1
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024:e13725. [PMID: 39087342 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Jiangsu, China
| | - Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziyue Wu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Peters VB, Matheis F, Erdmann I, Nemade HN, Muders D, Toubartz M, Torun M, Mehrkens D, Geißen S, Nettersheim FS, Picard F, Guthoff H, Hof A, Arkenberg P, Arand B, Klinke A, Rudolph V, Hansen HP, Bachurski D, Adam M, Hoyer FF, Winkels H, Baldus S, Mollenhauer M. Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction. Front Immunol 2024; 15:1360700. [PMID: 38736886 PMCID: PMC11082299 DOI: 10.3389/fimmu.2024.1360700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.
Collapse
Affiliation(s)
- Vera B.M. Peters
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friederike Matheis
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Immanuel Erdmann
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Harshal N. Nemade
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Muders
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Toubartz
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Merve Torun
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Felix Picard
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Per Arkenberg
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Birgit Arand
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum Nordrhein Westfalen (NRW), University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Hinrich Peter Hansen
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Jia W, Fu Y, Zhang N, Zhang N, Wang T, Wang Z, Zhang N, Xu J, Yang X, Zhang Q, Li C, Zhang X, Yang W, Han B, Zhang L, Tang N, Bai Z. Ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) associated with pro-thrombotic biomarkers among young healthy adults: A 16 times repeated measurements panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169433. [PMID: 38128672 DOI: 10.1016/j.scitotenv.2023.169433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Studies have shown that the cardio/cerebrovascular toxicity of ambient PM2.5 is related to its bound polycyclic aromatic hydrocarbons (PAHs). Currently, only a few studies have reported the relationship between PM2.5-bound PAHs and promoted blood coagulation and thrombosis, but there isn't a consistent conclusion. Therefore, we conducted a prospective panel study to investigate the association. Thirty-three young healthy adults participated in sixteen repeated visits from 2014 to 2018 in Tianjin, China. During each visit, three pro-thrombotic biomarkers: ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motif 13), D-dimer and Myeloperoxidase (MPO) were measured. Before each visit, ambient PM2.5 samples were daily collected for one week. Sixteen PAHs were determined using Gas Chromatography-Mass Spectrometer, and the positive matrix factorization (PMF) model was applied to identify the sources. Linear mixed-effects models were fitted to investigate the associations between PM2.5-bound PAHs exposure and the biomarkers. Thirteen time-metrics were defined to identify significant time points of PM2.5-bound PAHs' effects. We observed that the increase of PM2.5-bound PAHs exposure was significantly associated with reduced ADAMTS13, elevated D-dimer and MPO. At lag0, each 5.7 ng/m3 increase in Benzo[j]fluoranthene and per 3.4 ng/m3 increase Dibenz[a,h]anthracene could make a maximum change of -19.08 % in ADAMTS13 and 132.60 % in D-dimer. Additionally, per 16.43 ng/m3 increase in Chrysene could lead to a maximum elevation of 32.14 % in MPO at lag4. The PM2.5-bound PAHs often triggered more significant changes at lag 3,4 and 6. The ambient PM2.5-bound PAHs originated from six sources: coal combustion (43.10 %), biomass combustion (20.77 %), diesel emission (14.78 %), gasoline emission (10.95 %), industrial emission (7.58 %), and cooking emission (2.83 %). The greatest contributors to alterations in ADAMTS13, D-dimer and MPO are industrial emission (-48.43 %), biomass combustion (470.32 %) and diesel emission (13.14 %) at lag4. Our findings indicated that short-term exposure to ambient PM2.5-bound PAHs can induce alterations of pro-thrombotic biomarkers among healthy adults.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yucong Fu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Nan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Ningyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Changping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Vamshi G, D S N B K P, Sampath A, Dammalli M, Kumar P, B S G, Pasala PK, Somasekhar G, Challa MC, Alluril R, Narala VR. Possible cerebroprotective effect of citronellal: molecular docking, MD simulation and in vivo investigations. J Biomol Struct Dyn 2024; 42:1208-1219. [PMID: 37286367 DOI: 10.1080/07391102.2023.2220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 06/09/2023]
Abstract
This study focused on molecular docking, dynamic simulation, and in vivo approaches to examine the molecular interactions between citronellal (CT) and neurotoxic proteins. In silico studies of CT were performed using proteins involved in the pathophysiology of stroke, such as interleukin-6 (IL-6), interleukin-12 (IL-12), TNF-α, and nitric oxide synthase (NOS), to determine the binding affinity based on their interactions. The docking results of CT revealed that, among the targets, NOS had a better binding energy of -6.4 Kcal/mol. NOS showed good hydrophobic interactions: TYR A, 347; VAL A, 352; PRO A, 350; TYR A, 373 amino acids. Interactions with IL-6, TNF-α, and IL-12 resulted in lower binding affinities of -3.7, -3.9 and -3.1 Kcal/mol. Based on molecular dynamics simulations of 100 ns, the binding affinity of CT (-66.782 ± 7.309 kJ/mol) was well complemented, and NOS stability at the docked site was confirmed. In in vivo studies, cerebral stroke was induced by occlusion of the bilateral common carotid arteries for 30 min and reperfusion for 4 h. CT treatment protected the brain by decreasing cerebral infarction size, increasing GSH(p < 0.001***), decreasing MPO (p < 0.001***), MDA (p < 0.001***), NO production (p < 0.01**), and AChE (p < 0.001***) compared to stroke rats. Histopathological examination revealed that CT treatment reduced the severity of cerebral damage. The investigation concluded that CT strongly binds to NOS, as observed in molecular docking and dynamic simulation studies, which are involved in nitric oxide production, leading to cerebral damage, and CT treatment reduces NO production and oxidative stress parameters, and increases antioxidants via inhibition of NOS function.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Vamshi
- SKU College of Pharmaceutical Sciences, SKU, Ananthapuramu, Andhra Pradesh, India
| | - Prasanth D S N B K
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India
| | - A Sampath
- Department of QA, EQRX International Inc, Cambridge, Massachusetts, USA
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technosslogy, Tumkur, Karnataka, India
| | - Pankaj Kumar
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, India
| | - Gowrishankar B S
- Department of Biotechnology, Siddaganga Institute of Technosslogy, Tumkur, Karnataka, India
| | | | - G Somasekhar
- SKU College of Pharmaceutical Sciences, SKU, Ananthapuramu, Andhra Pradesh, India
| | | | - Ramesh Alluril
- Vishnu Institute of Pharmaceutical Education & Research, Medak, Telangana, India
| | | |
Collapse
|
5
|
Kryczka KE, Demkow M, Dzielińska Z. Biomarkers in Peripartum Cardiomyopathy-What We Know and What Is Still to Be Found. Biomolecules 2024; 14:103. [PMID: 38254703 PMCID: PMC10813209 DOI: 10.3390/biom14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a form of heart failure, often severe, that occurs in previously healthy women at the end of their pregnancy or in the first few months after delivery. In PPCM, the recovery of heart function reaches 45-50%. However, the all-cause mortality in long-term observation remains high, reaching 20% irrespective of recovery status. The incidence of PPCM is increasing globally; therefore, effort is required to clarify the pathophysiological background of the disease, as well as to discover specific diagnostic and prognostic biomarkers. The etiology of the disease remains unclear, including oxidative stress; inflammation; hormonal disturbances; endothelial, microcirculatory, cardiomyocyte and extracellular matrix dysfunction; fibrosis; and genetic mutations. Currently, antiangiogenic 16-kDa prolactin (PRL), cleaved from standard 23-kDa PRL in the case of unbalanced oxidative stress, is recognized as the main trigger of the disease. In addition, 16-kDa PRL causes damage to cardiomyocytes, acting via microRNA-146a secreted from endothelial cells as a cause of the NF-κβ pathway. Bromocriptine, which inhibits the secretion of PRL from the pituitary gland, is now the only specific treatment for PPCM. Many different phenotypes of the disease, as well as cases of non-responders to bromocriptine treatment, indicate other pathophysiological pathways that need further investigation. Biomarkers in PPCM are not well established. There is a deficiency in specific diagnostic biomarkers. Pro-brain-type natriuretic peptide (BNP) and N-terminal BNP are the best, however unspecific, diagnostic biomarkers of heart failure at the moment. Therefore, more efforts should be engaged in investigating more specific biomolecules of a diagnostic and prognostic manner such as 16-kDa PRL, galectin-3, myeloperoxidase, or soluble Fms-like tyrosine kinase-1/placental growth factor ratio. In this review, we present the current state of knowledge and future directions of exploring PPCM pathophysiology, including microRNA and heat shock proteins, which may improve diagnosis, treatment monitoring, and the development of specific treatment strategies, and consequently improve patients' prognosis and outcome.
Collapse
Affiliation(s)
- Karolina E. Kryczka
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | | |
Collapse
|
6
|
Harper A, Chapel M, Hodgson G, Malinowski K, Yates I, Garle M, Ralevic V. GYY4137, a hydrogen sulfide donor, protects against endothelial dysfunction in porcine coronary arteries exposed to myeloperoxidase and hypochlorous acid. Vascul Pharmacol 2023; 152:107199. [PMID: 37500030 DOI: 10.1016/j.vph.2023.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS Myeloperoxidase (MPO) and its principal reaction product hypochlorous acid (HOCl) are part of the innate immune response but are also associated with endothelial dysfunction, thought to involve a reduction in nitric oxide (NO) bioavailability. We aimed to investigate the effect of MPO and HOCl on vasorelaxation of coronary arteries and to assess directly the involvement of NO. In addition, we hypothesised that the slow release hydrogen sulfide (H2S) donor GYY4137 would salvage coronary artery endothelial function in the presence of MPO and HOCl. METHODS AND RESULTS Contractility of porcine coronary artery segments was measured using isometric tension recording. Incubation with MPO (50 ng/ml) plus hydrogen peroxide (H2O2) (30 μM; substrate for MPO) impaired endothelium-dependent vasorelaxation to bradykinin in coronary arteries. HOCl (10-500 μM) also impaired endothelium-dependent relaxations. There was no effect of MPO plus H2O2, or HOCl, on endothelium-independent relaxations to 5'-N-ethylcarboxamidoadenosine and sodium nitroprusside. L-NAME (300 μM), a NO synthase inhibitor, attenuated bradykinin relaxations, leaving L-NAME-resistant relaxations to bradykinin mediated by endothelium-dependent hyperpolarization. In the presence of L-NAME, MPO plus H2O2 largely failed to impair endothelium-dependent relaxations to bradykinin. Similarly, HOCl failed to inhibit endothelium-dependent relaxations to bradykinin in the presence of L-NAME. GYY4137 (1-100 μM) protected endothelium-dependent relaxations to bradykinin from dysfunction caused by MPO plus H2O2, and HOCl, with no effect alone on bradykinin relaxation responses. The specific MPO inhibitor aminobenzoic acid hydrazide (ABAH) (1 and 10 μM) also protected against MPO plus H2O2-induced endothelial dysfunction (at 10 μM ABAH), but was less potent than GYY4137. CONCLUSIONS MPO plus H2O2, and HOCl, impair coronary artery endothelium-dependent vasorelaxation via inhibition of NO. GYY4137 protects against endothelial dysfunction in arteries exposed to MPO plus H2O2, and HOCl. H2S donors such as GYY4137 are possible therapeutic options to control excessive MPO activity in cardiovascular diseases.
Collapse
Affiliation(s)
- Andrew Harper
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Maike Chapel
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Grace Hodgson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Imogen Yates
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Michael Garle
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Vera Ralevic
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
7
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
8
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
9
|
Guthoff H, Hof A, Klinke A, Maaß M, Konradi J, Mehrkens D, Geißen S, Nettersheim FS, Braumann S, Michaelsson E, Nies RJ, Lee S, Redzinski MC, Peters VBM, Nemade HN, von Stein P, Winkels H, Rudolph V, Baldus S, Adam M, Mollenhauer M. Protective Effects of Therapeutic Neutrophil Depletion and Myeloperoxidase Inhibition on Left Ventricular Function and Remodeling in Myocardial Infarction. Antioxidants (Basel) 2022; 12:antiox12010033. [PMID: 36670895 PMCID: PMC9854671 DOI: 10.3390/antiox12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. Improved survival has led to an increasing incidence of ischemic cardiomyopathy, making it a major reason for hospitalization in the western world. The inflammatory response in the ischemic myocardium determines the extent of structural remodeling and functional deterioration, with neutrophils (PMN) being a key modulator of the propagation and resolution of inflammation. The heme enzyme myeloperoxidase (MPO) is abundantly expressed in PMN and is an important mediator of their inflammatory capacities. Here, we examine the effects of PMN reduction, MPO deficiency and MPO inhibition in two murine models of MI. Reduction in PMN count resulted in less scar formation and improved cardiac function. Similar results were obtained in genetically MPO deficient mice, suggesting that MPO is a critical factor in PMN-mediated cardiac remodeling. To test our findings in a therapeutic approach, we orally administered the MPO inhibitor AZM198 in the context of MI and could demonstrate improved cardiac function and reduced structural remodeling. Therefore, MPO appears to be a favorable pharmacological target for the prevention of long-term morbidity after MI.
Collapse
Affiliation(s)
- Henning Guthoff
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| | - Alexander Hof
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Martina Maaß
- Division of Dry-Eye and Ocular GVHD, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jürgen Konradi
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Dennis Mehrkens
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Felix S. Nettersheim
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Simon Braumann
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Erik Michaelsson
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Z4-46798 Gothenburg, Sweden
| | - Richard J. Nies
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Samuel Lee
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Marie-Christin Redzinski
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Vera B. M. Peters
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Harshal N. Nemade
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Philipp von Stein
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Holger Winkels
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| | - Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
10
|
Perhexiline Therapy in Patients with Type 2 Diabetes: Incremental Insulin Resistance despite Potentiation of Nitric Oxide Signaling. Biomedicines 2022; 10:biomedicines10102381. [PMID: 36289640 PMCID: PMC9598312 DOI: 10.3390/biomedicines10102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Perhexiline (Px) inhibits carnitine palmitoyltransferase 1 (CPT1), which controls uptake of long chain fatty acids into mitochondria. However, occasional cases of hypoglycaemia have been reported in Px-treated patients, raising the possibility that Px may also increase sensitivity to insulin. Furthermore, Px increases anti-aggregatory responses to nitric oxide (NO), an effect which may theoretically parallel insulin sensitization. We therefore sought to examine these relationships in patients with stable Type 2 diabetes (T2D) and cardiovascular disease (n = 30). Px was initiated, and dosage was titrated, to reach the therapeutic range and thus prevent toxicity. Investigations were performed before and after 2 weeks, to examine changes in insulin sensitivity and, utilizing aggregometry in whole blood, platelet responsiveness to the anti-aggregatory effects of the NO donor sodium nitroprusside (SNP). Other parameters that affect may affect NO signalling were also evaluated. Px substantially potentiated inhibition of platelet aggregation by SNP (from 16.7 ± 3.0 to 27.3 ± 3.7%; p = 0.005). Px did not change fasting blood glucose concentrations but reduced insulin sensitivity (HOMA-IR score increased from median of 4.47 to 6.08; p = 0.028), and increased fasting plasma insulin concentrations (median 16.5 to 19.0 mU/L; p = 0.014). Increases in SNP responses tended (r = −0.30; p = 0.11) to be reciprocally related to increases in HOMA-IR, and increases in HOMA-IR were greater (p = 0.002) in patients without NO-sensitizing effects. No patient developed symptomatic hypoglycaemia, nor was there any other short-term toxicity of Px. Thus, in patients with stable T2D and cardiovascular disease, Px increases anti-aggregatory responsiveness to NO, but is not an insulin sensitizer, and does not induce hypoglycaemia. Absence of NO-sensitizing effect occurs in approximately 30% of Px-treated patients with T2D, and is associated with induction of insulin resistance in these patients.
Collapse
|
11
|
On the Aggregation of Apolipoprotein A-I. Int J Mol Sci 2022; 23:ijms23158780. [PMID: 35955915 PMCID: PMC9369196 DOI: 10.3390/ijms23158780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo, apolipoprotein A-I (ApoA-I) is commonly found together with lipids in so-called lipoprotein particles. The protein has also been associated with several diseases—such as atherosclerosis and amyloidosis—where insoluble aggregates containing ApoA-I are deposited in various organs or arteries. The deposited ApoA-I has been found in the form of amyloid fibrils, suggesting that amyloid formation may be involved in the development of these diseases. In the present study we investigated ApoA-I aggregation into amyloid fibrils and other aggregate morphologies. We studied the aggregation of wildtype ApoA-I as well as a disease-associated mutant, ApoA-I K107Δ, under different solution conditions. The aggregation was followed using thioflavin T fluorescence intensity. For selected samples the aggregates formed were characterized in terms of size, secondary structure content, and morphology using circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy and cryo transmission electron microscopy. We find that ApoA-I may form globular protein-only condensates, in which the α-helical conformation of the protein is retained. The protein in its unmodified form appears resistant to amyloid formation; however, the conversion into amyloid fibrils rich in β-sheet is facilitated by oxidation or mutation. In particular, the K107Δ mutant shows higher amyloid formation propensity, and the end state appears to be a co-existence of β-sheet rich amyloid fibrils and α-helix-rich condensates.
Collapse
|
12
|
Effect of solvents and glutathione on the decomposition of the nitrosyl iron complex with N-ethylthiourea ligands: An experimental and theoretical study. J Inorg Biochem 2022; 235:111926. [PMID: 35843200 DOI: 10.1016/j.jinorgbio.2022.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022]
Abstract
Dinitrosyl iron complexes (DNICs) are a depot and potential source of free NO in organisms. Their synthetic analog, N-ethylthiourea DNIC [Fe(SC(NH2)(NHC2H5))2(NO)2]+Cl-∙[Fe(SC(NH2)(NHC2H5))Cl(NO)2]0 (complex 1), as cardioprotective and cytostatic agent is a promising prodrug for the treatment of socially relevant diseases. In this work, transformation mechanism of complex 1 has been studied in anaerobic aqueous solution (pH = 7.0), DMSO, and ethanol. It was shown that the solvent has a significant effect on the decomposition of complex. According to EPR-spectroscopy, only cationic part of complex is found upon its dissolution in water; only neutral part is retained in DMSO, and both fragments are present in ethanol. Effective generation of NO occurs in an aqueous solution. The structures of the decomposition products were proposed for all solvents, their UV-spectra and rate constants were calculated. From the experimental and theoretical data obtained, it follows that complex 1 is most stable in DMSO. Solutions of complex in a DMSO-water mixture can be used to improve its bioavailability in further in vitro and in vivo studies. Also, we have analyzed its interaction with glutathione (GSH), which can participate in the metabolism of this compound. This study shows that complex 1 reacts with GSH to form a new binuclear DNIC with two GS--ligands. It was found that the resulting complex is a more prolonged NO-donor than the initial one: k = 6.1∙10-3·s-1 in buffer, k = 6.4∙10-5 s-1 with GSH. This reaction may prevent S-glutathionylation of the essential enzyme systems and is important for metabolism of complex, associated with its antitumor activity.
Collapse
|
13
|
Costa A, Pasquinelli G. Air Pollution Exposure Induces Vascular Injury and Hampers Endothelial Repair by Altering Progenitor and Stem Cells Functionality. Front Cell Dev Biol 2022; 10:897831. [PMID: 35712669 PMCID: PMC9197257 DOI: 10.3389/fcell.2022.897831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Extensive evidence indicates an association of air pollution exposure with an increased risk of cardiovascular disease (CVD) development. Fine particulate matter (PM) represents one of the main components of urban pollution, but the mechanisms by which it exerts adverse effects on cardiovascular system remain partially unknown and under investigation. The alteration of endothelial functions and inflammation are among the earliest pathophysiological impacts of environmental exposure on the cardiovascular system and represent critical mediators of PM-induced injury. In this context, endothelial stem/progenitor cells (EPCs) play an important role in vascular homeostasis, endothelial reparative capacity, and vasomotor functionality modulation. Several studies indicate the impairment of EPCs' vascular reparative capacity due to PM exposure. Since a central source of EPCs is bone marrow (BM), their number and function could be related to the population and functional status of stem cells (SCs) of this district. In this review, we provide an overview of the potential mechanisms by which PM exposure hinders vascular repair by the alteration of progenitor and stem cells' functionality.
Collapse
Affiliation(s)
- Alice Costa
- Laboratory of Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Laboratory of Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Camp OG, Bai D, Awonuga A, Goud P, Abu-Soud HM. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: The link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide 2022; 124:32-38. [PMID: 35513289 DOI: 10.1016/j.niox.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is a zinc-containing hemoprotein composed of two identical subunits, each containing a reductase and an oxygenase domain. The reductase domain contains binding sites for NADPH, FAD, FMN, and tightly bound calmodulin and the oxygenase domain contains binding sites for heme, tetrahydrobiopterin (H4B), and l-arginine. The enzyme converts l-arginine into nitric oxide (NO) and citrulline in the presence of O2. It has previously been demonstrated that myeloperoxidase (MPO), which catalyzes formation of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride (Cl-), is enhanced in inflammatory diseases and could be a potent scavenger of NO. Using absorbance spectroscopy and gel filtration chromatography, we investigated the role of increasing concentrations of HOCl in mediating iNOS heme destruction and subsequent subunit dissociation and unfolding. The results showed that dimer iNOS dissociation between 15 and 100 μM HOCl was accompanied by loss of heme content and NO synthesis activity. The dissociated subunits-maintained cytochrome c and ferricyanide reductase activities. There was partial unfolding of the subunits at 300 μM HOCl and above, and the subunit unfolding transition was accompanied by loss of reductase activities. These events can be prevented when the enzyme is preincubated with melatonin prior to HOCl addition. Melatonin supplementation to patients experiencing low NO levels due to inflammatory diseases may be helpful to restore physiological NO functions.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pravin Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA; California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Cheng G, Shi R. Mammalian peroxidasin (PXDN): From physiology to pathology. Free Radic Biol Med 2022; 182:100-107. [PMID: 35219848 PMCID: PMC8957557 DOI: 10.1016/j.freeradbiomed.2022.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Heme-containing peroxidases catalyze the oxidation of a variety of substrates by consuming hydrogen peroxide (H2O2), and play diversified roles in physiology and pathology including innate immunity, the synthesis of thyroid hormone and the extracellular matrix, as well as the pathogenesis of several inflammatory diseases. Peroxidasin (PXDN), also known as Vascular Peroxidase-1 (VPO1), is a newly identified peroxidase and expresses in multiple cells and tissues including cardiovascular system and the lung. Recent studies imply its roles in the innate immunity, cardiovascular physiology and diseases, and extracellular matrix formation. Studies on the role of PXDN in human diseases are entering a new and exciting stage, and this review provides the insights into this emerging field of PXDN.
Collapse
Affiliation(s)
- Guangjie Cheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
El-Haggar SM, Hegazy SK, Abd-Elsalam SM, Elkaeed EB, Al-Karmalawy AA, Bahaa MM. A Potential Role of Ethosuximide and Pentoxifylline in Relieving Abdominal Pain in Irritable Bowel Syndrome Patients Treated with Mebeverine: A Randomized, Double-Blind, Placebo-Controlled Trial. J Inflamm Res 2022; 15:1159-1172. [PMID: 35221706 PMCID: PMC8867223 DOI: 10.2147/jir.s346608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose Irritable bowel syndrome (IBS) is defined as an association of chronic abdominal pain with bowel habit abnormalities, without clear organic dysfunction. T-type calcium channels and low-grade mucosal inflammation are linked to abdominal pain; however, medical treatments for IBS abdominal pain are largely ineffective. In this study, we investigated if pentoxifylline (PTX) and ethosuximide could potentially alleviate abdominal pain in patients with IBS treated with mebeverine. Methods We recruited 150 patients from Tanta University Hospital to this randomized, prospective, and double blinded study. Patients were randomly allocated to three groups (n = 50). Group 1 (mebeverine) received 135 mg mebeverine three times/day (t.i.d). Group 2 (ethosuximide group) received 135 mg mebeverine t.i.d plus 250 mg ethosuximide twice daily (b.i.d) and group 3 (PTX group) received 135 mg mebeverine t.i.d plus 400 mg PTX b.i.d. Patients were assessed by a gastroenterologist at baseline and 6 months after therapy. Serum interleukin-8 (IL-8), IL-6, tumor necrosis-α (TNF-α), fecal myeloperoxidase, and fecal neutrophil gelatinase associated lipocalin (NGAL) levels were measured before and after therapy. The numeric pain rating scale (NRS) was also assessed before and after therapy. Primary Outcomes Reduced NRS scores and abdominal pain relief. Secondary Outcomes Decreased inflammatory biomarkers. Results After 6 months, groups 2 and 3 showed a significantly greater reduction in serum IL-8, IL-6, TNF-α, fecal myeloperoxidase, and fecal NGAL levels when compared to group 1 after therapy. Both groups 2 and 3 showed significant reductions in NRS scores when compared to the group 1. Conclusion Ethosuximide and PTX may be promising, novel adjunct drugs to antispasmodics for relieving abdominal pain in patients with IBS. Trial Registration Identifier: NCT04217733.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, 31527, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, 31527, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta, 315274, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
- Correspondence: Mostafa M Bahaa, Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt, Tel +201025538337, Email ;
| |
Collapse
|
17
|
Wang YC, Lu YB, Huang XL, Lao YF, Zhang L, Yang J, Shi M, Ma HL, Pan YW, Zhang YN. Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res 2022; 17:1711-1716. [PMID: 35017418 PMCID: PMC8820716 DOI: 10.4103/1673-5374.332130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myeloperoxidase is an important inflammatory factor in the myeloid system, primarily expressed in neutrophils and microglia. Myeloperoxidase and its active products participate in the occurrence and development of hemorrhagic and ischemic stroke, including damage to the blood-brain barrier and brain. As a specific inflammatory marker, myeloperoxidase can be used in the evaluation of vascular disease occurrence and development in stroke, and a large amount of experimental and clinical data has indicated that the inhibition or lack of myeloperoxidase has positive impacts on stroke prognosis. Many studies have also shown that there is a correlation between the overexpression of myeloperoxidase and the risk of stroke. The occurrence of stroke not only refers to the first occurrence but also includes recurrence. Therefore, myeloperoxidase is significant for the clinical evaluation and prognosis of stroke. This paper reviews the potential role played by myeloperoxidase in the development of vascular injury and secondary brain injury after stroke and explores the effects of inhibiting myeloperoxidase on stroke prognosis. This paper also analyzes the significance of myeloperoxidase etiology in the occurrence and development of stroke and discusses whether myeloperoxidase can be used as a target for the treatment and prediction of stroke.
Collapse
Affiliation(s)
- Yun-Chang Wang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Feng Lao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jun Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Mei Shi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hai-Long Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ya-Wen Pan
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yi-Nian Zhang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
18
|
[HDBU][HSO4]-catalyzed facile synthesis of new 1,2,3-triazole-tethered 2,3-dihydroquinazolin-4[1H]-one derivatives and their DPPH radical scavenging activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04639-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
El-Haggar SM, Hegazy SK, Abd-Elsalam SM, Bahaa MM. Pentoxifylline, a nonselective phosphodiesterase inhibitor, in adjunctive therapy in patients with irritable bowel syndrome treated with mebeverine. Biomed Pharmacother 2021; 145:112399. [PMID: 34775240 DOI: 10.1016/j.biopha.2021.112399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional gastrointestinal condition marked by chronic bowel pain or discomfort, as well as changes in abdominal motility. Despite its worldwide prevalence and clinical impact, the cause of IBS is unknown. Inflammation could play a fundamental role in the development of IBS. The aim of this study was to examine whether pentoxifylline, a competitive nonselective phosphodiesterase inhibitor, is useful in alleviating abdominal pain in IBS patients treated with mebeverine. METHODS A randomized, controlled, and prospective clinical study that included 50 outpatients who met the inclusion criteria for IBS. Patients are allocated randomly into two groups (n = 25). Group 1 (mebeverine group) received mebeverine 135 mg three times daily (t.i.d) for three months. Group 2 (pentoxifylline group) received mebeverine 135 mg t.i.d and pentoxifylline 400 mg two times daily for three months. Patients were assessed by a gastroenterologist at baseline and three months after the medication had been started. The serum levels of interleukin-6, interleukin-8 and tumor necrosis factor-alpha, fecal Neutrophil Gelatinase Associated Lipocalin (NGAL), and fecal myeloperoxidase were measured at the start and after three months of therapy. The Numeric Pain Rating scale (NRS) was assessed at baseline and after therapy. RESULTS the pentoxifylline group showed a significant decrease in the level of measured biomarkers and a significant decrease in NRS. CONCLUSION Pentoxifylline could be a promising adjuvant anti-inflammatory drug in the treatment of abdominal pain in IBS patients treated with mebeverine.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Guiesh Street, El-Gharbia Government, Tanta 31527, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| |
Collapse
|
20
|
Amaldoss MJN, Najar IA, Kumar J, Sharma A. Therapeutic efficacy of rifaximin loaded tamarind gum polysaccharide nanoparticles in TNBS induced IBD model Wistar rats. Rep Pract Oncol Radiother 2021; 26:712-729. [PMID: 34760306 DOI: 10.5603/rpor.a2021.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Rifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model rats. Materials and methods The experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported. Results The study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of -26.44 mV and other parameters such as TEM and drug release studies were also reported. Conclusions The therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Swift School of Pharmacy Rajpura, Punjab, India
| | | | | | | |
Collapse
|
21
|
El-Haggar SM, Hegazy SK, M Abd-Elsalam S, Bahaa MM. Open-label pilot study of ethosuximide as adjunctive therapy for relieving abdominal pain related to Irritable Bowel Syndrome. J Clin Pharm Ther 2021; 47:306-312. [PMID: 34726293 DOI: 10.1111/jcpt.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES There is clear evidence for an association between irritable bowel syndrome (IBS) and visceral hypersensitivity. This clinical study aimed to assess the adjunct role of ethosuximide, an antiepileptic drug with T-type calcium channel blocking activity, in the relieving of IBS-related abdominal pain. METHODS This is a prospective, 3-month, randomized and controlled study of parallel groups. Fifty outpatients who met the inclusion criteria participated in the trial. Patients were allocated randomly: 25 received mebeverine 135 mg three times daily (t.i.d), whereas the other 25 received mebeverine 135 mg t.i.d and ethosuximide 500 mg t.i.d. At baseline and 12 weeks after starting the drug, patients were evaluated by a gastroenterologist. Serum tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-8 (IL-8), faecal myeloperoxidase and faecal neutrophile gelatinase-associated lipocalin (NGAL) levels were tested before and after treatment. The Numeric Pain Rating Scale (NRS) was assessed before and after three months of therapy. RESULTS AND DISCUSSION After 12 weeks, the ethosuximide group showed a statistically and significantly greater reduction in the serum levels of TNF-α, IL-6, IL-8, faecal myeloperoxidase and faecal NGAL in comparison with the control group after the treatment. Moreover, the ethosuximide group showed a statistically significant decrease in NRS compared with the mebeverine group. WHAT IS NEW AND CONCLUSION Ethosuximide could be a promising adjunct to antispasmodics in the treatment of IBS patients. Trial registration identifier: NCT04217733.
Collapse
Affiliation(s)
- Sahar M El-Haggar
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, Egypt
| | - Sahar K Hegazy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, El-Gharbia Government, Tanta, Egypt
| | - Sherief M Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
22
|
|
23
|
Shimizu K, Kataoka H, Imai H, Yamamoto Y, Yamada T, Miyata H, Koseki H, Abekura Y, Oka M, Kushamae M, Ono I, Miyamoto S, Nakamura M, Aoki T. Hemodynamic Force as a Potential Regulator of Inflammation-Mediated Focal Growth of Saccular Aneurysms in a Rat Model. J Neuropathol Exp Neurol 2021; 80:79-88. [PMID: 33212493 DOI: 10.1093/jnen/nlaa131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Past studies have elucidated the crucial role of macrophage-mediated inflammation in the growth of intracranial aneurysms (IAs), but the contributions of hemodynamics are unclear. Considering the size of the arteries, we induced de novo aneurysms at the bifurcations created by end-to-side anastomoses with the bilateral common carotid arteries in rats. Sequential morphological data of induced aneurysms were acquired by magnetic resonance angiography. Computational fluid dynamics analyses and macrophage imaging by ferumoxytol were performed. Using this model, we found that de novo saccular aneurysms with a median size of 3.2 mm were induced in 20/45 (44%) of animals. These aneurysms mimicked human IAs both in morphology and pathology. We detected the focal growth of induced aneurysms between the 10th and 17th day after the anastomosis. The regional maps of hemodynamic parameters demonstrated the area exposed to low wall shear stress (WSS) and high oscillatory shear index (OSI) colocalized with the regions of growth. WSS values were significantly lower in the growing regions than in ones without growth. Macrophage imaging showed colocalization of macrophage infiltration with the growing regions. This experimental model demonstrates the potential contribution of low WSS and high OSI to the macrophage-mediated growth of saccular aneurysms.
Collapse
Affiliation(s)
- Kampei Shimizu
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Hiroharu Kataoka
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto
| | - Yuto Yamamoto
- Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Tomohiro Yamada
- Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Haruka Miyata
- Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Hirokazu Koseki
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Yu Abekura
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Mieko Oka
- Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Mika Kushamae
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Isao Ono
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto
| | - Masanori Nakamura
- Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Tomohiro Aoki
- From the Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, Suita.,Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita
| |
Collapse
|
24
|
Etsè KS, Etsè KD, Nyssen P, Mouithys-Mickalad A. Assessment of anti-inflammatory-like, antioxidant activities and molecular docking of three alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxide derivatives. Chem Biol Interact 2021; 344:109513. [PMID: 33974901 DOI: 10.1016/j.cbi.2021.109513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022]
Abstract
The presence of enyne and benzoisothiazole functions in the molecular architecture of compounds 1, 2 and 3 were expected to provide biochemical activities. In the present work, we first examined the molecular surface contact of three alkynyl-substituted 3-ylidenedihydrobenzo[d] isothiazole 1,1-dioxides. The analysis of the Hirshfeld surfaces reveals that only compound 3 exhibited a well-defined red spots, indicating intermolecular interactions identified as S-O⋯H, C-H⋯O and C-O⋯H contacts. Comparative fingerprint histograms of the three compounds show that close pair interactions are dominated by C-H⋯H-C contact. By UV-visible analysis, compound 1 showed the most intense absorbances at 407 and 441 nm, respectively. The radical scavenging activity explored in the DPPH test, shows that only 1 exhibited low anti-radical activity. Furthermore, cellular antioxidant capacity of benzoisothiazoles 1-3 was investigated with PMA-activated HL-60 cells using chemiluminescence and fluorescence techniques in the presence of L-012 and Amplex Red probe, respectively. Results highlight that compound 1 exhibited moderate anti-ROS capacity while compounds 2 and 3 enhanced ROS production. The cytotoxicity test performed on HL-60 cells, using the MTS assay, confirmed the lack of toxicity of the tested benzoisothiazole 1 compared to 2 and 3 which show low cytotoxicity (≤30%). Anti-catalytic activity was evaluated by following the inhibitory potential of the benzoisothiazoles on MPO activity and depicted benzoisothiazoles-MPO interactions by docking. Both SIEFED and docking studies demonstrated an anti-catalytic activity of the tested benzoisothiazoles towards MPO with the best activity for compound 2.
Collapse
Affiliation(s)
- Koffi Sénam Etsè
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Ho^pital B36 Av. Hippocrate 15 B-4000 Liège, Belgium
| | - Kodjo Djidjolé Etsè
- Laboratoire de Physiologie et Biotechnologie Végétales (LPBV), Faculté des Sciences (FDS), Université de Lomé (UL), Lomé, Togo
| | - Pauline Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, ULiège, Sart-Tilman, B-4000 Liège, Belgium
| | - Ange Mouithys-Mickalad
- Center for Oxygen, Research and Development (CORD) and Center for Interdisciplinary Research on Medicine (CIRM) Institute of Chemistry University of Liège, Sart-Tilman (B.6a), 4000 Liège, Belgium.
| |
Collapse
|
25
|
Portelli SS, Hambly BD, Jeremy RW, Robertson EN. Oxidative stress in genetically triggered thoracic aortic aneurysm: role in pathogenesis and therapeutic opportunities. Redox Rep 2021; 26:45-52. [PMID: 33715602 PMCID: PMC7971305 DOI: 10.1080/13510002.2021.1899473] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The primary objective of this review was to explore the contribution of oxidative stress to the pathogenesis of genetically-triggered thoracic aortic aneurysm (TAA). Genetically-triggered TAAs manifest substantial variability in onset, progression, and risk of aortic dissection, posing a significant clinical management challenge. There is a need for non-invasive biomarkers that predict the natural course of TAA and therapeutics that prevent aneurysm progression. Methods: An online systematic search was conducted within PubMed, MEDLINE, Scopus and ScienceDirect databases using keywords including: oxidative stress, ROS, nitrosative stress, genetically triggered thoracic aortic aneurysm, aortic dilatation, aortic dissection, Marfan syndrome, Bicuspid Aortic Valve, familial TAAD, Loeys Dietz syndrome, and Ehlers Danlos syndrome. Results: There is extensive evidence of oxidative stress and ROS imbalance in genetically triggered TAA. Sources of ROS imbalance are variable but include dysregulation of redox mediators leading to either insufficient ROS removal or increased ROS production. Therapeutic exploitation of redox mediators is being explored in other cardiovascular conditions, with potential application to TAA warranting further investigation. Conclusion: Oxidative stress occurs in genetically triggered TAA, but the precise contribution of ROS to pathogenesis remains incompletely understood. Further research is required to define causative pathological relationships in order to develop therapeutic options.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Brett D Hambly
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Richmond W Jeremy
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
26
|
Ngamsri KC, Gamper-Tsigaras J, Reutershan J, Konrad FM. Fractalkine Is Linked to the Necrosome Pathway in Acute Pulmonary Inflammation. Front Med (Lausanne) 2021; 8:591790. [PMID: 33791319 PMCID: PMC8006293 DOI: 10.3389/fmed.2021.591790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Acute pulmonary inflammation affects over 10% of intensive care unit (ICU) patients and is associated with high mortality. Fractalkine (CX3CL1) and its receptor, CX3CR1, have been shown to affect pulmonary inflammation, but previous studies have focused on macrophages. In a murine model of acute pulmonary inflammation, we identified inflammatory hallmarks in C57BL/6J and CX3CR1−/− mice. Pulmonary inflammation was significantly enhanced in the CX3CR1−/− animals compared to the C57BL/6J animals, as assessed by microvascular permeability, polymorphonuclear neutrophil (PMN) migration into lung tissue and alveolar space. The CX3CR1−/− mice showed increased levels of apoptotic PMNs in the lungs, and further investigations revealed an increased activation of necrosome-related receptor-interacting serine/threonine-protein kinases 1 (RIPK1), 3 (RIPK3), and mixed-lineage kinase domain-like pseudokinase (MLKL). Phosphorylated MLKL leads to membrane rupture and damage-associated molecular pattern (DAMP) release, which further enhance inflammation. The release of DAMPs was significantly higher in the CX3CR1−/− mice and led to the activation of various cascades, explaining the increased inflammation. RIPK3 and MLKL inhibition improved the inflammatory response in human PMNs in vitro and confirmed our in vivo findings. In conclusion, we linked CX3CL1 to the necrosome complex in pulmonary inflammation and demonstrated a pivotal role of the necrosome complex in human PMNs.
Collapse
Affiliation(s)
- Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jörg Reutershan
- Department of Anesthesiology and Intensive Care Medicine, Hospital of Bayreuth, Bayreuth, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Santos MBD, Carvalho Marques B, Miranda Ayusso G, Rocha Garcia MA, Chiquetto Paracatu L, Pauli I, Silva Bolzani V, Defini Andricopulo A, Farias Ximenes V, Zeraik ML, Regasini LO. Chalcones and their B-aryl analogues as myeloperoxidase inhibitors: In silico, in vitro and ex vivo investigations. Bioorg Chem 2021; 110:104773. [PMID: 33744807 DOI: 10.1016/j.bioorg.2021.104773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022]
Abstract
In the present study, a series of chalcones and their B-aryl analogues were prepared and evaluate as inhibitors of myeloperoxidase (MPO) chlorinating activity, using in vitro and ex vivo assays. Among these, B-thiophenyl chalcone (analogue 9) demonstrated inhibition of in vitro and ex vivo MPO chlorinating activity, exhibiting IC50 value of 0.53 and 19.2 µM, respectively. Potent ex vivo MPO inhibitors 5, 8 and 9 were not toxic to human neutrophils at 50 µM, as well as displayed weak 2,2-diphenyl-1-pycrylhydrazyl radical (DPPH•) and hypochlorous acid (HOCl) scavenger abilities. Docking simulations indicated binding mode of MPO inhibitors, evidencing hydrogen bonds between the amino group at 4'position (ring A) of chalcones with Gln91, Asp94, and Hys95 MPO residues. In this regard, the efficacy and low toxicity promoted aminochalcones and arylic analogues to the rank of hit compounds in the search for new non-steroidal anti-inflammatory compounds.
Collapse
Affiliation(s)
- Mariana Bastos Dos Santos
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), 15054-000 São José do Rio Preto, SP, Brazil
| | - Beatriz Carvalho Marques
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), 15054-000 São José do Rio Preto, SP, Brazil
| | - Gabriela Miranda Ayusso
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), 15054-000 São José do Rio Preto, SP, Brazil
| | - Mayara Aparecida Rocha Garcia
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), 15054-000 São José do Rio Preto, SP, Brazil
| | - Luana Chiquetto Paracatu
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil
| | - Ivani Pauli
- Physics Institute of São Carlos, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Vanderlan Silva Bolzani
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University, 14800-900 Araraquara, SP, Brazil
| | | | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil
| | - Maria Luiza Zeraik
- Department of Chemistry, State University of Londrina (UEL), 86051-990 Londrina, PR, Brazil.
| | - Luis Octavio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
28
|
McCarthy CG, Saha P, Golonka RM, Wenceslau CF, Joe B, Vijay-Kumar M. Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). Compr Physiol 2021; 11:1575-1589. [PMID: 33577121 DOI: 10.1002/cphy.c200020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled immune system activation amplifies end-organ injury in hypertension. Nonetheless, the exact mechanisms initiating this exacerbated inflammatory response, thereby contributing to further increases in blood pressure (BP), are still being revealed. While participation of lymphoid-derived immune cells has been well described in the hypertension literature, the mechanisms by which myeloid-derived innate immune cells contribute to T cell activation, and subsequent BP elevation, remains an active area of investigation. In this article, we critically analyze the literature to understand how monocytes, macrophages, dendritic cells, and polymorphonuclear leukocytes, including mast cells, eosinophils, basophils, and neutrophils, contribute to hypertension and hypertension-associated end-organ injury. The most abundant leukocytes, neutrophils, are indisputably increased in hypertension. However, it is unknown how (and why) they switch from critical first responders of the innate immune system, and homeostatic regulators of BP, to tissue-damaging, pro-hypertensive mediators. We propose that myeloperoxidase-derived pro-oxidants, neutrophil elastase, neutrophil extracellular traps (NETs), and interactions with other innate and adaptive immune cells are novel mechanisms that could contribute to the inflammatory cascade in hypertension. We further posit that the gut microbiota serves as a set point for neutropoiesis and their function. Finally, given that hypertension appears to be a key risk factor for morbidity and mortality in COVID-19 patients, we put forth evidence that neutrophils and NETs cause cardiovascular injury post-coronavirus infection, and thus may be proposed as an intriguing therapeutic target for high-risk individuals. © 2021 American Physiological Society. Compr Physiol 11:1575-1589, 2021.
Collapse
Affiliation(s)
- Cameron G McCarthy
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Rachel M Golonka
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Camilla F Wenceslau
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, UT Microbiome Consortium, Center for Hypertension & Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
29
|
Derosa G, Maffioli P, D’Angelo A, Cipolla G, Moro E, Crema F. Effects of experimental colitis in rats on incretin levels, inflammatory markers, and enteric neuronal function. Arch Med Sci 2021; 17:1087-1092. [PMID: 34336036 PMCID: PMC8314401 DOI: 10.5114/aoms.2019.86704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The aim of the study was to assess the effects of chronic inflammation on incretin levels, inflammatory markers, and enteric neuronal function measured in isolated preparations of smooth muscle of rat. MATERIAL AND METHODS We induced experimental colitis using 2,4-dinitrobenzenesulfonic acid (DNBS) in 17 Albino male Sprague-Dawley rats, while 16 rats were used as a control. They were housed in temperature-controlled rooms in a 12-h light/dark cycle at 22-24°C and 50 to 60% humidity. We evaluated in both inflamed and healthy rats: fasting plasma glucose concentration, fasting plasma insulin, myeloperoxidase, active glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), and GLP-2 levels, adiponectin, and C-reactive protein (CRP). We also evaluated colonic longitudinal smooth muscle contractile activity. RESULTS Intrarectal administration of DNBS reduced body weight gain in inflamed rats. We recorded higher levels of fasting plasma glucose, and insulin in inflamed rats. We observed higher levels of myeloperoxidase and CRP, and lower levels of ADN in inflamed rats. We recorded higher levels of GIP, GLP-1, and GLP-2 in inflamed rats compared to the healthy ones. Regarding functional response of colon intestinal smooth muscle after electrical stimulation, we recorded a lower functional response of colon intestinal smooth muscle after electrical stimulation in inflamed rats. CONCLUSIONS We can conclude that chronic inflammation leads to an increase of incretin levels and to a decrease of functional response of colon intestinal smooth muscle after electrical stimulation.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, PAVIA, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical Research, University of Pavia, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, PAVIA, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Angela D’Angelo
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, PAVIA, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giovanna Cipolla
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Osteopontin Predicts Three-Month Outcome in Stroke Patients Treated by Reperfusion Therapies. J Clin Med 2020; 9:jcm9124028. [PMID: 33322093 PMCID: PMC7763291 DOI: 10.3390/jcm9124028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Establishing a prognosis at hospital admission after stroke is a major challenge. Inflammatory processes, hemostasis, vascular injury, and tissue remodeling are all involved in the early response to stroke. This study analyzes whether 22 selected biomarkers, sampled at admission, predict clinical outcomes in 153 stroke patients treated by thrombolysis and mechanical endovascular treatment (MET). Biomarkers were related to hemostasis (u-plasminogen activator/urokinase (uPA/urokinase), serpin E1/PAI-1, serpin C1/antithrombin-III, kallikrein 6/neurosin, alpha 2-macroglobulin), inflammation[myloperoxidase (MPO), chemokine ligand 2/monocyte chemoattractant protein-1 chemokine (CCL2/MCP-1), adiponectin, resistin, cell-free DNA (cDNA), CD40 Ligand (CD40L)], endothelium activation (Vascular cell adhesion protein 1 (VCAM-1) intercellular adhesion molecule 1 (ICAM-1), platelet endothelial cell adhesion molecule 1 (CD31/PECAM-1)], and tissue remodeling (total cathepsin S, osteopontin, cystatin C, neuropilin-1, matrix metallopeptidase 2 (MMP-2), matrix metallopeptidase 3 (MMP-3), matrix metallopeptidase 9 (MMP-9), matrix metallopeptidase 13 (MMP-13)]. Correlations between their levels and excellent neurological improvement (ENI) at 24 h and good outcomes (mRS 0-2) at three months were tested. Osteopontin and favorable outcomes reached the significance level (p = 0.008); the adjusted OR per SD increase in log-transformed osteopontin was 0.34 (95%CI, 0.18-0.62). The relationship between total cathepsin S and MPO with ENI, was borderline of significance (p = 0.064); the adjusted OR per SD increase in log-transformed of total cathepsin S and MPO was 0.54 (95%CI, 0.35-0.81) and 0.51 (95%CI, 0.32-0.80), respectively. In conclusion, osteopontin levels predicted three-month favorable outcomes, supporting the use of this biomarker as a complement of clinical and radiological parameters for predicting stroke prognosis.
Collapse
|
31
|
Bostan MM, Stătescu C, Anghel L, Șerban IL, Cojocaru E, Sascău R. Post-Myocardial Infarction Ventricular Remodeling Biomarkers-The Key Link between Pathophysiology and Clinic. Biomolecules 2020; 10:E1587. [PMID: 33238444 PMCID: PMC7700609 DOI: 10.3390/biom10111587] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Studies in recent years have shown increased interest in developing new methods of evaluation, but also in limiting post infarction ventricular remodeling, hoping to improve ventricular function and the further evolution of the patient. This is the point where biomarkers have proven effective in early detection of remodeling phenomena. There are six main processes that promote the remodeling and each of them has specific biomarkers that can be used in predicting the evolution (myocardial necrosis, neurohormonal activation, inflammatory reaction, hypertrophy and fibrosis, apoptosis, mixed processes). Some of the biomarkers such as creatine kinase-myocardial band (CK-MB), troponin, and N-terminal-pro type B natriuretic peptide (NT-proBNP) were so convincing that they immediately found their place in the post infarction patient evaluation protocol. Others that are related to more complex processes such as inflammatory biomarkers, atheroma plaque destabilization biomarkers, and microRNA are still being studied, but the results so far are promising. This article aims to review the markers used so far, but also the existing data on new markers that could be considered, taking into consideration the most important studies that have been conducted so far.
Collapse
Affiliation(s)
- Maria-Madălina Bostan
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| | | | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania;
| | - Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (M.-M.B.); (R.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M.Georgescu”, 700503 Iasi, Romania
| |
Collapse
|
32
|
Uçar A, Parlak V, Çilingir Yeltekin A, Özgeriş FB, Çağlar Ö, Türkez H, Alak G, Atamanalp M. Assesment of hematotoxic, oxidative and genotoxic damage potentials of fipronil in rainbow trout Oncorhynchus mykiss, Walbaum. Toxicol Mech Methods 2020; 31:73-80. [PMID: 33050807 DOI: 10.1080/15376516.2020.1831122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, changes in the blood tissue of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) caused by Fipronil (FP) insecticide were investigated using different biomarkers (Hematology parameters, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), malondialdehyde (MDA), paraoxonase (PON), arylesterase (ARE), myeleperoxidase (MPO), micronucleus (MN), 8-hydroxy-2-deoxyguanosine (8-OHdG)) level and caspase-3 activity. Statistically significant alterations in hematology parameters occurred with FP effect. In blood tissue, dose-dependent inhibition was determined in SOD-CAT-GPX-PON and ARE enzyme activities, but MDA and MPO were induced statistically significant. The results of MN assay were compared with the control group and it was obtained that genotoxicity of different dose groups was similar. The level of 8-OHdG and the activity and caspase-3 examined in blood tissue was increased depending on the dose. It was determined with different biomarkers that this insecticide caused physiological stress changes in the tissues examined.
Collapse
Affiliation(s)
- Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | | | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | - Özge Çağlar
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| |
Collapse
|
33
|
Constantino-Silva RN, Perazzio SF, Weidebach NDA, Grumach AS. Functional Defect of Neutrophils Causing Dermatophytosis: Case Report. J Fungi (Basel) 2020; 6:jof6040238. [PMID: 33105551 PMCID: PMC7712173 DOI: 10.3390/jof6040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Background: NADPH-oxidase and myeloperoxidase (MPO) play an important role on defense against pathogenic microorganisms. Defects on these mechanisms have been described in association with recurrent infections due to such as Staphylococcus aureus and Candida albicans. We describe a patient with partial disturbance of intracellular microorganism destruction clinically manifested by recurrent fungal infection. Case report and results: A 58-year-old male rural farmer has suffered with superficial mycosis affecting hands, nails and right ankle persisting for 20 years. He was treated with several antifungal drugs with no improvement. Mycological scraping isolated Trichophyton rubrum. Immunological evaluation showed impaired T cell proliferation to Candidin and impaired neutrophil burst oxidative after specific stimulation with Candida albicans. The patient’s DNA was extracted from peripheral blood leukocytes for whole exome sequencing (WES) analysis. Two heterozygous variants of undetermined significance were screened accordingly: (1) MPO A332V (c.995G>A; rs28730837); and (2) NCF1 G83R (c.247G>A; rs139225348). Conclusions: Functional leukocyte evaluation with heterozygous variants in MPO and NCF1 suggest that these defects were associated with the susceptibility to dermatophytosis in our patient. We have developed a fast, effective and safe trial for screening individuals with yeast infections.
Collapse
Affiliation(s)
- Rosemeire N. Constantino-Silva
- Clinical Immunology, Faculdade de Medicina, Centro Universitario Saude ABC, Andre 09060-870, Brazil; (R.N.C.-S.); (N.d.A.W.)
| | - Sandro F. Perazzio
- Division of Rheumatology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04023-062, Brazil;
- Fleury Laboratories, Sao Paulo 04023-062, Brazil
| | | | - Anete S. Grumach
- Clinical Immunology, Faculdade de Medicina, Centro Universitario Saude ABC, Andre 09060-870, Brazil; (R.N.C.-S.); (N.d.A.W.)
- Correspondence: ; Tel.: +55-11-983353860
| |
Collapse
|
34
|
The Impact of Hypertension and Metabolic Syndrome on Nitrosative Stress and Glutathione Metabolism in Patients with Morbid Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1057570. [PMID: 32963689 PMCID: PMC7501544 DOI: 10.1155/2020/1057570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
In this pathbreaking study, we evaluated nitrosative stress in morbidly obese patients with and without metabolic syndrome. 62 women with class 3 obesity (BMI > 40 kg/m2) were divided into three subgroups: obese patients (OB), obese patients with hypertension (OB+HYP), and obese patients with metabolic syndrome (OB+MS). In comparison to the lean patients, OB had increased levels of serum myeloperoxidase (MPO), plasma nitric oxide (NO), S-nitrosothiols, and peroxynitrite (ONOO−), as well as nitrotyrosine, while oxidized glutathione (GSSG) rose only in OB+HYP group. Interestingly, ONOO− was significantly higher in OB+HYP and OB+MS as compared to OB group, while MPO only in OB+MS group. OB+MS had greater nitrotyrosine and S-nitrosothiol values than OB+HYP. Moreover, peroxynitrite could differentiate OB from OB+HYP and OB+MS (AUC 0.9292; p < 0.0001; 87.5% sensitivity, 90% specificity) as well as between OB and OB+MS group (AUC 0.9125; p < 0.0001; 81.25% sensitivity, 83.33%). In conclusion, we showed that MPO activity, NO formation, and nitrosative damage to proteins parallel the progression of metabolic disturbances of obesity. Evaluation of ONOO− concentrations may help predict the development of hypertension and metabolic syndrome in patients with morbid obesity; however, longer-term studies are required for larger numbers of patients.
Collapse
|
35
|
Hughes SF, Moyes AJ, Lamb RM, Ella-Tongwiis P, Bell C, Moussa A, Shergill I. The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients. BMC Urol 2020; 20:122. [PMID: 32795278 PMCID: PMC7427952 DOI: 10.1186/s12894-020-00693-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The number of patients diagnosed and subsequently treated for kidney stones is increasing, and as such the number of post-operative complications is likely to increase. At present, little is known about the role of specific biomarkers, following flexible ureterorenoscopy (FURS) for the surgical treatment of kidney stones. The main aim of the study was to evaluate the role of kidney and infection biomarkers, in patients undergoing FURS. METHODS Included were 37 patients (24 males, 13 females), who underwent elective FURS, for the treatment of kidney stones. Venous blood samples were collected from each patient: pre-operatively, and at 30 min, 2 and 4 h post-operatively. Changes to kidney (NGAL, Cystatin-C) and infection (MPO, PCT) biomarkers was quantified by means of ELISA, Biomerieux mini-vidas and Konelab 20 analysers. RESULTS Four patients developed post-operative complications (3 - UTIs with urinary retention, 1 - urosepsis. NGAL concentration increased significantly following FURS (p = 0.034). Although no significant changes were seen in Cystatin C, MPO and PCT (p ≥ 0.05) some key clinical observation were noted. Limiting factors for this study were the small number of patients recruited and restriction in blood sampling beyond 4 h. CONCLUSIONS Although not confirmative, changes seen to biomarkers such as Cystatin C, NGAL and MPO in our observational clinical pilot-study may warrant further investigation, involving larger cohorts, to fully understand the role of these biomarkers and their potential association with post-operative complications which can develop following FURS.
Collapse
Affiliation(s)
- Stephen Fôn Hughes
- North Wales & North West Urological Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK. .,North Wales Clinical Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.
| | - Alyson Jayne Moyes
- North Wales & North West Urological Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,School of Medical Sciences, Bangor University, Bangor, Wales, UK.,Department of Biological Sciences, University of Chester, Chester, UK
| | - Rebecca May Lamb
- North Wales & North West Urological Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,Department of Biological Sciences, University of Chester, Chester, UK
| | - Peter Ella-Tongwiis
- North Wales & North West Urological Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,North Wales Clinical Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK
| | - Christopher Bell
- North Wales Clinical Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,The Alan de Bolla Department of Urology, BCUHB Wrexham Maelor Hospital, Wrexham, Wales, UK
| | - Ahmed Moussa
- North Wales Clinical Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,The Alan de Bolla Department of Urology, BCUHB Wrexham Maelor Hospital, Wrexham, Wales, UK
| | - Iqbal Shergill
- North Wales & North West Urological Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,North Wales Clinical Research Centre, Betsi Cadwaladr University Health Board (BCUHB) Wrexham Maelor Hospital, Wrexham, Wales, UK.,The Alan de Bolla Department of Urology, BCUHB Wrexham Maelor Hospital, Wrexham, Wales, UK
| |
Collapse
|
36
|
Abad-Jiménez Z, López-Domènech S, Gómez-Abril SÁ, Periañez-Gómez D, de Marañón AM, Bañuls C, Morillas C, Víctor VM, Rocha M. Effect of Roux-en-Y Bariatric Bypass Surgery on Subclinical Atherosclerosis and Oxidative Stress Markers in Leukocytes of Obese Patients: A One-Year Follow-Up Study. Antioxidants (Basel) 2020; 9:antiox9080734. [PMID: 32796678 PMCID: PMC7464524 DOI: 10.3390/antiox9080734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Little is known about the mechanisms underlying the cardioprotective effect of Roux en-Y gastric bypass (RYGB) surgery. Therefore, the aim of the present study was to investigate whether weight loss associated with RYGB improves the oxidative status of leukocytes and ameliorates subclinical atherosclerotic markers. This is an interventional study of 57 obese subjects who underwent RYGB surgery. We determined biochemical parameters and qualitative analysis of cholesterol, leukocyte and systemic oxidative stress markers —superoxide production, glutathione peroxidase 1 (GPX1), superoxide dismutase (SOD) activity and protein carbonylation—, soluble cellular adhesion molecules —sICAM-1 and sP-selectin—, myeloperoxidase (MPO) and leukocyte-endothelium cell interactions—rolling flux, velocity and adhesion. RYGB induced an improvement in metabolic parameters, including hsCRP and leukocyte count (p < 0.001, for both). This was associated with an amelioration in oxidative stress, since superoxide production and protein carbonylation were reduced (p < 0.05 and p < 0.01, respectively) and antioxidant systems were enhanced (GPX1; p < 0.05 and SOD; p < 0.01). In addition, a significant reduction of the following parameters was observed one year after RYGB: MPO and sICAM (p < 0.05, for both), sPselectin and pattern B of LDL particles (p < 0.001, for both), and rolling flux and adhesion of leukocytes (p < 0.05 and p < 0.01, respectively). Our results suggest that patients undergoing RYGB benefit from an amelioration of the prooxidant status of leukocytes, metabolic outcomes, and subclinical markers of atherosclerosis.
Collapse
Affiliation(s)
- Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
| | - Sandra López-Domènech
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
| | - Segundo Ángel Gómez-Abril
- Department of General and Digestive System Surgery, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (S.Á.G.-A.); (D.P.-G.)
- Department of Surgery, Faculty of Medicine and Dentistry, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Dolores Periañez-Gómez
- Department of General and Digestive System Surgery, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (S.Á.G.-A.); (D.P.-G.)
| | - Aranzazu M. de Marañón
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
| | - Celia Bañuls
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
| | - Carlos Morillas
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
| | - Víctor M. Víctor
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
- CIBERehd-Department of Pharmacology, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (V.M.V.); (M.R.)
| | - Milagros Rocha
- Department of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (Z.A.-J.); (S.L.-D.); (A.M.d.M.); (C.B.); (C.M.)
- CIBERehd-Department of Pharmacology, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
- Correspondence: (V.M.V.); (M.R.)
| |
Collapse
|
37
|
Ikeda S, Uchiyama K, Minegishi Y, Nakamura M, Takaso M. Evaluation of myeloperoxidase in synovial fluid as a biomarker for chronic periprosthetic joint infection. INTERNATIONAL ORTHOPAEDICS 2020; 44:1915-1920. [DOI: 10.1007/s00264-020-04753-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
|
38
|
Significance of myeloperoxidase plasma levels as a predictor for cardiac resynchronization therapy response. Clin Res Cardiol 2020; 110:1173-1180. [PMID: 32564144 PMCID: PMC8318955 DOI: 10.1007/s00392-020-01690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Objectives This study aimed to determine if changes in myeloperoxidase (MPO) levels correlate with response to cardiac resynchronization therapy (CRT) and the potential role of MPO as a predictor of response to CRT. Background CRT is a well-established treatment option in chronic heart failure (CHF) with 50–80% of patients benefiting. Inflammation and oxidative stress play a key role in CHF pathophysiology. Previous studies have demonstrated increased levels of MPO in CHF patients, but the correlation with CRT response remains incompletely understood. Methods Fifty-three patients underwent CRT implantation. During follow-up, patients were divided into two groups, responders and non-responders to CRT, based on improved physical capacity and NYHA classification. Levels of MPO and NT-pro-brain-natriuretic-peptide (NT-proBNP) were determined prior to implantation, 30 and 90 days after. Physical capacity, including a 6-min walking-test, NYHA class, and LVEF were evaluated at baseline and during follow-up. Results Thirty-four patients (64%) responded to CRT, showing improved physical capacity and LVEF. All responders revealed a significant decrease of MPO levels (503.8 ng/ml vs. 188.4 ng/ml; p < 0.001). Non-responding patients did not show any significant changes in clinical parameters or MPO levels (119.6 ng/ml vs. 134.3 ng/ml; p = 0.672) during follow-up. At baseline, physical capacity and NYHA class, as well as MPO levels differed significantly between both groups (p < 0.001). A ROC analysis identified an MPO cut-off value for response to CRT of 242 ng/ml with a sensitivity of 93.5% and specificity of 71.4%. There was a strong correlation between MPO and improvement of LVEF (Spearman’s rho: − 0.453; p = 0.005) and physical capacity (Spearman’s rho: − 0.335; p = 0.042). Conclusions Response to CRT and course of MPO levels correlate significantly. MPO levels differ between responders and non-responders prior to CRT, which may indicate an additional value of MPO as a predictor for CRT response. Further randomized studies are required to confirm our data in larger patient cohorts.
Collapse
|
39
|
Correia MH, Sato F, Baesso ML, Bento AC, Gibin MS, de Moraes GR, Melo KS, Svidzinski TIE, Almeida GHDR, Amado CAB, Hernandes L. Immune response and Raman scattering assessment in rats skin after contact with Fusarium oxysporum metabolites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118246. [PMID: 32179464 DOI: 10.1016/j.saa.2020.118246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The secondary metabolites produced by Fusarium can cause disease and death when consumed and produce biological responses even in the absence of the microorganism. The IL-6, TNF-α and TGF-β1 cytokines immune reactivity was associated with histopathological and physico-chemical changes in skin of immune competent rats after administration of Fusarium oxysporum crude extract. Rats were intradermally injected with 50 μl of 0.5 mg/ml crude extract and were euthanized at 3, 6, 12 and 24 h after injection. The inflammatory response was quantified by enzyme myeloperoxidase activity and by immunohistochemical method to detect the IL-6, TNF-α and TGF-β1. Physico-chemical analysis was performed using FT-Raman Spectroscopy. The inflammatory response was most intense at 6 and 12 h after crude extract administration and the most significant histopathological changes were observed in the dermis. Myeloperoxidase activity was intense from 3 to 24 h after injection. The immunostaining of pro-inflammatory cytokines IL-6 and TNF-α peaked at 6 h. Immunostaining for TGF-β1 was highest at 12 and 24 h. FT-Raman spectral analysis showed both, the most intense Fusarium interaction with the skin at 6 h, as revealed by the changes in the stretching of -CH bands (3100-2800 cm-1) in the dermis, and skin recovery trending after 12 h after crude extract injection. The results showed that secondary metabolites stimulated histopathologic changes and inflammatory responses even in the absence of the fungus, increasing myeloperoxidase activity and pro-inflammatory cytokine expression besides promoting physico-chemical changes.
Collapse
Affiliation(s)
| | - Francielle Sato
- Physics Department, Universidade Estadual de Maringá, Brazil
| | | | | | | | | | - Kátia Sibin Melo
- Morphological Sciences Department, Universidade Estadual de Maringá, Brazil
| | | | | | | | - Luzmarina Hernandes
- Morphological Sciences Department, Universidade Estadual de Maringá, Brazil.
| |
Collapse
|
40
|
He P, Talukder MAH, Gao F. Oxidative Stress and Microvessel Barrier Dysfunction. Front Physiol 2020; 11:472. [PMID: 32536875 PMCID: PMC7268512 DOI: 10.3389/fphys.2020.00472] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical and experimental evidence indicate that increased vascular permeability contributes to many disease-associated vascular complications. Oxidative stress with increased production of reactive oxygen species (ROS) has been implicated in a wide variety of pathological conditions, including inflammation and many cardiovascular diseases. It is thus important to identify the role of ROS and their mechanistic significance in microvessel barrier dysfunction under pathological conditions. The role of specific ROS and their cross talk in pathological processes is complex. The mechanisms of ROS-induced increases in vascular permeability remain poorly understood. The sources of ROS in diseases have been extensively reviewed at enzyme levels. This review will instead focus on the underlying mechanisms of ROS release by leukocytes, the differentiate effects and signaling mechanisms of individual ROS on endothelial cells, pericytes and microvessel barrier function, as well as the interplay of reactive oxygen species, nitric oxide, and nitrogen species in ROS-mediated vascular barrier dysfunction. As a counter balance of excessive ROS, nuclear factor erythroid 2 related factor 2 (Nrf2), a redox-sensitive cell-protective transcription factor, will be highlighted as a potential therapeutic target for antioxidant defenses. The advantages and limitations of different experimental approaches used for the study of ROS-induced endothelial barrier function are also discussed. This article will outline the advances emerged mainly from in vivo and ex vivo studies and attempt to consolidate some of the opposing views in the field, and hence provide a better understanding of ROS-mediated microvessel barrier dysfunction and benefit the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - M A Hassan Talukder
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Feng Gao
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
41
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
42
|
|
43
|
Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 2020; 79:106180. [PMID: 31926478 DOI: 10.1016/j.intimp.2019.106180] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Ghrelin, a brain-gut peptide, has been proven to exert neuroprotection in different kinds of neurological diseases; however, its role and the potential molecular mechanisms in secondary brain injury (SBI) after intracerebral hemorrhage (ICH) are still unknown. In this study, we investigate whether treatment with ghrelin may attenuate SBI in a murine ICH model, and if so, whether the neuroprotective effects are due to the inhibition of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and promotion of nuclear factor-E2-related factor 2 (Nrf2)/antioxidative response element (ARE) signaling pathway. Stereotactically intrastriatal infusion of autologous blood was performed to mimic ICH. Ghrelin was given intraperitoneally immediately following ICH and again 1 h later. Results showed that ghrelin attenuated neurobehavioral deficits, brain edema, hematoma volume, and perihematomal cell death post-ICH. Ghrelin inhibited the NLRP3 inflammasome activation and subsequently suppressed the neuroinflammatory response as evidenced by reduced microglia activation, neutrophil infiltration, and pro-inflammatory mediators release after ICH. Additionally, ghrelin alleviated ICH-induced oxidative stress according to the chemiluminescence of luminol and lucigenin, malondialdehyde (MDA) content, and total superoxide dismutase (SOD) activity assays. These changes were accompanied by upregulation of Nrf2 expression, Nrf2 nuclear accumulation, and enhanced Nrf2 DNA binding activity, as well as by increased expressions of Nrf2 downstream target antioxidative genes, including NAD(P)H quinine oxidoreductase-1 (NQO1), glutathione cysteine ligase regulatory subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM). Together, our data suggested that ghrelin protected against ICH-induced SBI by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wanqun Xie
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhenghong Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China; Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Neurosurgery, North Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
44
|
Cidade H, Rocha V, Palmeira A, Marques C, Tiritan ME, Ferreira H, Lobo JS, Almeida IF, Sousa ME, Pinto M. In silico and in vitro antioxidant and cytotoxicity evaluation of oxygenated xanthone derivatives. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
45
|
Taeb M, Jafarzadeh A, Mortazavi-Jahromi SS, Zainodini N, Mirzaei MR, Jafarnezhad-Ansariha F, Aghazadeh Z, Mirshafiey A. Effect of β-D-Mannuronic Acid (M2000) on Oxidative Stress Enzymes' Gene Using Healthy Donor Peripheral Blood Mononuclear Cells for Evaluating the Anti-Aging Property. Curr Drug Discov Technol 2019; 16:265-271. [PMID: 29766814 DOI: 10.2174/1570163815666180515122834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This research aimed to study the anti-aging and anti-inflammatory effects of low and high doses of the β-D-mannuronic (M2000) on gene expression of enzymes involved in oxidative stress (including SOD2, GST, GPX1, CAT, iNOS, and MPO) in peripheral blood mononuclear cells (PBMCs) of healthy donors under in vitro conditions. METHODS The PBMCs were separated and the RNAs were then extracted and the cDNAs synthesized, and expression levels of the mentioned genes were detected by qRT-PCR. RESULTS Our results indicated that the high dose of this drug could significantly reduce the expression level of the SOD2 gene compared to the lipopolysaccharide (LPS) group (p < 0.0001). Moreover, it was found that the high dose of this drug could significantly decrease the expression level of the GST gene compared to the LPS group (p < 0.0001). However, no significant reductions were observed in expression levels of the CAT and GPX1 genes compared to the LPS group. Furthermore, our data revealed that the level of iNOS and MPO gene expression was significantly reduced, in both doses of M2000, respectively, compared to the LPS group (p < 0.0001). CONCLUSION This research showed that M2000 as a novel NSAID with immunosuppressive properties could modify oxidative stress through lowering expression levels of the SOD2, GST, iNOS, and MPO genes compared to the healthy expression levels, with a probable reduction of the risk of developing inflammatory diseases related to age and aging.
Collapse
Affiliation(s)
- Mahsa Taeb
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Shahabeddin Mortazavi-Jahromi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | - Nahid Zainodini
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Preston KJ, Rom I, Vrakas C, Landesberg G, Etwebi Z, Muraoka S, Autieri M, Eguchi S, Scalia R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation. FASEB J 2019; 33:11993-12007. [PMID: 31393790 DOI: 10.1096/fj.201802637rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-fat diet (HFD)-induced obesity is associated with accumulation of inflammatory cells predominantly in visceral adipose depots [visceral adipose tissue (VAT)] rather than in subcutaneous ones [subcutaneous adipose tissue (SAT)]. The cellular and molecular mechanisms responsible for this phenotypic difference remain poorly understood. Controversy also exists on the overall impact that adipose tissue inflammation has on metabolic health in diet-induced obesity. The endothelium of the microcirculation regulates both the transport of lipids and the trafficking of leukocytes into organ tissue. We hypothesized that the VAT and SAT microcirculations respond differently to postprandial processing of dietary fat. We also tested whether inhibition of endothelial postprandial responses to high-fat meals (HFMs) preserves metabolic health in chronic obesity. We demonstrate that administration of a single HFM or ad libitum access to a HFD for 24 h quickly induces a transient P-selectin-dependent inflammatory phenotype in the VAT but not the SAT microcirculation of lean wild-type mice. Studies in P-selectin-deficient mice confirmed a mechanistic role for P-selectin in the initiation of leukocyte trafficking, myeloperoxidase accumulation, and acute reduction in adiponectin mRNA expression by HFMs. Despite reduced VAT inflammation in response to HFMs, P-selectin-deficient mice still developed glucose intolerance and insulin resistance when chronically fed an HFD. Our data uncover a novel nutrient-sensing role of the vascular endothelium that instigates postprandial VAT inflammation. They also demonstrate that inhibition of this transient postprandial inflammatory response fails to correct metabolic dysfunction in diet-induced obesity.-Preston, K. J., Rom, I., Vrakas, C., Landesberg, G., Etwebe, Z., Muraoka, S., Autieri, M., Eguchi, S., Scalia, R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation.
Collapse
Affiliation(s)
| | - Inna Rom
- Cardiovascular Research Center and
| | | | | | | | | | - Michael Autieri
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satoru Eguchi
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rosario Scalia
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Yli-Karjanmaa M, Clausen BH, Degn M, Novrup HG, Ellman DG, Toft-Jensen P, Szymkowski DE, Stensballe A, Meyer M, Brambilla R, Lambertsen KL. Topical Administration of a Soluble TNF Inhibitor Reduces Infarct Volume After Focal Cerebral Ischemia in Mice. Front Neurosci 2019; 13:781. [PMID: 31440125 PMCID: PMC6692878 DOI: 10.3389/fnins.2019.00781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023] Open
Abstract
Background Tumor necrosis factor, which exists both as a soluble (solTNF) and a transmembrane (tmTNF) protein, plays an important role in post-stroke inflammation. The objective of the present study was to test the effect of topical versus intracerebroventricular administration of XPro1595 (a solTNF inhibitor) and etanercept (a solTNF and tmTNF inhibitor) compared to saline on output measures such as infarct volume and post-stroke inflammation in mice. Methods Adult male C57BL/6 mice were treated topically (2.5 mg/ml/1μl/h for 3 consecutive days) or intracerebroventricularly (1.25 mg/kg/0.5 ml, once) with saline, XPro1595, or etanercept immediately after permanent middle cerebral artery occlusion (pMCAO). Mice were allowed to survive 1 or 3 days. Infarct volume, microglial and leukocyte profiles, and inflammatory markers were evaluated. Results We found that topical, and not intracerebroventricular, administration of XPro1595 reduced infarct volume at both 1 and 3 days after pMCAO. Etanercept showed no effect. We observed no changes in microglial or leukocyte populations. XPro1595 increased gene expression of P2ry12 at 1 day and Trem2 at 1 and 3 days, while decreasing Cx3cr1 expression at 1 and 3 days after pMCAO, suggesting a change in microglial activation toward a phagocytic phenotype. Conclusion Our data demonstrate that topical administration of XPro1595 for 3 consecutive days decreases infarct volumes after ischemic stroke, while modifying microglial activation and the inflammatory response post-stroke. This suggests that inhibitors of solTNF hold great promise for future neuroprotective treatment in ischemic stroke.
Collapse
Affiliation(s)
- Minna Yli-Karjanmaa
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hans Gram Novrup
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ditte Gry Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Peter Toft-Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Allan Stensballe
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE - Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
48
|
Chithra MA, Ijinu TP, Kharkwal H, Sharma RK, Pushpangadan P, George V. Phenolic rich Cocos nucifera inflorescence extract ameliorates inflammatory responses in LPS-stimulated RAW264.7 macrophages and toxin-induced murine models. Inflammopharmacology 2019; 28:1073-1089. [DOI: 10.1007/s10787-019-00620-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
|
49
|
Manchanda K, Kolarova H, Kerkenpaß C, Mollenhauer M, Vitecek J, Rudolph V, Kubala L, Baldus S, Adam M, Klinke A. MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge. Arterioscler Thromb Vasc Biol 2019; 38:1859-1867. [PMID: 29903730 DOI: 10.1161/atvbaha.118.311143] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- The leukocyte heme-enzyme MPO (myeloperoxidase) exerts proinflammatory effects on the vascular system primarily linked to its catalytic properties. Recent studies have shown that MPO, depending on its cationic charge, mediates neutrophil recruitment and activation. Here, we further investigated MPO's extracatalytic properties and its effect on endothelial glycocalyx (EG) integrity. Approach and Results- In vivo staining of murine cremaster muscle vessels with Alcian Blue 8GX provided evidence of an MPO-dependent decrease in anionic charge of the EG. MPO binding to the glycocalyx was further characterized using Chinese hamster ovary cells and its glycosaminoglycan mutants-pgsA-745 (mutant Chinese hamster ovary cells lacking heparan sulfate and chondroitin sulfate glycosaminoglycan) and pgsD-677 (mutant Chinese hamster ovary cells lacking heparan sulfate glycosaminoglycan), which revealed heparan sulfate as the main mediator of MPO binding. Further, EG integrity was assessed in terms of thickness using intravital microscopy of murine cremaster muscle. A significant reduction in EG thickness was observed on infusion of catalytically active MPO, as well as mutant inactive MPO and cationic polymer polylysine. Similar effects were also observed in wild-type mice after a local inflammatory stimulus but not in MPO-knockout mice. The reduction in EG thickness was reversed after removal of vessel-bound MPO, suggesting a possible physical collapse of the EG. Last, experiments with in vivo neutrophil depletion revealed that MPO also induced neutrophil-mediated shedding of the EG core protein, Sdc1 (syndecan-1). Conclusions- These findings provide evidence that MPO, via ionic interaction with heparan sulfate side chains, can cause neutrophil-dependent Sdc1 shedding and collapse of the EG structure.
Collapse
Affiliation(s)
- Kashish Manchanda
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.)
| | - Hana Kolarova
- Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
| | - Christina Kerkenpaß
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Martin Mollenhauer
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Jan Vitecek
- Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
| | - Volker Rudolph
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Lukas Kubala
- Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
| | - Stephan Baldus
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.)
| | - Matti Adam
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Anna Klinke
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
- Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.)
| |
Collapse
|
50
|
Ollikainen E, Tulamo R, Lehti S, Hernesniemi J, Niemelä M, Kovanen PT, Frösen J. Myeloperoxidase Associates With Degenerative Remodeling and Rupture of the Saccular Intracranial Aneurysm Wall. J Neuropathol Exp Neurol 2019; 77:461-468. [PMID: 29718300 DOI: 10.1093/jnen/nly028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rupture of a saccular intracranial aneurysm (sIA) is often fatal. Thus, early detection of rupture-prone sIAs is vital. Myeloperoxidase (MPO), derived mainly from neutrophils, associates with sIA rupture, and therefore its role in sIA pathogenesis warrants further studies. We analyzed MPO and its association with other histological markers in 36 (16 unruptured and 20 ruptured) sIA samples by immunohistochemistry. MPO was present in all studied sIAs, and its expression associated with wall inflammatory cell infiltrations (r = 0.50, 0.63, and 0.75, all p ≤ 0.002), degenerative remodeling (p = 0.002) and rupture (p = 0.003). MPO associated strongly with the presence of organized luminal thrombi (p < 0.001), which also stained positive for MPO. Polymorphonuclear MPO+ cells were detected in the sIA walls, indicating neutrophils as MPO-source. MPO correlated strongly with accumulation of oxidized lipids (r = 0.67, p < 0.001) and loss of smooth muscle cells (r = -0.68, p < 0.001), suggesting that MPO is a relevant source of oxidative stress leading to cell death in the sIA wall. Furthermore, MPO associated with erythrocyte fragmentation (r = 0.74, p < 0.001) and iron deposition (p = 0.041), 2 outcomes known to amplify MPO-dependent oxidative stress. Taken together, these results suggest that MPO associates with degenerative remodeling predisposing to sIA wall rupture and may serve as a biomarker of a rupture-prone sIA wall.
Collapse
Affiliation(s)
- Eliisa Ollikainen
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Wihuri Research Institute, Biomedicum, Helsinki, Finland
| | - Riikka Tulamo
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Vascular Surgery, University of Helsinki and Helsinki University Hospital, Finland
| | - Satu Lehti
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
| | - Juha Hernesniemi
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Neurosurgery, Henan Province People's Hospital, Zhengzhou, China
| | - Mika Niemelä
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Juhana Frösen
- Neurosurgery Research Group, Biomedicum, Helsinki, Finland.,Department of Neurosurgery, Kuopio, Finland.,Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|