverse reactions (RR = 1.00, 95% CI [0.69, 1.43]). Conclusion: RYR preparations reduce mortality, MACEs, and multiple risk factors for MetS without compromising safety, which supports its application for the prevention and treatment of MetS. However, additional high-quality studies are needed to provide more evidence for the effect of RYR on MetS due to the heterogeneity in this study. Systematic Review Registration: www.crd.york.ac.uk/PROSPERO, identifier CRD42020209186.
Collapse
Affiliation(s)
- Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yahui Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lidan Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weili Shi
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sean Xiao Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
32
|
Montoro-García S, Velasco-Soria Á, Mora L, Carazo-Díaz C, Prieto-Merino D, Avellaneda A, Miranzo D, Casas-Pina T, Toldrá F, Abellán-Alemán J. Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk. Nutrients 2022; 14:nu14020298. [PMID: 35057479 PMCID: PMC8777827 DOI: 10.3390/nu14020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Evidence suggests that bioactive peptides reduce hypertension and affect certain metabolic pathways. Methods: Fifty-four volunteers with stage 1 prehypertension and/or hypercholesterolemia and/or basal glucose >100 mg/dL were recruited and randomized to pork dry-cured ham (n = 35) or cooked ham (placebo group; n = 19) for 28 days. After a wash-out period, meat products were changed for 28 additional days. Bioactive peptides composition and enzyme inhibitory activities of both products were characterized. Treatment comparisons for the main effects were made using a two (treatment) × two (times) repeated measures minus the effect of cooked ham (placebo). Results: 24 h mean systolic and diastolic pressures decreased up to 2.4 mmHg in the dry-cured ham period (treatment effect, p = 0.0382 y p = 0.0233, respectively) as well as the number of systolic pressure measures > 135 mmHg (treatment effect, p = 0.0070). Total cholesterol levels also decreased significantly after dry-cured ham intake (p = 0.049). No significant differences were observed between the two treatments for basal glucose, HOMA-IR index and insulin levels (p > 0.05). However, a significant rise of ghrelin levels was observed (treatment effect, p = 0.0350), while leptin plasma values slightly decreased (treatment effect, p = 0.0628). Conclusions: This study suggested the beneficial effects of regular dry-cured ham consumption on the improvement of systolic/diastolic blood pressures and facilitated the maintenance of metabolic pathways, which may be beneficial in the primary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Silvia Montoro-García
- Department for Cardiovascular Risk, Faculty of Health Sciences, UCAM Catholic University of Murcia, Campus los Jerónimos, 30107 Murcia, Spain; (Á.V.-S.); (J.A.-A.)
- Correspondence:
| | - Ángeles Velasco-Soria
- Department for Cardiovascular Risk, Faculty of Health Sciences, UCAM Catholic University of Murcia, Campus los Jerónimos, 30107 Murcia, Spain; (Á.V.-S.); (J.A.-A.)
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Av Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (L.M.); (F.T.)
| | - Carmen Carazo-Díaz
- Cátedra de Estadística “Big data”, UCAM Catholic University of Murcia, Campus los Jerónimos, 30107 Murcia, Spain; (C.C.-D.); (D.P.-M.)
| | - David Prieto-Merino
- Cátedra de Estadística “Big data”, UCAM Catholic University of Murcia, Campus los Jerónimos, 30107 Murcia, Spain; (C.C.-D.); (D.P.-M.)
| | - Antonio Avellaneda
- R&D Department, ElPozo Alimentación S.A., 30840 Alhama de Murcia, Spain; (A.A.); (D.M.)
| | - Domingo Miranzo
- R&D Department, ElPozo Alimentación S.A., 30840 Alhama de Murcia, Spain; (A.A.); (D.M.)
| | - Teresa Casas-Pina
- Clinical Analysis Service, University Hospital Virgen de la Arrixaca, Carretera Madrid-Cartagena, s/n, 30120 Murcia, Spain;
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Av Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (L.M.); (F.T.)
| | - José Abellán-Alemán
- Department for Cardiovascular Risk, Faculty of Health Sciences, UCAM Catholic University of Murcia, Campus los Jerónimos, 30107 Murcia, Spain; (Á.V.-S.); (J.A.-A.)
| |
Collapse
|
33
|
Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, Guest PC, Majeed M, Mohammadi A, Banach M, Jamialahmadi T, Sahebkar A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022; 14:nu14020256. [PMID: 35057437 PMCID: PMC8779570 DOI: 10.3390/nu14020256] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Despite the ongoing vaccination efforts, there is still an urgent need for safe and effective treatments to help curb the debilitating effects of COVID-19 disease. This systematic review aimed to investigate the efficacy of supplemental curcumin treatment on clinical outcomes and inflammation-related biomarker profiles in COVID-19 patients. We searched PubMed, Scopus, Web of Science, EMBASE, ProQuest, and Ovid databases up to 30 June 2021 to find studies that assessed the effects of curcumin-related compounds in mild to severe COVID-19 patients. Six studies were identified which showed that curcumin supplementation led to a significant decrease in common symptoms, duration of hospitalization and deaths. In addition, all of these studies showed that the intervention led to amelioration of cytokine storm effects thought to be a driving force in severe COVID-19 cases. This was seen as a significant (p < 0.05) decrease in proinflammatory cytokines such as IL1β and IL6, with a concomitant significant (p < 0.05) increase in anti-inflammatory cytokines, including IL-10, IL-35 and TGF-α. Taken together, these findings suggested that curcumin exerts its beneficial effects through at least partial restoration of pro-inflammatory/anti-inflammatory balance. In conclusion, curcumin supplementation may offer an efficacious and safe option for improving COVID-19 disease outcomes. We highlight the point that future clinical studies of COVID-19 disease should employ larger cohorts of patients in different clinical settings with standardized preparations of curcumin-related compounds.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
- Correspondence: (M.A.); (M.B.); (A.S.)
| | - Farshid Rahimi-Bashar
- Department of Anesthesiology and Critical Care, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6515917495, Iran;
| | - Paul C. Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6617713446, Iran;
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: (M.A.); (M.B.); (A.S.)
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91177948954, Iran
- School of Medicine, The University of Western Australia, Perth 6009, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Correspondence: (M.A.); (M.B.); (A.S.)
| |
Collapse
|
34
|
Impact of Soy β-Conglycinin Peptides on PCSK9 Protein Expression in HepG2 Cells. Nutrients 2021; 14:nu14010193. [PMID: 35011066 PMCID: PMC8747205 DOI: 10.3390/nu14010193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Dyslipidaemias, particularly elevated plasma low-density lipoprotein cholesterol (LDL-C) levels, are major risk factors for cardiovascular disease (CVD). Besides pharmacological approaches, a nutritional strategy for CVD prevention has gained increasing attention. Among functional foods, the hypocholesterolemic properties of soy are driven by a stimulation of LDL-receptor (LDL-R) activity. Aim: To characterize the effect of two soy peptides, namely, β-conglycinin-derived YVVNPDNDEN and YVVNPDNNEN on the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key-regulators of the LDL-R. Methods: PCSK9 promoter activity (luciferase assay), PCSK9 protein expression (WB) and secretion (ELISA), PCSK9 interaction with LDL-R (binding assay) and human HepG2 cells were the objects of this investigation. Results: Treatment with YVVNPDNNEN peptide has led to a rise in PCSK9 gene expression (90.8%) and transcriptional activity (86.4%), and to a decrement in PCSK9 intracellular and secreted protein (−42.9%) levels. YVVNPDNNEN peptide reduced the protein expression of transcriptional factor HNF1α. Most changes driven by YVVNPDNDEN peptide were not statistically significant. Neither peptide inhibited the PCSK9–LDLR interaction. Conclusions: Although sharing a common effect on LDL-R levels through the inhibition of 3-hydroxy-3-methylglutaryl CoA reductase activity, only the YVVNPDNNEN peptide has an additional mechanism via the downregulation of PCSK9 protein levels.
Collapse
|
35
|
Enayati A, Banach M, Jamialahmadi T, Sahebkar A. Protective role of nutraceuticals against myocarditis. Biomed Pharmacother 2021; 146:112242. [PMID: 34953630 DOI: 10.1016/j.biopha.2021.112242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium that mostly affects young adults. The disease is commonly caused by viral infection, medications, autoimmune disorders, and inflammatory conditions. Nearly 50% of the cases of myocarditis are due to post-viral immune response in a setting of an identifiable or non-identifiable infection. The clinical manifestation is nonspecific ranging from asymptomatic courses to sudden death in infants and young patients. This review describes the properties of phytochemicals as plant-derived active ingredients which can be used in the prevention and treatment of myocarditis and its associated risk factors. Meanwhile, it has illustrated epidemiological analyses, mechanism of action, and the metabolism of phytochemicals in animal and human clinical trials. We also mentioned the precise mechanism of action by which phytochemicals elicit their anti-viral, anti-inflammatory, antioxidant, and immunomodulatory effects and how they regulate signal transduction pathways. Nevertheless, comprehensive clinical trials are required to study the properties of phytochemicals in vivo, in vitro, and in silico for a proper management of myocarditis. Our findings indicate that phytochemicals function as potent adjunctive therapeutic drugs in myocarditis and its related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
36
|
Chopra AS, Lordan R, Horbańczuk OK, Atanasov AG, Chopra I, Horbańczuk JO, Jóźwik A, Huang L, Pirgozliev V, Banach M, Battino M, Arkells N. The current use and evolving landscape of nutraceuticals. Pharmacol Res 2021; 175:106001. [PMID: 34826602 DOI: 10.1016/j.phrs.2021.106001] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
The nutraceutical market is currently a high-impact multi-billion-dollar industry, and it is anticipated to grow rapidly over the next decade. Nutraceuticals comprise diverse food-derived product categories that have become widespread due to increased consumer awareness of potential health benefits and the need for improved wellness. This targeted review is designed to identify the current global trends, market opportunities, and regulations that drive the nutraceutical industry. Safety and efficacy concerns are also explored with a view to highlighting areas that necessitate further research and oversight. Key drivers of the nutraceutical market include aging populations, consumer awareness, consumer lifestyle, increasing cost of healthcare, and marketing channels. Although some nutraceuticals hold promising preventive and therapeutic opportunities, there is a lack of a universal definition and regulatory framework among countries. Moreover, there is a lack of adequate evidence for their efficacy, safety, and effectiveness, which was even further highlighted during the ongoing coronavirus pandemic. Future prospective epidemiological studies can delineate the health impact of nutraceuticals and help set the scientific basis and rationale foundation for clinical trials, reducing the time and cost of trials themselves. Together, an understanding of the key drivers of the nutraceutical market alongside a consistent and well-defined regulatory framework will provide further opportunities for growth, expansion, and segmentation of nutraceuticals applications.
Collapse
Affiliation(s)
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Olaf K Horbańczuk
- Warsaw University of Life Sciences, Faculty of Human Nutrition, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| | | | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Linfang Huang
- Institute of Medicinal Plant Development (IMPLAD), Peking Union Medical College, Chinese Academy of Medical Sciences (CAMS), Beijing, PR China
| | - Vasil Pirgozliev
- National Institute of Poultry Husbandry, Harper Adams University, Shropshire TF10 8NB, UK
| | - Maciej Banach
- Department of Preventative Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, PR China
| | | |
Collapse
|
37
|
Blackcurrant Improves Diabetic Cardiovascular Dysfunction by Reducing Inflammatory Cytokines in Type 2 Diabetes Mellitus Mice. Nutrients 2021; 13:nu13114177. [PMID: 34836432 PMCID: PMC8618700 DOI: 10.3390/nu13114177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiovascular dysfunction is a representative complication of diabetes. Inflammation associated with the onset and exacerbation of type 2 diabetes mellitus (T2DM) is an essential factor in the pathogenesis of diabetic cardiovascular complications. Diabetes-induced myocardial dysfunction is characterized by myocardial fibrosis, which includes structural heart changes, myocardial cell death, and extracellular matrix protein accumulation. The mice groups in this study were divided as follows: Cont, control (db/m mice); T2DM, type 2 diabetes mellitus mice (db/db mice); Vil.G, db/db + vildagliptin 50 mg/kg/day, positive control, dipeptidyl peptidase-4 (DPP-4) inhibitor; Bla.C, db/db + blackcurrant 200 mg/kg/day. In this study, Bla.C treatment significantly improved the homeostatic model evaluation of glucose, insulin, and insulin resistance (HOMA-IR) indices and diabetic blood markers such as HbA1c in T2DM mice. In addition, Bla.C improved cardiac function markers and cardiac thickening through echocardiography. Bla.C reduced the expression of fibrosis biomarkers, elastin and type IV collagen, in the left ventricle of a diabetic cardiopathy model. Bla.C also inhibited TD2M-induced elevated levels of inflammatory cytokines in cardiac tissue (IL-6, IL-1β, TNF-α, and TGF-β). Thus, Bla.C significantly improved cardiac inflammation and cardiovascular fibrosis and dysfunction by blocking inflammatory cytokine activation signals. This showed that Bla.C treatment could ameliorate diabetes-induced cardiovascular complications in T2DM mice. These results provide evidence that Bla.C extract has a significant effect on the prevention of cardiovascular fibrosis, inflammation, and consequent diabetes-induced cardiovascular complications, directly or indirectly, by improving blood glucose profile.
Collapse
|
38
|
Penson PE, Henney NC. Bacterial lipopolysaccharide-Stoking the fire of residual risk? Trends Cardiovasc Med 2021; 32:534-535. [PMID: 34560202 DOI: 10.1016/j.tcm.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Peter E Penson
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK.
| | - Neil C Henney
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| |
Collapse
|
39
|
Penson PE, Banach M. Nutraceuticals for the Control of Dyslipidaemias in Clinical Practice. Nutrients 2021; 13:2957. [PMID: 34578834 PMCID: PMC8467462 DOI: 10.3390/nu13092957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022] Open
Abstract
Dyslipidaemias result in the deposition of cholesterol and lipids in the walls of blood vessels, chronic inflammation and the formation of atherosclerotic plaques, which impede blood flow and (when they rupture) result in acute ischaemic episodes. Whilst recent years have seen enormous success in the reduction of cardiovascular risk using conventional pharmaceuticals, there is increasing interest amongst patients and practitioners in the use of nutraceuticals to combat dyslipidaemias and inflammation in cardiovascular disease. Nutraceutical is a portmanteau term: 'ceutical' indicate pharmaceutical-grade preparations, and 'nutra' indicates that the products contain nutrients from food. Until relatively recently, little high-quality evidence relating to the safety and efficacy of nutraceuticals has been available to prescribers and policymakers. However, as a result of recent randomised-controlled trials, cohort studies and meta-analyses, this situation is changing, and nutraceuticals are now recommended in several mainstream guidelines relating to dyslipidaemias and atherosclerosis. This article will summarise recent clinical-practice guidance relating to the use of nutraceuticals in this context and the evidence which underlies them. Particular attention is given to position papers and recommendations from the International Lipid Expert Panel (ILEP), which has produced several practical and helpful recommendations in this field.
Collapse
Affiliation(s)
- Peter E. Penson
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK;
- Liverpool Centre for Cardiovascular Science, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
40
|
Dayaramani C, De Leon J, Reiss AB. Cardiovascular Disease Complicating COVID-19 in the Elderly. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:833. [PMID: 34441038 PMCID: PMC8399122 DOI: 10.3390/medicina57080833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2, a single-stranded RNA coronavirus, causes an illness known as coronavirus disease 2019 (COVID-19). The highly transmissible virus gains entry into human cells primarily by the binding of its spike protein to the angiotensin-converting enzyme 2 receptor, which is expressed not only in lung tissue but also in cardiac myocytes and the vascular endothelium. Cardiovascular complications are frequent in patients with COVID-19 and may be a result of viral-associated systemic and cardiac inflammation or may arise from a virus-induced hypercoagulable state. This prothrombotic state is marked by endothelial dysfunction and platelet activation in both macrovasculature and microvasculature. In patients with subclinical atherosclerosis, COVID-19 may incite atherosclerotic plaque disruption and coronary thrombosis. Hypertension and obesity are common comorbidities in COVID-19 patients that may significantly raise the risk of mortality. Sedentary behaviors, poor diet, and increased use of tobacco and alcohol, associated with prolonged stay-at-home restrictions, may promote thrombosis, while depressed mood due to social isolation can exacerbate poor self-care. Telehealth interventions via smartphone applications and other technologies that document nutrition and offer exercise programs and social connections can be used to mitigate some of the potential damage to heart health.
Collapse
Affiliation(s)
| | | | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (C.D.); (J.D.L.)
| |
Collapse
|