1
|
Kolli V, Frucci E, da Cunha IW, Iben JR, Kim SA, Mallappa A, Li T, Faucz FR, Kebebew E, Nilubol N, Quezado MM, Merke DP. Evidence of the Role of Inflammation and the Hormonal Environment in the Pathogenesis of Adrenal Myelolipomas in Congenital Adrenal Hyperplasia. Int J Mol Sci 2024; 25:2543. [PMID: 38473790 DOI: 10.3390/ijms25052543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Adrenal myelolipomas (AML) are composed of mature adipose and hematopoietic components. They represent approximately 3 percent of adrenal tumors and are commonly found in patients with congenital adrenal hyperplasia (CAH). CAH provides a unique environment to explore AML pathogenesis. We aimed to evaluate the role of the immune system and hormones that accumulate in poorly controlled CAH in the development of AML. When compared to normal adrenal tissue, CAH-affected adrenal tissue and myelolipomas showed an increased expression of inflammatory cells (CD68, IL2Rbeta), stem cells (CD117) B cells (IRF4), and adipogenic markers (aP2/FABP4, AdipoQ, PPARγ, Leptin, CideA), and immunostaining showed nodular lymphocytic accumulation. Immunohistochemistry staining revealed a higher density of inflammatory cells (CD20, CD3, CD68) in CAH compared to non-CAH myelolipomas. In vitro RNA-sequencing studies using NCI-H295R adrenocortical cells with exogenous exposure to ACTH, testosterone, and 17-hydroxyprogesterone hormones, showed the differential expression of genes involved in cell cycle progression, phosphorylation, and tumorigenesis. Migration of B-lymphocytes was initiated after the hormonal treatment of adrenocortical cells using the Boyden chamber chemotaxis assay, indicating a possible hormonal influence on triggering inflammation and the development of myelolipomas. These findings demonstrate the important role of inflammation and the hormonal milieu in the development of AML in CAH.
Collapse
Affiliation(s)
- Vipula Kolli
- National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - Emily Frucci
- National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - Isabela Werneck da Cunha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
- D'Or Institute for Research and Education (IDOR), São Paulo 05403, Brazil
| | - James R Iben
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sun A Kim
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ashwini Mallappa
- National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
| | - Tianwei Li
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Fabio Rueda Faucz
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Electron Kebebew
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Deborah P Merke
- National Institutes of Health Clinical Center, 10 Center Drive, Bethesda, MD 20892, USA
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
3
|
Drakul M, Tomić S, Bekić M, Mihajlović D, Vasiljević M, Rakočević S, Đokić J, Popović N, Bokonjić D, Čolić M. Sitagliptin Induces Tolerogenic Human Dendritic Cells. Int J Mol Sci 2023; 24:16829. [PMID: 38069152 PMCID: PMC10706581 DOI: 10.3390/ijms242316829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Sitagliptin, an anti-diabetic drug, is a dipeptidyl peptidase (DPP)-4/CD26 inhibitor with additional anti-inflammatory and immunomodulatory properties. In this study, we investigated for the first time the effect of sitagliptin on the differentiation and functions of human dendritic cells generated from monocytes (MoDCs) for 4 days using the standard GM-CSF/IL-4 procedure. LPS/IFN-γ treatment for an additional 24 h was used for maturation induction of MoDCs. Sitagliptin was added at the highest non-cytotoxic concentration (500 µg/mL) either at the beginning (sita 0d protocol) or after MoDC differentiation (sita 4d protocol). Sitagliptin impaired differentiation and maturation of MoDCs as judged with the lower expression of CD40, CD83, CD86, NLRP3, and HLA-DR, retention of CD14 expression, and inhibited production of IL-β, IL-12p70, IL-23, and IL-27. In contrast, the expression of CD26, tolerogenic DC markers (ILT4 and IDO1), and production of immunoregulatory cytokines (IL-10 and TGF-β) were increased. Generally, the sita 0d protocol was more efficient. Sitagliptin-treated MoDCs were poorer allostimulators of T-cells in MoDC/T-cell co-culture and inhibited Th1 and Th17 but augmented Th2 and Treg responses. Tolerogenic properties of sitagliptin-treated MoDCs were additionally confirmed by an increased frequency of CD4+CD25+CD127- FoxP3+ Tregs and Tr1 cells (CD4+IL-10+FoxP3-) in MoDC/T-cell co-culture. The differentiation of IL-10+ and TGF-β+ Tregs depended on the sitagliptin protocol used. A Western blot analysis showed that sitagliptin inhibited p65 expression of NF-kB and p38MAPK during the maturation of MoDCs. In conclusion, sitagliptin induces differentiation of tolerogenic DCs, and the effect is important when considering sitagliptin for treating autoimmune diseases and allotransplant rejection.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, R. Srpska, Bosnia and Herzegovina; (M.D.); (D.M.); (M.V.); (S.R.); (D.B.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia; (S.T.); (M.B.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11000 Belgrade, Serbia; (S.T.); (M.B.)
| | - Dušan Mihajlović
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, R. Srpska, Bosnia and Herzegovina; (M.D.); (D.M.); (M.V.); (S.R.); (D.B.)
| | - Miloš Vasiljević
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, R. Srpska, Bosnia and Herzegovina; (M.D.); (D.M.); (M.V.); (S.R.); (D.B.)
| | - Sara Rakočević
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, R. Srpska, Bosnia and Herzegovina; (M.D.); (D.M.); (M.V.); (S.R.); (D.B.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia; (J.Đ.); (N.P.)
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia; (J.Đ.); (N.P.)
| | - Dejan Bokonjić
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, R. Srpska, Bosnia and Herzegovina; (M.D.); (D.M.); (M.V.); (S.R.); (D.B.)
| | - Miodrag Čolić
- Medical Faculty Foca, University of East Sarajevo, 73300 Foča, R. Srpska, Bosnia and Herzegovina; (M.D.); (D.M.); (M.V.); (S.R.); (D.B.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Rao X, Razavi M, Mihai G, Wei Y, Braunstein Z, Frieman MB, Sun XJ, Gong Q, Chen J, Zhao G, Liu Z, Quon MJ, Dong L, Rajagopalan S, Zhong J. Dipeptidyl Peptidase 4/Midline-1 Axis Promotes T Lymphocyte Motility in Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204194. [PMID: 36683148 PMCID: PMC10037965 DOI: 10.1002/advs.202204194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
T cells play a crucial role in atherosclerosis, with its infiltration preceding the formation of atheroma. However, how T-cell infiltration is regulated in atherosclerosis remains largely unknown. Here, this work demonstrates that dipeptidyl peptidase-4 (DPP4) is a novel regulator of T-cell motility in atherosclerosis. Single-cell ribonucleic acid (RNA) sequencing and flow cytometry show that CD4+ T cells in atherosclerotic patients display a marked increase of DPP4. Lack of DPP4 in hematopoietic cells or T cells reduces T-cell infiltration and atherosclerotic plaque volume in atherosclerosis mouse models. Mechanistically, DPP4 deficiency reduces T-cell motility by suppressing the expression of microtubule associated protein midline-1 (Mid1) in T cells. Deletion of either DPP4 or Mid1 inhibits chemokine-induced shape change and motility, while restitution of Mid1 in Dpp4-/- T cell largely restores its migratory ability. Thus, DPP4/Mid1, as a novel regulator of T-cell motility, may be a potential inflammatory target in atherosclerosis.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Division of CardiologyDepartment of Internal MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | - Michael Razavi
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | - Georgeta Mihai
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts02115USA
| | - Yingying Wei
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | | | - Matthew B. Frieman
- Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Xiao Jian Sun
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Quan Gong
- Department of ImmunologySchool of MedicineYangtze UniversityJingzhouHubei434023P. R. China
| | - Jun Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubei442008P. R. China
| | - Gang Zhao
- Department of CardiologyShandong Provincial Hospital affiliated to Shandong UniversityJinanShandong250021P. R. China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
- Institute of Allergy and Clinical ImmunologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Michael J. Quon
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMaryland21201USA
| | - Lingli Dong
- Division of Rheumatology and ImmunologyDepartment of Internal MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Sanjay Rajagopalan
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
| | - Jixin Zhong
- Cardiovascular Research InstituteCase Western Reserve UniversityClevelandOhio44106USA
- Wexner Medical CenterThe Ohio State UniversityColumbusOhio43210USA
- Institute of Allergy and Clinical ImmunologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
- Division of Rheumatology and ImmunologyDepartment of Internal MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| |
Collapse
|
5
|
Yamagishi A, Nishida H, Ito H, Fukuhara H, Tsuchiya N. Urinary dipeptidyl peptidase-4 is a useful marker for tubulitis, and it is released from the tubular cells of kidney transplant recipients. RENAL REPLACEMENT THERAPY 2022. [DOI: 10.1186/s41100-022-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Biomarkers are needed to diagnose kidney rejection in transplant recipients. We evaluated whether dipeptidyl peptidase-4 (DPP-4) could serve as a biomarker of rejection.
Methods
We determined DPP-4 concentrations and enzymatic activities in serum and urine, as well as DPP-4 expression in 49 kidney biopsy samples from 28 kidney transplant recipients. This study was approved by the ethical standards of the institutional research committee and comply with Helsinki declaration. All patients provided their informed consent. Donors were not from prisoners and were not paid or coerced.
Results
Serum and urinary DPP-4 activities closely correlated with DPP-4 concentrations, but were suppressed by DPP-4 inhibitors. Urinary DPP-4 concentrations increased with acute T cell-mediated rejection (ATCMR; p = 0.030) and higher Banff t and i scores (p < 0.001), and correlated with urinary protein/creatinine ratios (r = 0.450), and inversely with estimated glomerular filtration rate (r = − 0.604). The area under the receiver operator characteristics curves for urinary DPP-4 concentrations with either Banff t3 or i3 scores were 0.811 (95% confidence interval: 0.687–0.934). The expression of DPP-4 in renal tubular cells was decreased in patients with ATCMR and higher in those with Banff t, i, ct, ci, ah, and ti scores, but was not associated with interstitial fibrosis/tubular atrophy.
Conclusions
We speculated that ATCMR leads to DPP-4 release from tubular cells into urine, resulting in a decrease in tubular cell expression. If so, then ATCMR would induce the elevation of urinary DPP-4 and could therefore serve as a biomarker of tubulitis.
Collapse
|
6
|
ZD-2, a novel DPP4 inhibitor, protects islet β-cell and improves glycemic control in high-fat-diet-induced obese mice. Life Sci 2022; 298:120515. [DOI: 10.1016/j.lfs.2022.120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
|
7
|
Alkharsah KR, Aljaroodi SA, Rahman JU, Alnafie AN, Al Dossary R, Aljindan RY, Alnimr AM, Hussen J. Low levels of soluble DPP4 among Saudis may have constituted a risk factor for MERS endemicity. PLoS One 2022; 17:e0266603. [PMID: 35413090 PMCID: PMC9004781 DOI: 10.1371/journal.pone.0266603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Most of the cases of Middle East respiratory syndrome coronavirus (MERS-CoV) were reported in Saudi Arabia. Dipeptidyl peptidase-4 (DPP4) was identified as the receptor for the virus. The level of soluble DPP4 (sDPP4) was found to be reduced in MERS-CoV infected patients while high levels of sDPP4 were suggested to be protective against MERS-CoV in animal models. We investigated whether the Saudi population has lower levels of sDPP4 which makes them more susceptible to MERS-CoV infection and, therefore, could explain the larger number of cases from the country. Blood samples were collected from 219 Saudi blood donors and 200 blood donors from other ethnic groups. The plasma level of sDPP4 was measured by ELISA and the following SNPs in the DPP4 gene; rs35128070, rs1861978, rs79700168, and rs17574, were genotyped by TaqMan SNP genotyping assay. The average level of plasma sDDP4 was significantly lower in Saudis than other Arabs and non-Arabs (P value 0.0003 and 0.012, respectively). The genotypes AG of rs35128070 and GT of rs1861978 were significantly associated with lower sDPP4 among Saudis (P value 0.002 for each). While both genotypes AA and AG of rs79700168 and rs17574 were associated with significantly lower average sDPP4 level in Saudis compared to other ethnic groups (P value 0.031 and 0.032, and 0.027 and 0.014, respectively). Herein, we report that the Saudi population has lower levels of plasma sDPP4 than other ethnic groups, which is associated with genetic variants in the DPP4 gene. This may have contributed to increase the susceptibility of the Saudi population to MERS-CoV infection and could be a factor in the long-lasting persistence of the virus in the country.
Collapse
Affiliation(s)
- Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- * E-mail:
| | - Salma Ali Aljaroodi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Awatif N. Alnafie
- Department of Pathology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem Y. Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Amani M. Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
8
|
Huang J, Liu X, Wei Y, Li X, Gao S, Dong L, Rao X, Zhong J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front Immunol 2022; 13:830863. [PMID: 35309368 PMCID: PMC8931313 DOI: 10.3389/fimmu.2022.830863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an ubiquitously expressed protease presented as either a membrane-bound or soluble form. DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular processes by directly binding to a number of ligands, including adenosine deaminase, CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due to its implication in fibrotic response and immunoregulation, increasing studies are focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting protein, DPP4 possesses multiple functions in different types of cells, including both enzymatic and non-enzymatic functions. However, most of the review articles on the role of DPP4 in autoimmune disease were focused on the association between DPP4 enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive summary of DPP4’s immunoregulatory actions including both enzymatic dependent and independent functions is needed. In this article, we will review the recent advances of DPP4 in immune regulation and autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Jie Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Xiaoquan Rao
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| |
Collapse
|
9
|
Abstract
Dipeptidyl peptidase 4 (DPP4), a serine protease expressed on luminal and apical cell membrane, is identical to the lymphocyte cell surface protein CD26. DPP4 rapidly deactivates hormones and cytokines by cleaving their NH2-terminal dipeptides. Its functions are based on membrane digestion and/or binding of bioactive peptides, signal molecules, and extracellular matrix components. The soluble form is also present in body fluids such as serum, urine, semen, and synovial fluid. The extremely broad distribution of CD26/DPP4 indicates its divergent roles depending on cell type and activated conditions. The cellular localization was earlier examined by enzyme histochemistry and subsequently by immunohistochemistry. Although immunohistochemical analyses are higher in specificity and easier to use at electron microscopic levels than enzyme histochemistry, the immunoreaction is considerably affected by the animal species, types of tissue sections, and specificity of antibodies. Understanding of the functional significance and advancement of its clinical use (diagnosis and treatment of diseases) require precise information on the cellular distribution including subcellular localization and pathological changes. This short review summarizes in particular immunohistochemical findings on CD26/DPP4.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| |
Collapse
|
10
|
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine - Review. Stem Cell Rev Rep 2021; 18:56-76. [PMID: 34677817 DOI: 10.1007/s12015-021-10285-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071, Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
11
|
Schmid F, Mayer C, Büttner-Herold M, von Hörsten S, Amann K, Daniel C. CD161a-positive natural killer (NK) cells and α-smooth muscle actin-positive myofibroblasts were upregulated by extrarenal DPP4 in a rat model of acute renal rejection. Diabetes Res Clin Pract 2021; 173:108691. [PMID: 33549675 DOI: 10.1016/j.diabres.2021.108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
AIMS Systemic inhibition of dipeptidyl peptidase 4 (DPP4) showed a protective effect in several transplant models. Here we assessed the specific role of extrarenal DPP4 in renal transplant rejection. METHODS Kidneys from wildtype (wt) F344 rats were either transplanted in wt Dark Agouti or congenic rats not expressing DPP4. The remaining, not transplanted donor kidney served as healthy controls. To investigate early inflammatory events rats were sacrificed 3 days after transplantation and kidneys were evaluated for inflammatory cells, capillary rarefaction, proliferation, apoptosis and myofibroblasts by immunohistochemistry. RESULTS Capillary ERG-1-positive endothelial cells were significantly more abundant in renal cortex when transplanted into DPP4 deficient compared to wt recipients. In contrast, TGF-ß and myofibroblasts were reduced by more than 25% in kidneys transplanted into DPP4 deficient compared to wt recipients. Numbers of CD161a-positive NK-cells were significantly lower in allografts in DPP4 deficient compared to wt recipients. Numbers of all other investigated immune cells were not affected by the lack of extrarenal DPP4. CONCLUSION In early transplant rejection extrarenal DPP4 is involved in the recruitment of NK-cells and early fibrosis. Beneficial effects were less pronounced than reported for systemic DPP4 inhibition, indicating that renal DPP4 is an important player in transplantation-mediated injury.
Collapse
Affiliation(s)
- Franziska Schmid
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Mayer
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Mayer AL, Scheitacker I, Ebert N, Klein T, Amann K, Daniel C. The dipeptidyl peptidase 4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis. Br J Pharmacol 2021; 178:878-895. [PMID: 33171531 DOI: 10.1111/bph.15320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of oral glucose-lowering drugs used in the treatment of type 2 diabetes. In a pilot study using human kidney biopsies, we observed high DPP-4 expression in early crescent formation. This glomerular lesion occurs in different kidney diseases and is a hallmark in the pathogenesis of renal dysfunction. Therefore, we investigated the potential involvement of DPP-4 in the pathogenesis of nephritis induced by anti-glomerular basement membrane (GBM) antibody in rats. EXPERIMENTAL APPROACH Linagliptin and vehicle were used to treat anti-GBM nephritis in a 2- and 8-week regimen, that is either preventive or therapeutic (treatment started 7 days or 4 weeks after disease induction). Kidney function, morphologic changes, inflammation and fibrosis were monitored. KEY RESULTS In the long-term experiment, linagliptin preventive treatment in anti-GBM nephritic rats significantly reduced the number of crescents, glomerulosclerosis, tubular injury and renal fibrosis, compared with those in untreated nephritic rats. Both linagliptin regimes significantly lowered the number of Pax8+ cells on the glomerular tuft in anti-GBM nephritis, indicating accelerated resolution of the cellular crescents. The linagliptin treatment did not change the podocyte stress in both therapeutic groups. Therapeutic intervention with linagliptin resulted in weaker amelioration of renal disease on Week 8 than did preventive intervention. CONCLUSION AND IMPLICATIONS DPP-4 inhibition with linagliptin ameliorates renal injury in a rat model of anti-GBM, indicating that linagliptin not only is a secure therapy in diabetes but also can improve resolution of glomerular injury and healing in non-diabetic renal disease.
Collapse
Affiliation(s)
- Anna-Lena Mayer
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Scheitacker
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nadja Ebert
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Klein
- Department of Cardio-metabolic Diseases, Boehringer Ingelheim Pharma GmbH Co KG, Biberach, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Kamakura R, Raza GS, Prasannan A, Walkowiak J, Herzig KH. Dipeptidyl peptidase-4 and GLP-1 interplay in STC-1 and GLUTag cell lines. Peptides 2020; 134:170419. [PMID: 32998057 DOI: 10.1016/j.peptides.2020.170419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin hormone, secreted from L-cells of distal ileum and colon in response to nutrient ingestion in human. GLP-1 plays a major role in gut motility, appetite regulation, and insulin secretion. Dipeptidyl peptidase-4 (DPP4), a serine peptidase, cleaves N-terminal dipeptides of GLP-1, rendering it inactive and responsible for its short half-life. DPP4 is widely expressed in numerous tissues in a membrane bound or soluble form. The enteroendocrine cell lines STC-1 and GLUTag are extensively used as models for in vitro studies, however, the basic parallel characterization between these cell lines is still missing. Previously, we demonstrated that these cell lines exhibit different responses to α-linolenic acid (αLA)-induced GLP-1 secretion. Therefore, we examined the basal and stimulated GLP-1 and DPP4 secretion between the two cell lines. GPR120 and GPR40 are known to bind long chain fatty acids. We found that STC-1 cells secreted significantly more basal and αLA-induced GLP-1 than GLUTag cells. In addition, STC-1 secreted DPP4 and expressed higher amounts of DPP4 and GPR120 than GLUTag cells, while GLUTag cells expressed higher GPR40 protein levels than STC-1 cells. Interestingly, the secreted soluble DPP4 did not change the active GLP-1 concentrations in the buffer group, and only 5.5 % of GLP-1 was degraded in the αLA stimulated group. These results suggested that STC-1 cells have a higher potential to secrete GLP-1 and DPP4 than GLUTag cells, and the membrane bound DPP4 may play a more significant role in the inactivation of GLP-1 secretion.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Aishwarya Prasannan
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, Oulu, Finland; Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
14
|
Varin EM, Hanson AA, Beaudry JL, Nguyen MA, Cao X, Baggio LL, Mulvihill EE, Drucker DJ. Hematopoietic cell- versus enterocyte-derived dipeptidyl peptidase-4 differentially regulates triglyceride excursion in mice. JCI Insight 2020; 5:140418. [PMID: 32663193 PMCID: PMC7455127 DOI: 10.1172/jci.insight.140418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022] Open
Abstract
Postprandial triglycerides (TGs) are elevated in people with type 2 diabetes (T2D). Glucose-lowering agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, also reduce postprandial TG excursion. Although the glucose-lowering mechanisms of DPP-4 have been extensively studied, how the reduction of DPP-4 activity improves lipid tolerance remains unclear. Here, we demonstrate that gut-selective and systemic inhibition of DPP-4 activity reduces postprandial TG excursion in young mice. Genetic inactivation of Dpp4 simultaneously within endothelial cells and hematopoietic cells using Tie2-Cre reduced intestinal lipoprotein secretion under regular chow diet conditions. Bone marrow transplantation revealed a key role for hematopoietic cells in modulation of lipid responses arising from genetic reduction of DPP-4 activity. Unexpectedly, deletion of Dpp4 in enterocytes increased TG excursion in high-fat diet–fed (HFD-fed) mice. Moreover, chemical reduction of DPP-4 activity and increased levels of GLP-1 were uncoupled from TG excursion in older or HFD-fed mice, yet lipid tolerance remained improved in older Dpp4–/– and Dpp4EC–/– mice. Taken together, this study defines roles for specific DPP-4 compartments, age, and diet as modifiers of DPP-4 activity linked to control of gut lipid metabolism. Gut-selective and systemic inhibition of dipeptidyl peptidase-4 activity reveals roles in gut lipid metabolism.
Collapse
Affiliation(s)
- Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Antonio A Hanson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nat Commun 2020; 11:3766. [PMID: 32724076 PMCID: PMC7387453 DOI: 10.1038/s41467-020-17556-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) modulates inflammation by enzymatic cleavage of immunoregulatory peptides and through its soluble form (sDPP4) that directly engages immune cells. Here we examine whether reduction of DPP4 activity alters inflammation. Prolonged DPP4 inhibition increases plasma levels of sDPP4, and induces sDPP4 expression in lymphocyte-enriched organs in mice. Bone marrow transplantation experiments identify hematopoietic cells as the predominant source of plasma sDPP4 following catalytic DPP4 inhibition. Surprisingly, systemic DPP4 inhibition increases plasma levels of inflammatory markers in regular chow-fed but not in high fat-fed mice. Plasma levels of sDPP4 and biomarkers of inflammation are lower in metformin-treated subjects with type 2 diabetes (T2D) and cardiovascular disease, yet exhibit considerable inter-individual variation. Sitagliptin therapy for 12 months reduces DPP4 activity yet does not increase markers of inflammation or levels of sDPP4. Collectively our findings dissociate levels of DPP4 enzyme activity, sDPP4 and biomarkers of inflammation in mice and humans.
Collapse
|
16
|
Mima A, Yasuzawa T, Nakamura T, Ueshima S. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Sci Rep 2020; 10:5775. [PMID: 32238837 PMCID: PMC7113296 DOI: 10.1038/s41598-020-62579-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Diabetes-induced podocyte apoptosis is considered to play a critical role in the pathogenesis of diabetic kidney disease (DKD). We proposed that hyperglycaemia can induce podocyte apoptosis by inhibiting the action of podocyte survival factors, thus inactivating the cellular effects of insulin signalling. In this study, we aimed to determine the effects of linagliptin on high glucose-induced podocyte apoptosis. Linagliptin reduced the increase in DNA fragmentation as well as the increase in TUNEL-positive cells in podocytes induced by high-glucose condition. Furthermore, linagliptin improved insulin-induced phosphorylation of insulin receptor substrate 1 (IRS1) and Akt, which was inhibited in high-glucose conditions. Adenoviral vector-mediated IRS1 overexpression in podocytes partially normalised DNA fragmentation in high-glucose conditions, while downregulation of IRS1 expression using small interfering RNA increased DNA fragmentation even in low-glucose conditions. Because reactive oxygen species inhibit glomerular insulin signalling in diabetes and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important intrinsic antioxidative systems, we evaluated whether linagliptin increased Nrf2 in podocytes. High-glucose condition and linagliptin addition increased Nrf2 levels compared to low-glucose conditions. In summary, linagliptin offers protection against DKD by enhancing IRS1/Akt insulin signalling in podocytes and partially via the Keap1/Nrf2 pathway. Our findings suggest that linagliptin may induce protective effects in patients with DKD, and increasing IRS1 levels could be a potential therapeutic target in DKD.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical College, Osaka, Japan.
| | - Toshinori Yasuzawa
- Department of Health and Nutrition, Faculty of Health Science, Kio University, Nara, Japan.,Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Tomomi Nakamura
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Shigeru Ueshima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.,Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
17
|
Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420912972. [PMID: 32231442 PMCID: PMC7088130 DOI: 10.1177/1179551420912972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a serine protease that rapidly inactivates the incretin peptides, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptide to modulate postprandial islet hormone secretion and glycemia. Dipeptidyl peptidase-4 also has nonglycemic effects by controlling the progression of inflammation, which may be mediated more through direct protein-protein interactions than catalytic activity in the context of nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes (T2D). Failure to resolve inflammation resulting in chronic subclinical activation of the immune system may influence the development of metabolic dysregulation. Thus, through both its cleavage and regulation of the bioactivity of peptide hormones and its influence on inflammation, DPP4 exhibits a diverse array of effects that can influence the progression of metabolic disease. Here, we highlight our current understanding of the complex biology of DPP4 at the intersection of inflammation, obesity, T2D, and NAFLD. We compare and review new mechanisms identified in basic laboratory and clinical studies, which may have therapeutic application and relevance to the pathogenesis of obesity and T2D.
Collapse
Affiliation(s)
- Natasha A Trzaskalski
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Evgenia Fadzeyeva
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Lettau M, Dietz M, Vollmers S, Armbrust F, Peters C, Dang TM, Chitadze G, Kabelitz D, Janssen O. Degranulation of human cytotoxic lymphocytes is a major source of proteolytically active soluble CD26/DPP4. Cell Mol Life Sci 2020; 77:751-764. [PMID: 31300870 PMCID: PMC11104794 DOI: 10.1007/s00018-019-03207-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4, CD26) is a serine protease detected on several immune cells and on epithelial cells of various organs. Besides the membrane-bound enzyme, a catalytically active soluble form (sCD26/DPP4) is detected in several body fluids. Both variants cleave off dipeptides from the N-termini of various chemokines, neuropeptides, and hormones. CD26/DPP4 plays a fundamental role in the regulation of blood glucose levels by inactivating insulinotropic incretins and CD26/DPP4 inhibitors are thus routinely used in diabetes mellitus type 2 therapy to improve glucose tolerance. Such inhibitors might also prevent the CD26/DPP4-mediated inactivation of the T-cell chemoattractant CXCL10 released by certain tumors and thus improve anti-tumor immunity and immunotherapy. Despite its implication in the regulation of many (patho-)physiological processes and its consideration as a biomarker and therapeutic target, the cellular source of sCD26/DPP4 remains highly debated and mechanisms of its release are so far unknown. In line with recent reports that activated T lymphocytes could be a major source of sCD26/DPP4, we now demonstrate that CD26/DPP4 is stored in secretory granules of several major human cytotoxic lymphocyte populations and co-localizes with effector proteins such as granzymes, perforin, and granulysin. Upon stimulation, vesicular CD26/DPP4 is rapidly translocated to the cell surface in a Ca2+-dependent manner. Importantly, activation-induced degranulation leads to a massive release of proteolytically active sCD26/DPP4. Since activated effector lymphocytes serve as a major source of sCD26/DPP4, these results might explain the observed disease-associated alterations of sCD26/DPP4 serum levels and also indicate a so far unknown role of CD26/DPP4 in lymphocyte-mediated cytotoxicity.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany.
| | - Michelle Dietz
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Sarah Vollmers
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Fred Armbrust
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Thi Mai Dang
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Guranda Chitadze
- Medical Department II, Unit for Hematological Diagnostics, University Hospital Schleswig-Holstein, Langer Segen 8-10, 24105, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Bldg. 17, 24105, Kiel, Germany
| |
Collapse
|
19
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
20
|
Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019; 56:139-160. [PMID: 27561663 PMCID: PMC7090975 DOI: 10.1007/s12016-016-8578-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a heterogeneous and chronic inflammatory family of disorders of the airways with increasing prevalence that results in recurrent and reversible bronchial obstruction and expiratory airflow limitation. These diseases arise from the interaction between environmental and genetic factors, which collaborate to cause increased susceptibility and severity. Many asthma susceptibility genes are linked to the immune system or encode enzymes like metalloproteases (e.g., ADAM-33) or serine proteases. The S9 family of serine proteases (prolyl oligopeptidases) is capable to process peptide bonds adjacent to proline, a kind of cleavage-resistant peptide bonds present in many growth factors, chemokines or cytokines that are important for asthma. Curiously, two serine proteases within the S9 family encoded by genes located on chromosome 2 appear to have a role in asthma: CD26/dipeptidyl peptidase 4 (DPP4) and DPP10. The aim of this review is to summarize the current knowledge about CD26 and to provide a structured overview of the numerous functions and implications that this versatile enzyme could have in this disease, especially after the detection of some secondary effects (e.g., viral nasopharyngitis) in type II diabetes mellitus patients (a subset with a certain risk of developing obesity-related asthma) upon CD26 inhibitory therapy.
Collapse
Affiliation(s)
- Juan J Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J González-Barcala
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Respiratory Department, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Esther San José
- Clinical Analysis Service, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Nogueira
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 2019; 123:265-273. [PMID: 30946971 DOI: 10.1016/j.bone.2019.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Aging is associated with decreased bone mass and accumulation of bone marrow adipocytes. Both bone forming osteoblastic cells and bone marrow adipocytes are derived from a stem cell population within the bone marrow stroma called bone marrow stromal (skeletal or mesenchymal) stem cells (BMSC). In the present review, we provide an overview, based on the current literature, regarding the physiological aging processes that cause changes in BMSC lineage allocation, enhancement of adipocyte and defective osteoblast differentiation, leading to gradual exhaustion of stem cell regenerative potential and defects in bone tissue homeostasis and metabolism. We discuss strategies to preserve the "youthful" state of BMSC, to reduce bone marrow age-associated adiposity, and to counteract the overall negative effects of aging on bone tissues with the aim of decreasing bone fragility and risk of fractures.
Collapse
Affiliation(s)
- Jan O Nehlin
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Abbas Jafari
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Tencerova
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
| | - Moustapha Kassem
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
23
|
Zhang N, Cong X, Zhou D, Guo L, Yuan C, Xu D, Su C. Predictive significance of serum dipeptidyl peptidase-IV in papillary thyroid carcinoma. Cancer Biomark 2019; 24:7-17. [PMID: 30594915 DOI: 10.3233/cbm-170908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoqiang Cong
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dan Zhou
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Congwang Yuan
- Department of Pain, Yancheng First People’s Hospital, Yancheng, Jiangsu 224000, China
| | - Dahai Xu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chang Su
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
24
|
Rao X, Zhao S, Braunstein Z, Mao H, Razavi M, Duan L, Wei Y, Toomey AC, Rajagopalan S, Zhong J. Oxidized LDL upregulates macrophage DPP4 expression via TLR4/TRIF/CD36 pathways. EBioMedicine 2019; 41:50-61. [PMID: 30738832 PMCID: PMC6441950 DOI: 10.1016/j.ebiom.2019.01.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background We and others have shown that dipeptidyl peptidase-IV (DPP4) expression is increased in obesity/atherosclerosis and is positively correlated with atherosclerotic burden. However, the mechanism by which DPP4 expression is regulated in obesity remains unclear. In this study, we investigated the pathways regulating the expression of DPP4 on macrophages. Methods Flowsight® Imaging Flow Cytometry was employed for the detection of DPP4 and immunophenotyping. DPP4 enzymatic activity was measured by a DPPIV-Glo™ Protease Assay kit. Findings Human monocytes expressed a moderate level of membrane-bound DPP4. Obese patients with body mass index (BMI) ≥ 30 had a higher level of monocyte DPP4 expression, in parallel with higher levels of HOMA-IR, blood glucose, triglycerides, and non-HDL cholesterol, compared to those in the non-obese (BMI < 30) patients. Oxidized low-density lipoprotein (oxLDL), but not native LDL, up-regulated DPP4 expression on macrophages with a preferential increase in CD36+ cells. OxLDL mediated DPP4 up-regulation was considerably diminished by Toll-like receptor-4 (TLR4) knockdown and CD36 deficiency. TRIF deficiency, but not MyD88 deficiency, attenuated oxLDL-induced DPP4 increase. Interpretation Our study suggests a key role for oxLDL and downstream CD36/TLR4/TRIF in regulating DPP4 expression. Increased DPP4 in response to oxidized lipids may represent an integrated mechanism linking post-prandial glucose metabolism to lipoprotein abnormality-potentiated atherosclerosis.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Shi Zhao
- Department of Endocrinology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zachary Braunstein
- Department of Internal Medicine, Wexnel Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hong Mao
- Department of Endocrinology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Michael Razavi
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Lihua Duan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Yingying Wei
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Amelia C Toomey
- Department of Health Sciences, University of Missouri, Columbia, MO, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
25
|
Varin EM, Mulvihill EE, Beaudry JL, Pujadas G, Fuchs S, Tanti JF, Fazio S, Kaur K, Cao X, Baggio LL, Matthews D, Campbell JE, Drucker DJ. Circulating Levels of Soluble Dipeptidyl Peptidase-4 Are Dissociated from Inflammation and Induced by Enzymatic DPP4 Inhibition. Cell Metab 2019; 29:320-334.e5. [PMID: 30393019 DOI: 10.1016/j.cmet.2018.10.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/15/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) controls glucose homeostasis through enzymatic termination of incretin action. We report that plasma DPP-4 activity correlates with body weight and fat mass, but not glucose control, in mice. Genetic disruption of adipocyte Dpp4 expression reduced plasma DPP-4 activity in older mice but did not perturb incretin levels or glucose homeostasis. Knockdown of hepatocyte Dpp4 completely abrogated the obesity-associated increase in plasma DPP-4 activity, reduced liver cytokine expression, and partially attenuated inflammation in adipose tissue without changes in incretin levels or glucose homeostasis. In contrast, circulating levels of soluble DPP4 (sDPP4) were dissociated from inflammation in mice with endothelial-selective or global genetic inactivation of Dpp4. Remarkably, inhibition of DPP-4 enzymatic activity upregulated circulating levels of sDPP4 originating from endothelial or hematopoietic cells without inducing systemic or localized inflammation. Collectively, these findings reveal unexpected complexity in regulation of soluble versus enzymatic DPP-4 and control of inflammation and glucose homeostasis.
Collapse
Affiliation(s)
- Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Gemma Pujadas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Shai Fuchs
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Jean-François Tanti
- INSERM U1065, Mediterranean Center of Molecular Medicine, University Côte d'Azur, Faculty of Medicine, 06204 Nice, France
| | - Sofia Fazio
- INSERM U1065, Mediterranean Center of Molecular Medicine, University Côte d'Azur, Faculty of Medicine, 06204 Nice, France
| | - Kirandeep Kaur
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, LTRI, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada.
| |
Collapse
|
26
|
Wang F, Zhang ZF, He YR, Wu HY, Wei SS. Effects of dipeptidyl peptidase-4 inhibitors on transforming growth factor-β1 signal transduction pathways in the ovarian fibrosis of polycystic ovary syndrome rats. J Obstet Gynaecol Res 2018; 45:600-608. [PMID: 30515927 PMCID: PMC6587993 DOI: 10.1111/jog.13847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/02/2018] [Indexed: 01/21/2023]
Abstract
Aim Examine the effects of dipeptidyl peptidase‐4 (DPP4) inhibitor Sitagliptin on the transforming growth factor‐β1 (TGF‐β1) signal transduction pathway in polycystic ovary syndrome (PCOS) rats with ovarian fibrosis. Methods Thirty rats were divided randomly into the PCOS model group, Sitagliptin treatment group and blank control group. Dehydroepiandrosterone was administered to the model group and treatment group to establish the models. Then, the phenotype of rats was recorded, and the serum sex hormone levels were measured. The pathological structures of the rat ovaries were observed. The protein and mRNA expression levels of DPP4, connective tissue growth factor (CTGF), TGF‐β1 and Smad2/3 in the ovaries were analyzed. Results There was no statistically difference in fasting body weight and blood glucose among the three groups before Sitagliptin treatment (P > 0.05). The fasting blood glucose level was significantly decreased after the administration of Sitagliptin (P < 0.05). The level of testosterone in the model group was reduced remarkably after Sitagliptin treatment (P < 0.001). The protein expression levels of DPP4, CTGF and TGF‐β1 in the ovarian stroma were lower in the treatment group than in the model group (P < 0.01, P < 0.001, P < 0.05). The mRNA levels of DPP4, CTGF and TGF‐β1 in the model group also greatly declined after Sitagliptin treatment (P < 0.05, P < 0.001, P < 0.01). Conclusion The DPP4 inhibitor Sitagliptin lowers fasting blood glucose, relieves the high androgen state of PCOS rats and delays the process of ovarian fibrosis, which may be related to reducing the levels of factors related to the TGF‐β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, China.,Department of Gynecology, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Zhi-Fen Zhang
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, China
| | - Yi-Ran He
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, China
| | - Hong-Yan Wu
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, China
| | - Shuang-Shuang Wei
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Casrouge A, Sauer AV, Barreira da Silva R, Tejera-Alhambra M, Sánchez-Ramón S, ICAReB, Cancrini C, Ingersoll MA, Aiuti A, Albert ML. Lymphocytes are a major source of circulating soluble dipeptidyl peptidase 4. Clin Exp Immunol 2018; 194:166-179. [PMID: 30251416 PMCID: PMC6194339 DOI: 10.1111/cei.13163] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4, CD26) is a serine protease that is expressed constitutively by many haematopoietic and non-haematopoietic tissues. It exists as a membrane-associated protein, as well as in an active, soluble form (herein called sDPP4), present at high concentrations in bodily fluids. Despite the proposed use of sDPP4 as a biomarker for multiple diseases, its cellular sources are not well defined. Here, we report that individuals with congenital lymphocyte immunodeficiency had markedly lower serum concentrations of sDPP4, which were restored upon successful treatment and restoration of lymphocyte haematopoiesis. Using irradiated lymphopenic mice and wild-type to Dpp4-/- reciprocal bone marrow chimeric animals, we found that haematopoietic cells were a major source of circulating sDPP4. Furthermore, activation of human and mouse T lymphocytes resulted in increased sDPP4, providing a mechanistic link between immune system activation and sDPP4 concentration. Finally, we observed that acute viral infection induced a transient increase in sDPP4, which correlated with the expansion of antigen-specific CD8+ T cell responses. Our study demonstrates that sDPP4 concentrations are determined by the frequency and activation state of lymphocyte populations. Insights from these studies will support the use of sDPP4 concentration as a biomarker for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- A Casrouge
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - A V Sauer
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - R Barreira da Silva
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, CA, USA
| | - M Tejera-Alhambra
- Servicio de Inmunología. Hospital Clínico San Carlos, Madrid, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - S Sánchez-Ramón
- Servicio de Inmunología. Hospital Clínico San Carlos, Madrid, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - ICAReB
- IcareB Platform of the Center for Translational Science, Institut Pasteur, Paris, France
| | - C Cancrini
- Ospedale Pediatrico, Bambino Gesù, Roma, Italy
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù-University of Torvergata Rome, Rome, Italy
| | - M A Ingersoll
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - A Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - M L Albert
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Department of Cancer Immunology, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
28
|
Is there a Chance to Promote Arteriogenesis by DPP4 Inhibitors Even in Type 2 Diabetes? A Critical Review. Cells 2018; 7:cells7100181. [PMID: 30360455 PMCID: PMC6210696 DOI: 10.3390/cells7100181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the prevailing cause of death not only in industrialized countries, but even worldwide. Type 2 diabetes mellitus (type 2 DM) and hyperlipidemia, a metabolic disorder that is often associated with diabetes, are major risk factors for developing CVD. Recently, clinical trials proved the safety of gliptins in treating patients with type 2 DM. Gliptins are dipeptidyl-peptidase 4 (DPP4/CD26) inhibitors, which stabilize glucagon-like peptide-1 (GLP-1), thereby increasing the bioavailability of insulin. Moreover, blocking DPP4 results in increased levels of stromal cell derived factor 1 (SDF-1). SDF-1 has been shown in pre-clinical animal studies to improve heart function and survival after myocardial infarction, and to promote arteriogenesis, the growth of natural bypasses, compensating for the function of an occluded artery. Clinical trials, however, failed to demonstrate a superiority of gliptins compared to placebo treated type 2 DM patients in terms of cardiovascular (CV) outcomes. This review highlights the function of DPP4 inhibitors in type 2 DM, and in treating cardiovascular diseases, with special emphasis on arteriogenesis. It critically addresses the potency of currently available gliptins and gives rise to hope by pointing out the most relevant questions that need to be resolved.
Collapse
|
29
|
Luippold G, Mark M, Klein T, Amann K, Daniel C. Differences in kidney-specific DPP-4 inhibition by linagliptin and sitagliptin. Diabetes Res Clin Pract 2018; 143:199-203. [PMID: 30031047 DOI: 10.1016/j.diabres.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
The two dipeptidyl peptidase (DPP)-4 inhibitors, linagliptin and sitagliptin, were shown to exert different binding kinetics in vitro. Twenty-four hours after oral dosing particularly in vivo inhibition of renal-specific DPP-4 activity was more sustained in Sprague Dawley rats after exposure to linagliptin than it was after sitagliptin.
Collapse
Affiliation(s)
- Gerd Luippold
- Boehringer Ingelheim Pharma GmbH & Co. KG, CardioMetabolic Diseases, Biberach, Germany
| | - Michael Mark
- Boehringer Ingelheim Pharma GmbH & Co. KG, CardioMetabolic Diseases, Biberach, Germany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, CardioMetabolic Diseases, Biberach, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
30
|
Stenlid R, Manell H, Halldin M, Kullberg J, Ahlström H, Manukyan L, Weghuber D, Paulmichl K, Zsoldos F, Bergsten P, Forslund A. High DPP-4 Concentrations in Adolescents Are Associated With Low Intact GLP-1. J Clin Endocrinol Metab 2018; 103:2958-2966. [PMID: 29850829 DOI: 10.1210/jc.2018-00194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/15/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Dipeptidyl peptidase 4 (DPP-4) metabolizes glucagon-like peptide-1 (GLP-1), and increased DPP4 levels are associated with obesity and visceral adiposity in adults. OBJECTIVE Investigating DPP-4 levels in adolescents and their association with (1) circulating intact GLP-1 levels and glucose tolerance; (2) body mass index (BMI); and (3) visceral, subcutaneous, and liver fat compartments. DESIGN Cross-sectional study, July 2012 to April 2015. SETTING Pediatric obesity clinic, Uppsala University Hospital. PATIENTS AND PARTICIPANTS Children and adolescents with obesity (n = 59) and lean controls (n = 21) aged 8 to 18 years. MAIN OUTCOME MEASURES BMI SD score, fasting plasma concentrations of DPP-4, total and intact GLP-1, fasting and oral glucose tolerance test (OGTT) concentrations of glucose, and visceral adipose tissue (VAT) and subcutaneous adipose tissue volumes and liver fat fraction. RESULTS Plasma DPP-4 levels decreased with age in both obese (41 ng/mL per year) and lean subjects (48 ng/mL per year). Plasma DPP-4 levels were higher in males in both the obesity and lean groups. With adjustments for age and sex, plasma DPP-4 level was negatively associated with intact GLP-1 at fasting (β = -12.3; 95% CI: -22.9, -1.8) and during OGTT (β = -12.1; 95% CI: -22.5, -1.7). No associations were found between DPP-4 and plasma glucose levels measured at fasting or after a 2-hour OGTT. Plasma DPP-4 level was 19% higher in obese subjects. Among adipose tissue compartments, the strongest association was with VAT (β = 0.05; 95% CI: -0.02, 0.12). CONCLUSIONS In adolescents, high plasma DPP-4 concentrations were associated with low proportions of intact GLP-1, high BMI, young age, and male sex. The observed associations are compatible with increased metabolism of GLP-1 in childhood obesity.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Halldin
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical, Mölndal, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical, Mölndal, Sweden
| | - Levon Manukyan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Paulmichl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Fanni Zsoldos
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Forslund
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Tzeng YS, Chung NC, Chen YR, Huang HY, Chuang WP, Lai DM. Imbalanced Osteogenesis and Adipogenesis in Mice Deficient in the Chemokine Cxcl12/Sdf1 in the Bone Mesenchymal Stem/Progenitor Cells. J Bone Miner Res 2018; 33:679-690. [PMID: 29120093 DOI: 10.1002/jbmr.3340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 11/08/2022]
Abstract
Bone and bone marrow serve as an imperative ecosystem to various types of cells participating in critical body functions. The chemokine Cxcl12, also known as stromal cell-derived factor 1 (Sdf1), is one of the communication factors in the marrow microenvironment that regulates hematopoietic stem/progenitor cell homeostasis. However, the function of Cxcl12 in other bone marrow cells in vivo is yet to be discovered. Here we report a novel function of Cxcl12 in postnatal bone development and homeostasis. Targeted deletion of Cxcl12 in Paired related homeobox 1 (Prx1)-expressing or osterix (Osx)-expressing mesenchymal stem/progenitor cells (MSPCs), but not in mature osteoblasts, resulted in marrow adiposity and reduced trabecular bone content. In vivo lineage tracing analysis revealed biased differentiation of MSPCs toward adipocytes. In contrast, adult-stage deletion of Cxcl12 in Osx-expressing cells led to reduced bone content but not adiposity. Targeting the receptor Cxcr4 in the Prx1-expressing cells also resulted in reduced trabecular bone content but not adiposity. Our study reveals a previously unidentified role of the MSPC-secreting Cxcl12 that regulates its osteogenesis and adipogenesis through the cell-autonomous and non-autonomous mechanism, respectively; which could further influence the homeostatic control of the hematopoietic system. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yi-Shiuan Tzeng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ni-Chun Chung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Ren Chen
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Po Chuang
- Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Dar-Ming Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond) 2018; 132:489-507. [PMID: 29491123 PMCID: PMC5828949 DOI: 10.1042/cs20180031] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors used to treat type 2 diabetes may have nephroprotective effects beyond the reduced renal risk conferred by glycemic control. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. The kidneys contain the highest levels of DPP-4, which is increased in diabetic nephropathy. DPP-4 inhibitors are a chemically heterogeneous class of drugs with important pharmacological differences. Of the globally marketed DPP-4 inhibitors, linagliptin is of particular interest for diabetic nephropathy as it is the only compound that is not predominantly excreted in the urine. Linagliptin is also the most potent DPP-4 inhibitor, has the highest affinity for this protein, and has the largest volume of distribution; these properties allow linagliptin to penetrate kidney tissue and tightly bind resident DPP-4. In animal models of kidney disease, linagliptin elicited multiple renoprotective effects, including reducing albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis, independent of changes in glucagon-like peptide-1 (GLP-1) and glucose levels. At the molecular level, linagliptin prevented the pro-fibrotic endothelial-to-mesenchymal transition by disrupting the interaction between membrane-bound DPP-4 and integrin β1 that enhances signaling by transforming growth factor-β1 and vascular endothelial growth factor receptor-1. Linagliptin also increased stromal cell derived factor-1 levels, ameliorated endothelial dysfunction, and displayed unique antioxidant effects. Although the nephroprotective effects of linagliptin are yet to be translated to the clinical setting, the ongoing Cardiovascular and Renal Microvascular Outcome Study with Linagliptin in Patients with Type 2 Diabetes Mellitus (CARMELINA®) study will definitively assess the renal effects of this DPP-4 inhibitor. CARMELINA® is the only clinical trial of a DPP-4 inhibitor powered to evaluate kidney outcomes.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
33
|
Mulvihill EE. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides 2018; 100:158-164. [PMID: 29412815 DOI: 10.1016/j.peptides.2017.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a widely expressed, serine protease which regulates the bioactivity of many peptides through cleavage and inactivation including the incretin hormones, glucagon like peptide -1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). Inhibitors of DPP4 are used therapeutically to treat patients with Type 2 Diabetes Mellitus (T2DM) as they potentiate incretin action to regulate islet hormone secretion and improve glycemia and post-prandial lipid excursions. The widespread clinical use of DPP4 inhibitors has increased interest in the molecular mechanisms by which these drugs mediate their beneficial effects. Traditionally, focus has remained on inhibiting the catalytic activity of DPP4 within the plasma compartment, however evidence is emerging on the importance of inactivation of membrane-bound DPP4 in selective tissue beds to potentiate local hormone gradients. Here we review the recent advances in identifying the cellular sources of both circulating and membrane-bound DPP4 important for cleavage of the incretin hormones and regulation of glucose and lipoprotein metabolism.
Collapse
Affiliation(s)
- Erin E Mulvihill
- University of Ottawa Heart Institute, University of Ottawa, Department of Biochemistry, Microbiology and Immunology, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada.
| |
Collapse
|
34
|
Nargis T, Chakrabarti P. Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life 2018; 70:112-119. [DOI: 10.1002/iub.1709] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Titli Nargis
- Division of Cell Biology and Physiology; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
35
|
Nargis T, Kumar K, Ghosh AR, Sharma A, Rudra D, Sen D, Chakrabarti S, Mukhopadhyay S, Ganguly D, Chakrabarti P. KLK5 induces shedding of DPP4 from circulatory Th17 cells in type 2 diabetes. Mol Metab 2017; 6:1529-1539. [PMID: 29107298 PMCID: PMC5681279 DOI: 10.1016/j.molmet.2017.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Increasing plasma levels and activity of dipeptidyl peptidase-4 (DPP4 or CD26) are associated with rapid progression of metabolic syndrome to overt type 2 diabetes mellitus (T2DM). While DPP4 inhibitors are increasingly used as anti-hyperglycemic agents, the reason for the increase in plasma DPP4 activity in T2DM patients remains elusive. METHODS We looked into the source of plasma DPP4 activity in a cohort of 135 treatment naive nonobese (BMI < 30) T2DM patients. A wide array of ex vivo, in vitro, and in silico methods were employed to study enzyme activity, gene expression, subcellular localization, protease identification, surface expression, and protein-protein interactions. RESULTS We show that circulating immune cells, particularly CD4+ T cells, served as an important source for the increase in plasma DPP4 activity in T2DM. Moreover, we found kallikrein-related peptidase 5 (KLK5) as the enzyme responsible for cleaving DPP4 from the cell surface by directly interacting with the extracellular loop. Expression and secretion of KLK5 is induced in CD4+ T cells of T2DM patients. In addition, KLK5 shed DPP4 from circulating CD4+ T helper (Th)17 cells and shed it into the plasma of T2DM patients. Similar cleavage and shedding activities were not seen in controls. CONCLUSIONS Our study provides mechanistic insights into the molecular interaction between KLK5 and DPP4 as well as CD4+ T cell derived KLK5 mediated enzymatic cleavage of DPP4 from cell surface. Thus, our study uncovers a hitherto unknown cellular source and mechanism behind enhanced plasma DPP4 activity in T2DM.
Collapse
Affiliation(s)
- Titli Nargis
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Kumar
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amrit Raj Ghosh
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Debrup Sen
- Zoology Department, Vidyasagar College, Kolkata, India
| | - Saikat Chakrabarti
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Dipyaman Ganguly
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
36
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
38
|
Mulvihill EE, Varin EM, Gladanac B, Campbell JE, Ussher JR, Baggio LL, Yusta B, Ayala J, Burmeister MA, Matthews D, Bang KWA, Ayala JE, Drucker DJ. Cellular Sites and Mechanisms Linking Reduction of Dipeptidyl Peptidase-4 Activity to Control of Incretin Hormone Action and Glucose Homeostasis. Cell Metab 2017; 25:152-165. [PMID: 27839908 DOI: 10.1016/j.cmet.2016.10.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Abstract
Pharmacological inhibition of the dipeptidyl peptidase-4 (DPP4) enzyme potentiates incretin action and is widely used to treat type 2 diabetes. Nevertheless, the precise cells and tissues critical for incretin degradation and glucose homeostasis remain unknown. Here, we use mouse genetics and pharmacologic DPP4 inhibition to identify DPP4+ cell types essential for incretin action. Although enterocyte DPP4 accounted for substantial intestinal DPP4 activity, ablation of enterocyte DPP4 in Dpp4Gut-/- mice did not produce alterations in plasma DPP4 activity, incretin hormone levels, and glucose tolerance. In contrast, endothelial cell (EC)-derived DPP4 contributed substantially to levels of soluble plasma DPP4 activity, incretin degradation, and glucose control. Surprisingly, DPP4+ cells of bone marrow origin mediated the selective degradation of fasting GIP, but not GLP-1. Collectively, these findings identify distinct roles for DPP4 in the EC versus the bone marrow compartment for selective incretin degradation and DPP4i-mediated glucoregulation.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Bojana Gladanac
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John R Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Bernardo Yusta
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jennifer Ayala
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Center for Metabolic Origins of Disease, Orlando, FL 32827, USA
| | - Melissa A Burmeister
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Center for Metabolic Origins of Disease, Orlando, FL 32827, USA
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Division of Reproductive Sciences, University of Toronto, Toronto, ON M5S 2J7, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Julio E Ayala
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Center for Metabolic Origins of Disease, Orlando, FL 32827, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada.
| |
Collapse
|
39
|
Wolke C, Teumer A, Endlich K, Endlich N, Rettig R, Stracke S, Fiene B, Aymanns S, Felix SB, Hannemann A, Lendeckel U. Serum protease activity in chronic kidney disease patients: The GANI_MED renal cohort. Exp Biol Med (Maywood) 2016; 242:554-563. [PMID: 28038565 DOI: 10.1177/1535370216684040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serum or plasma proteases have been associated with various diseases including cancer, inflammation, or reno-cardiovascular diseases. We aimed to investigate whether the enzymatic activities of serum proteases are associated with the estimated glomerular filtration rate (eGFR) in patients with different stages of chronic kidney disease (CKD). Our study population comprised 268 participants of the "Greifswald Approach to Individualized Medicine" (GANI_MED) cohort. Enzymatic activity of aminopeptidase A, aminopeptidase B, alanyl (membrane) aminopeptidase, insulin-regulated aminopeptidase, puromycin-sensitive aminopeptidase, leucine aminopeptidase 3, prolyl-endopeptidase (PEP), dipeptidyl peptidase 4 (DPP4), angiotensin I-converting enzyme, and angiotensin I-converting enzyme 2 (ACE2) proteases was measured in serum. Linear regression of the respective protease was performed on kidney function adjusted for age and sex. Kidney function was modeled either by the continuous Modification of Diet in Renal Disease (MDRD)-based eGFR or dichotomized by eGFR < 15 mL/min/1.73 m2 or <45 mL/min/1.73 m2, respectively. Results with a false discovery rate below 0.05 were deemed statistically significant. Among the 10 proteases investigated, only the activities of ACE2 and DPP4 were correlated with eGFR. Patients with lowest eGFR exhibited highest DPP4 and ACE2 activities. DPP4 and PEP were correlated with age, but all other serum protease activities showed no associations with age or sex. Our data indicate that ACE2 and DPP4 enzymatic activity are associated with the eGFR in patients with CKD. This finding distinguishes ACE2 and DPP4 from other serum peptidases analyzed and clearly indicates that further analyses are warranted to identify the precise role of these serum ectopeptidases in the pathogenesis of CKD and to fully elucidate underlying molecular mechanisms. Impact statement • Renal and cardiac diseases are very common and often occur concomitantly, resulting in increased morbidity and mortality. Understanding of molecular mechanisms linking both diseases is limited, available fragmentary data point to a role of the renin-angiotensin system (RAS) and, in particular, Ras-related peptidases. • Here, a comprehensive analysis of serum peptidase activities in patients with different stages of chronic kidney disease (CKD) is presented, with special emphasis given to RAS peptidases • The serum activities of the peptidases angiotensin I-converting enzyme 2 and dipeptidyl peptidase 4 were identified as closely associated with kidney function, specifically with the estimated glomerular filtration rate. The findings are discussed in the context of available data suggesting protective roles for both enzymes in reno-cardiac diseases. • The data add to our understanding of pathomechanisms underlying development and progression of CKD and indicate that both enzymes might represent potential pharmacological targets for the preservation of renal function.
Collapse
Affiliation(s)
- Carmen Wolke
- 1 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Alexander Teumer
- 2 Dept. SHIP/KEF, Institute of Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Karlhans Endlich
- 3 Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Nicole Endlich
- 3 Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Rainer Rettig
- 4 Institute of Physiology, University Medicine Greifswald, Karlsburg D-17495, Germany
| | - Sylvia Stracke
- 5 Department of Internal Medicine A, Nephrology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Beate Fiene
- 5 Department of Internal Medicine A, Nephrology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Simone Aymanns
- 5 Department of Internal Medicine A, Nephrology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Stephan B Felix
- 6 Department of Internal Medicine B, Cardiology, Angiology, Pneumology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Anke Hannemann
- 7 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- 1 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| |
Collapse
|
40
|
Zhong J, Kankanala S, Rajagopalan S. Dipeptidyl peptidase-4 inhibition: insights from the bench and recent clinical studies. Curr Opin Lipidol 2016; 27:484-92. [PMID: 27472408 PMCID: PMC5147592 DOI: 10.1097/mol.0000000000000340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is the leading cause of death globally. The pathophysiology of atherosclerosis is not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. Recent advances in the understanding of DPP4 function in atherosclerosis will be discussed in this review. RECENT FINDINGS Multiple preclinical and clinical studies suggest DPP4/glucagon-like peptide-1 axis is involved in the development of atherosclerotic disease. However, several recent trials assessing the cardiovascular effects of DPP4 inhibition indicate enzymatic inhibition of DPP4 lacks beneficial effects on cardiovascular disease. SUMMARY Catalytic inhibition of DPP4 with DPP4 inhibitors alters pathways that could favor cardioprotection. Glucagon-like peptide-1 receptor-independent aspects of DPP4 function may contribute to the overall neutral effects on cardiovascular outcome seen in the outcome trials.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA *Jixin Zhong and Sanjay Rajagopalan contributed equally to the writing of this article
| | | | | |
Collapse
|
41
|
Wagner L, Kaestner F, Wolf R, Stiller H, Heiser U, Manhart S, Hoffmann T, Rahfeld JU, Demuth HU, Rothermundt M, von Hörsten S. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation. Neuropeptides 2016; 57:21-34. [PMID: 26988064 DOI: 10.1016/j.npep.2016.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP4; EC 3.4.14.5; CD26) is a membrane-bound or shedded serine protease that hydrolyzes dipeptides from the N-terminus of peptides with either proline or alanine at the penultimate position. Substrates of DPP4 include several stress-related neuropeptides implicated in anxiety, depression and schizophrenia. A decline of DPP4-like activity has been reported in sera from depressed patient, but not fully characterized regarding DPP4-like enzymes, therapeutic interventions and protein. METHODS Sera from 16 melancholic- and 16 non-melancholic-depressed patients were evaluated for DPP4-like activities and the concentration of soluble DPP4 protein before and after treatment by anti-depressive therapies. Post-translational modification of DPP4-isoforms and degradation of NPY, Peptide YY (PYY), Galanin-like peptide (GALP), Orexin B (OrxB), OrxA, pituitary adenylate cyclase-activating polypeptide (PACAP) and substance P (SP) were studied in serum and in ex vivo human blood. N-terminal truncation of biotinylated NPY by endothelial membrane-bound DPP4 versus soluble DPP4 was determined in rat brain perfusates and spiked sera. RESULTS Lower DPP4 activities in depressed patients were reversed by anti-depressive treatment. In sera, DPP4 contributed to more than 90% of the overall DPP4-like activity and correlated with its protein concentration. NPY displayed equal degradation in serum and blood, and was equally truncated by serum and endothelial DPP4. In addition, GALP and rat OrxB were identified as novel substrates of DPP4. CONCLUSION NPY is the best DPP4-substrate in blood, being truncated by soluble and membrane DPP4, respectively. The decline of soluble DPP4 in acute depression could be reversed upon anti-depressive treatment. Peptidases from three functional compartments regulate the bioactivity of NPY in blood.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e,V., Stuttgart, Germany; Probiodrug AG, Halle, Germany; Universitätsklinikum Erlangen, Department of Experimental Therapy, Erlangen, Germany.
| | - Florian Kaestner
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Raik Wolf
- Center for Clinical Chemistry, Microbiology and Transfusion, Klinikum St. Georg gGmbH, Germany; Probiodrug AG, Halle, Germany
| | | | | | | | - Torsten Hoffmann
- Center for Clinical Chemistry, Microbiology and Transfusion, Klinikum St. Georg gGmbH, Germany
| | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Münster, Münster, Germany; St. Rochus-Hospital Telgte, 48291 Telgte, Germany
| | - Stephan von Hörsten
- Universitätsklinikum Erlangen, Department of Experimental Therapy, Erlangen, Germany.
| |
Collapse
|
42
|
Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin Exp Immunol 2016; 185:1-21. [PMID: 26919392 DOI: 10.1111/cei.12781] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation.
Collapse
Affiliation(s)
- C Klemann
- Center of Pediatric Surgery, Hannover Medical School, Hannover.,Center of Chronic Immunodeficiency, University Medical Center Freiburg, University Medical Center Freiburg
| | - L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
Affiliation(s)
- L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V, Stuttgart.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Klemann
- Centre of Paediatric Surgery.,Centre for Paediatrics and Adolescent Medicine
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. FIBROGENESIS & TISSUE REPAIR 2016; 9:1. [PMID: 26877767 PMCID: PMC4752740 DOI: 10.1186/s13069-016-0038-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage kidney disease worldwide and is associated with increased morbidity and mortality in patients with both type 1 and type 2 diabetes. Recent evidence revealed that dipeptidyl peptidase-4 (DPP-4) inhibitors may exhibit a protective effect against DN. In fact, the kidney is the organ where the DPP-4 activity is the highest level per organ weight. A preclinical analysis revealed that DPP-4 inhibitors also ameliorated kidney fibrosis. In this review, we analyzed recent reports in this field and explore the renoprotective effects and possible mechanism of the DPP-4 inhibitors.
Collapse
Affiliation(s)
- Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; The Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, 646000 People's Republic of China
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan ; Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293 Japan
| |
Collapse
|
45
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
46
|
Gong Q, Rajagopalan S, Zhong J. Dpp4 inhibition as a therapeutic strategy in cardiometabolic disease: Incretin-dependent and -independent function. Int J Cardiol 2015; 197:170-9. [PMID: 26142202 PMCID: PMC7114201 DOI: 10.1016/j.ijcard.2015.06.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/03/2015] [Accepted: 06/20/2015] [Indexed: 12/25/2022]
Abstract
Cardiometabolic disorders including obesity, diabetes and cardiovascular disease are among the most severe health problems worldwide. DPP4 enzymatic inhibitors were first developed as anti-diabetic reagents which preserve incretin hormones and promote post-prandial insulin secretion. It's been shown in animal studies that incretin-based therapy has a beneficial effect on cardiovascular disease. Recent studies demonstrated novel non-catalytic functions of DPP4 that may play a role in cardiometabolic disease. Although the role of DPP4 inhibition-mediated incretin effects has been well-reviewed, little information of its incretin-independent actions was introduced in cardiometabolic disease. In the current review, we will summarize the catalytic dependent and independent effects of DPP4 inhibition on cardiometabolic disease. Discuss the findings from recent large scale clinical trials (EXAMINE and SAVOR-TIMI 53) Summarize the catalytic dependent and independent effects of DPP4 inhibition on cardiometabolic disease Focus on recent evidence linking DPP4 inhibition therapy with cardiovascular disease Provide mechanistic insights into the cardiovascular effect of DPP4
Collapse
Affiliation(s)
- Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jixin Zhong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, PR China; Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Dingenouts CKE, Goumans MJ, Bakker W. Mononuclear cells and vascular repair in HHT. Front Genet 2015; 6:114. [PMID: 25852751 PMCID: PMC4369645 DOI: 10.3389/fgene.2015.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) or Rendu–Osler–Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.
Collapse
Affiliation(s)
- Calinda K E Dingenouts
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| | - Wineke Bakker
- Department of Molecular Cell Biology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
48
|
Ohnuma K, Hatano R, Aune TM, Otsuka H, Iwata S, Dang NH, Yamada T, Morimoto C. Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3697-712. [PMID: 25786689 DOI: 10.4049/jimmunol.1402785] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Obliterative bronchiolitis is a potentially life-threatening noninfectious pulmonary complication after allogeneic hematopoietic stem cell transplantation and the only pathognomonic manifestation of pulmonary chronic graft-versus-host disease (cGVHD). In the current study, we identified a novel effect of IL-26 on transplant-related obliterative bronchiolitis. Sublethally irradiated NOD/Shi-scidIL2rγ(null) mice transplanted with human umbilical cord blood (HuCB mice) gradually developed clinical signs of graft-versus-host disease (GVHD) such as loss of weight, ruffled fur, and alopecia. Histologically, lung of HuCB mice exhibited obliterative bronchiolitis with increased collagen deposition and predominant infiltration with human IL-26(+)CD26(+)CD4 T cells. Concomitantly, skin manifested fat loss and sclerosis of the reticular dermis in the presence of apoptosis of the basilar keratinocytes, whereas the liver exhibited portal fibrosis and cholestasis. Moreover, although IL-26 is absent from rodents, we showed that IL-26 increased collagen synthesis in fibroblasts and promoted lung fibrosis in a murine GVHD model using IL-26 transgenic mice. In vitro analysis demonstrated a significant increase in IL-26 production by HuCB CD4 T cells following CD26 costimulation, whereas Ig Fc domain fused with the N-terminal of caveolin-1 (Cav-Ig), the ligand for CD26, effectively inhibited production of IL-26. Administration of Cav-Ig before or after onset of GVHD impeded the development of clinical and histologic features of GVHD without interrupting engraftment of donor-derived human cells, with preservation of the graft-versus-leukemia effect. These results therefore provide proof of principle that cGVHD of the lungs is caused in part by IL-26(+)CD26(+)CD4 T cells, and that treatment with Cav-Ig could be beneficial for cGVHD prevention and therapy.
Collapse
Affiliation(s)
- Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Satoshi Iwata
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Nam H Dang
- Division of Hematology and Oncology, University of Florida, Gainesville, FL 32610; and
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| |
Collapse
|
49
|
Abstract
Dipeptidyl peptidase-4 (DPP4) is a widely expressed enzyme transducing actions through an anchored transmembrane molecule and a soluble circulating protein. Both membrane-associated and soluble DPP4 exert catalytic activity, cleaving proteins containing a position 2 alanine or proline. DPP4-mediated enzymatic cleavage alternatively inactivates peptides or generates new bioactive moieties that may exert competing or novel activities. The widespread use of selective DPP4 inhibitors for the treatment of type 2 diabetes has heightened interest in the molecular mechanisms through which DPP4 inhibitors exert their pleiotropic actions. Here we review the biology of DPP4 with a focus on: 1) identification of pharmacological vs physiological DPP4 substrates; and 2) elucidation of mechanisms of actions of DPP4 in studies employing genetic elimination or chemical reduction of DPP4 activity. We review data identifying the roles of key DPP4 substrates in transducing the glucoregulatory, anti-inflammatory, and cardiometabolic actions of DPP4 inhibitors in both preclinical and clinical studies. Finally, we highlight experimental pitfalls and technical challenges encountered in studies designed to understand the mechanisms of action and downstream targets activated by inhibition of DPP4.
Collapse
Affiliation(s)
- Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|