1
|
Roth CL, Zenno A. Treatment of hypothalamic obesity in people with hypothalamic injury: new drugs are on the horizon. Front Endocrinol (Lausanne) 2023; 14:1256514. [PMID: 37780616 PMCID: PMC10533996 DOI: 10.3389/fendo.2023.1256514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Hypothalamic obesity (HO) is a complex and rare disorder affecting multiple regulatory pathways of energy intake and expenditure in the brain as well as the regulation of the autonomic nervous system and peripheral hormonal signaling. It can be related to monogenic obesity syndromes which often affect the central leptin-melanocortin pathways or due to injury of the hypothalamus from pituitary and hypothalamic tumors, such as craniopharyngioma, surgery, trauma, or radiation to the hypothalamus. Traditional treatments of obesity, such as lifestyle intervention and specific diets, are still a therapeutic cornerstone, but often fail to result in meaningful and sustained reduction of body mass index. This review will give an update on pharmacotherapies of HO related to hypothalamic injury. Recent obesity drug developments are promising for successful obesity intervention outcomes.
Collapse
Affiliation(s)
- Christian L. Roth
- Seattle Children’s Research Institute, Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Anna Zenno
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Eliason NL, Sharpe AL. Proopiomelanocortin projections to the nucleus accumbens modulate acquisition and maintenance of operant palatable pellet administration in mice. Physiol Behav 2023; 265:114176. [PMID: 36965574 PMCID: PMC10241194 DOI: 10.1016/j.physbeh.2023.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Obesity is a crisis in the United States, producing many co-morbid diseases that can drastically decrease quality of life. While diet is a major focus for therapeutic intervention, the need to understand underlying appetitive neurocircuitry persists. Proopiomelanocortin (POMC) peptides are well-known for their anorexigenic activity, but also mediate reward and learning. The nucleus accumbens (NAcc) is best known for its role in reward-based learning, but the contribution of POMC projections to NAcc on feeding are controversial since the two major POMC-derived peptides (β-endorphin and α-MSH) have opposite effects on food intake. Our objective was to determine the effect of stimulating POMC projections in the NAcc on acquisition and maintenance of operant self-administration of a palatable food. Adult POMCCre mice were microinjected into the NAcc with a Cre-dependent retrograde adeno-associated viral vector expressing Gq Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Mice were trained to self-administer palatable 20-mg pellets in daily operant sessions. Acquisition of self-administration (fixed ratio 30) and baseline self-administration were measured in daily sessions, with mice receiving injections of either JHU37152 (DREADD agonist) or saline (i.p.) 15 min prior to the sessions. POMC neuron stimulation (JHU injection) before training sessions produced a significant increase in rate of acquisition and accuracy compared to the saline treated group, with no significant effect on rewards earned. Removal of POMC neuron stimulation before sessions initially reduced consumption with a gradual increase in responding for reinforcer over 3 days of saline injections. Reinstatement of POMC neuron stimulation (JHU) before the session resulted in a significant decrease in responding and rewards earned. These results suggest a complex role of POMC peptides within the NAcc that increase reward learning for a novel palatable food while decreasing consumption of the reinforcer following experience with it.
Collapse
Affiliation(s)
- Nicole L Eliason
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America; Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America.
| |
Collapse
|
3
|
Qin W, Wang B, Yang L, Yuan Y, Xiong X, Li J, Yin S. Molecular cloning, characterization, and function analysis of the AMH gene in Yak (Bos grunniens) Sertoli cells. Theriogenology 2021; 163:1-9. [PMID: 33476894 DOI: 10.1016/j.theriogenology.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sertoli cells (SCs) are important testicular somatic cells that carry out various functions in spermatogenesis. Understanding the biological mechanisms underlying SC development may facilitate the understanding of animal reproduction. Anti-Mullerian hormone (AMH) is a dimeric glycoprotein produced by SCs and plays essential roles in spermatogenesis. In this study, we cloned the coding sequence of the yak AMH, predicated the structure of AMH protein, analyzed AMH expression in the testis at different stages, and studied the functions of AMH in yak SCs. The open reading frame (ORF) of the yak AMH contained 1728 bp and encoded 575 amino acids. Structural analysis revealed that the yak AMH protein had a highly conserved transforming growth factor-β (TGF-β) domain. The mRNA expression level for the AMH gene in yak testis increased significantly from the fetal stage to calf stage, then decreased with the increase of age. The highest expression was found in calf stage. Cell proliferation was depressed in AMH-deficient SCs. Expression of several genes involved in SC proliferation and development, including PCNA, BCL-2, BAX, CASP3, AR and AMHR2 were altered after knockdown of AMH. Also, three SC-secreted factors essential for spermatogenesis, SCF, GDNF and ABP, were repressed at the transcription level after AMH knockdown in yak SCs. Moreover, supplementation with exogenous AMH protein partially rescued SC proliferation, and the expression of PCNA, BCL-2, AR and AMHR2 after AMH gene interference. This research provided theoretical basis for understanding the mechanism by which AMH regulates yak spermatogenesis and might give new insights in improving yak reproductive performance in the future.
Collapse
Affiliation(s)
- Wenchang Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Bin Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Liuqing Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - YuJie Yuan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Sharfman N, Gilpin NW. The Role of Melanocortin Plasticity in Pain-Related Outcomes After Alcohol Exposure. Front Psychiatry 2021; 12:764720. [PMID: 34803772 PMCID: PMC8599269 DOI: 10.3389/fpsyt.2021.764720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The global COVID-19 pandemic has shone a light on the rates and dangers of alcohol misuse in adults and adolescents in the US and globally. Alcohol exposure during adolescence causes persistent molecular, cellular, and behavioral changes that increase the risk of alcohol use disorder (AUD) into adulthood. It is established that alcohol abuse in adulthood increases the likelihood of pain hypersensitivity and the genesis of chronic pain, and humans report drinking alcohol to relieve pain symptoms. However, the longitudinal effects of alcohol exposure on pain and the underlying CNS signaling that mediates it are understudied. Specific brain regions mediate pain effects, alcohol effects, and pain-alcohol interactions, and neural signaling in those brain regions is modulated by neuropeptides. The CNS melanocortin system is sensitive to alcohol and modulates pain sensitivity, but this system is understudied in the context of pain-alcohol interactions. In this review, we focus on the role of melanocortin signaling in brain regions sensitive to alcohol and pain, in particular the amygdala. We also discuss interactions of melanocortins with other peptide systems, including the opioid system, as potential mediators of pain-alcohol interactions. Therapeutic strategies that target the melanocortin system may mitigate the negative consequences of alcohol misuse during adolescence and/or adulthood, including effects on pain-related outcomes.
Collapse
Affiliation(s)
- Nathan Sharfman
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Alcohol and Drug Abuse Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA, United States
| |
Collapse
|
5
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
6
|
Lee MN, Kweon HY, Oh GT. N-α-acetyltransferase 10 (NAA10) in development: the role of NAA10. Exp Mol Med 2018; 50:1-11. [PMID: 30054454 PMCID: PMC6063908 DOI: 10.1038/s12276-018-0105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is a subunit of Nα-terminal protein acetyltransferase that plays a role in many biological processes. Among the six N-α-acetyltransferases (NATs) in eukaryotes, the biological significance of the N-terminal acetyl-activity of Naa10 has been the most studied. Recent findings in a few species, including humans, indicate that loss of N-terminal acetylation by NAA10 is associated with developmental defects. However, very little is known about the role of NAA10, and more research is required in relation to the developmental process. This review summarizes recent studies to understand the function of NAA10 in the development of multicellular organisms. Further investigations are needed into the role of a key enzyme in biological development and its encoding gene. The enzyme N-α-acetyltransferase 10 (NAA10), encoded by the NAA10 gene, plays a role in multiple biological processes. While the function of NAA10 has been studied in cancer, less is known about the roles of the gene and the enzyme during development, according to a review by Goo Taeg Oh and co-workers at the Ewha Womans University in Seoul, South Korea. Mutations in NAA10 are found in patients with developmental delay, cardiac problems and skeletal abnormalities, while reduced enzyme activity is associated with developmental defects. Mouse studies suggest a role for NAA10 in neuronal development, bone formation and healthy sperm generation. The impact of variable NAA10 expression in different organs at different developmental stages needs clarification.
Collapse
Affiliation(s)
- Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
DeAtley KL, Colgrave ML, Cánovas A, Wijffels G, Ashley RL, Silver GA, Rincon G, Medrano JF, Islas-Trejo A, Fortes MRS, Reverter A, Porto-Neto L, Lehnert SA, Thomas MG. Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty. J Proteome Res 2018; 17:1852-1865. [PMID: 29510626 DOI: 10.1021/acs.jproteome.7b00875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.
Collapse
Affiliation(s)
- Kasey L DeAtley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Michelle L Colgrave
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Gene Wijffels
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Ryan L Ashley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gail A Silver
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gonzalo Rincon
- Zoetis Animal Health , Kalamazoo , Michigan 49007 , United States
| | - Juan F Medrano
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Alma Islas-Trejo
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences , University of Queensland , St. Lucia , Queensland 4042 , Australia
- Queensland Alliance for Agriculture and Food Innovation, St. Lucia , Queensland 4072 , Australia
| | - Antonio Reverter
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Laercio Porto-Neto
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Sigrid A Lehnert
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Milton G Thomas
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
8
|
Thomas AL, Maekawa F, Kawashima T, Sakamoto H, Sakamoto T, Davis P, Dores RM. Analyzing the effects of co-expression of chick (Gallus gallus) melanocortin receptors with either chick MRAP1 or MRAP2 in CHO cells on sensitivity to ACTH(1-24) or ACTH(1-13)NH 2: Implications for the avian HPA axis and avian melanocortin circuits in the hypothalamus. Gen Comp Endocrinol 2018; 256:50-56. [PMID: 28888694 DOI: 10.1016/j.ygcen.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
In order to better understand the roles that melanocortin receptors (cMCRs) and melanocortin-2 receptor accessory proteins (cMRAP1 and cMRAP2) play in the HPA axis and hypothalamus, adrenal gland and hypothalamus mRNA from 1day-old white leghorn chicks (Gallus gallus), were analyzed by real-time PCR. mRNA was also made for kidney, ovary, and liver. Mrap1 mRNA could be detected in adrenal tissue, but not in any of the other tissues, and mrap2 mRNA was also detected in the adrenal gland. Finally, all five melanocortin receptors mRNAs could be detected in the adrenal gland; mc2r and mc5r mRNAs were the most abundant. To evaluate any potential interactions between MRAP1 and the MCRs that may occur in adrenal cells, individual chick mcr cDNA constructs were transiently expressed in CHO cells either in the presence or absence of a chick mrap1 cDNA, and the transfected cells were stimulated with hACTH(1-24) at concentrations ranging from 10-13M to 10-6M. As expected, MC2R required co-expression with MRAP1 for functional expression; whereas, co-expression of cMC3R with cMRAP1 had no statistically significant effect on sensitivity to hACTH(1-24). However, co-expression of MC4R and MC5R with MRAP1, increased sensitivity for ACTH(1-24) by approximately 35 fold and 365 fold, respectively. However, co-expressing of cMRAP2 with these melanocortin receptors had no effect on sensitivity to hACTH(1-24). Since the real-time PCR analysis detected mrap2 mRNA and mc4r mRNA in the hypothalamus, the interaction between cMC4R and cMRAP2 with respect to sensitivity to ACTH(1-13)NH2 stimulation was also evaluated. However, no effect, either positive or negative, was observed. Finally, the highest levels of mc5r mRNA were detected in liver cells. This observation raises the possibility that in one-day old chicks, activation of the HPA axis may also involve a physiological response from liver cells.
Collapse
|
9
|
Deliconstantinos G, Barton S, Soloviev M, Page N. Mouse Hemokinin-1 Decapeptide Subjected to a Brain-specific Post-translational Modification. ACTA ACUST UNITED AC 2017; 31:991-998. [PMID: 28882971 DOI: 10.21873/invivo.11159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The tachykinin mouse hemokinin-1, expressed by the mouse Tac4 gene, produces either analgesia or nociception, interacting with the neurokinin 1 receptor. TAC4 precursor processing is not identical to the processing of the TAC1 precursor, for the release of substance P (amidated undecapeptide). The characterization of the mouse hemokinin-1 sequence was required. MATERIALS AND METHODS We developed anti-tachykinin-specific antibodies for the immunoaffinity purification of tachykinins. RESULTS Using MALDI-ToF, we identified mouse hemokinin-1 as an amidated decapeptide expressed in murine brain and periphery. Furthermore, we interestingly observed an additional mass peak corresponding to acetylated mouse hemokinin-1 and this post-translational modification is brain-specific, not detected in the periphery. CONCLUSION We suggest that the N-terminal acetylation of the peptide provides greater potency for ligand-receptor interactions during neural cell signaling.
Collapse
Affiliation(s)
| | - Stephen Barton
- School of Pharmacy & Chemistry, Kingston University, London, U.K
| | - Mikhail Soloviev
- School of Biological Sciences, Royal Holloway University of London, London, U.K
| | - Nigel Page
- School of Life Sciences, Kingston University, London, U.K
| |
Collapse
|
10
|
Cal L, Suarez-Bregua P, Cerdá-Reverter JM, Braasch I, Rotllant J. Fish pigmentation and the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 2017; 211:26-33. [DOI: 10.1016/j.cbpa.2017.06.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/10/2023]
|
11
|
Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:121-150. [DOI: 10.1016/bs.irn.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Nillni EA. The metabolic sensor Sirt1 and the hypothalamus: Interplay between peptide hormones and pro-hormone convertases. Mol Cell Endocrinol 2016; 438:77-88. [PMID: 27614022 DOI: 10.1016/j.mce.2016.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/11/2023]
Abstract
The last decade had witnessed a tremendous progress in our understanding of the causes of metabolic diseases including obesity. Among the contributing factors regulating energy balance are nutrient sensors such as sirtuins. Sirtuin1 (Sirt1), a NAD + - dependent deacetylase is affected by diet, environmental stress, and also plays a critical role in metabolic health by deacetylating proteins in many tissues, including liver, muscle, adipose tissue, heart, endothelium, and in the complexity of the hypothalamus. Because of its dependence on NAD+, Sirt1 also functions as a nutrient/redox sensor, and new novel data show a function of this enzyme in the maturation of hypothalamic peptide hormones controlling energy balance either through regulation of specific nuclear transcription factors or by regulating specific pro-hormone convertases (PCs) involved in the post-translational processing of pro-hormones. The post-translational processing mechanism of pro-hormones is critical in the pathogenesis of obesity as recently shown that metabolic and physiological triggers affect the biosynthesis and processing of many peptides hormones. Specific regulation of pro-hormone processing is likely another key step where final amounts of bioactive peptides can be tightly regulated. Different factors stimulate or inhibit pro-hormones biosynthesis in concert with an increase in the PCs involved in the maturation of bioactive hormones. Adding more complexity to the system, the new studies describe here suggest that Sirt1 could also regulate the fate of peptide hormone biosynthesis. The present review summarizes the recent progress in hypothalamic SIRT1 research with a particular emphasis on the tissue-specific control of neuropeptide hormone maturation. The series of studies done in mouse and rat models strongly advocate for the first time that a deacetylating enzyme could be a regulator in the maturation of peptide hormones and their processing enzymes. These discoveries are the culmination of the first in-depth understanding of the metabolic role of Sirt1 in the brain. It suggests that Sirt1 behaves differently in the brain than in organs such as the liver and pancreas, where the enzyme has been more commonly studied.
Collapse
Affiliation(s)
- Eduardo A Nillni
- The Warren Alpert Medical School, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
13
|
Neuroanatomical evidence for the involvement of β-endorphin during reproductive stress response in the fish Oreochromis mossambicus. J Chem Neuroanat 2016; 77:161-168. [DOI: 10.1016/j.jchemneu.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
|
14
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 541] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
15
|
Barrell GK, Ridgway MJ, Wellby M, Pereira A, Henry BA, Clarke IJ. Expression of regulatory neuropeptides in the hypothalamus of red deer (Cervus elaphus) reveals anomalous relationships in the seasonal control of appetite and reproduction. Gen Comp Endocrinol 2016; 229:1-7. [PMID: 26899722 DOI: 10.1016/j.ygcen.2016.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
Red deer are seasonal with respect to reproduction and food intake, so we tested the hypothesis that their brains would show seasonal changes in numbers of cells containing hypothalamic neuropeptides that regulate these functions. We examined the brains of male and female deer in non-breeding and breeding seasons to quantify the production of kisspeptin, gonadotropin inhibitory hormone (GnIH), neuropeptide Y (NPY) and γ-melanocyte stimulating hormone (γ-MSH - an index of pro-opiomelanocortin production), using immunohistochemistry. These neuropeptides are likely to be involved in the regulation of reproductive function and appetite. During the annual breeding season there were more cells producing kisspeptin in the arcuate nucleus of the hypothalamus than during the non-breeding season in males and females whereas there was no seasonal difference in the expression of GnIH. There were more cells producing the appetite stimulating peptide, NPY, in the arcuate/median eminence regions of the hypothalamus of females during the non-breeding season whereas the levels of an appetite suppressing peptide, γ-MSH, were highest in the breeding season. Male deer brains exhibited the converse, with NPY cell numbers highest in the breeding season and γ-MSH levels highest in the non-breeding season. These results support a role for kisspeptin as an important stimulatory regulator of seasonal breeding in deer, as in other species, but suggest a lack of involvement of GnIH in the seasonality of reproduction in deer. In the case of appetite regulation, the pattern exhibited by females for NPY and γ-MSH was as expected for the breeding and non-breeding seasons, based on previous studies of these peptides in sheep and the seasonal cycle of appetite reported for various species of deer. An inverse result in male deer most probably reflects the response of appetite regulating cells to negative energy balance during the mating season. Differences between the sexes in the seasonal changes in appetite regulating peptide cells of the hypothalamus present an interesting model for future studies.
Collapse
Affiliation(s)
- G K Barrell
- Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand.
| | - M J Ridgway
- Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - M Wellby
- Faculty of Agriculture & Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - A Pereira
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | - B A Henry
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | - I J Clarke
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
|
17
|
Alsters SIM, Goldstone AP, Buxton JL, Zekavati A, Sosinsky A, Yiorkas AM, Holder S, Klaber RE, Bridges N, van Haelst MM, le Roux CW, Walley AJ, Walters RG, Mueller M, Blakemore AIF. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism. PLoS One 2015; 10:e0131417. [PMID: 26120850 PMCID: PMC4485893 DOI: 10.1371/journal.pone.0131417] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/02/2015] [Indexed: 01/25/2023] Open
Abstract
Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans.
Collapse
Affiliation(s)
- Suzanne I. M. Alsters
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anthony P. Goldstone
- Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
- Centre for Neuropsychopharmacology and Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
- * E-mail: (AG); (AB)
| | - Jessica L. Buxton
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Centre for Cardiovascular Genetics, UCL Institute of Cardiovascular Science, London, United Kingdom
| | - Anna Zekavati
- NIHR Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alona Sosinsky
- NIHR Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrianos M. Yiorkas
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Susan Holder
- NW Thames Regional Genetics Service, Kennedy Galton Centre, North West London Hospitals NHS Trust, Northwick Park Hospital, Harrow, United Kingdom
| | - Robert E. Klaber
- Department of Paediatrics, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
| | - Nicola Bridges
- Department of Paediatric Endocrinology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mieke M. van Haelst
- Department of Medical Genetics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carel W. le Roux
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Andrew J. Walley
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Robin G. Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael Mueller
- NIHR Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alexandra I. F. Blakemore
- Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (AG); (AB)
| |
Collapse
|
18
|
Molecular, Cellular, and Physiological Significance of N-Terminal Acetylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:267-305. [DOI: 10.1016/bs.ircmb.2015.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
19
|
Agersnap M, Rehfeld JF. Measurement of nonsulfated cholecystokinins. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:424-31. [DOI: 10.3109/00365513.2014.900695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Takahashi A, Mizusawa K. Posttranslational modifications of proopiomelanocortin in vertebrates and their biological significance. Front Endocrinol (Lausanne) 2013; 4:143. [PMID: 24146662 PMCID: PMC3797980 DOI: 10.3389/fendo.2013.00143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/25/2013] [Indexed: 11/13/2022] Open
Abstract
Proopiomelanocortin (POMC) is the precursor of several peptide hormones generated in the pituitary gland. After biosynthesis, POMC undergoes several posttranslational modifications, including proteolytic cleavage, acetylation, amidation, phosphorylation, glycosylation, and disulfide linkage formation, which generate mature POMC-derived peptides. Therefore, POMC is a useful model for the investigation of posttranslational modifications. These processes have been extensively investigated in mammals, primarily in rodents. In addition, over the last decade, much information has been obtained about the posttranslational processing of POMC in non-mammalian animals such as fish, amphibians, reptiles, and birds through sequencing and peptide identification by mass spectrometry. One POMC modification, acetylation, is known to modulate the biological activities of POMC-derived α-melanocyte-stimulating hormone (α-MSH) having an acetyl group at N-terminal through potentiation or inhibition. This bidirectional regulation depends on its intrinsic roles in the tissue or cell; for example, α-MSH, as well as desacetyl (Des-Ac)-α-MSH, stimulates pigment dispersion in the xanthophores of a flounder. In contrast, α-MSH does not stimulate pigment dispersion in the melanophores of the same species, whereas Des-Ac-α-MSH does. Regulation of pigment-dispersing activities may be associated with the subtle balance in the expression of receptor genes. In this review, we consider the posttranslational modifications of POMC in vertebrates from an evolutionary aspect, with a focus on the relationship between acetylation and the biological activities of α-MSH as an important consequence of posttranslational modification.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
- *Correspondence: Akiyoshi Takahashi, School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan e-mail:
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
21
|
Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol 2013; 51:R33-50. [PMID: 23881919 DOI: 10.1530/jme-13-0064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Astrocytes exert a wide variety of functions with paramount importance in brain physiology. After injury or infection, astrocytes become reactive and they respond by producing a variety of inflammatory mediators that help maintain brain homeostasis. Loss of astrocyte functions as well as their excessive activation can contribute to disease processes; thus, it is important to modulate reactive astrocyte response. Melanocortins are peptides with well-recognized anti-inflammatory and neuroprotective activity. Although melanocortin efficacy was shown in systemic models of inflammatory disease, mechanisms involved in their effects have not yet been fully elucidated. Central anti-inflammatory effects of melanocortins and their mechanisms are even less well known, and, in particular, the effects of melanocortins in glial cells are poorly understood. Of the five known melanocortin receptors (MCRs), only subtype 4 is present in astrocytes. MC4R has been shown to mediate melanocortin effects on energy homeostasis, reproduction, inflammation, and neuroprotection and, recently, to modulate astrocyte functions. In this review, we will describe MC4R involvement in anti-inflammatory, anorexigenic, and anti-apoptotic effects of melanocortins in the brain. We will highlight MC4R action in astrocytes and discuss their possible mechanisms of action. Melanocortin effects on astrocytes provide a new means of treating inflammation, obesity, and neurodegeneration, making them attractive targets for therapeutic interventions in the CNS.
Collapse
Affiliation(s)
- Carla Caruso
- School of Medicine, Biomedical Research Institute (UBA-CONICET), University of Buenos Aires, Paraguay 2155 piso 10, 1121ABG Buenos Aires, Argentina IFEC (CONICET) Department of Pharmacology, School of Chemistry, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
22
|
Franceschini I, Yeo SH, Beltramo M, Desroziers E, Okamura H, Herbison AE, Caraty A. Immunohistochemical evidence for the presence of various kisspeptin isoforms in the mammalian brain. J Neuroendocrinol 2013; 25:839-51. [PMID: 23822722 DOI: 10.1111/jne.12069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 05/26/2013] [Accepted: 06/29/2013] [Indexed: 12/11/2022]
Abstract
Kisspeptins are small peptides encoded by the Kiss1 gene that have been the focus of intense neuroendocrine research during the last decade. Kisspeptin is now considered to have important roles in the regulation of puberty onset and adult oestrogen-dependent feedback mechanisms on gonadotrophin-releasing hormone secretion. Several kisspeptin antibodies have been generated that have enabled an overall view of kisspeptin peptide distribution in the brain of many mammalian species. However, it remains that the distribution of the different kisspeptin isoforms is unclear in the mammalian brain. In the present study, we report on two new N-terminal-directed kisspeptin antibodies, one against the mouse kisspeptin-52 sequence (AC053) and one against the rat kisspeptin-52 sequence (AC067), and use them to specifically map these long isoforms in the brains of mouse and rat, respectively. Kisspeptin-52 immunoreactivity was detected in the two main kisspeptin neuronal populations of the rostral periventricular area and arcuate nucleus but not in the dorsomedial hypothahamus. A large number of fibres throughout the ventral forebrain were also labelled with these two antibodies. Finally, a comparison with the most commonly used C-terminal-directed kisspeptin antibodies further suggests the presence of shorter kisspeptin fragments in the brain with specific inter- and intracellular expression patterns.
Collapse
Affiliation(s)
- I Franceschini
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Panin M, Giurisato M, Peruffo A, Ballarin C, Cozzi B. Immunofluorescence evidence of melanotrophs in the pituitary of four odontocete species. An immunohistochemical study and a critical review of the literature. Ann Anat 2013; 195:512-21. [PMID: 23938266 DOI: 10.1016/j.aanat.2013.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 11/17/2022]
Abstract
Cetaceans share peculiar features of their pituitary glands, with a complete separation of pars distalis and pars nervosa by a dural septum and the absence of an intermediate lobe and cleft. In most mammals the pars intermedia is the main source of circulating α-melanocyte stimulating hormone (α-MSH), derived from a large precursor called proopiomelanocortin (POMC), which also generates adrenocorticotropic hormone (ACTH) in the adenohypophysis. The lack of an intermediate lobe in cetaceans led us to investigate whether their glands are able to produce α-MSH, and if this hormone is secreted by a distinct population of melanotrophs or by corticotrophs in the pars distalis. Immunofluorescence evidences seem to support the first assumption, with ACTH-immunoreactive (-ir) elements rarely overlapping with α-MSH-ir ones. The discovery of a population of true melanotrophs in the hypophysis of some odontocetes underscores the need for further research on the melanocortin system of cetaceans.
Collapse
Affiliation(s)
- Mattia Panin
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy.
| | | | | | | | | |
Collapse
|
24
|
Mul JD, Spruijt BM, Brakkee JH, Adan RAH. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents. Eur J Pharmacol 2013; 719:192-201. [PMID: 23872405 DOI: 10.1016/j.ejphar.2013.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 02/04/2023]
Abstract
Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced.
Collapse
Affiliation(s)
- Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, 2170 East Galbraith Road, 45237 Cincinnati, Ohio, USA.
| | - Berry M Spruijt
- Department of Biology, Faculty of Beta Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan H Brakkee
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Roger A H Adan
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
25
|
Roulin A, Ducrest AL. Genetics of colouration in birds. Semin Cell Dev Biol 2013; 24:594-608. [PMID: 23665152 DOI: 10.1016/j.semcdb.2013.05.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Abstract
Establishing the links between phenotype and genotype is of great importance for resolving key questions about the evolution, maintenance and adaptive function of phenotypic variation. Bird colouration is one of the most studied systems to investigate the role of natural and sexual selection in the evolution of phenotypic diversity. Given the recent advances in molecular tools that allow discovering genetic polymorphisms and measuring gene and protein expression levels, it is timely to review the literature on the genetics of bird colouration. The present study shows that melanin-based colour phenotypes are often associated with mutations at melanogenic genes. Differences in melanin-based colouration are caused by switches of eumelanin to pheomelanin production or by changes in feather keratin structure, melanoblast migration and differentiation, as well as melanosome structure. Similar associations with other types of colourations are difficult to establish, because our knowledge about the molecular genetics of carotenoid-based and structural colouration is quasi inexistent. This discrepancy stems from the fact that only melanin-based colouration shows pronounced heritability estimates, i.e. the resemblance between related individuals is usually mainly explained by genetic factors. In contrast, the expression of carotenoid-based colouration is phenotypically plastic with a high sensitivity to variation in environmental conditions. It therefore appears that melanin-based colour traits are prime systems to understand the genetic basis of phenotypic variation. In this context, birds have a great potential to bring us to new frontiers where many exciting discoveries will be made on the genetics of phenotypic traits, such as colouration. In this context, a major goal of our review is to suggest a number of exciting future avenues.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
26
|
Helwig M, Herwig A, Heldmaier G, Barrett P, Mercer JG, Klingenspor M. Photoperiod-dependent regulation of carboxypeptidase E affects the selective processing of neuropeptides in the seasonal Siberian hamster (Phodopus sungorus). J Neuroendocrinol 2013; 25:190-7. [PMID: 22967033 DOI: 10.1111/j.1365-2826.2012.02384.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/10/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
The production of bioactive peptides from biologically inactive precursors involves extensive post-translational processing, including enzymatic cleavage by proteolytic peptidases. Endoproteolytic prohormone-convertases initially cleave the precursors of many neuropeptides at specific amino acid sequences to generate intermediates with basic amino acid extensions on their C-termini. Subsequently, the related exopeptidases, carboxypeptidases D and E (CPD and CPE), are responsible for removing these amino acids before the peptides achieve biological activity. We investigated the effect of photoperiod on the processing of the neuropeptide precursor pro-opiomelanocortin (POMC) and its derived neuropeptides, α-melanocyte-stimulating hormone (MSH) and β-endorphin (END), within the hypothalamus of the seasonal Siberian hamster (Phodopus sungorus). We thus compared hypothalamic distribution of CPD, CPE, α-MSH and β-END using immunohistochemistry and measured the enzyme activity of CPE and concentrations of C-terminally cleaved α-MSH in short-day (SD; 8 : 16 h light/dark) and long-day (LD; 16 : 8 h light/dark) acclimatised hamsters. Increased immunoreactivity (-IR) of CPE, as well as higher CPE activity, was observed in SD. This increase was accompanied by more β-END-IR cells and substantially higher levels of C- terminally cleaved α-MSH, as determined by radioimmunoassay. Our results suggest that exoproteolytic cleavage of POMC-derived neuropeptides is tightly regulated by photoperiod in the Siberian hamster. Higher levels of biological active α-MSH- and β-END in SD are consistent with the hypothesis that post-translational processing is a key event in the regulation of seasonal energy balance.
Collapse
Affiliation(s)
- M Helwig
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Maternal protein restriction in mice causes adverse metabolic and hypothalamic effects in the F1 and F2 generations. Br J Nutr 2011; 106:1364-73. [DOI: 10.1017/s0007114511001735] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Maternal protein restriction causes metabolic alterations associated with hypothalamic dysfunction. Because the consequences of metabolic programming can be passed transgenerationally, the present study aimed to assess whether maternal protein restriction alters the expression of hypothalamic neuropeptides in offspring and to evaluate hormonal and metabolic changes in male offspring from the F1 and F2 generations. Female Swiss mice (F0) were mated and fed either a normal-protein (NP group; 19 % protein) or a low-protein (LP group; 5 % protein) diet throughout gestation of the F1 generation (NP1 and LP1). At 3 months of age, F1 females were mated to produce the F2 generation (NP2 and LP2). Animals from all groups were evaluated at 16 weeks of age. LP1 offspring had significantly lower weights and shorter lengths than NP1 offspring at birth, but they underwent a phase of rapid catch-up growth. Conversely, the LP2 offspring were not significantly different from the NP2 offspring in either weight or length. At 16 weeks, no differences were found in body mass among any of the groups, although LP1 and LP2 offspring showed hypercholesterolaemia, hypertriacylglycerolaemia, hyperglycaemia, glucose intolerance, insulin resistance, increased levels of insulin, leptin and resistin, decreased endogenous leptin sensitivity, increased adiposity with elevated leptin levels and leptin resistance characterised by altered expression of neuropeptide Y and pro-opiomelanocortin without any changes in the leptin receptor Ob-Rb. We conclude that severe maternal protein restriction promotes metabolic programming in F1 and F2 male offspring due to a dysregulation of the adipoinsular axis and a state of hypothalamic leptin resistance.
Collapse
|
28
|
Abstract
Equine pituitary pars intermedia dysfunction (PPID), also known as equine Cushing's syndrome, is a widely recognized disease of aged horses. Over the past two decades, the aged horse population has expanded significantly and in addition, client awareness of PPID has increased. As a result, there has been an increase in both diagnostic testing and treatment of the disease. This review focuses on the pathophysiology and clinical syndrome, as well as advances in diagnostic testing and treatment of PPID, with an emphasis on those findings that are new since the excellent comprehensive review by Schott in 2002.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, 264 McElroy Hall, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
29
|
Pale and dark reddish melanic tawny owls differentially regulate the level of blood circulating POMC prohormone in relation to environmental conditions. Oecologia 2011; 166:913-21. [DOI: 10.1007/s00442-011-1955-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
30
|
Wardlaw SL. Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol 2011; 660:213-9. [PMID: 21208604 DOI: 10.1016/j.ejphar.2010.10.107] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 12/18/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on the regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PC1/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing.
Collapse
Affiliation(s)
- Sharon L Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
31
|
D'Agostino G, Diano S. Alpha-melanocyte stimulating hormone: production and degradation. J Mol Med (Berl) 2010; 88:1195-201. [PMID: 20617297 DOI: 10.1007/s00109-010-0651-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Proopiomelanocortin (POMC) is a polypeptide hormone precursor that is expressed in the brain and in peripheral tissues such as in the pituitary gland, immune system, and skin. In the brain, POMC is processed to form several peptides including alpha-melanocyte stimulating hormone (α-MSH). alpha-MSH is expressed in the hypothalamic arcuate nucleus and in the nucleus tractus solitarius of the brainstem where it has a crucial role in the regulation of metabolic functions. Specifically, α-MSH is an anorexigenic peptide. Its production and maturation processes have been shown to be regulated according to the metabolic condition of the organism. This review summarizes our current knowledge on α-MSH processing including its maturation and degradation processes and pharmacological aspects of its manipulation.
Collapse
Affiliation(s)
- Giuseppe D'Agostino
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
32
|
Wallingford N, Perroud B, Gao Q, Coppola A, Gyengesi E, Liu ZW, Gao XB, Diament A, Haus KA, Shariat-Madar Z, Mahdi F, Wardlaw SL, Schmaier AH, Warden CH, Diano S. Prolylcarboxypeptidase regulates food intake by inactivating alpha-MSH in rodents. J Clin Invest 2009; 119:2291-303. [PMID: 19620781 DOI: 10.1172/jci37209] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 05/20/2009] [Indexed: 11/17/2022] Open
Abstract
The anorexigenic neuromodulator alpha-melanocyte-stimulating hormone (alpha-MSH; referred to here as alpha-MSH1-13) undergoes extensive posttranslational processing, and its in vivo activity is short lived due to rapid inactivation. The enzymatic control of alpha-MSH1-13 maturation and inactivation is incompletely understood. Here we have provided insight into alpha-MSH1-13 inactivation through the generation and analysis of a subcongenic mouse strain with reduced body fat compared with controls. Using positional cloning, we identified a maximum of 6 coding genes, including that encoding prolylcarboxypeptidase (PRCP), in the donor region. Real-time PCR revealed a marked genotype effect on Prcp mRNA expression in brain tissue. Biochemical studies using recombinant PRCP demonstrated that PRCP removes the C-terminal amino acid of alpha-MSH1-13, producing alpha-MSH1-12, which is not neuroactive. We found that Prcp was expressed in the hypothalamus in neuronal populations that send efferents to areas where alpha-MSH1-13 is released from axon terminals. The inhibition of PRCP activity by small molecule protease inhibitors administered peripherally or centrally decreased food intake in both wild-type and obese mice. Furthermore, Prcp-null mice had elevated levels of alpha-MSH1-13 in the hypothalamus and were leaner and shorter than the wild-type controls on a regular chow diet; they were also resistant to high-fat diet-induced obesity. Our results suggest that PRCP is an important component of melanocortin signaling and weight maintenance via control of active alpha-MSH1-13 levels.
Collapse
Affiliation(s)
- Nicholas Wallingford
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Palmiter RD. Reduced levels of neurotransmitter-degrading enzyme PRCP promote a lean phenotype. [corrected]. J Clin Invest 2009; 119:2130-3. [PMID: 19620779 DOI: 10.1172/jci40001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The level of neurotransmitters present in the synaptic cleft is a function of the delicate balance among neurotransmitter synthesis, recycling, and degradation. While much is known about the processes controlling neurotransmitter synthesis and release, the enzymes that degrade peptide neurotransmitters are poorly understood. A new study in this issue of the JCI reveals the important role of neuropeptide degradation in regulating obesity (see the related article beginning on page 2291). Wallingford et al. provide evidence that, in mice, the enzyme prolylcarboxypeptidase (PRCP) degrades alpha-melanocyte-stimulating hormone (alpha-MSH) to an inactive form that is unable to inhibit food intake. Their studies indicate that PRCP expression promotes obesity, while inhibitors of the enzyme counteract obesity.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
34
|
Rholam M, Fahy C. Processing of peptide and hormone precursors at the dibasic cleavage sites. Cell Mol Life Sci 2009; 66:2075-91. [PMID: 19300906 PMCID: PMC11115611 DOI: 10.1007/s00018-009-0007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/11/2009] [Accepted: 02/17/2009] [Indexed: 01/31/2023]
Abstract
Many functionally important cellular peptides and proteins, including hormones, neuropeptides, and growth factors, are synthesized as inactive precursor polypeptides, which require post-translational proteolytic processing to become biologically active polypeptides. This is achieved by the action of a relatively small number of proteases that belong to a family of seven subtilisin-like proprotein convertases (PCs) including furin. In view of this, this review focuses on the importance of privileged secondary structures and of given amino acid residues around basic cleavage sites in substrate recognition by these endoproteases. In addition to their participation in normal cell functions, PCs are crucial for the initiation and progress of many important diseases. Hence, these proteases constitute potential drug targets in medicine. Accordingly, this review also discusses the approaches used to shed light on the cleavage preference and the substrate specificity of the PCs, a prerequisite to select which PCs are promising drug targets in each disease.
Collapse
Affiliation(s)
- Mohamed Rholam
- Interfaces, Traitements, Organisation et Dynamique des Systrèmes, Université Paris Diderot (Paris 7), CNRS UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France.
| | | |
Collapse
|
35
|
Perroud B, Alvarado RJ, Espinal GM, Morado AR, Phinney BS, Warden CH. In vivo multiplex quantitative analysis of 3 forms of alpha melanocyte stimulating hormone in pituitary of prolyl endopeptidase deficient mice. Mol Brain 2009; 2:14. [PMID: 19490636 PMCID: PMC2698928 DOI: 10.1186/1756-6606-2-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/02/2009] [Indexed: 12/20/2022] Open
Abstract
Background In vitro reactions are useful to identify putative enzyme substrates, but in vivo validation is required to identify actual enzyme substrates that have biological meaning. To investigate in vivo effects of prolyl endopeptidase (PREP), a serine protease, on alpha melanocyte stimulating hormone (α-MSH), we developed a new mass spectrometry based technique to quantitate, in multiplex, the various forms of α-MSH. Methods Using Multiple Reaction Monitoring (MRM), we analyzed peptide transitions to quantify three different forms of α-MSH. Transitions were first confirmed using standard peptides. Samples were then analyzed by mass spectrometry using a triple quadrupole mass spectrometer, after elution from a reverse phase C18 column by a gradient of acetonitrile. Results We first demonstrate in vitro that PREP digests biological active alpha melanocyte stimulating hormone (α-MSH1–13), by cleaving the terminal amidated valine and releasing a truncated alpha melanocyte stimulating hormone (α-MSH1–12) product – the 12 residues α-MSH form. We then use the technique in vivo to analyze the MRM transitions of the three different forms of α-MSH: the deacetylated α-MSH1–13, the acetylated α-MSH1–13 and the truncated form α-MSH1–12. For this experiment, we used a mouse model (PREP-GT) in which the serine protease, prolyl endopeptidase, is deficient due to a genetrap insertion. Here we report that the ratio between acetylated α-MSH1–13 and α-MSH1–12 is significantly increased (P-value = 0.015, N = 6) in the pituitaries of PREP-GT mice when compared to wild type littermates. In addition no significant changes were revealed in the relative level of α-MSH1–13 versus the deacetylated α-MSH1–13. These results combined with the demonstration that PREP digests α-MSH1–13 in vitro, strongly suggest that α-MSH1–13 is an in vivo substrate of PREP. Conclusion The multiplex targeted quantitative peptidomics technique we present in this study will be decidedly useful to monitor several neuropeptide enzymatic reactions in vivo under varying conditions.
Collapse
Affiliation(s)
- Bertrand Perroud
- Genome Center and Bioinformatics Program, University of California, Davis, California, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Ozawa A, Speaker RB, Lindberg I. Enzymatic characterization of a human acyltransferase activity. PLoS One 2009; 4:e5426. [PMID: 19412546 PMCID: PMC2672172 DOI: 10.1371/journal.pone.0005426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Non-histone protein acylation is increasingly recognized as an important posttranslational modification, but little is known as to the biochemical properties of protein serine acylating enzymes. METHODOLOGY/PRINCIPAL FINDINGS We here report that we have identified a metal-stimulated serine octanoyltransferase activity in microsomes from human erythroleukemic (HEL) cells. The HEL acylating enzyme was linear with respect to time and protein, exhibited a neutral pH optimum (stimulated by cobalt and zinc), and inhibited by chelating reagents. Hydroxylamine treatment removed most, but not all, of the attached radioactivity. A salt extract of microsomal membranes contained the major portion of enzyme activity, indicating that this acyltransferase is not an integral membrane protein. Sucrose density fractionation showed that the acyltransferase activity is concentrated in the endoplasmic reticulum. In competition experiments, the acyltransferase was well inhibited by activated forms of fatty acids containing at least eight to fourteen carbons, but not by acetyl CoA. The zinc-stimulated HEL acyltransferase did not octanoylate proenkephalin, proopiomelanocortin, His-tagged proghrelin, or proghrelin lacking the amino-terminal His-tag stub of Gly-Ala-Met. The peptides des-acyl ghrelin and ACTH were also not acylated; however, des-acyl ghrelin containing the N-terminal tripeptide Gly-Ala-Met was acylated. Mutagenesis studies indicated a requirement for serine five residues from the amino terminus, reminiscent of myristoyl transferase, but not of ghrelin acylation. However, recombinant myristoyl transferase could not recapitulate the hydroxylamine sensitivity, zinc-stimulation, nor EDTA inhibition obtained with HEL acyltransferase, properties preserved in the HEL cell enzyme purified through four sequential chromatographic steps. CONCLUSIONS/SIGNIFICANCE In conclusion, our data demonstrate the presence of a zinc-stimulated acyltransferase activity concentrated in the endoplasmic reticulum in HEL cells which is likely to contribute to medium-chain protein lipidation.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland—Baltimore, Baltimore, Maryland, United States of America
| | - Richard B. Speaker
- Department of Anatomy and Neurobiology, University of Maryland—Baltimore, Baltimore, Maryland, United States of America
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland—Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Stevens A, White A. ACTH: cellular peptide hormone synthesis and secretory pathways. Results Probl Cell Differ 2009; 50:63-84. [PMID: 19888563 DOI: 10.1007/400_2009_30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenocorticotrophic hormone (ACTH) is derived from the prohormone, pro-opiomelanocortin (POMC). This precursor undergoes proteolytic cleavage to yield a number of different peptides which vary depending on the tissue. In the anterior pituitary, POMC is processed to ACTH by the prohormone convertase, PC1 and packaged in secretory granules ready for stimulated secretion. In response to stress, corticotrophin releasing hormone (CRH), stimulates release of ACTH from the pituitary cell which in turn causes release of glucocorticoids from the adrenal gland. In tissues, such as the hypothalamus and skin, ACTH is further processed intracellularly to alpha melanocyte stimulating hormone (alphaMSH) which has distinct roles in these tissues. The prohormone, POMC, is itself released from cells and found in the human circulation at concentrations greater than ACTH. While much is known about the tightly regulated synthesis of POMC, there is still a lot to learn about the mechanisms for differentiating secretion of POMC, and the POMC-derived peptides. Understanding what happens to the POMC released from cells will provide new insights into its function.
Collapse
Affiliation(s)
- Adam Stevens
- Endocrine Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, M13 9PT, UK.
| | | |
Collapse
|
38
|
Johansson A, Fredriksson R, Winnergren S, Hulting AL, Schiöth HB, Lindblom J. The relative impact of chronic food restriction and acute food deprivation on plasma hormone levels and hypothalamic neuropeptide expression. Peptides 2008; 29:1588-95. [PMID: 18550224 DOI: 10.1016/j.peptides.2008.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 12/24/2022]
Abstract
Our understanding of the central regulation of food intake and body weight has increased tremendously through implication of a high number of neuropeptides. However, lack of all-embracing studies have made comparison difficult in the past. The objective of this study was to demonstrate the relative importance of the different neuropeptides in terms of involvement in appetite regulatory mechanisms. We quantified expression levels of 21 hypothalamic neuropeptides and circulating levels of leptin, insulin, corticosterone, adrenocorticotropic hormone, ghrelin and adiponectin in rats after acute food deprivation and chronic food restriction using validated quantitative real-time PCR and hormone measurements. Body weight, insulin and leptin were reduced whereas corticosterone was increased by both acute food deprivation and chronic food restriction. Our results confirmed the relative importance in body weight homeostasis of neuropeptide Y and proopiomelanocortin, which were increased and decreased as predicted. The expression of other neuropeptides previously attributed central roles in body weight homeostasis, e.g. melanin-concentrating hormone and orexin, appeared to be less affected by the treatments. Moreover, the expression of dynorphin, galanin-like peptide and neuropeptide B was dramatically reduced after both treatments. This suggests that the latter neuropeptides--although previously known to be involved in body weight homeostasis--may be of unexpected importance in states of negative energy balance.
Collapse
|
39
|
Chaurand P, Rahman MA, Hunt T, Mobley JA, Gu G, Latham JC, Caprioli RM, Kasper S. Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 2008; 7:411-23. [PMID: 17991918 DOI: 10.1074/mcp.m700190-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry-based tissue profiling and imaging are technologies that allow identification and visualization of protein signals directly on thin sections cut from fresh frozen tissue specimens. These technologies were utilized to evaluate protein expression profiles in the normal mouse prostate during development (1-5 weeks of age), at sexual maturation (6 weeks of age), and in adult prostate (at 10, 15, or 40 weeks of age). The evolution of protein expression during normal prostate development and maturation were subsequently compared with 15-week prostate tumors derived from genetically engineered mice carrying the Large T antigen gene under regulation of the prostate-specific probasin promoter (LPB-Tag mouse model for prostate cancer). This approach identified proteins differentially expressed at specific time points during prostate development. Furthermore expression of some of these proteins, for example probasin and spermine-binding protein, were associated with prostate maturation, and prostate tumor formation resulted in their loss of expression. Cyclophilin A, a protein found in other cancers, was differentially alpha-acetylated on the N terminus, and both isoforms appeared during normal prostate and prostate tumor development. Imaging mass spectrometry localized the protein signals to specific prostatic lobes or regions. Thus, tissue profiling and imaging can be utilized to analyze the ontogeny of protein expression during prostate morphogenesis and tumorigenesis and identify proteins that could potentially serve as biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 2008; 48:393-423. [PMID: 18184105 PMCID: PMC2731677 DOI: 10.1146/annurev.pharmtox.48.113006.094812] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide neurotransmitters and peptide hormones, collectively known as neuropeptides, are required for cell-cell communication in neurotransmission and for regulation of endocrine functions. Neuropeptides are synthesized from protein precursors (termed proneuropeptides or prohormones) that require proteolytic processing primarily within secretory vesicles that store and secrete the mature neuropeptides to control target cellular and organ systems. This review describes interdisciplinary strategies that have elucidated two primary protease pathways for prohormone processing consisting of the cysteine protease pathway mediated by secretory vesicle cathepsin L and the well-known subtilisin-like proprotein convertase pathway that together support neuropeptide biosynthesis. Importantly, this review discusses important areas of current and future biomedical neuropeptide research with respect to biological regulation, inhibitors, structural features of proneuropeptide and protease interactions, and peptidomics combined with proteomics for systems biological approaches. Future studies that gain in-depth understanding of protease mechanisms for generating active neuropeptides will be instrumental for translational research to develop pharmacological strategies for regulation of neuropeptide functions. Pharmacological applications for neuropeptide research may provide valuable therapeutics in health and disease.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Department of Neuroscience, Pharmacology, and Medicine, School of Medicine, University of California-San Diego, La Jolla, CA 92093-0744, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Nillni EA. Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology 2007; 148:4191-200. [PMID: 17584972 DOI: 10.1210/en.2007-0173] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence demonstrated that posttranslational processing of neuropeptides is critical in the pathogenesis of obesity. Leptin or other physiological changes affects the biosynthesis and processing of many peptides hormones as well as the regulation of the family of prohormone convertases responsible for the maturation of these hormones. Regulation of energy balance by leptin involves regulation of several proneuropeptides such as proTRH and proopiomelanocortin. These proneuropeptide precursors require for their maturation proteolytic cleavage by the prohormone convertases 1 and 2 (PC1/3 and PC2). Because biosynthesis of mature peptides in response to leptin requires prohormone processing, it is hypothesized that leptin might regulate hypothalamic PC1/3 and PC2 expression, ultimately leading to coordinated processing of prohormones into mature peptides. Leptin has been shown to increase PC1/3 and PC2 promoter activities, and starvation of rats, leading to low serum leptin levels, resulted in a decrease in PC1/3 and PC2 gene and protein expression in the paraventricular and arcuate nucleus of the hypothalamus. Changes in nutritional status also changes proopiomelanocortin processing in the nucleus of the solitary tract, but this is not reversed by leptin. The PCs are also physiologically regulated by states of hyperthyroidism, hyperglycemia, inflammation, and suckling, and a recently discovered nescient helix-loop-helix-2 transcription factor is the first one to show an ability to regulate the transcription of PC1/3 and PC2. Therefore, the coupled regulation of proneuropeptide/processing enzymes may be a common process, by which cells generate more effective processing of prohormones into mature peptides.
Collapse
Affiliation(s)
- Eduardo A Nillni
- Division of Endocrinology, Department of Medicine, Brown Medical School/Rhode Island Hospital, 55 Claverick Street, Third floor, Room 320, Providence, Rhode Island 02903, USA.
| |
Collapse
|
42
|
Perello M, Stuart RC, Nillni EA. Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. Am J Physiol Endocrinol Metab 2007; 292:E1348-57. [PMID: 17227963 DOI: 10.1152/ajpendo.00466.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alpha-melanocyte-stimulating hormone (alpha-MSH), derived from proopiomelanocortin (POMC), is generated by a posttranslational processing mechanism involving the prohormone convertases (PCs) PC1/3 and PC2. In the brain, alpha-MSH is produced in the arcuate nucleus (ARC) of the hypothalamus and in the nucleus of the solitary tract (NTS) of the medulla. This peptide is key in controlling energy balance, as judged by changes observed at transcriptional level. However, little information is available regarding the biosynthesis of the precursor POMC and the production of its processed peptides during feeding, fasting, and fasting plus leptin in the ARC compared with the NTS in conjunction with the PC activity. In this study we found that, in the ARC, pomc mRNA, POMC-derived peptides, and PC1/3 all decreased during fasting, and administration of leptin reversed these effects. In contrast, in the NTS, where there is a large amount of a 28.1-kDa peptide similar in size to POMC, the 28.1-kDa peptide and other POMC-derived peptides, including alpha-MSH, were further accumulated in fasting conditions, whereas pomc mRNA decreased. These changes were not reversed by leptin. We also observed that, during fasting, PC2 levels decreased in the NTS. These data suggest that, in the NTS, fasting induced changes in POMC biosynthesis, and processing is independent of leptin. These observations indicate that changes in energy status affect POMC in the brain in a tissue-specific manner. This represents a novel aspect in the regulation of energy balance and may have implications in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Mario Perello
- Division of Endocrinology, Department of Medicine, Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
43
|
Fälth M, Sköld K, Svensson M, Nilsson A, Fenyö D, Andren PE. Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides. Mol Cell Proteomics 2007; 6:1188-97. [PMID: 17401030 DOI: 10.1074/mcp.m700016-mcp200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A new approach using targeted sequence collections has been developed for identifying endogenous peptides. This approach enables a fast, specific, and sensitive identification of endogenous peptides. Three different sequence collections were constituted in this study to mimic the peptidomic samples: SwePep precursors, SwePep peptides, and SwePep predicted. The searches for neuropeptides performed against these three sequence collections were compared with searches performed against the entire mouse proteome, which is commonly used to identify neuropeptides. These four sequence collections were searched with both Mascot and X! Tandem. Evaluation of the sequence collections was achieved using a set of manually identified and previously verified peptides. By using the three new sequence collections, which more accurately mimic the sample, 3 times as many peptides were significantly identified, with a false-positive rate below 1%, in comparison with the mouse proteome. The new sequence collections were also used to identify previously uncharacterized peptides from brain tissue; 27 previously uncharacterized peptides and potentially bioactive neuropeptides were identified. These novel peptides are cleaved from the peptide precursors at sites that are characteristic for prohormone convertases, and some of them have post-translational modifications that are characteristic for neuropeptides. The targeted protein sequence collections for different species are publicly available for download from SwePep.
Collapse
Affiliation(s)
- Maria Fälth
- Laboratory for Biological and Medical Mass Spectrometry, Biomedical Centre, Box 583, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
The proopiomelanocortin (POMC) system is the central coordinator of the systemic endocrine responses to sustained stress. It has been recently discovered that mast cells also display regulated production of POMC peptides. Since at the tissue level mast cells integrate stress responses into the neuroimmune regulatory network, it is likely that the POMC system is involved in mast cells' functions in tissue homeostasis.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, Health Science Center, University of Tennessee, Memphis, 38163, USA.
| |
Collapse
|