1
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
2
|
The BDNF Protein and its Cognate mRNAs in the Rat Spinal Cord during Amylin-induced Reversal of Morphine Tolerance. Neuroscience 2019; 422:54-64. [PMID: 31689388 DOI: 10.1016/j.neuroscience.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. Rats in the test group received AMY (1, 10 and 60 pmoles) in addition to morphine from days 6 to10. Morphine tolerance was established at day 5. AMY alone showed enduring antinociceptive effects for 10 days. Real-Time PCR, western blotting and ELISA were used respectively to assess levels of BDNF transcripts and their encoded proteins. Rats tolerant to i.t. morphine showed increased expression of exons I, IV, and IX of the BDNF gene, and had elevated levels of pro-BDNF and BDNF protein in their lumbar spinal cord. AMY, when co-administered with morphine from days 6 to 10, reversed morphine tolerance and adversely affected the morphine-induced expression of the BDNF gene at both levels of protein and mRNAs containing exons I, IV and IX. AMY alone increased levels of exons I and IV transcripts. Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
Collapse
|
3
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
4
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
5
|
Davis RB, Ding S, Nielsen NR, Pawlak JB, Blakeney ES, Caron KM. Calcitonin-Receptor-Like Receptor Signaling Governs Intestinal Lymphatic Innervation and Lipid Uptake. ACS Pharmacol Transl Sci 2019; 2:114-121. [PMID: 32219216 DOI: 10.1021/acsptsci.8b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 02/06/2023]
Abstract
The absorption of dietary fat requires complex neuroendocrine-mediated regulation of chylomicron trafficking through enterocytes and intestinal lymphatic vessels. Calcitonin-receptor-like receptor (Calcrl) is a G protein-coupled receptor that can bind either a lymphangiogenic ligand adrenomedullin, with coreceptor RAMP2, or the neuropeptide CGRP, with coreceptor RAMP1. The extent to which this common GPCR controls lipid absorption via lymphatics or enteric innervation remains unclear. We used conditional and inducible genetic deletion of Calcrl in lymphatics to elucidate the pathophysiological consequences of this receptor pathway under conditions of high-fat diet. Inefficient absorption of dietary fat coupled with altered lymphatic endothelial junctions in Calcrl fl/fl /Prox1-CreER T2 mice results in excessive, transcellular lipid accumulation and abnormal enterocyte chylomicron processing and failure to gain weight. Interestingly, Calcrl fl/fl /Prox1-CreER T2 animals show reduced and disorganized mucosal and submucosal innervation. Consistently, mice with genetic loss of the CGRP coreceptor RAMP1 also displayed mucosal and submucosal innervation deficits, substantiating the CGRP-biased function of Calcrl in the neurolymphocrine axis. Thus, the common Calcrl receptor is a critical regulator of lipid absorption through its cell-specific functions in neurolymphocrine crosstalk.
Collapse
Affiliation(s)
- Reema B Davis
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - John B Pawlak
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Elizabeth S Blakeney
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| |
Collapse
|
6
|
Cappagli V, Potes CS, Ferreira LB, Tavares C, Eloy C, Elisei R, Sobrinho-Simões M, Wookey PJ, Soares P. Calcitonin receptor expression in medullary thyroid carcinoma. PeerJ 2017; 5:e3778. [PMID: 28929017 PMCID: PMC5600720 DOI: 10.7717/peerj.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background Calcitonin expression is a well-established marker for medullary thyroid carcinoma (MTC); yet the role of calcitonin receptor (CTR), its seven-transmembrane G-protein coupled receptor, remains to be established in C-cells derived thyroid tumors. The aim of this work was to investigate CTR expression in MTC and to correlate such expression with clinicopathological features in order to evaluate its possible role as a prognostic indicator of disease aggressiveness and outcome. Methods Calcitonin receptor expression was analyzed in a series of 75 MTCs by immunohistochemistry, and by qPCR mRNA quantification in specimens from four patients. Statistical tests were used to evaluate the correlation between CTR expression and the clinicopathological and molecular characteristics of patients and tumors. Results Calcitonin receptor expression was detected in 62 out of 75 samples (82.7%), whereas 13 of the 75 samples (17.3%) were completely negative. CTR expression was significantly associated with expression of cytoplasmatic phosphatase and tensin homologue deleted on chromosome 10 and osteopontin, as well as with wild type RET/RAS genes and absence of tumor stroma, suggesting that CTR expression do not associate with clinicopathological signs of worse prognosis. Discussion Calcitonin receptor expression appears to be associated in MTC with more differentiated status of the neoplastic cells.
Collapse
Affiliation(s)
- Virginia Cappagli
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Catarina Soares Potes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.,Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luciana Bueno Ferreira
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Tavares
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Eloy
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital de S. João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Peter J Wookey
- Department of Medicine at Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Schönauer R, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin - new perspectives of a potent peptide hormone. J Pept Sci 2017; 23:472-485. [DOI: 10.1002/psc.2953] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ria Schönauer
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Sylvia Els-Heindl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Annette G. Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| |
Collapse
|
8
|
Klein KR, Matson BC, Caron KM. The expanding repertoire of receptor activity modifying protein (RAMP) function. Crit Rev Biochem Mol Biol 2016; 51:65-71. [PMID: 26740457 DOI: 10.3109/10409238.2015.1128875] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Receptor activity modifying proteins (RAMPs) associate with G-protein-coupled receptors (GPCRs) at the plasma membrane and together bind a variety of peptide ligands, serving as a communication interface between the extracellular and intracellular environments. The collection of RAMP-interacting GPCRs continues to expand and now consists of GPCRs from families A, B and C, suggesting that RAMP activity is extremely prevalent. RAMP association with GPCRs can regulate GPCR function by altering ligand binding, receptor trafficking and desensitization, and downstream signaling pathways. Here, we elaborate on these RAMP-dependent mechanisms of GPCR regulation, which provide opportunities for pharmacological intervention.
Collapse
Affiliation(s)
| | | | - Kathleen M Caron
- a Department of Cell Biology & Physiology and.,b Department of Genetics , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
9
|
Di Giovangiulio M, Verheijden S, Bosmans G, Stakenborg N, Boeckxstaens GE, Matteoli G. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease. Front Immunol 2015; 6:590. [PMID: 26635804 PMCID: PMC4653294 DOI: 10.3389/fimmu.2015.00590] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Collapse
Affiliation(s)
- Martina Di Giovangiulio
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Simon Verheijden
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Goele Bosmans
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Nathalie Stakenborg
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Guy E Boeckxstaens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Gianluca Matteoli
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| |
Collapse
|
10
|
Chauhan M, Yallampalli U, Banadakappa M, Yallampalli C. Involvement of Receptor Activity-Modifying Protein 3 (RAMP3) in the Vascular Actions of Adrenomedullin in Rat Mesenteric Artery Smooth Muscle Cells. Biol Reprod 2015; 93:116. [PMID: 26423127 DOI: 10.1095/biolreprod.115.134585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/24/2015] [Indexed: 01/16/2023] Open
Abstract
CALCB, ADM, and ADM2 are potent vasodilators that share a seven-transmembrane GPCR, calcitonin receptor-like receptor (CALCRL), whose ligand specificity is dictated by the presence of one of the three receptor activity-modifying proteins (RAMPs). We assessed the relative pharmacologic potency of these peptides in mesenteric artery smooth muscle cells (VSMCs) and the specific RAMP that mediates the effect of ADM in VSMCs. VSMCs, with or without RAMP knockdown, were treated with CALCB, ADM, or ADM2 in the presence or absence of their antagonists, CALCB8-37, ADM22-52, and ADM217-47, respectively, to assess the relative effect of peptides on cAMP production and their pharmacologic potency. Proximity ligation assay was used to assess the specific RAMP that associates with CALCRL to mediate the actions of ADM in VSMCs. All three peptides induced cAMP generation in VSMCs and the order of their potency is CALCB > ADM > ADM2. Effects of CALCB were blocked by CALCB8-37, ADM effects were blocked by CALCB8-37 and ADM217-47 but not ADM22-52, and ADM2 effects were blocked by all three antagonists. Knockdown of RAMP2 was ineffective, whereas knockdown of RAMP3 inhibited ADM-induced cAMP production in VSMCs, suggesting involvement of RAMP3 with CALCRL to mediate ADM effects. Absence of both RAMP2 and RAMP3 further increased CALCB-induced cAMP synthesis compared to control (P < 0.05). ADM increased CALCRL and RAMP3 association and RAMP3 knockdown inhibited the interaction of ADM with CALCRL.
Collapse
Affiliation(s)
- Madhu Chauhan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Uma Yallampalli
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | - Manu Banadakappa
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
11
|
Klein KR, Caron KM. Adrenomedullin in lymphangiogenesis: from development to disease. Cell Mol Life Sci 2015; 72:3115-26. [PMID: 25953627 PMCID: PMC11113374 DOI: 10.1007/s00018-015-1921-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Over the past decade, we have begun to appreciate that the lymphatic vascular system does more than simply return plasma back into the circulatory system and, in fact, contributes to a wide variety of normal and disease states. For this reason, much research has been devoted to understanding how lymphatic vessels form and function, with a particular interest in which molecules contribute to lymphatic vessel growth and maintenance. In the following review, we focus on a potent lymphangiogenic factor, adrenomedullin, and its known roles in lymphangiogenesis, lymphatic function, and human lymphatic disease. As one of the first, pharmacologically tractable G protein-coupled receptor pathways characterized in lymphatic endothelial cells, the continued study of adrenomedullin effects on the lymphatic system may open new avenues for the modulation of lymphatic growth and function in a variety of lymphatic-related diseases that currently have few treatments.
Collapse
Affiliation(s)
- Klara R. Klein
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
12
|
Lenhart PM, Caron KM. Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends Endocrinol Metab 2012; 23:524-32. [PMID: 22425034 PMCID: PMC3380178 DOI: 10.1016/j.tem.2012.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/22/2023]
Abstract
A healthy pregnancy requires strict coordination of genetic, physiologic and environmental factors. The relatively common incidence of infertility and pregnancy complications has resulted in increased interest in understanding the mechanisms that underlie normal versus abnormal pregnancy. The peptide hormone adrenomedullin (AM) has recently been the focus of some exciting breakthroughs in the pregnancy field. Supported by mechanistic studies in genetic animal models, there continues to be a growing body of evidence demonstrating the importance of AM protein levels in a variety of human pregnancy complications. With more extensive mechanistic studies and improved consistency in clinical measurements of AM, there is great potential for the development of AM as a clinically-relevant biomarker in pregnancy and pregnancy complications.
Collapse
Affiliation(s)
- Patricia M. Lenhart
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina, USA 27599
- Corresponding Author: Kathleen M. Caron, Department of Cell and Molecular Physiology, CB #7545, 6340B MBRB 111 Mason Farm Road, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599. Tel: (919) 966-5215, FAX: (919) 966-5230.
| |
Collapse
|
13
|
Cottrell GS, Alemi F, Kirkland JG, Grady EF, Corvera CU, Bhargava A. Localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in human gastrointestinal tract. Peptides 2012; 35:202-11. [PMID: 22484227 PMCID: PMC3356482 DOI: 10.1016/j.peptides.2012.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/28/2022]
Abstract
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR·RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.
Collapse
Affiliation(s)
- Graeme S. Cottrell
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0660
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
- Co-first authors
| | - Farzad Alemi
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0660
- Co-first authors
| | - Jacob G. Kirkland
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0660
- Co-first authors
| | - Eileen F. Grady
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0660
| | - Carlos U. Corvera
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0660
- Department of Veterans Affairs Medical Center, San Francisco, CA 94143
- Address Correspondence to: Aditi Bhargava, PhD, Department of Surgery, Rm Med Sci 1268, Box 0660, University of California San Francisco, San Francisco, CA 94143, Tel: 1-415-502-8453, Fax: 1-415-476-0936, , Carlos U. Corvera, MD, Veterans Administrative Medical Center, Department of Surgery, Mail code 112, 4150 Clement Street, University of California San Francisco, San Francisco, CA 94121, Tel: 1-415-221-4810 x4581, Fax: 1-415-476-0936,
| | - Aditi Bhargava
- Department of Surgery, Center for Neurobiology of Digestive Diseases, University of California San Francisco, 521 Parnassus Ave, San Francisco, CA 94143-0660
- Address Correspondence to: Aditi Bhargava, PhD, Department of Surgery, Rm Med Sci 1268, Box 0660, University of California San Francisco, San Francisco, CA 94143, Tel: 1-415-502-8453, Fax: 1-415-476-0936, , Carlos U. Corvera, MD, Veterans Administrative Medical Center, Department of Surgery, Mail code 112, 4150 Clement Street, University of California San Francisco, San Francisco, CA 94121, Tel: 1-415-221-4810 x4581, Fax: 1-415-476-0936,
| |
Collapse
|
14
|
Holzmann B. Modulation of immune responses by the neuropeptide CGRP. Amino Acids 2011; 45:1-7. [PMID: 22113645 DOI: 10.1007/s00726-011-1161-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 01/15/2023]
Abstract
The peripheral nervous system is connected with lymphoid organs through sensory nerves that mediate pain reflexes and may influence immune responses through the release of neuropeptides such as calcitonin gene-related peptide (CGRP). Local and systemic levels of CGRP increase rapidly during inflammatory responses. CGRP inhibits effector functions of various immune cells and dampens inflammation by distinct pathways involving the amplification of IL-10 production and/or the induction of the transcriptional repressor inducible cAMP early repressor (ICER). Thus, available evidence suggests that, in neuro-immunological interactions, CGRP mediates a potent peptidergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Bernhard Holzmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany.
| |
Collapse
|
15
|
Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav 2010; 101:45-52. [PMID: 20416330 DOI: 10.1016/j.physbeh.2010.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022]
Abstract
The pancreatic B-cell hormone amylin has been proposed to be both a satiation signal and an adiposity signal. The effects of peripheral amylin on energy balance are well investigated, but the effects of central amylin are less clear. We determined the effects of low doses of amylin administered into the 3rd cerebral ventricle (i3vt) on food intake, body weight and other indices of energy balance. Amylin (2 pmol/h) significantly lowered body weight compared to saline after 2 weeks of infusion, independent of whether prior body weight was decreased by fasting, increased by voluntary overfeeding or unmanipulated. A bolus injection of amylin (10 pmol, i3vt) increased energy expenditure and body temperature, whereas chronic i3vt amylin infusion had no effect on energy expenditure above that of control rats even though body temperature was increased. Chronic amylin also reduced RQ, implying a preferential oxidation of fat. Overall, the data provide new evidence that amylin is an adiposity signal that acts within the brain, and informing the brain about the status of peripheral energy stores.
Collapse
|
16
|
Lutz TA. The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1475-84. [PMID: 20357016 DOI: 10.1152/ajpregu.00703.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amylin is an important player in the control of nutrient fluxes. Amylin reduces eating via a meal size effect by promoting meal-ending satiation. This effect seems to depend on a direct action in the area postrema (AP), which is an area rich in amylin receptors. Subsequent to the activation of AP neurons, the neural signal is conveyed to the forebrain via relays involving the nucleus of the solitary tract (NTS) and the lateral parabrachial nucleus (lPBN) to the lateral hypothalamic area (LHA) and other hypothalamic nuclei. While the NTS and lPBN seem to be necessary for amylin's eating inhibitory effect, the role of the LHA has not yet been fully investigated. Amylin may also act as an adiposity signal. Plasma levels of amylin are higher in obese individuals, and chronic infusion of amylin into the brain reduces body weight gain and adiposity; chronic infusion of an amylin receptor antagonist into the brain increases body adiposity. Amylin increases energy expenditure in rats; this effect occurs under various experimental conditions after peripheral and central administration. Together, these animal data, but also clinical data in humans, indicate that amylin is a promising candidate for the treatment of obesity; effects are most pronounced when amylin is combined with leptin. Finally, recent findings indicate that amylin acts as a neurotrophic factor in specific brain stem areas. Whether this effect may be relevant under physiological conditions requires further studies.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Stanić D, Kuteeva E, Nylander I, Hökfelt T. Characterization of CGRP protein expression in “satellite-like” cells and dendritic arbours of the mouse olfactory bulb. J Comp Neurol 2010; 518:770-84. [DOI: 10.1002/cne.22226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Potes CS, Lutz TA. Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 2010; 100:511-8. [PMID: 20226802 DOI: 10.1016/j.physbeh.2010.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/27/2010] [Accepted: 03/04/2010] [Indexed: 11/17/2022]
Abstract
Amylin is secreted by pancreatic beta-cells and is believed to be a physiological signal of satiation. Amylin's effect on eating has been shown to be mediated via a direct action at the area postrema (AP) via amylin receptors that are heterodimers of the calcitonin receptor core protein with a receptor activity modifying protein. Peripheral amylin leads to accumulation of cyclic guanosine monophosphate, phosphorylated extracellular-signal regulated kinase 1/2 and c-Fos protein in AP neurons. The particular amylin-activated AP neurons mediating its anorexigenic action seem to be noradrenergic. The central pathways mediating amylin's effects have been characterized by lesioning and tracing studies, identifying important connections from the AP to the nucleus of the solitary tract and lateral parabrachial nucleus. Amylin was shown to interact, probably at the brainstem, with other signals involved in the short term control of food intake, namely cholecystokinin, glucagon-like peptide 1 and peptide YY. Amylin also interacts with the adiposity signal leptin; this interaction, which is thought to involve the hypothalamus, may have important implications for the development of new and improved hormonal obesity treatments. In conclusion, amylin actions on food intake seem to reside primarily within the brainstem, and the associated mechanisms are starting to be unraveled. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Catarina Soares Potes
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
19
|
Huang X, Yang J, Chang JK, Dun NJ. Amylin suppresses acetic acid-induced visceral pain and spinal c-fos expression in the mouse. Neuroscience 2009; 165:1429-38. [PMID: 19958820 DOI: 10.1016/j.neuroscience.2009.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/30/2022]
Abstract
Amylin is a member of calcitonin or calcitonin gene-related peptide (CGRP) family. Immunohistochemical study revealed a dense network of amylin-immunoreactive (irAMY) cell processes in the superficial dorsal horn of the mice. Numerous dorsal root ganglion (DRG) and trigeminal ganglion cells expressed moderate to strong irAMY. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed amylin receptor mRNA in the mouse spinal cord, brain stem, cortex, hypothalamus and hippocampus. The nociceptive or antinociceptive effects of amylin were evaluated in the acetic acid-induced writhing test. Amylin (0.1, 0.5 and 1 mg/kg, intraperitoneally (i.p.) or 1-10 microg, intrathecally (i.t.)) reduced the number of writhes in a dose-dependent manner. Pretreatment of the mice with the amylin receptor antagonist salmon calcitonin (8-32), either by i.p. or i.t., antagonized the effect of amylin on acetic acid-induced writhing test. Locomotor activity was not significantly modified by amylin injected either i.p. (0.01-1 mg/kg) or i.t. (1-10 microg). Measurement of c-fos mRNA by RT-PCR or proteins by Western blot showed that the levels were upregulated in the spinal cord of mice injected with acetic acid and the increase was attenuated by pretreatment with amylin (10 microg, i.t.). Collectively, our result demonstrates that irAMY is expressed in DRG neurons with their cell processes projecting to the superficial layers of the dorsal horn, and that the peptide by interacting with amylin receptors in the spinal cord may be antinociceptive.
Collapse
Affiliation(s)
- X Huang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
20
|
Wong MKS, Takei Y. Cyclostome and chondrichthyan adrenomedullins reveal ancestral features of the adrenomedullin family. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:317-25. [PMID: 19616113 DOI: 10.1016/j.cbpb.2009.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022]
Abstract
The adrenomedullin (AM) family is a newly identified group of regulatory peptides involved in various aspects of homeostasis. Different forms of AMs are the result of genome duplication during vertebrate evolution, but nothing is known about the AM genes before divergence of bony fish. In the present study, we identified novel AM genes in cyclostomes (a hagfish and two lamprey species) and chondrichthyes (a holocephalan and two elasmobranch species). The AM of cyclostomes possessed features of both AM1 and AM2, with gene structure and overall precursor sequence more similar to AM1 of teleosts and tetrapods but mature sequence more similar to AM2. A sequence reminiscent of proAM N-terminal 20 peptide (PAMP), another bioactive peptide present in the prosegment of AM1 precursors, exists in the lamprey AM precursor. An AM gene with both AM1 and AM2 characteristics was also found in chondrichthyes, and an additional AM5-like gene was detected in Squalus acanthias. The hybrid-type AM gene from cyclostomes and chondrichthyes was expressed ubiquitously in all tissues examined including the skeletal muscle, while the Squalus AM5-like gene transcripts were detected more specifically in the liver. Taken together, the ancestral gene of the AM family appears to possess both AM1 and AM2 characteristics as observed in the lamprey AM gene, and the general structure including PAMP was retained by the extant AM1 genes, but the mature sequence was retained by the extant AM2 genes.
Collapse
Affiliation(s)
- Marty K S Wong
- Hadal Environmental Science Education Program, Ocean Research Institute, The University of Tokyo, Nakano-ku, Tokyo 164-8639, Japan
| | | |
Collapse
|
21
|
Huebner AK, Keller J, Catala-Lehnen P, Perkovic S, Streichert T, Emeson RB, Amling M, Schinke T. The role of calcitonin and alpha-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys 2008; 473:210-7. [PMID: 18307972 DOI: 10.1016/j.abb.2008.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 12/26/2022]
Abstract
The Calca gene encodes two polypeptides, calcitonin (CT) and alpha-calcitonin gene-related peptide (alpha-CGRP), generated through alternative splicing. While CT, a hormone mainly produced by thyroidal C cells, has been described as a major regulator of bone resorption, alpha-CGRP, a neuropeptide expressed in the cells of the central and peripheral nervous system, is mostly known as a regulator of vascular tone. Surprisingly, the generation and skeletal analyses of two mouse deficiency models has recently uncovered a physiological function for both peptides in the regulation of bone formation. In the first model, where the replacement of exons 2-5 of the Calca gene resulted in the combined deficiency of CT and alpha-CGRP, an increased bone formation rate (BFR) was observed, whereas decreased BFR was found in the second model, where the introduction of a translational termination codon into exon 5 of the Calca gene resulted in the specific absence of alpha-CGRP.
Collapse
Affiliation(s)
- Antje K Huebner
- Center of Biomechanics and Skeletal Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wunder F, Rebmann A, Geerts A, Kalthof B. Pharmacological and kinetic characterization of adrenomedullin 1 and calcitonin gene-related peptide 1 receptor reporter cell lines. Mol Pharmacol 2008; 73:1235-43. [PMID: 18174292 DOI: 10.1124/mol.107.042283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenomedullin (ADM) and calcitonin gene-related peptide (CGRP) receptors and their respective ligands play important roles in cardiovascular (patho-)physiology. Functional expression of ADM and CGRP receptors requires the presence of the calcitonin receptor-like receptor (CRLR) together with receptor-activity-modifying proteins (RAMPs). We have characterized the expression patterns of CRLR and RAMP1 to RAMP3 in human cardiovascular-related tissues by quantitative polymerase chain reaction. We could identify high expression levels of CRLR, RAMP1, and RAMP2 in human heart and various blood vessels. RAMP3 expression in these tissues, however, was detectable at significantly lower levels. In addition, we describe here a novel, aequorin luminescence-based G protein-coupled receptor reporter assay that enables the real-time detection of receptor activation in living cells. In the assay system, intracellular cAMP levels are monitored with high sensitivity by using a modified, heteromultimeric cyclic nucleotide-gated channel mediating calcium influx. G(q)-coupled receptor activation is detected via aequorin luminescence stimulated by calcium release from intracellular stores. Using this novel reporter assay, we established and characterized stable ADM1 and CGRP1 receptor cell lines. The peptide ligands ADM, CGRP1, and CGRP2 were characterized as potent agonists at their respective receptors. In contrast, intermedin acted as a weak agonist on both receptors and showed only partial agonism on the ADM1 receptor. Agonist activities were effectively antagonized by the receptor antagonists ADM(22-52) and CGRP(8-37). Various vasoactive ADM fragments were also characterized but showed no activity on the ADM1 receptor cell line. In addition, luminescence signal kinetics after activation of G(s)- and G(q)-coupled receptors were found to be markedly different.
Collapse
Affiliation(s)
- Frank Wunder
- Bayer HealthCare AG, Lead Discovery Wuppertal, Pharma Research Center, Aprather Weg 18a, D-42096 Wuppertal, Germany.
| | | | | | | |
Collapse
|
23
|
Thompson BJ, Washington MK, Kurre U, Singh M, Rula EY, Emeson RB. Protective roles of alpha-calcitonin and beta-calcitonin gene-related peptide in spontaneous and experimentally induced colitis. Dig Dis Sci 2008; 53:229-41. [PMID: 17530400 DOI: 10.1007/s10620-007-9848-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 04/05/2007] [Indexed: 12/12/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is thought to be involved in the regulation of gastric and mesenteric blood flow, in the control of gastric acid secretion and in the modulation of intestinal motility, yet the precise physiological roles of CGRP remain to be elucidated. To further examine the role(s) of CGRP in gastrointestinal function, we examined mutant mice lacking alphaCGRP or betaCGRP expression. Mutant mice did not demonstrate any overt phenotypic changes, yet exhibited a spontaneous, adult-onset colitis and increased colonic damage using a dextran sulfate sodium model of experimental colitis. Surprisingly, mice lacking betaCGRP show no obvious alterations in CGRP immunoreactivity in the gut, accompanied by an increase in alphaCGRP messenger RNA expression, suggesting an adaptive mechanism to compensate for the lack of betaCGRP. These data demonstrate that both alphaCGRP and betaCGRP play a protective role in the generation of spontaneous colitis, supporting a role for both extrinsic and intrinsic CGRP-containing neurons.
Collapse
Affiliation(s)
- Brent J Thompson
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | | | | | | | | | | |
Collapse
|
24
|
Chelikani PK, Haver AC, Reidelberger RD. Effects of intermittent intraperitoneal infusion of salmon calcitonin on food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1798-808. [PMID: 17761508 DOI: 10.1152/ajpregu.00386.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces no effect or a transient reduction in daily food intake and body weight. Our aim was to identify an intermittent dosing strategy for intraperitoneal infusion of salmon calcitonin (sCT), a homolog of amylin that produces a sustained 25–35% reduction in daily food intake and adiposity in diet-induced obese rats. Rats (649 ± 10 g body wt, 27 ± 1% body fat), with intraperitoneal catheters tethered to infusion swivels, had free access to a 45% fat diet. Food intake, body weight, and adiposity during the 7-wk test period were relatively stable in the vehicle-treated rats ( n = 16). None of 10 sCT dosing regimens administered in succession to a second group of rats ( n = 18) produced a sustained 25–35% reduction in daily food intake for >5 days, although body weight and adiposity were reduced by 9% (587 ± 12 vs. 651 ± 14 g) and 22% (20.6 ± 1.2 vs. 26.5 ± 1.1%), respectively, across the 7-wk period. The declining inhibitory effect of sCT on daily food intake with the 6-h interinfusion interval appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of sCT on daily food intake with the 2- to 3-h interinfusion interval suggested possible receptor downregulation and tolerance to frequent sCT administration; however, food intake increased dramatically when sCT was discontinued for 1 day after apparent loss of treatment efficacy. Together, these results demonstrate the activation of a potent homeostatic response to increase food intake when sCT reduces food intake and energy reserves in diet-induced obese rats.
Collapse
Affiliation(s)
- Prasanth K Chelikani
- Dept. of Veterans Affairs-Nebraska Western Iowa Health Care System, Creighton University, Omaha, NE 68105, USA
| | | | | |
Collapse
|
25
|
Takei Y, Ogoshi M, Inoue K. A 'reverse' phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front Neuroendocrinol 2007; 28:143-60. [PMID: 17659326 DOI: 10.1016/j.yfrne.2007.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 04/23/2007] [Accepted: 05/09/2007] [Indexed: 11/20/2022]
Abstract
Vertebrates expanded their habitats from aquatic to terrestrial environments during the course of evolution. In parallel, osmoregulatory and cardiovascular systems evolved to counter the problems of desiccation and gravity on land. In our physiological studies on body fluid and blood pressure regulation in various vertebrate species, we found that osmoregulatory and cardiovascular hormones have changed their structure and function during the transition from aquatic to terrestrial life. In fact, Na(+)-regulating and vasodepressor hormones play essential roles in fishes, while water-regulating and vasopressor hormones are dominant in tetrapods. Accordingly, Na(+)-regulating and vasodepressor hormones, such as natriuretic peptide (NP) and adrenomedullin (AM), are much diversified in teleost fishes compared with mammals. Based on this finding, new NPs and AMs were identified in mammals and other tetrapods. These hormones have only minor roles in the maintenance of normal blood volume and pressure in mammals, but their importance seems to increase when homeostasis is disrupted. Therefore, such hormones can be used for diagnosis and treatment of body fluid and cardiovascular disorders such as cardiac/renal failure and hypertension. In this review, we introduce a new approach for identification of novel Na(+)-regulating and vasodepressor hormones in mammals based on fish studies. Until recently, new hormones were first discovered in mammals, and then identified and applied in fishes. However, chances are increasing in recent years to identify new hormones first in fishes then in mammals, based on the difference in the regulatory systems between fishes and tetrapods. As the direction is opposite from the traditional phylogenetic approach, we added 'reverse' to its name. The 'reverse' phylogenetic approach offers a typical example of how comparative fish studies can contribute to the general and clinical endocrinology.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|
26
|
Wielinga PY, Alder B, Lutz TA. The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol Behav 2007; 91:212-7. [PMID: 17428511 DOI: 10.1016/j.physbeh.2007.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/15/2007] [Accepted: 02/22/2007] [Indexed: 11/25/2022]
Abstract
The pancreatic B-cell hormone amylin is known to be involved in the regulation of meal ending satiation and it also shares typical features of adiposity signals. Chronic amylin administration has recently been shown to increase energy expenditure under certain conditions. Here we investigate the acute effect of peripheral administration of amylin or its agonist salmon calcitonin (sCT) on energy expenditure and respiratory quotient (RQ). First, rats were injected with amylin (5 microg/kg IP) or saline just before dark onset. Despite significantly decreased food intake in amylin-treated rats compared to control until 2 h post-injection (p<0.05), amylin did not influence energy expenditure or RQ. Reduced food intake, which reduces energy expenditure, may have confounded a stimulatory effect of amylin on energy expenditure. Therefore, in the second experiment, amylin (1, 5 and 10 microg/kg IP) or saline was injected in the middle of the light phase (t=0 h) without access to food during 3 h post-injection. Amylin had no significant effects on energy expenditure or RQ. In a similar paradigm, the effect of sCT (0.1, 1.0 and 5.0 microg/kg IP) was tested. During food restriction, 5.0 microg/kg sCT significantly stimulated energy expenditure compared to control (p<0.05). Subsequent to refeeding at t=3 h, energy expenditure was decreased compared to control at t=8 h and t=10 h after 5.0 microg/kg sCT, probably due to sCT's strong anorectic action. Thus amylin may prevent the compensatory decrease in energy expenditure normally seen in animals that eat less. The longer acting sCT stimulated energy expenditure in animals without food access.
Collapse
Affiliation(s)
- Peter Y Wielinga
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | | | | |
Collapse
|
27
|
Abstract
Neuropeptides and kinins are important messengers in the nervous system and--on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects-a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.
Collapse
Affiliation(s)
- R G Hill
- Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
28
|
Williamson JA, Miranker AD. Direct detection of transient alpha-helical states in islet amyloid polypeptide. Protein Sci 2006; 16:110-7. [PMID: 17123962 PMCID: PMC2222845 DOI: 10.1110/ps.062486907] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The protein islet amyloid polypeptide (IAPP) is a glucose metabolism associated hormone cosecreted with insulin by the beta-cells of the pancreas. In humans with type 2 diabetes, IAPP deposits as amyloid fibers. The assembly intermediates of this process are associated with beta-cell death. Here, we examine the rat IAPP sequence variant under physiological solution conditions. Rat IAPP is mechanistically informative for fibrillogenesis, as it samples intermediate-like states but does not progress to form amyloid. A central challenge was the development of a bacterial expression system to generate isotopically labeled IAPP without terminal tags, but which does include a eukaryotic post-translational modification. While optical spectroscopy shows IAPP to be natively unfolded, NMR chemical shifts of backbone and beta-carbon resonances reveal the sampling of alpha-helical states across a continuous stretch comprising approximately 40% of the protein. In addition, the manifestation of nonrandom coil chemical shifts is confirmed by the relative insensitivity of the amide proton chemical shifts to alterations in temperature. Intriguingly, the residues displaying helical propensity are conserved with the human sequence, suggesting a functional role for this conformational bias. The inability of rat IAPP to self assemble can be ascribed, in part, to several slowly exchanging conformations evident as multiple chemical shift assignments in the immediate vicinity of three proline residues residing outside of this helical region.
Collapse
Affiliation(s)
- Jessica A Williamson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
29
|
Lallier TE, Spencer A. Use of microarrays to find novel regulators of periodontal ligament fibroblast differentiation. Cell Tissue Res 2006; 327:93-109. [PMID: 17024420 DOI: 10.1007/s00441-006-0282-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/13/2006] [Indexed: 01/07/2023]
Abstract
Periodontal regeneration requires the coordinated movement and differentiation of several cell types in order to re-establish the cementum, periodontal ligament (PDL), and alveolar bone. Cells in culture are often used as model systems for mature tissues, although they may represent expanded progenitor cell populations. Comparison of transcript expression between fresh PDL tissue and PDL cell isolates by MicroArray analysis has revealed numerous molecular differences. Several transcripts (including alkaline phosphatase, bone sialoprotein, periostin, and fibromodulin) are expressed at higher levels in fresh PDL than in cultured PDL cells. In contrast, PDL cells in culture selectively express a variety of growth factors. Several of these growth factors alter PDL fibroblast behavior. Two members of the transforming growth factor beta family of growth factors, namely, bone morphogenic protein-7 (BMP7) and growth differentiation factor-5 (GDF5), reduce cell proliferation and Stro-1 expression (a bone marrow stromal stem cell marker), whereas only BMP7 induces alkaline phosphatase activity. In contrast, fibroblast growth factor-5 induces enhanced cell proliferation and Stro-1 expression, while repressing alkaline phosphatase activity. The stimulation of PDL cells to differentiate (either by BMP7 or GDF5) inhibits cell motility. Thus, PDL cells in culture are regulated by several factors that differentially stimulate a mineralized (cementoblast-like) fate, a non-mineralized fate (mature fibroblasts), or the propagation of a more naive phenotype (potential progenitors).
Collapse
Affiliation(s)
- Thomas E Lallier
- Department of Cell Biology and Anatomy, Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Science Center, 1100 Florida Avenue, New Orleans, LA 70119, USA.
| | | |
Collapse
|
30
|
Lutz TA. Amylinergic control of food intake. Physiol Behav 2006; 89:465-71. [PMID: 16697020 DOI: 10.1016/j.physbeh.2006.04.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 03/12/2006] [Accepted: 04/04/2006] [Indexed: 12/13/2022]
Abstract
Amylin is a pancreatic B-cell hormone that plays an important role in the regulation of nutrient fluxes. As such, amylin reduces food intake in laboratory animals and man, slows gastric emptying and it reduces postprandial glucagon secretion. Amylin deficiency which occurs concomitantly to insulin deficiency in diabetes mellitus, may therefore contribute to some of the major derangements associated with this disorder (hyperphagia, excessive glucagon secretion, accelerated rate of gastric emptying). The described actions of amylin all seem to depend on a direct effect of amylin on the area postrema (AP). As to amylin's satiating effect, the physiological relevance of this action is underlined by studies involving specific amylin antagonists and amylin-deficient mice. In the AP, amylin seems to modulate the anorectic signal elicited by CCK. Subsequent to AP activation, the amylin signal is conveyed to the forebrain via distinct relay stations. Within the lateral hypothalamic area, amylin diminishes the expression of orexigenic neuropeptides such as orexin and MCH. Whether these effects contribute to amylin's short term satiating action remains to be determined. Recent studies suggest that amylin may also play a role as a long-term, lipostatic signal, especially when other feedback systems to the brain are deficient. Obese, leptin-resistant Zucker rats which are hyperinsulinemic and hyperamylinemic, were chronically infused with the amylin antagonist AC 187. AC 187 significantly elevated food intake in obese Zucker rats while having no effect in lean controls. This indicates that at least under certain conditions, chronic blockade of endogenous amylin action may lead to an increase in food intake and/or body weight. As mentioned, the site and mechanism of action for peripheral amylin to reduce food intake seems to be well established. It is less clear how centrally administered amylin reduces food intake although it is well known that 3rd ventricular administration of amylin produces a very strong and long-lasting anorectic action. Amylin receptors have been described in various hypothalamic nuclei but the endogenous ligand of these receptors remains to be investigated. The same holds true as to the physiological relevance of the anorectic effect seen after central amylin administration.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich and Center of Integrative Human Physiology, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| |
Collapse
|
31
|
Zhang Z, Dickerson IM, Russo AF. Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells. Endocrinology 2006; 147:1932-40. [PMID: 16373421 DOI: 10.1210/en.2005-0918] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is a potent vasodilator that plays a protective role in the cardiovascular system. The receptor for CGRP is an unusual complex of the G protein-coupled calcitonin-like receptor and an obligate receptor activity modifying protein-1 (RAMP1). In this report we provide the first evidence that RAMP1 is rate limiting in vascular smooth muscle cells. Although cultured rat aorta smooth muscle cells express calcitonin like-receptor and RAMP1, we found that CGRP is not a potent activator of the receptor. After overexpression of RAMP1 by adenoviral gene transfer, there was a striking increase in CGRP-induced production of cAMP, with a 75-fold decrease in the EC(50) and a 1.5-fold increase in the maximal response. The biological consequence of this increased receptor activity was observed in three different paradigms. First, RAMP1 gene transfer caused a CGRP-dependent decrease in cell proliferation. Second, RAMP1 and CGRP treatment led to a 3-fold greater free radical-induced reduction in cell number. Finally, RAMP1 gene transfer resulted in a 5-fold CGRP-dependent increase in terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling-positive apoptotic cells upon serum withdrawal. The mechanisms underlying these effects involved cAMP-dependent pathways. We propose that RAMP1 gene transfer may be an effective strategy for increasing the effectiveness of CGRP-induced decrease in restenosis after aortic angioplasty.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apoptosis
- Calcitonin Receptor-Like Protein
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/biosynthesis
- Gene Transfer, Horizontal
- Genetic Therapy
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Membrane Proteins/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor Activity-Modifying Protein 1
- Receptor Activity-Modifying Proteins
- Receptors, Calcitonin/physiology
- Receptors, Calcitonin Gene-Related Peptide/physiology
Collapse
Affiliation(s)
- Zhongming Zhang
- Department of Physiology and Biophysics, University of Iowa, Iowa City, 52242, USA
| | | | | |
Collapse
|
32
|
|
33
|
Paulus C, Sollars PJ, Pickard GE, Enquist LW. Transcriptome signature of virulent and attenuated pseudorabies virus-infected rodent brain. J Virol 2006; 80:1773-86. [PMID: 16439534 PMCID: PMC1367157 DOI: 10.1128/jvi.80.4.1773-1786.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mammalian alphaherpesviruses normally establish latent infections in ganglia of the peripheral nervous system in their natural hosts. Occasionally, however, these viruses spread to the central nervous system (CNS), where they cause damaging, often fatal, infections. Attenuated alphaherpesvirus derivatives have been used extensively as neuronal circuit tracers in a variety of animal models. Their circuit-specific spread provides a unique paradigm to study the local and global CNS response to infection. Thus, we systematically analyzed the host gene expression profile after acute pseudorabies virus (PRV) infection of the CNS using Affymetrix GeneChip technology. Rats were injected intraocularly with one of three selected virulent and attenuated PRV strains. Relative levels of cellular transcripts were quantified from hypothalamic and cerebellar tissues at various times postinfection. The number of cellular genes responding to infection correlated with the extent of virus dissemination and relative virulence of the PRV strains. A total of 245 out of 8,799 probe sets, corresponding to 182 unique cellular genes, displayed increased expression ranging from 2- to more than 100-fold higher than in uninfected tissue. Over 60% thereof were categorized as immune, proinflammatory, and other cellular defense genes. Additionally, a large fraction of infection-induced transcripts represented cellular stress responses, including glucocorticoid- and redox-related pathways. This is the first comprehensive in vivo analysis of the global transcriptional response of the mammalian CNS to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to include potential diagnostic and therapeutic targets for viral encephalitides and other neurodegenerative or neuroinflammatory diseases.
Collapse
Affiliation(s)
- Christina Paulus
- Department of Molecular Biology, Princeton University, Princeton, NJ08544-1014, USA
| | | | | | | |
Collapse
|
34
|
Nag K, Kato A, Nakada T, Hoshijima K, Mistry AC, Takei Y, Hirose S. Molecular and functional characterization of adrenomedullin receptors in pufferfish. Am J Physiol Regul Integr Comp Physiol 2006; 290:R467-78. [PMID: 16195494 DOI: 10.1152/ajpregu.00507.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The receptors for the calcitonin gene-related peptide (CGRP)/adrenomedullin (AM) family peptides were characterized in the mefugu Takifugu obscurus, a euryhaline fugu species very close to Takifugu rubripes, which has as many as five adrenomedullin genes (AM1–5). CGRP and AM share a G protein-coupled core receptor called calcitonin receptor-like receptor (CLR), and the specificity of the CLR is determined by the interaction with receptor activity-modifying proteins (RAMPs). Through database mining, three CLRs (CLR1–3) and five RAMPs (RAMP1–5) were identified, and all of them were cloned by RT-PCR and characterized by functional expression in COS7 cells in every possible combination of CLR-RAMP. The following combinations generated cAMP in response to physiological concentrations of CGRP, AM1 (an ortholog of mammalian AM), AM2, and AM5: CLR1-RAMP1/4 (CGRP), CLR1-RAMP2/3/5 (AM1), CLR2-RAMP2 (AM1), CLR1-RAMP3 (AM2), and CLR1-RAMP3 (AM5). Their expressions were found by Northern blot analysis to be tissue specific and salinity dependent. For example, CLR1-RAMP5 and CLR1-RAMP2 are expressed specifically in the gill and kidney, respectively, suggesting their involvement in osmoregulation. Furthermore, relatively high levels of CLRs and RAMPs were found in the spleen and ovary, suggesting roles in the immune and female reproductive systems. Immunohistochemistry revealed that AM receptors of the following types are expressed in the locations, indicated in brackets, of the mefugu gill and kidney: CLR1-RAMP5 (interlamellar vessels), CLR2-RAMP2 (pillar cells), and CLR1-RAMP2 (apical side of renal proximal tubule cells).
Collapse
Affiliation(s)
- Kakon Nag
- Department of Biological Sciences, Tokyo Institute of Technology,Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Thavanathan R, Volkoff H. Effects of amylin on feeding of goldfish: Interactions with CCK. ACTA ACUST UNITED AC 2006; 133:90-6. [PMID: 16239037 DOI: 10.1016/j.regpep.2005.09.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 09/17/2005] [Accepted: 09/20/2005] [Indexed: 11/15/2022]
Abstract
In mammals, amylin (AMY) is a peptide that is secreted from the pancreas in response to a meal. AMY inhibits food intake and may also contribute to the anorectic effects of the brain-gut peptide cholecystokinin (CCK). In this study, we assessed the role of AMY in the regulation of food intake in goldfish (Carassius auratus) and its interactions with CCK. Fish were injected intraperitoneally (i.p.) with mammalian AMY and intracerebroventricularly (i.c.v.) with mammalian AMY, alone or in combination with the sulfated octapeptide CCK-8S. We also assessed the effects of i.c.v. injections of AC187, an amylin receptor antagonist on the central actions of both AMY and CCK-8S, as well as the effects of i.c.v. injections of proglumide, a CCK receptor antagonist, on the central effects of AMY. AMY injected i.p. at 100 ng/g but not 25 or 50 ng/g or i.c.v. at 10 ng/g but not 1 ng/g significantly decreased food intake as compared to saline-treated fish. Fish co-treated i.c.v. with AMY at 1 ng/g and CCK-8S at 1 ng/g had a food intake lower than that of control fish and fish treated with either 1 ng/g CCK-8S or 1 ng/g AMY, suggesting a synergy between the two systems. Whereas low i.c.v. doses of AC187 (30 ng/g) had no effect, moderate doses (50 ng/g) induced an increase in food intake, indicating a role of endogenous AMY in satiety in goldfish. Blocking central amylin receptors with i.c.v. AC187 (30 ng/g) resulted in an inhibition of both i.c.v. AMY- and CCK-induced reduction in feeding. Blocking central CCK receptors with i.c.v. proglumide (25 ng/g) resulted in an inhibition of both i.c.v. CCK-induced and AMY-induced decrease in food intake. Our results show for the first time in fish that AMY is a potent anorexigenic factor and that its actions are interdependent with those of CCK.
Collapse
Affiliation(s)
- Rajiv Thavanathan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | | |
Collapse
|
36
|
Cottrell GS, Roosterman D, Marvizon JC, Song B, Wick E, Pikios S, Wong H, Berthelier C, Tang Y, Sternini C, Bunnett NW, Grady EF. Localization of calcitonin receptor-like receptor and receptor activity modifying protein 1 in enteric neurons, dorsal root ganglia, and the spinal cord of the rat. J Comp Neurol 2005; 490:239-55. [PMID: 16082677 DOI: 10.1002/cne.20669] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.
Collapse
Affiliation(s)
- Graeme S Cottrell
- Department of Surgery, University of California-San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143-0660, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fischer JA, Born W. Introductory notes. Old and new paradigms in the field of the calcitonin family of peptides. Peptides 2004; 25:2001-2. [PMID: 15501533 DOI: 10.1016/j.peptides.2004.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|