1
|
Morse BL, Ma X, Liu R, Bhattachar SN, Nicoll C, Varghese NM, Kelly RP, Stamatis SD, Pratt EJ. Effect of Gastric pH on the Pharmacokinetics of Atorvastatin and its Metabolites in Healthy Participants. Eur J Drug Metab Pharmacokinet 2025:10.1007/s13318-025-00937-4. [PMID: 39956861 DOI: 10.1007/s13318-025-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVE Atorvastatin is dosed in its active acid form although it exists in equilibrium with its inactive lactone form in vivo. Although in vitro atorvastatin acid displays pH-dependent conversion to the lactone metabolite, pharmacokinetic (PK) data on the effect of elevated gastric pH on atorvastatin and major atorvastatin-related species are not currently available. In this dedicated study, we investigated the effect of food and acid-reducing agents on the PK of atorvastatin and its three major metabolites in humans. METHODS This was an open label, randomized, crossover study conducted in 17 healthy volunteers. Part 1 examined the PK of a 10-mg dose of atorvastatin co-administered with or without a 600-mg dose of sodium bicarbonate in fasted and fed states. Part 2 was a single assessment to examine the PK of a 10-mg dose of atorvastatin in the fasted state following a 5-day treatment course of 40-mg daily esomeprazole. Gastric pH was monitored during treatments using Heidelberg capsules. A linear mixed effects model was used to derive ratios for PK parameters of atorvastatin and metabolites between treatments. RESULTS Similar to previous food effect studies, food significantly decreased the maximum concentration (Cmax) and increased the time to Cmax (tmax) of atorvastatin, with minimal effect on total exposure of atorvastatin or metabolites. Neither sodium bicarbonate, in the fed or fasted state, nor treatment with esomeprazole had a clinically meaningful effect on the exposure of atorvastatin or its metabolites. CONCLUSIONS According to these results, atorvastatin PK does not appear to be sensitive to changes in gastric pH.
Collapse
Affiliation(s)
| | - Xiaosu Ma
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Rong Liu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
3
|
Bredefeld CL, Choi P, Cullen T, Nicolich-Henkin SJ, Waters L. Statin Use and Hyperglycemia: Do Statins Cause Diabetes? Curr Atheroscler Rep 2024; 27:18. [PMID: 39699704 DOI: 10.1007/s11883-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (ASCVD) and diabetes are leading causes of morbidity and mortality in the United States and globally. Statin medications, a cornerstone of ASCVD prevention and treatment strategies, have been demonstrated to cause hyperglycemia and new onset diabetes mellitus (NODM). The purpose of this review is to summarize existing and emerging knowledge around the intersection of statins and these two important clinical problems. RECENT FINDINGS Since initial reporting of statin-induced hyperglycemia and NODM, the totality of available data corroborates an association between incident diabetes and statin use. A consensus that high-intensity statin and individuals with obesity or glycemic parameters approximating diabetes thresholds constitute the majority of risk exists. Alterations in insulin signaling, glucose transport and gastrointestinal microbiota are leading hypotheses underlying the mechanisms of statin-induced hyperglycemia. The probability of NODM based on an individual's risk factors and statin specific properties can be anticipated. This risk needs to be contextualized with the risk of ASCVD. In order to effectively adjudicate the risk of NODM, improvement in formulating and ultimately conveying a comprehensive ASCVD risk assessment to patients is necessary.
Collapse
Affiliation(s)
- Cindy L Bredefeld
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA.
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, 11501, USA.
| | - Paula Choi
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| | - Tiffany Cullen
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| | - Sophie J Nicolich-Henkin
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| | - Lauren Waters
- Department of Medicine, New York University Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Garden City, NY, 11530, USA
| |
Collapse
|
4
|
Tan XD, Luo CF, Liang SY. Antihyperlipidemic drug rosuvastatin suppressed tumor progression and potentiated chemosensitivity by downregulating CCNA2 in lung adenocarcinoma. J Chemother 2024; 36:662-674. [PMID: 38288951 DOI: 10.1080/1120009x.2024.2308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 11/22/2024]
Abstract
Rosuvastatin (RSV) is widely used to treat hyperlipidemia and hypercholesterolemia and is recommended for the primary and secondary prevention of cardiovascular diseases (CVD). In this study, we aimed to explore its action and mechanism in lung adenocarcinoma (LUAD) therapy. Lewis and CMT64 cell-based murine subcutaneous LUAD models were employed to explore the effects of RSV monotherapy combined with cisplatin and gemcitabine. Human lung fibroblasts and human LUAD cell lines were used to assess the effects of RSV on normal and LUAD cells. Bioinformatics and RNA interference were used to observe the contribution of cyclin A2 (CCNA2) knockdown to RSV inhibition and to improve chemosensitivity in LUAD. RSV significantly suppressed grafted tumor growth in a murine subcutaneous LUAD model and exhibited synergistic anti-tumor activity with cisplatin and gemcitabine. In vitro and in vivo experiments demonstrated that RSV impaired the proliferation and migration of cancer cells while showing little inhibition of normal lung cells. RNA interference and CCK8 detection preliminarily indicated that RSV inhibited tumor growth and enhanced the chemosensitivity to cisplatin and gemcitabine by downregulating CCNA2. RSV suppressed LUAD progression and enhanced chemosensitivity to cisplatin and gemcitabine by downregulating CCNA2, which should be prior consideration for the treatment of LUAD, especially for patients co-diagnosed with hyperlipidemia and hypercholesterolemia.
Collapse
Affiliation(s)
- Xiang-Di Tan
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| | - Cui-Fang Luo
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| | - Si-Yu Liang
- The Fourth Affiliated Hospital, Guangzhou Medical University, Zengcheng, China
| |
Collapse
|
5
|
Qin N, Li M, Vora LK, Peng K, Sabri AHB, Tao Y, Paredes AJ, McCarthy HO, Donnelly RF. Enhanced long-acting simvastatin delivery via effervescent powder-carrying hollow microneedles and nanocrystal-loaded microneedles. Int J Pharm 2024; 665:124691. [PMID: 39278288 DOI: 10.1016/j.ijpharm.2024.124691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Hyperlipidemia and its associated cardiovascular complications are the major causes of mortality and disability worldwide. Simvastatin (SIM) is one of the most commonly prescribed lipid-lowering drugs for the treatment of hyperlipidemia by competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. However, the extensive first-pass metabolism leading to low oral bioavailability and frequent daily doses may lead to poor patient compliance and adverse effects caused by plasma fluctuations. To overcome these challenges, this work purposed two microneedle (MN) delivery strategies for the potential enhancement of SIM delivery. Firstly, nanocrystal (NC) formulations of SIM were investigated, followed by incorporation into a trilayer dissolving microneedle (DMN) design. Furthermore, a novel effervescent powder-carrying MN (EMN) design was developed to enhance intradermal delivery by incorporating the effervescent agents into the drug powder. Both MN approaches exhibited significantly improved permeation and in-skin deposition ability in the Franz cell study, with the ex vivo delivery efficiency of 64.33 ± 6.17 % and 40.11 ± 4.53 % for EMNs and DMNs, respectively. Most importantly, in vivo studies using a female Sprague-Dawley rat model confirmed the successful delivery of SIM from NCs-loaded DMNs (Cmax = 287.39 ± 106.82 ng/mL) and EMNs (Cmax = 203.05 ± 17.07 ng/mL) and maintain therapeutically relevant plasma concentrations for 15 days following a single application. The enhanced bioavailabilities of DMNs and EMNs were 24.28 % and 103.82 %, respectively, which were both significantly higher than that of conventional oral administration.
Collapse
Affiliation(s)
- Nuoya Qin
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yushi Tao
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
Maslub MG, Daud NAA, Radwan MA, Sha'aban A, Ibrahim AG. CYP3A4*1B and CYP3A5*3 SNPs significantly impact the response of Egyptian candidates to high-intensity statin therapy to atorvastatin. Eur J Med Res 2024; 29:539. [PMID: 39523378 PMCID: PMC11552228 DOI: 10.1186/s40001-024-02109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND A single nucleotide polymorphism (SNP) is a variation in the DNA sequence that results from the alteration of a single nucleotide in the genome. Atorvastatin is used to treat hypercholesterolemia. It belongs to a class of drugs called statins, which lower elevated levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). Research findings on the associations between the response to atorvastatin and genetic polymorphisms in CYP3A4 and CYP3A5 are inconclusive. The effects of CYP3A4*1B (rs2740574 C/T) and CYP3A5*3 (rs776746 T/C) on atorvastatin therapy have not been previously studied among Egyptians. OBJECTIVE This research aimed to investigate the effects of the genetic polymorphisms CYP3A4*1B and CYP3A5*3 on atorvastatin treatment in Egyptians. METHODS In this prospective cohort study, 100 subjects were genotyped for these SNPs. All participants were screened for serum lipid profiles, liver enzymes, total bilirubin (TB), and creatine kinase (CK) before and after 40 mg postatorvastatin therapy. Atorvastatin plasma levels were assessed posttreatment; atorvastatin pharmacokinetics were evaluated in five carriers of the CYP3A4*1B (T/T) and CYP3A5*3 (C/C) genotypes. RESULTS The allele frequencies of the CYP3A4*1B and CYP3A5*3 SNPs were 86% and 83%, respectively. The CYP3A4*1B (T/T) and CYP3A5*3 (C/C) genotypes significantly improved the serum triglyceride (TG) level (P < 0.05) and elevated the TB level (P < 0.001). Atorvastatin plasma levels were greater in CYP3A4*1B (T/T) (P < 0.05) and CYP3A5*3 (C/C) (P < 0.001) genotype carriers. Both SNPs significantly affected the pharmacokinetics of atorvastatin compared with those of Egyptian volunteers and various ethnic populations. CONCLUSIONS The CYP3A4*1B and CYP3A5*3 variants were prevalent in the study participants and could impact the effectiveness and safety of atorvastatin therapy. The mutant genotype of the CYP3A4*1B SNP and the CYP3A5*3 SNP led to high atorvastatin levels. Both variants had a notable effect on the pharmacokinetics of atorvastatin among Egyptians compared with healthy Egyptians and volunteers from other ethnic populations. Overall, clinicians can learn more about the impact of both variants in response to atorvastatin.
Collapse
Affiliation(s)
- Mohammed G Maslub
- Clinical Pharmacy/Pharmacy Practice Department, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt.
| | - Nur Aizati Athirah Daud
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kota Bharu, Kelantan, Malaysia
| | - Mahasen A Radwan
- Clinical Pharmacy/Pharmacy Practice Department, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | - Abubakar Sha'aban
- Division of Population Medicine, Cardiff University, Cardiff, Wales, CF14 4YS, UK
| | - Arafa G Ibrahim
- Cardiology Department, Faculty of Medicine, Helwan University, Helwan City, 11795, Cairo, Egypt
| |
Collapse
|
7
|
Bolek H, Yazgan SC, Yekedüz E, Kaymakcalan MD, McKay RR, Gillessen S, Ürün Y. Androgen receptor pathway inhibitors and drug-drug interactions in prostate cancer. ESMO Open 2024; 9:103736. [PMID: 39426080 PMCID: PMC11533040 DOI: 10.1016/j.esmoop.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 10/21/2024] Open
Abstract
Prostate cancer represents a major global health challenge, necessitating efficacious therapeutic strategies. Androgen receptor pathway inhibitors (ARPIs) have become central to prostate cancer treatment, demonstrating significant effectiveness in both metastatic and non-metastatic contexts. Abiraterone acetate, by inhibiting androgen synthesis, deprives cancer cells androgens necessary for growth, while second-generation androgen receptor (AR) antagonists disrupt AR signaling by blocking AR binding, thereby impeding tumor progression. Given the predominance of prostate cancer in the elderly, who often present with multiple comorbidities requiring complex pharmacological regimens, the potential for drug-drug interactions with ARPIs is a critical concern. These interactions, particularly through pathways like CYP2D6 inhibition by abiraterone and CYP3A4 induction by enzalutamide and apalutamide, necessitate a thorough understanding to optimize therapeutic outcomes and minimize adverse effects. This review aims to delineate the efficacy of ARPIs in prostate cancer management and elucidate their interaction with common medications, highlighting the importance of vigilant drug management to optimize patient care.
Collapse
Affiliation(s)
- H Bolek
- Department of Medical Oncology, Ankara University School of Medicine, Ankara; Ankara University Cancer Research Institute, Ankara, Turkey
| | - S C Yazgan
- Department of Medical Oncology, Ankara University School of Medicine, Ankara; Ankara University Cancer Research Institute, Ankara, Turkey
| | - E Yekedüz
- Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | | | - R R McKay
- Moores Cancer Center, University of California San Diego, La Jolla, USA
| | - S Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Y Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara; Ankara University Cancer Research Institute, Ankara, Turkey.
| |
Collapse
|
8
|
Feng B, Liang G, Zetterberg C, Li S, Huang H, Williams J, Gao H, Morikawa Y, Kumar S. Utility of Chimeric Mice with Humanized Livers for Predicting Hepatic Organic Anion-Transporting Polypeptide 1B-Mediated Clinical Drug-Drug Interactions. Drug Metab Dispos 2024; 52:1073-1082. [PMID: 39103225 DOI: 10.1124/dmd.124.001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) is a liver-specific uptake transporter in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters. PXB-mice are chimeric mice with humanized livers that are highly repopulated with human hepatocytes and have been widely used for drug metabolism and pharmacokinetics studies in drug discovery. In the present study, we measured the exposure increases [blood AUC (area under the blood/plasma concentration-time curve) and Cmax] of 10 OATP1B substrates in PXB-mice upon coadministration with rifampin, a potent OATP1B specific inhibitor. These data in PXB-mice were then compared with the observed DDIs between OATP1B substrates and single-dose rifampin in humans. Our findings suggest that the DDIs between OATP1B substrates and rifampin in PXB-mouse are comparable with the observed DDIs in the clinic. Since most OATP1B substrates are metabolized by cytochromes P450 (CYPs) and/or are substrates of P-glycoprotein (P-gp), we further validated the utility of PXB-mice to predict complex DDIs involving inhibition of OATP1B, CYPs, and P-gp using cyclosporin A (CsA) and gemfibrozil as perpetrators. Overall, the data support that the chimeric mice with humanized livers could be a useful tool for the prediction of hepatic OATP1B-mediated DDIs in humans. SIGNIFICANCE STATEMENT: The ability of PXB-mouse with humanized liver to predict organic anion-transporting polypeptide 1B (OATP1B)-mediated drug-drug interactions (DDIs) in humans was evaluated. The blood exposure increases of 10 OATP1B substrates with rifampin, an OATP1B inhibitor, in PXB-mice have a good correlation with those observed in humans. More importantly, PXB-mice can predict complex DDIs, including inhibition of OATP1B, cytochromes P450 (CYPs), and P-glycoprotein (P-gp) in humans. PXB-mice are a promising useful tool to assess OATP1B-mediated clinical DDIs.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Guiqing Liang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Shaolan Li
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Hui Huang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - John Williams
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Hong Gao
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| |
Collapse
|
9
|
Wagner JB, Abdel-Rahman S, Raghuveer G, Gaedigk A, Boone EC, Gaedigk R, Staggs VS, Reed GA, Zhang N, Leeder JS. SLCO1B1 Genetic Variation Influence on Atorvastatin Systemic Exposure in Pediatric Hypercholesterolemia. Genes (Basel) 2024; 15:99. [PMID: 38254988 PMCID: PMC10815823 DOI: 10.3390/genes15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This clinical study examined the influence of SLCO1B1 c.521T>C (rs4149056) on plasma atorvastatin concentrations in pediatric hypercholesterolemia. The participants (8-21 years), including heterozygous (c.521T/C, n = 13), homozygous (c.521C/C, n = 2) and controls (c.521T/T, n = 13), completed a single-oral-dose pharmacokinetic study. Similar to in adults, the atorvastatin (AVA) area-under-concentration-time curve from 0 to 24 h (AUC0-24) was 1.7-fold and 2.8-fold higher in participants with c.521T/C and c.521C/C compared to the c.521T/T participants, respectively. The inter-individual variability in AVA exposure within these genotype groups ranged from 2.3 to 4.8-fold, indicating that additional factors contribute to the inter-individual variability in the AVA dose-exposure relationship. A multivariate model reinforced the SLCO1B1 c.521T>C variant as the central factor contributing to AVA systemic exposure in this pediatric cohort, accounting for ~65% of the variability in AVA AUC0-24. Furthermore, lower AVA lactone concentrations in participants with increased body mass index contributed to higher exposure within the c.521T/T and c.521T/C genotype groups. Collectively, these factors contributing to higher systemic exposure could increase the risk of toxicity and should be accounted for when individualizing the dosing of atorvastatin in eligible pediatric patients.
Collapse
Affiliation(s)
- Jonathan B. Wagner
- Ward Family Heart Center, Children’s Mercy, Kansas City, MO 64108, USA
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Erin C. Boone
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Vincent S. Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Health Services & Outcomes Research, Children’s Mercy, Kansas City, MO 64108, USA
| | - Gregory A. Reed
- Clinical Pharmacology Shared Resource, University of Kansas Cancer Center, Fairway, KS 66205, USA
| | - Na Zhang
- Clinical Pharmacology Shared Resource, University of Kansas Cancer Center, Fairway, KS 66205, USA
| | - J. Steven Leeder
- Division of Clinical Pharmacology and Toxicology, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
10
|
Adachi K, Ohyama K, Tanaka Y, Saito Y, Shimizu M, Yamazaki H. Modeled Hepatic/Plasma Exposures of Fluvastatin Prescribed Alone in Subjects with Impaired Cytochrome P450 2C9*3 as One of Possible Determinant Factors Likely Associated with Hepatic Toxicity Reported in a Japanese Adverse Event Database. Biol Pharm Bull 2024; 47:635-640. [PMID: 38494736 DOI: 10.1248/bpb.b24-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Fluvastatin is a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor that competitively inhibits human cytochrome P450 (P450) 2C9 in vitro. Drug interactions between a variety of P450 2C9 substrates/inhibitors and fluvastatin can increase the incidence of fluvastatin-related hepatic or skeletal muscle toxicity in vivo. In this survey, the prescribed dosage of fluvastatin was reduced or discontinued in 133 of 164 patients receiving fluvastatin alone, as recorded in the Japanese Adverse Drug Event Report database of spontaneously reported events. The median days to onset of fluvastatin-related disorders were in the range 30-35 d in the 87 patients. Therefore, we aimed to focus on fluvastatin and, using the pharmacokinetic modeling technique, estimated the virtual plasma and hepatic exposures in subjects harboring the impaired CYP2C9*3 allele. The plasma concentrations of fluvastatin modeled after a virtual oral 20-mg dose increased in homozygotes with CYP2C9*3; the area under the plasma concentration curve was 4.9-fold higher than that in Japanese homozygotes for wild-type CYP2C9*1. The modeled hepatic concentrations of fluvastatin in patients with CYP2C9*3/*3 after virtual daily 20-mg doses for 7 d were 31-fold higher than those in subjects with CYP2C9*1/*1. However, heterozygous Chinese patients with CYP2C9*1/*3 reportedly have a limited elevation (1.2-fold) in plasma maximum concentrations. Virtual hepatic/plasma exposures in subjects harboring the impaired CYP2C9*3 allele estimated using pharmacokinetic modeling indicate that such exposure could be a causal factor for hepatic disorders induced by fluvastatin prescribed alone in a manner similar to that for interactions with a variety of co-administered drugs.
Collapse
Affiliation(s)
| | - Katsuhiro Ohyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | |
Collapse
|
11
|
Maslub MG, Radwan MA, Daud NAA, Sha'aban A. Association between CYP3A4/CYP3A5 genetic polymorphisms and treatment outcomes of atorvastatin worldwide: is there enough research on the Egyptian population? Eur J Med Res 2023; 28:381. [PMID: 37759317 PMCID: PMC10523700 DOI: 10.1186/s40001-023-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Atorvastatin is regarded as the most frequently prescribed statin worldwide for dyslipidemia. However, clinical response and risk of adverse effects to statin therapy are associated with genetic variations. Numerous research linked statins pharmacokinetics (PK) variations to genetic polymorphisms in cytochromes P450 (CYPs) metabolic enzymes. OBJECTIVE This article reviews the association between CYP3A4/5 genetic variations and response to atorvastatin therapy globally, which includes atorvastatin PK, and the risk for adverse reactions, with a hint to the Egyptians. METHODS Up to March 30, 2022, electronic medical databases like PubMed, Web of Science, MEDLINE, and Egyptian Knowledge Bank (EKB) were searched. All articles that highlighted the relationship between CYP3A4/5 genetic polymorphisms and atorvastatin efficacy/safety profile were included in this review. RESULTS Initially, 492 articles were retrieved after an exhaustive search. There were 24 articles included according to the inclusion criteria. Findings of association studies of CYP3A4/5 genetic polymorphisms with response to atorvastatin varied among different ethnicities. CYP3A4*1B was associated with better therapeutic outcomes after atorvastatin therapy in Chileans and vice versa in Americans. Caucasians with myalgia while using atorvastatin were at significant risk of suffering severe muscle damage if they were carriers of CYP3A5*3/*3. As far as we can report for the Egyptian population, the impact of CYP3A4/5 genetic variations on the response to atorvastatin therapy was understudied. CONCLUSION More pharmacogenetic studies amongst diverse populations worldwide, like the Egyptian population, are necessary to detect further atorvastatin-gene interactions.
Collapse
Affiliation(s)
- Mohammed G Maslub
- Pharmacy Practice/Clinical Pharmacy Department, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt.
| | - Mahasen A Radwan
- Pharmacy Practice/Clinical Pharmacy Department, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Nur Aizati Athirah Daud
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Abubakar Sha'aban
- Division of Population Medicine, Cardiff University, Cardiff, CF14 4YS, Wales, UK
| |
Collapse
|
12
|
Dautović E, Rustemović-Čorbić M, Srabović N, Softić A, Smajlović A, Husejnović MŠ, Hatkić A, Halilčević D. Some pleiotropic effects of statins on hepatocellular carcinoma cells: Comparative study on atorvastatin, rosuvastatin and simvastatin. Adv Med Sci 2023; 68:258-264. [PMID: 37478516 DOI: 10.1016/j.advms.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
PURPOSE For many years, statins have been the most commonly used drugs in cholesterol-lowering therapy. In addition to these therapeutic effects, statins exhibit other, pleiotropic effects that can be beneficial, but also harmful to cells and tissues. The aim of this research was to determine and compare the pleiotropic effects of structurally different statins: atorvastatin, simvastatin and rosuvastatin at different concentrations on hepatocellular carcinoma (HepG2) cells. MATERIALS AND METHODS The MTT assay was used to determine the cytotoxic effects of statins. The influence of statins on the production of reactive oxygen species (ROS) was determined by measuring fluorescent response of 2,7-dichlorofluorescein diacetate (DCFH-DA). The effect of statins on glucose production and excretion was determined with glucose production assay. RESULTS The obtained results confirmed that all tested statins exhibit cytotoxic effects, increase the production of ROS as well as the production and excretion of glucose from HepG2 cells. It was observed that all the mentioned effects are more pronounced with lipophilic statins, atorvastatin and simvastatin compared to hydrophilic rosuvastatin. CONCLUSION The less pronounced pleiotropic effects of rosuvastatin on HepG2 cells are probably due to differences in structure and solubility compared to atorvastatin and simvastatin. Transporter-dependent and a slower influx of rosuvastatin into cells compared to the tested lipophilic statins probably lead to a weaker accumulation of rosuvastatin in HepG2 cells, which results in less pronounced pleiotropic effects compared to lipophilic atorvastatin and simvastatin.
Collapse
Affiliation(s)
- Esmeralda Dautović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina.
| | | | - Nahida Srabović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Adaleta Softić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Aida Smajlović
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Maida Šljivić Husejnović
- Department of Pharmaceutical Analytics, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Alen Hatkić
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dalila Halilčević
- Department of Biochemistry, Faculty of Pharmacy, University of Tuzla, Tuzla, Bosnia and Herzegovina
| |
Collapse
|
13
|
Lai Y, Zhong XB. Special Section on Mechanism-Based Predictive Methods in Drug Discovery and Development-Editorial. Drug Metab Dispos 2023; 51:1064-1066. [PMID: 37586888 DOI: 10.1124/dmd.123.001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
|
14
|
Nozaki Y, Izumi S. Preincubation Time-Dependent, Long-Lasting Inhibition of Drug Transporters and Impact on the Prediction of Drug-Drug Interactions. Drug Metab Dispos 2023; 51:1077-1088. [PMID: 36854606 DOI: 10.1124/dmd.122.000970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Transporter-mediated drug-drug interaction (DDI) is of clinical concern, and the quantitative prediction of DDIs is an indispensable part of drug development. Cell-based inhibition assays, in which a representative probe substrate and a potential inhibitor are coincubated, are routinely performed to assess the inhibitory potential of new molecular entities on drug transporters. However, the inhibitory effect of cyclosporine A (CsA) on organic anion transporting polypeptide (OATP) 1B1 is substantially potentiated with CsA preincubation, and this effect is both long-lasting and dependent on the preincubation time. This phenomenon has also been reported with transporters other than OATP1Bs, but it is considered more prevalent among OATP1Bs and organic cation transporters. Regulatory agencies have also noted this preincubation effect and have recommended that pharmaceutical companies consider inhibitor preincubation when performing in vitro OATP1B1 and OATP1B3 inhibition studies. Although the underlying mechanisms responsible for the preincubation effect are not fully understood, a trans-inhibition mechanism was recently demonstrated for OATP1B1 inhibition by CsA, in which CsA inhibited OATP1B1 not only extracellularly (cis-inhibition) but also intracellularly (trans-inhibition). Furthermore, the trans-inhibition potency of CsA was much greater than that of cis-inhibition, suggesting that trans-inhibition might be a key driver of clinical DDIs of CsA with OATP1B substrate drugs. Although confidence in transporter-mediated DDI prediction is generally considered to be low, the predictability might be further improved by incorporating the trans-inhibition mechanism into static and dynamic models for preincubation-dependent inhibitors of OATP1Bs and perhaps other transporters. SIGNIFICANCE STATEMENT: Preincubation time-dependent, long-lasting inhibition has been observed for OATP1B1 and other solute carrier transporters in vitro. Recently, a trans-inhibition mechanism for the preincubation effect of CsA on OATP1B1 inhibition was identified, with the trans-inhibition potency being greater than that of cis-inhibition. The concept of trans-inhibition may allow us to further understand the mechanism of transporter-mediated DDIs not only for OATP1B1 but also for other transporters and to improve the accuracy and confidence of DDI predictions.
Collapse
Affiliation(s)
- Yoshitane Nozaki
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki, 300-2635, Japan (Y.N., S.I.)
| | - Saki Izumi
- Global Drug Metabolism and Pharmacokinetics, Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki, 300-2635, Japan (Y.N., S.I.)
| |
Collapse
|
15
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
16
|
Kusovschi JD, Ivanova AA, Gardner MS, McGarrah RW, Kraus WE, Kuklenyik Z, Pirkle JL, Barr JR. Confirmation of Statin and Fibrate Use from Small-Volume Archived Plasma Samples by High-Throughput LC-MS/MS Method. Int J Mol Sci 2023; 24:ijms24097931. [PMID: 37175638 PMCID: PMC10178340 DOI: 10.3390/ijms24097931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Designing studies for lipid-metabolism-related biomarker discovery is challenging because of the high prevalence of various statin and fibrate usage for lipid-lowering therapies. When the statin and fibrate use is determined based on self-reports, patient adherence to the prescribed statin dose regimen remains unknown. A potentially more accurate way to verify a patient's medication adherence is by direct analytical measurements. Current analytical methods are prohibitive because of the limited panel of drugs per test and large sample volume requirement that is not available from archived samples. A 4-min-long method was developed for the detection of seven statins and three fibrates using 10 µL of plasma analyzed via reverse-phase liquid chromatography and tandem mass spectrometry. The method was applied to the analysis of 941 archived plasma samples collected from patients before cardiac catheterization. When statin use was self-reported, statins were detected in 78.6% of the samples. In the case of self-reported atorvastatin use, the agreement with detection was 90.2%. However, when no statin use was reported, 42.4% of the samples had detectable levels of statins, with a similar range of concentrations as the samples from the self-reported statin users. The method is highly applicable in population studies designed for biomarker discovery or diet and lifestyle intervention studies, where the accuracy of statin or fibrate use may strongly affect the statistical evaluation of the biomarker data.
Collapse
Affiliation(s)
- Jennifer D Kusovschi
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Anna A Ivanova
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Michael S Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - James L Pirkle
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - John R Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| |
Collapse
|
17
|
Cordeiro T, Matos I, Danède F, Sotomayor JC, Fonseca IM, Corvo MC, Dionísio M, Viciosa MT, Affouard F, Correia NT. Evidence of Strong Guest-Host Interactions in Simvastatin Loaded in Mesoporous Silica MCM-41. Pharmaceutics 2023; 15:pharmaceutics15051320. [PMID: 37242562 DOI: 10.3390/pharmaceutics15051320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
A rational design of drug delivery systems requires in-depth knowledge not only of the drug itself, in terms of physical state and molecular mobility, but also of how it is distributed among a carrier and its interactions with the host matrix. In this context, this work reports the behavior of simvastatin (SIM) loaded in mesoporous silica MCM-41 matrix (average pore diameter ~3.5 nm) accessed by a set of experimental techniques, evidencing that it exists in an amorphous state (X-ray diffraction, ssNMR, ATR-FTIR, and DSC). The most significant fraction of SIM molecules corresponds to a high thermal resistant population, as shown by thermogravimetry, and which interacts strongly with the MCM silanol groups, as revealed by ATR-FTIR analysis. These findings are supported by Molecular Dynamics (MD) simulations predicting that SIM molecules anchor to the inner pore wall through multiple hydrogen bonds. This anchored molecular fraction lacks a calorimetric and dielectric signature corresponding to a dynamically rigid population. Furthermore, differential scanning calorimetry showed a weak glass transition that is shifted to lower temperatures compared to bulk amorphous SIM. This accelerated molecular population is coherent with an in-pore fraction of molecules distinct from bulklike SIM, as highlighted by MD simulations. MCM-41 loading proved to be a suitable strategy for a long-term stabilization (at least three years) of simvastatin in the amorphous form, whose unanchored population releases at a much higher rate compared to the crystalline drug dissolution. Oppositely, the surface-attached molecules are kept entrapped inside pores even after long-term release assays.
Collapse
Affiliation(s)
- Teresa Cordeiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Matos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Florence Danède
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - João C Sotomayor
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel M Fonseca
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Marta C Corvo
- i3N|Cenimat, Materials Science Department, NOVA School of Science and Technology, NOVA University, 2829-516 Caparica, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - María Teresa Viciosa
- Centro de Química Estrutural, Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frédéric Affouard
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Natália T Correia
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| |
Collapse
|
18
|
Alvarez-Jimenez L, Morales-Palomo F, Moreno-Cabañas A, Ortega JF, Mora-Rodríguez R. Effects of statin therapy on glycemic control and insulin resistance: A systematic review and meta-analysis. Eur J Pharmacol 2023; 947:175672. [PMID: 36965747 DOI: 10.1016/j.ejphar.2023.175672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
AIMS To update the evidence about the diabetogenic effect of statins. METHODS We searched for randomized-controlled trials reporting the effects of statin therapy on glycosylated hemoglobin (HbA1c) and/or homeostatic model insulin resistance (i.e., HOMA-IR) as indexes of diabetes. Studies were classified between the ones testing normal vs individuals with already altered glycemic control (HbA1c ≥ 6.5%; and HOMA-IR ≥ 2.15). Furthermore, studies were separated by statin type and dosage prescribed. Data are presented as mean difference (MD) and 95% confidence intervals. RESULTS A total of 67 studies were included in the analysis (>25,000 individuals). In individuals with altered glycemic control, statins increased HbA1c levels (MD 0.21%, 95% CI 0.16-to-0.25) and HOMA-IR index (MD 0.31, 95% CI 0.24-to-0.38). In individuals with normal glycemic control, statin increased HbA1c (MD 1.33%, 95% CI 1.31-to-1.35) and HOMA-IR (MD 0.49, 95% CI 0.41-to-0.58) in comparison to the placebo groups. The dose or type of statins did not modulate the diabetogenic effect. CONCLUSIONS Statins, slightly but significantly raise indexes of diabetes in individuals with adequate or altered glycemic control. The diabetogenic effect does not seem to be influenced by the type or dosage of statin prescribed.
Collapse
Affiliation(s)
- Laura Alvarez-Jimenez
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Felix Morales-Palomo
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Alfonso Moreno-Cabañas
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Juan F Ortega
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain
| | - Ricardo Mora-Rodríguez
- Exercise Physiology Lab at Toledo, Sports Science Department, University of Castilla-La Mancha, 45004, Toledo, Spain.
| |
Collapse
|
19
|
smProdrugs: A repository of small molecule prodrugs. Eur J Med Chem 2023; 249:115153. [PMID: 36724634 DOI: 10.1016/j.ejmech.2023.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
In modern drug discovery and development, the prodrug approach has become a crucial strategy for enhancing the pharmacokinetic profiles of drugs. A prodrug is a chemical compound, which gets metabolized into a pharmacologically active form (drug) inside the body after its administration. In the current work, we report 'smProdrugs' (http://cheminfolab.in/databases/prodrug/), which is one of the first exclusive databases on small molecule prodrugs. It stores the structures, physicochemical properties and experimental ADMET data manually curated from literature. SmProdrugs lists 626 small molecule prodrugs and their active compounds with the above mentioned experimental data from 1808 research articles and 61 patents have been stored. The information page of each record gives the structures and properties of the prodrug and the active drug side by side which makes it easy for the user to instantly compare them. The structural modifications in the prodrug/active drugs are highlighted in a different colour for easy comparison. Experimental data has been curated from the downloaded PubMed and patent articles and were catalogued in a tabular form with more than 25 fields under sub-sections i) name and structures of the prodrugs and their active compounds, ii) mode of activation of the prodrug and enzyme/biocatalyst involved in the conversion, iii) indications/disease, iv) pharmacological target, v) experimental pharmacokinetic properties such as solubility, absorption, volume of distribution, half-life, clearance etc. and vi) information on the purpose/gain from the prodrug strategies. Considering the ever expanding utility of the prodrug approach smProdrugs will be of great use to the scientific community working on rational design of small molecule prodrugs.
Collapse
|
20
|
Ballotari M, Taus F, Gottardo R, Tagliaro F, Bortolotti F. Hair analysis as a new tool to monitor adherence to long-term therapy to statins. Electrophoresis 2023; 44:521-528. [PMID: 36640222 DOI: 10.1002/elps.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Statins are cholesterol-lowering medications which are widely prescribed as first-line treatment for hyperlipidemia, against high blood cholesterol aimed at reducing the risk of atherosclerotic diseases. Notwithstanding their undoubted efficacy, the needed long-term treatment with these drugs is characterized by a high percentage of dropout. Consequently, an effective tool to verify the patients' compliance to statin therapy is needed. In this context, the analysis for drugs and drug metabolites in the hair may represent an almost ideal tool because, according to a sound body of forensic toxicological literature, concentrations in the hair matrix reflect the chronic intake of drugs and pharmaceuticals. In this light, in the present study, a novel, specific and sensitive ultra-performance liquid chromatography-tandem mass spectrometry method has been developed to determine six statins and their metabolites (namely atorvastatin, (p)α-OH-atorvastatin-lactone, (o)α-OH-atorvastatin-lactone, rosuvastatin, N-desmethyl rosuvastatin and pravastatin) in human hair. After optimization, the method was successfully validated in terms of selectivity, linearity, sensitivity, precision, accuracy, stability and matrix effect. Moreover, the practical applicability of this method for verifying adherence to statin therapy was assessed by testing samples of hair collected from subjects under long-term therapy with statins.
Collapse
Affiliation(s)
- Marco Ballotari
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Francesco Taus
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Rossella Gottardo
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Franco Tagliaro
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Federica Bortolotti
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Simvastatin: In Vitro Metabolic Profiling of a Potent Competitive HMG-CoA Reductase Inhibitor. SEPARATIONS 2022. [DOI: 10.3390/separations9120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Simvastatin (SV) is a semisynthetic derivative of lovastatin (LV), which is biosynthetically produced from the fungus Aspergillus terreus and has a high log p value (log p = 4.39)and thus high hepatic extraction and high efficacy in controlling cholesterol synthesis. The current study was undertaken to investigate the metabolic profile of SV using various mass spectrometry (MS) platforms. Metabolic profiling was studied in in vitro models, rat liver microsomes (RLMs), and isolated perfused rat liver hepatocytes (RLHs) using both ion trap and triple quadruple LC–MS/MS systems. A total of 29 metabolites were identified. Among them, three types of SV-related phase-I metabolites, namely exomethylene simvastatin acid (exomethylene SVA), monohydroxy SVA, and dihydrodiol SVA, were identified as new in RLMs. No phase-II metabolites were identified while incubating with RLHs.
Collapse
|
22
|
Infection-Induced Rhabdomyolysis in an Elderly Patient on Stable Rosuvastatin Therapy: A Case Report and Review of the Literature. Am J Ther 2022; 29:e657-e661. [PMID: 33443867 DOI: 10.1097/mjt.0000000000001325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Elalem EG, Jelani M, Khedr A, Ahmad A, Alaama TY, Alaama MN, Al-Kreathy HM, Damanhouri ZA. Association of cytochromes P450 3A4*22 and 3A5*3 genotypes and polymorphism with response to simvastatin in hypercholesterolemia patients. PLoS One 2022; 17:e0260824. [PMID: 35839255 PMCID: PMC9286239 DOI: 10.1371/journal.pone.0260824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUNDS Inter-individual variability in response to statin was mainly due to genetic differences. This study aimed to investigate the association of CYP3A4*22 (rs35599367), CYP3A5*3 (rs776746) single nucleotide polymorphism (SNP) with response to simvastatin in hypercholesterolemia patients conducted at King Abdulaziz University hospital (KAUH) in Jeddah, Saudi Arabia. PATIENTS AND METHODS A total of 274 participants were registered in the current study. Hypercholesterolemic patients taking simvastatin 20 mg (n = 148) and control subjects (n = 126) were tested for rs35599367 and rs776746 genotypes using Custom Taqman ® Assay Probes. Response to simvastatin in these patients was assessed by determination of low density lipoprotein (LDL-C), total cholesterol (TC) and by measuring statin plasma levels using Liquid Chromatography-Mass Spectrometry (LC-MS). RESULTS None of the participants carried a homozygous CYP3A4*22 mutant genotype, while 12 (4.4%) individuals had a heterozygous genotype and 262 (95.6%) had a wild homozygous genotype. The CYP3A5*3 allele was detected in the homozygous mutant form in 16 (5.8%) individuals, while 74 (27.0%) individuals carried the heterozygous genotype and 184 (67.2%) carried the wildtype homozygous genotype. Of the patient group, 15 (11%) were classified as intermediate metabolizers (IMs) and 133 (89%) as extensive metabolizers (EMs). Plasma simvastatin concentrations for the combined CYP3A4/5 genotypes were significantly (P<0.05) higher in the IMs group than in the EMs group. TC and plasma LDL-C levels were also significantly (P<0.05) higher in IMs than in EMs. CONCLUSION The present study showed associations between CYP3A4*22 (rs35599367) and CYP3A5*3 (rs776746) SNP combination genotypes with response to statins in hypercholesterolemia. Patients who had either a mutant homozygous allele for CYP3A5*3 or mutant homozygous and heterozygous alleles for CYP3A4*22 showed increased response to lower TC and LDL-C levels.
Collapse
Affiliation(s)
- Elbatool G. Elalem
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Musharraf Jelani
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Khedr
- Department of Analytical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tareef Y. Alaama
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabeel Alaama
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M. Al-Kreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoheir A. Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Stillemans G, Paquot A, Muccioli GG, Hoste E, Panin N, Åsberg A, Balligand J, Haufroid V, Elens L. Atorvastatin population pharmacokinetics in a real-life setting: Influence of genetic polymorphisms and association with clinical response. Clin Transl Sci 2022; 15:667-679. [PMID: 34761521 PMCID: PMC8932751 DOI: 10.1111/cts.13185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to investigate the potential clinical relevance of estimating the apparent clearance (CL/F) of atorvastatin through population pharmacokinetic (PopPK) modeling with samples collected in a real-life setting in a cohort of ambulatory patients at risk of cardiovascular disease by using an opportunistic sampling strategy easily accessible in clinical routine. A total of 132 pharmacokinetic (PK) samples at a maximum of three visits were collected in the 70 included patients. The effects of demographic, genetic, and clinical covariates were also considered. With the collected data, we developed a two-compartment PopPK model that allowed estimating atorvastatin CL/F relatively precisely and considering the genotype of the patient for SLCO1B1 c.521T>C single-nucleotide polymorphism (SNP). Our results indicate that the estimation of the CL/F of atorvastatin through our PopPK model might help in identifying patients at risk of myalgia. Indeed, we showed that a patient presenting a CL/F lower than 414.67 L h-1 is at risk of suffering from muscle discomfort. We also observed that the CL/F was correlated with the efficacy outcomes, suggesting that a higher CL/F is associated with a better drug efficacy (i.e., a greater decrease in total and LDL-cholesterol levels). In conclusion, our study demonstrates that PopPK modeling can be useful in daily clinics to estimate a patient' atorvastatin clearance. Notifying the clinician with this information can help in identifying patients at risk of myalgia and gives indication about the potential responsiveness to atorvastatin therapy.
Collapse
Affiliation(s)
- Gabriel Stillemans
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKineticsLouvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
- Louvain Centre for Toxicology and Applied PharmacologyInstitut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive LipidsLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive LipidsLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Emilia Hoste
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKineticsLouvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
- Louvain Centre for Toxicology and Applied PharmacologyInstitut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| | - Nadtha Panin
- Louvain Centre for Toxicology and Applied PharmacologyInstitut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| | - Anders Åsberg
- Department of PharmacologySchool of PharmacyUniversity of OsloOsloNorway
| | - Jean‐Luc Balligand
- Pole of Pharmacology and TherapeuticsInstitut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
- Department of Internal MedicineCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied PharmacologyInstitut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
- Department of Clinical ChemistryCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKineticsLouvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
- Louvain Centre for Toxicology and Applied PharmacologyInstitut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| |
Collapse
|
25
|
Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. J Clin Med 2022; 11:1313. [PMID: 35268403 PMCID: PMC8911353 DOI: 10.3390/jcm11051313] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Statins are competitive inhibitors of hydroxymethylglutaryl-CoA (HMG-CoA) reductase and have been used to treat elevated low-density lipoprotein cholesterol (LDL-C) for almost four decades. Antioxidant and anti-inflammatory properties which are independent of the lipid-lowering effects of statins, i.e., their pleiotropic effects, might be beneficial in the prevention or treatment of many diseases. This review discusses the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases. Nrf2 and other proteins involved in the Nrf2/HO-1 signaling pathway have a crucial role in cellular responses to oxidative stress, which is a risk factor for ASCVD. Statins can significantly increase the DNA-binding activity of Nrf2 and induce the expression of its target genes, such as HO-1 and glutathione peroxidase) GPx, (thus protecting the cells against oxidative stress. Antioxidant and anti-inflammatory properties of statins, which are independent of their lipid-lowering effects, could be partly explained by the modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20100 Milan, Italy;
| | - Eugenia Tedeschi-Reiner
- University Hospital Center Sestre Milosrdnice, University of Osijek, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
26
|
Fokina VM, Patrikeeva S, Wang XM, Noguchi S, Tomi M, König J, Ahmed MS, Nanovskaya T. Role of Uptake Transporters OAT4, OATP2A1, and OATP1A2 in Human Placental Bio-disposition of Pravastatin. J Pharm Sci 2022; 111:505-516. [PMID: 34597623 PMCID: PMC8792198 DOI: 10.1016/j.xphs.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/03/2023]
Abstract
Pravastatin is currently under evaluation for prevention of preeclampsia. Factors contributing to placental disposition of pravastatin are important in assessment of potential undesirable fetal effects. The purpose of this study was to identify the uptake transporters that contribute to the placental disposition of pravastatin. Our data revealed the expression of organic anion transporting polypeptide 1A2 (OATP1A2) and OATP2A1 in the apical, and OATP2B1 and OATP5A1 in the basolateral membranes of the placenta, while organic anion transporter 4 (OAT4) exhibited higher expression in basolateral membrane but was detected in both membranes. Preloading placental membrane vesicles with glutarate increased the uptake of pravastatin suggesting involvement of glutarate-dependent transporters such as OAT4. In the HEK293 cells overexpressing individual uptake transporters, OATP2A1, OATP1A2 and OAT4 were determined to accept pravastatin as a substrate at physiological pH, while the uptake of pravastatin by OATP2B1 (known to interact with pravastatin at acidic pH) and OATP5A1 was not detected at pH 7.4. These findings led us to propose that OATP1A2 and OATP2A1 are responsible for the placental uptake of pravastatin from the maternal circulation, while OAT4 mediates the passage of the drug across placental basolateral membrane in the fetal-to-maternal direction.
Collapse
Affiliation(s)
- Valentina M Fokina
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiao-ming Wang
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen
| | - Mahmoud S Ahmed
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
27
|
Pfab C, Abgaryan A, Danzer B, Mourtada F, Ali W, Gessner A, El-Najjar N. Ceftazidime and cefepime antagonize 5-fluorouracil's effect in colon cancer cells. BMC Cancer 2022; 22:125. [PMID: 35100987 PMCID: PMC8802503 DOI: 10.1186/s12885-021-09125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Drug-drug interaction (DDI), which can occur at the pharmacokinetics and/or the pharmacodynamics (PD) levels, can increase or decrease the therapeutic or adverse response of a drug itself or a combination of drugs. Cancer patients often receive, along their antineoplastic agents, antibiotics such as ß-lactams to treat or prevent infection. Despite the narrow therapeutic indices of antibiotics and antineoplastic agents, data about their potential interaction are insufficient. 5-fluorouracil (5-FU), widely used against colon cancer, is known for its toxicity and large intra- and inter- individual variability. Therefore, knowledge about its interaction with antibiotics is crucial. Methods In this study, we evaluated at the PD levels, against HCT-116 colon cancer cells, DDI between 5-FU and several ß-lactams (ampicillin, benzypenicillin, piperacillin, meropenem, flucloxacillin, ceftazidime (CFT), and cefepime (CFP)), widely used in intensive care units. All drugs were tested at clinically achieved concentrations. MTT assay was used to measure the metabolic activity of the cells. Cell cycle profile and apoptosis induction were monitored, in HCT-116 and DLD-1 cells, using propidium iodide staining and Caspase-3/7 activity assay. The uptake of CFT and CFP by the cells was measured using LC-MS/MS method. Results Our data indicate that despite their limited uptake by the cells, CFT and CFP (two cephalosporins) antagonized significantly 5-FU-induced S-phase arrest (DLD-1 cells) and apoptosis induction (HCT-116 cells). Remarkably, while CFP did not affect the proliferation of colon cancer cells, CFT inhibited, at clinically relevant concentrations, the proliferation of DLD-1 cells via apoptosis induction, as evidenced by an increase in caspase 3/7 activation. Unexpectedly, 5-FU also antagonized CFT’s induced cell death in DLD-1 cells. Conclusion This study shows that CFP and CFT have adverse effects on 5-FU’s action while CFT is a potent anticancer agent that inhibits DLD-1 cells by inducing apoptotic cell death. Further studies are needed to decipher the mechanism(s) responsible for CFT’s effects against colon cancer as well as the observed antagonism between CFT, CFP, and 5-FU with the ultimate aim of translating the findings to the clinical settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09125-4.
Collapse
Affiliation(s)
- Christina Pfab
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Anush Abgaryan
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Barbara Danzer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Fatme Mourtada
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Weaam Ali
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
28
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
29
|
Robinson G, Pineda-Torra I, Ciurtin C, Jury EC. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. J Clin Invest 2022; 132:e148552. [PMID: 35040437 PMCID: PMC8759788 DOI: 10.1172/jci148552] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.
Collapse
Affiliation(s)
- George Robinson
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research
- Centre for Adolescent Rheumatology Research, and
| | | |
Collapse
|
30
|
Ni X, Yang ZZ, Ye LQ, Han XL, Zhao DD, Ding FY, Ding N, Wu HC, Yu M, Xu GY, Zhao ZA, Lei W, Hu SJ. Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacol Sin 2022; 43:240-250. [PMID: 33686244 PMCID: PMC8724272 DOI: 10.1038/s41401-021-00621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular safety assessment is vital for drug development, yet human cardiovascular cell models are lacking. In vitro mass-generated human pluripotent stem cell (hPSC)-derived cardiovascular cells are a suitable cell model for preclinical cardiovascular safety evaluations. In this study, we established a preclinical toxicology model using same-origin hPSC-differentiated cardiomyocytes (hPSC-CMs) and endothelial cells (hPSC-ECs). For validation of this cell model, alirocumab, a human antibody against proprotein convertase subtilisin kexin type 9 (PCSK9), was selected as an emerging safe lipid-lowering drug; atorvastatin, a common statin (the most effective type of lipid-lowering drug), was used as a drug with reported side effects at high concentrations, while doxorubicin was chosen as a positive cardiotoxic drug. The cytotoxicity of these drugs was assessed using CCK8, ATP, and lactate dehydrogenase release assays at 24, 48, and 72 h. The influences of these drugs on cardiomyocyte electrophysiology were detected using the patch-clamp technique, while their effects on endothelial function were determined by tube formation and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake assays. We showed that alirocumab did not affect the cell viability or cardiomyocyte electrophysiology in agreement with the clinical results. Atorvastatin (5-50 μM) dose-dependently decreased cardiovascular cell viability over time, and at a high concentration (50 μM, ~100 times the normal peak serum concentration in clinic), it affected the action potentials of hPSC-CMs and damaged tube formation and Dil-Ac-LDL uptake of hPSC-ECs. The results demonstrate that the established same-origin hPSC-derived cardiovascular cell model can be used to evaluate lipid-lowering drug safety in cardiovascular cells and allow highly accurate preclinical assessment of potential drugs.
Collapse
Affiliation(s)
- Xuan Ni
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Zhuang-zhuang Yang
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Ling-qun Ye
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Xing-long Han
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Dan-dan Zhao
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Feng-yue Ding
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Nan Ding
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Hong-chun Wu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Miao Yu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Guang-yin Xu
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Zhen-ao Zhao
- grid.412026.30000 0004 1776 2036Institute of Microcirculation, Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000 China
| | - Wei Lei
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Shi-jun Hu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| |
Collapse
|
31
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang Y, Luo R, Sun D, Ma Y, Wu W, Tu W, Zhao Y, Xu W, Ke Y, Jiang S, Huang Y, Zhang R, Wang L, Chen Y, Xia J, Pu W, Zhu H, Zuo X, Li Y, Xu J, Gao F, Wei D, Chen J, Yin W, Wang Q, Dai H, Yang L, Guo G, Cui J, Song N, Zou H, Zhao S, Distler JH, Jin L, Wang J. LDLR dysfunction induces LDL accumulation and promotes pulmonary fibrosis. Clin Transl Med 2022; 12:e711. [PMID: 35083881 PMCID: PMC8792399 DOI: 10.1002/ctm2.711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-β1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Yahui Chen
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Xueqian Mei
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Jing Liu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
| | - Yulong Tang
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Ruoyu Luo
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Dayan Sun
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yanyun Ma
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Wenzhen Tu
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yinhuan Zhao
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Weihong Xu
- The Clinical Laboratory of Tongren HosipitalShanghai Jiaotong UniversityShanghaiP. R. China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang ProvinceP. R. China
| | - Shuai Jiang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yan Huang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Rui Zhang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Lei Wang
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yuanyuan Chen
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Jingjing Xia
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Weilin Pu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Honglin Zhu
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yisha Li
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Fei Gao
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Dong Wei
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Jingyu Chen
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Qingwen Wang
- Rheumatology and Immunology DepartmentPeking University Shenzhen HospitalShenzhenP. R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
| | - Libing Yang
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
- School of MedicineTsinghua UniversityBeijingP. R. China
| | - Gang Guo
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Jimin Cui
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFudan Zhangjiang InstituteShanghaiP. R. China
| | - Hejian Zou
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
| | - Shimin Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiP. R. China
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
| | - Li Jin
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| |
Collapse
|
32
|
Safitri N, Alaina MF, Pitaloka DAE, Abdulah R. A Narrative Review of Statin-Induced Rhabdomyolysis: Molecular Mechanism, Risk Factors, and Management. Drug Healthc Patient Saf 2021; 13:211-219. [PMID: 34795533 PMCID: PMC8593596 DOI: 10.2147/dhps.s333738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Although statins are effective for treating hypercholesterolemia, they can have various side effects, including rhabdomyolysis, a potentially fatal condition. This review evaluated the incidence and underlying molecular mechanism of statin-induced rhabdomyolysis and analyzed its risk factors, prevention, and management. We focused on the clinical and randomized clinical trials of statin monotherapies and combinations with other drugs. The primary mechanism of statin therapy-induced rhabdomyolysis is believed to be a decrease in ubiquinone (coenzyme Q) produced by the HMG-CoA pathway. Additionally, different types of lipophilic and hydrophilic statins play a role in causing rhabdomyolysis. Although statin-induced rhabdomyolysis has a low incidence, there is no guarantee that patients will be free of this side effect. Rhabdomyolysis can be prevented by reducing the risk factors, such as using CYP3A4 inhibitors, using high-dose statins, and strenuous physical activities.
Collapse
Affiliation(s)
- Nisa Safitri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Maya Fadila Alaina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Dian Ayu Eka Pitaloka
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
33
|
Liu JC, Liu SH, Fu G, Qiu XR, Jiang RD, Huang SY, Zhu YL, Li WZ. Blood Immune Cell Composition Associated with Obesity and Drug Repositioning Revealed by Epigenetic and Transcriptomic Conjoint Analysis. Front Pharmacol 2021; 12:714643. [PMID: 34712134 PMCID: PMC8546369 DOI: 10.3389/fphar.2021.714643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
This research was designed to analyze the composition of immune cells in obesity and identify novel and potent drugs for obesity management by epigenetic and transcriptomic conjoint analysis. DNA methylation data set (GSE166611) and mRNA expression microarray (GSE18897) were obtained from the Gene Expression Omnibus database. A total of 72 objects (35 obese samples and 37 controls) were included in the study. Immune cell composition analysis, drug repositioning, and gene set enrichment analysis (GSEA) were performed using CIBERSORT, connectivity map (CMap), and GSEA tools. Besides, we performed a single-cell RNA-seq of the immune cells from whole blood samples obtained from one obese patient and one healthy control. mRNA levels of drug target genes were analyzed by qPCR assay in blood samples from six patients and six healthy controls. Immune cell composition analysis found that CD8 + T cells and NK cells were significantly lower in the obese group. 11 drugs/compounds are considered to possess obesity-control potential, such as atorvastatin. Moreover, the expression of drug targets (STAT3, MCL1, PMAIP1, SOD2, FOX O 3, FOS, FKBP5) in obese patients were higher than those in controls. In conclusion, immune cells are potential therapeutic targets for obesity. Our results also contribute to accelerate research on drug development of obesity.
Collapse
Affiliation(s)
- Jia-Chen Liu
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Sheng-Hua Liu
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Guang Fu
- Department of Gastroenterology, The First Affiliated Hospital of University of South, Hengyang, China
| | - Xiao-Rui Qiu
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Run-Dong Jiang
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Sheng-Yuan Huang
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Yong-Li Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Zheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Kimoto E, Costales C, West MA, Bi YA, Vourvahis M, David Rodrigues A, Varma MVS. Biomarker-Informed Model-Based Risk Assessment of Organic Anion Transporting Polypeptide 1B Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2021; 111:404-415. [PMID: 34605015 DOI: 10.1002/cpt.2434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Quantitative prediction of drug-drug interactions (DDIs) involving organic anion transporting polypeptide (OATP)1B1/1B3 inhibition is limited by uncertainty in the translatability of experimentally determined in vitro inhibition potency (half-maximal inhibitory concentration (IC50 )). This study used an OATP1B endogenous biomarker-informed physiologically-based pharmacokinetic (PBPK) modeling approach to predict the effect of inhibitor drugs on the pharmacokinetics (PKs) of OATP1B substrates. Initial static analysis with about 42 inhibitor drugs, using in vitro IC50 values and unbound liver inlet concentrations (Iin,max,u ), suggested in vivo OATP1B inhibition risk for drugs with R-value (1+ Iin,max,u /IC50 ) above 1.5. A full-PBPK model accounting for transporter-mediated hepatic disposition was developed for coproporphyrin I (CP-I), an endogenous OATP1B biomarker. For several inhibitors (cyclosporine, diltiazem, fenebrutinib, GDC-0810, itraconazole, probenecid, and rifampicin at 3 different doses), PBPK models were developed and verified against available CP-I plasma exposure data to obtain in vivo OATP1B inhibition potency-which tend to be lower than the experimentally measured in vitro IC50 by about 2-fold (probenecid and rifampicin) to 37-fold (GDC-0810). Models verified with CP-I data are subsequently used to predict DDIs with OATP1B probe drugs, rosuvastatin and pitavastatin. The predicted and observed area under the plasma concentration-time curve ratios are within 20% error in 55% cases, and within 30% error in 89% cases. Collectively, this comprehensive study illustrates the adequacy and utility of endogenous biomarker-informed PBPK modeling in mechanistic understanding and quantitative predictions of OATP1B-mediated DDIs in drug development.
Collapse
Affiliation(s)
- Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Chester Costales
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Mark A West
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Yi-An Bi
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manoli Vourvahis
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, New York, USA
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
35
|
Classification of drugs for evaluating drug interaction in drug development and clinical management. Drug Metab Pharmacokinet 2021; 41:100414. [PMID: 34666290 DOI: 10.1016/j.dmpk.2021.100414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
During new drug development, clinical drug interaction studies are carried out in accordance with the mechanism of potential drug interactions evaluated by in vitro studies. The obtained information should be provided efficiently to medical experts through package inserts and various information materials after the drug's launch. A recently updated Japanese guideline presents general procedures that are considered scientifically valid at the present moment. In this review, we aim to highlight the viewpoints of the Japanese guideline and enumerate drugs that were involved or are anticipated to be involved in evident pharmacokinetic drug interactions and classify them by their clearance pathway and potential intensity based on systematic reviews of the literature. The classification would be informative for designing clinical studies during the development stage, and the appropriate management of drug interactions in clinical practice.
Collapse
|
36
|
Kanwal U, Mukhtar S, Waheed M, Mehreen A, Abbas N, Shamim R, Hussain K, Rasool F, Hussain A, Bukhari NI. Fixed Dose Single Tablet Formulation with Differential Release of Amlodipine Besylate and Simvastatin and Its Pharmacokinetic Profile: QbD and Risk Assessment Approach. Drug Des Devel Ther 2021; 15:2193-2210. [PMID: 34079222 PMCID: PMC8164448 DOI: 10.2147/dddt.s240506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Purpose A differential release fixed dose matrix tablet of amlodipine besylate (AML-B) and simvastatin (SIM) was formulated to enhance patient compliance. Material and Method In the first phase, release controlling parameters of AML-B and SIM granules were identified and in the second phase a fixed dose AML-B and SIM tablet formulation was prepared and optimized for a differential release of the drugs using a quality by design (QbD) and risk assessment approach. A validated HPLC method was employed for simultaneous determination of AML-B and SIM for FDC formulation. A pharmacokinetics of the above drugs was studied in healthy dogs in the third phase. Results In QbD-based optimized formulation, Eudragit® RSPO-dicalcium phosphate (DCP) blend controlled the release of AML-B over 8 h, though this diffusion-controlled release assumed first order kinetics. DCP and Eudragit® RS 100 also retarded release of SIM causing SIM release over 8 h after AML-B release from the optimized FDC tablet formulation. The HPLC retention times of AML-B and SIM were 2.10 and 15.52 min, respectively. Linearity for AML-B was 5.0–50 ng/mL and 0.01–2.0 µg/mL for SIM with percent recoveries of 92.85–101.53% and 94.51–117.75% for AML-B and SIM. AUC0-∞ of AML-B was increased 3 fold, while AUC0-∞ of SIM was decreased 2 fold. The tmax values for AML-B and SIM were 12 and 6 h, respectively. AML-B was absorbed without any lag time (tlag) while tlag was 6.33 ± 0.81 h for SIM, thus met the study objective. Conclusion The pharmacokinetic study showed an immediate absorption of AML-B while that of SIM was withheld for 6 h, close to the desired delay time of 8 h.
Collapse
Affiliation(s)
- Ummarah Kanwal
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Shahid Mukhtar
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | | | - Nasir Abbas
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Rahat Shamim
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Khalid Hussain
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Fatima Rasool
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Amjad Hussain
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nadeem Irfan Bukhari
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
37
|
Gebremichael LG, Suppiah V, Wiese MD, Mackenzie L, Phillips C, Williams DB, Roberts MS. Efficacy and safety of statins in ethnic differences: a lesson for application in Indigenous Australian patient care. Pharmacogenomics 2021; 22:553-571. [PMID: 34120458 DOI: 10.2217/pgs-2020-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Although statins are effective in treating high cholesterol, adverse effects do occur with their use. Efficacy and tolerability vary among statins in different ethnic groups. Indigenous Australians have a high risk for cardiovascular and kidney diseases. Prescribing statins to Indigenous Australians with multi-morbidity requires different strategies to increase efficacy and reduce their toxicity. Previous studies have reported that Indigenous Australians are more susceptible to severe statin-induced myopathies. However, there is a lack of evidence in the underlying genetic factors in this population. This review aims to identify: inter-ethnic differences in the efficacy and safety of statins; major contributing factors accounting for any identified differences; and provide an overview of statin-induced adverse effects in Indigenous Australians.
Collapse
Affiliation(s)
- Lemlem G Gebremichael
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Vijayaprakash Suppiah
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael D Wiese
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Lorraine Mackenzie
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Craig Phillips
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Desmond B Williams
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael S Roberts
- UniSA Clinical & Health Science, University of South Australia, Adelaide, SA 5000, Australia
- Therapeutics Research Centre, Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville, SA 5011, Australia
| |
Collapse
|
38
|
Lalagkas PN, Poulentzas G, Kontogiorgis C, Douros A. Potential drug-drug interaction between sodium-glucose co-transporter 2 inhibitors and statins: pharmacological and clinical evidence. Expert Opin Drug Metab Toxicol 2021; 17:697-705. [PMID: 33888031 DOI: 10.1080/17425255.2021.1921735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Recent case reports suggested that concomitant use of sodium-glucose co-transporter 2 (SGLT2) inhibitors with statins could lead to increased statin toxicity. We provide a comprehensive overview of the available pharmacological and clinical evidence on this potential drug-drug interaction (DDI). AREAS COVERED We searched MEDLINE PubMed until November 2020 for (i) pharmacokinetic studies on SGLT2 inhibitors, statins, and their potential interaction, and (ii) case reports and clinical studies assessing the safety of concomitant use of SGLT2 inhibitors and statins. We also searched regulatory documents submitted to the United States Food and Drug Administration for unpublished data on this potential DDI. EXPERT OPINION SGLT2 inhibitors are increasingly used for type 2 diabetes, chronic heart failure, and chronic kidney disease, and concomitant use with statins is common given the comorbidity of indications. While pharmacokinetic studies in healthy subjects showed no clinically relevant changes in statin levels during SGLT2 inhibitor co-administration, the published case reports and pharmacologic reasoning support the possibility of an interaction. Underlying mechanisms could be pharmacokinetic or pharmacodynamic, and canagliflozin appears to be the SGLT2 inhibitor with the highest interaction potential. Further research including 'real-world' pharmacoepidemiologic studies is needed to better understand the clinical significance of this DDI.
Collapse
Affiliation(s)
- Panagiotis-Nikolaos Lalagkas
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Poulentzas
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, Heraklion, Greece
| | - Antonios Douros
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Departments of Medicine and Epidemiology, McGill University, Montreal, QC, Canada.,Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Škorňová I, Samoš M, Bolek T, Stančiaková L, Vádelová Ľ, Galajda P, Staško J, Kubisz P, Mokáň M. Does atorvastatin therapy change the anti-Xa activity in xabans-treated patients with atrial fibrillation? Pharmacol Res Perspect 2021; 9:e00730. [PMID: 33984191 PMCID: PMC8118196 DOI: 10.1002/prp2.730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/25/2021] [Indexed: 11/11/2022] Open
Abstract
Atorvastatin and direct oral factor Xa inhibitors (xabans) are frequently co‐administrated in patients with atrial fibrillation (AF). However, no studies investigating the possibility of the pharmacologic interaction between these agents have been conducted. The aim of this prospective observational study was to determine the impact of atorvastatin therapy on anti‐Xa activity in xabans‐treated patients with AF. We enrolled 115 AF patients on long‐term rivaroxaban (52 patients) and long‐term apixaban (63 patients) therapy. Long‐term atorvastatin (40 mg once daily) was administrated to 28 rivaroxaban‐treated patients and to 28 apixaban‐treated patients. Trough and peak samples were tested for anti‐Xa activity with drug‐specific anti‐Xa chromogenic analysis. For rivaroxaban, there were no significant differences in trough activity (45.5 ± 39.5 ng/ml vs. 46.2 ± 30.1 ng/ml; p = .34) and peak anti‐Xa activity (179.2 ± 108.8 ng/ml vs. 208.1 ± 104.1 ng/ml; p = .94) between atorvastatin‐treated patients and those without atorvastatin. Similarly, atorvastatin did not impact the trough activity (127.7 ± 71.1 ng/ml vs. 100.8 ± 61.1 ng/ml; p = .12) or peak anti‐Xa activity (213.8 ± 103.6 ng/ml vs. 179.3 ± 72.9 ng/ml; p = .14) among apixaban‐treated patients with AF. This observational study did not show a significant impact of atorvastatin on trough and peak anti‐Xa activity in xabans‐treated patients with AF.
Collapse
Affiliation(s)
- Ingrid Škorňová
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Blood Transfusion, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Matej Samoš
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Tomáš Bolek
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Lucia Stančiaková
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Blood Transfusion, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Ľubica Vádelová
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Blood Transfusion, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Galajda
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Ján Staško
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Blood Transfusion, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Peter Kubisz
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Blood Transfusion, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Marián Mokáň
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
40
|
Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics 2021; 13:pharmaceutics13050709. [PMID: 34068030 PMCID: PMC8152487 DOI: 10.3390/pharmaceutics13050709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Atorvastatin (ATS) is the gold-standard treatment worldwide for the management of hypercholesterolemia and prevention of cardiovascular diseases associated with dyslipidemia. Physiologically based pharmacokinetic (PBPK) models have been positioned as a valuable tool for the characterization of complex pharmacokinetic (PK) processes and its extrapolation in special sub-groups of the population, leading to regulatory recognition. Several PBPK models of ATS have been published in the recent years, addressing different aspects of the PK properties of ATS. Therefore, the aims of this review are (i) to summarize the physicochemical and pharmacokinetic characteristics involved in the time-course of ATS, and (ii) to evaluate the major highlights and limitations of the PBPK models of ATS published so far. The PBPK models incorporate common elements related to the physicochemical aspects of ATS. However, there are important differences in relation to the analyte evaluated, the type and effect of transporters and metabolic enzymes, and the permeability value used. Additionally, this review identifies major processes (lactonization, P-gp contribution, ATS-Ca solubility, simultaneous management of multiple analytes, and experimental evidence in the target population), which would enhance the PBPK model prediction to serve as a valid tool for ATS dose optimization.
Collapse
|
41
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2021; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
42
|
Camerino GM, Tarantino N, Canfora I, De Bellis M, Musumeci O, Pierno S. Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. Int J Mol Sci 2021; 22:ijms22042070. [PMID: 33669797 PMCID: PMC7921957 DOI: 10.3390/ijms22042070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Nancy Tarantino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
- Correspondence:
| |
Collapse
|
43
|
Effects of Probenecid on Hepatic and Renal Disposition of Hexadecanedioate, an Endogenous Substrate of Organic Anion Transporting Polypeptide 1B in Rats. J Pharm Sci 2021; 110:2274-2284. [PMID: 33607188 DOI: 10.1016/j.xphs.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to investigate changes in plasma concentrations and tissue distribution of endogenous substrates of organic anion transporting polypeptide (OATP) 1B, hexadecanedioate (HDA), octadecanedioate (ODA), tetradecanedioate (TDA), and coproporphyrin-III, induced by its weak inhibitor, probenecid (PBD), in rats. PBD increased the plasma concentrations of these four compounds regardless of bile duct cannulation, whereas liver-to-plasma (Kp,liver) and kidney-to-plasma concentration ratios of HDA and TDA were reduced. Similar effects of PBD on plasma concentrations and Kp,liver of HDA, ODA, and TDA were observed in kidney-ligated rats, suggesting a minor contribution of renal disposition to the overall distribution of these three compounds. Tissue uptake clearance of deuterium-labeled HDA (d-HDA) in liver was 16-fold higher than that in kidney, and was reduced by 80% by PBD. This was compatible with inhibition by PBD of d-HDA uptake in isolated rat hepatocytes. Such inhibitory effects of PBD were also observed in the human OATP1B1-mediated uptake of d-HDA. Overall, the disposition of HDA is mainly determined by hepatic OATP-mediated uptake, which is inhibited by PBD. HDA might, thus, be a biomarker for OATPs minimally affected by urinary and biliary elimination in rats.
Collapse
|
44
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
45
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
46
|
Kayesh R, Farasyn T, Crowe A, Liu Q, Pahwa S, Alam K, Neuhoff S, Hatley O, Ding K, Yue W. Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interaction Potential of Vemurafenib Using R-Value and Physiologically-Based Pharmacokinetic Models. J Pharm Sci 2021; 110:314-324. [PMID: 32590030 PMCID: PMC7750294 DOI: 10.1016/j.xphs.2020.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important determinants of transporter-mediated drug-drug interactions (DDIs). Current studies assessed the OATP1B1 and OATP1B3-mediated DDI potential of vemurafenib, a kinase inhibitor drug with high protein binding and low aqueous solubility, using R-value and physiologically-based pharmacokinetic (PBPK) models. The total half-maximal inhibitory concentration (IC50,total) values of vemurafenib against OATP1B1 and OATP1B3 were determined in 100% human plasma in transporter-overexpressing human embryonic kidney 293 stable cell lines. The unbound fraction of vemurafenib in human plasma before (fu,plasma) and after addition into the uptake assay plate (fu,plasma,inc) were determined by rapid equilibrium dialysis. There was no statistically significant difference between fu,plasma and fu,plasma,inc. Vemurafenib IC50,total values against OATP1B1 and OATP1B3 are 175 ± 82 and 231 ± 26 μM, respectively. The R-values [R = 1 + fu,plasma × Iin,max/(fu,plasma,inc × IC50,total)] were then simplified as R = 1+Iin,max/IC50,total, and were 1.76 and 1.57 for OATP1B1 and OATP1B3, respectively. The simulated pravastatin AUC ratio was 1.28 when a single dose of pravastatin (40 mg) was co-administered with vemurafenib (960 mg, twice daily) at steady-state, compared to pravastatin alone. Both R-value and PBPK models predict that vemurafenib has the potential to cause OATP1B1- and OATP1B3-mediated DDIs.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Qiang Liu
- ARL Bio Pharma, Oklahoma City, Oklahoma 73104
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
47
|
Bechtold B, Clarke J. Multi-factorial pharmacokinetic interactions: unraveling complexities in precision drug therapy. Expert Opin Drug Metab Toxicol 2020; 17:397-412. [PMID: 33339463 DOI: 10.1080/17425255.2021.1867105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Precision drug therapy requires accounting for pertinent factors in pharmacokinetic (PK) inter-individual variability (i.e., pharmacogenetics, diseases, polypharmacy, and natural product use) that can cause sub-therapeutic or adverse effects. Although each of these individual factors can alter victim drug PK, multi-factorial interactions can cause additive, synergistic, or opposing effects. Determining the magnitude and direction of these complex multi-factorial effects requires understanding the rate-limiting redundant and/or sequential PK processes for each drug.Areas covered: Perturbations in drug-metabolizing enzymes and/or transporters are integral to single- and multi-factorial PK interactions. Examples of single factor PK interactions presented include gene-drug (pharmacogenetic), disease-drug, drug-drug, and natural product-drug interactions. Examples of multi-factorial PK interactions presented include drug-gene-drug, natural product-gene-drug, gene-gene-drug, disease-natural product-drug, and disease-gene-drug interactions. Clear interpretation of multi-factorial interactions can be complicated by study design, complexity in victim drug PK, and incomplete mechanistic understanding of victim drug PK.Expert opinion: Incorporation of complex multi-factorial PK interactions into precision drug therapy requires advances in clinical decision tools, intentional PK study designs, drug-metabolizing enzyme and transporter fractional contribution determinations, systems and computational approaches (e.g., physiologically-based pharmacokinetic modeling), and PK phenotyping of progressive diseases.
Collapse
Affiliation(s)
- Baron Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - John Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
48
|
Ananthakumar A, Liu Y, Fernandez CE, Truskey GA, Voora D. Modeling statin myopathy in a human skeletal muscle microphysiological system. PLoS One 2020; 15:e0242422. [PMID: 33237943 PMCID: PMC7688150 DOI: 10.1371/journal.pone.0242422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Statins are used to lower cholesterol and prevent cardiovascular disease. Musculoskeletal side effects known as statin associated musculoskeletal symptoms (SAMS), are reported in up to 10% of statin users, necessitating statin therapy interruption and increasing cardiovascular disease risk. We tested the hypothesis that, when exposed to statins ex vivo, engineered human skeletal myobundles derived from individuals with (n = 10) or without (n = 14) SAMS and elevated creatine-kinase levels exhibit statin-dependent muscle defects. Myoblasts were derived from muscle biopsies of individuals (median age range of 62-64) with hyperlipidemia with (n = 10) or without (n = 14) SAMS. Myobundles formed from myoblasts were cultured with growth media for 4 days, low amino acid differentiation media for 4 days, then dosed with 0 and 5μM of statins for 5 days. Tetanus forces were subsequently measured. To model the change of tetanus forces among clinical covariates, a mixed effect model with fixed effects being donor type, statin concentration, statin type and their two way interactions (donor type*statin concentration and donor type* statin type) and the random effect being subject ID was applied. The results indicate that statin exposure significantly contributed to decrease in force (P<0.001) and the variability in data (R2C [R square conditional] = 0.62). We found no significant differences in force between myobundles from patients with/without SAMS, many of whom had chronic diseases. Immunofluorescence quantification revealed a positive correlation between the number of straited muscle fibers and tetanus force (R2 = 0.81,P = 0.015) and negative correlation between number of fragmented muscle fibers and tetanus force (R2 = 0.482,P = 0.051) with no differences between donors with or without SAMS. There is also a correlation between statin exposure and presence of striated fibers (R2 = 0.833, P = 0.047). In patient-derived myobundles, statin exposure results in myotoxicity disrupting SAA organization and reducing force. We were unable to identify differences in ex vivo statin myotoxicity in this system. The results suggest that it is unlikely that there is inherent susceptibility to or persistent effects of statin myopathy using patient-derived myobundles.
Collapse
Affiliation(s)
- Anandita Ananthakumar
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Yiling Liu
- Duke Center for Applied Genomics & Precision Medicine, Durham, NC, United States of America
| | - Cristina E. Fernandez
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Deepak Voora
- Duke Center for Applied Genomics & Precision Medicine, Durham, NC, United States of America
| |
Collapse
|
49
|
The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int J Mol Sci 2020; 21:ijms21228745. [PMID: 33228116 PMCID: PMC7699354 DOI: 10.3390/ijms21228745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Statins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades. Here, we present a concise perspective on the role of statins in lowering serum cholesterol levels, and how their reported interactions with phospholipid membranes offer a crucial insight into the mechanism of some of the more commonly observed pleiotropic effects of statin administration. Lipophilicity, which governs hepatoselectivity, is directly related to the molecular structure of statins, which dictates interaction with and transport through membranes. The structure of statins is therefore a clinically important consideration in the treatment of hypercholesterolaemia. This review integrates the recent biophysical studies of statins with the literature on the physiological effects and provides new insights into the mechanistic cause of statin pleiotropy, and prospective means of understanding the cholesterol-independent effects of statins.
Collapse
|
50
|
Wagner JB, Ruggiero M, Leeder JS, Hagenbuch B. Functional Consequences of Pravastatin Isomerization on OATP1B1-Mediated Transport. Drug Metab Dispos 2020; 48:1192-1198. [PMID: 32892153 PMCID: PMC7589943 DOI: 10.1124/dmd.120.000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pravastatin acid (PVA) can be isomerized to its inactive metabolite 3'α-iso-pravastatin acid (3αPVA) under acidic pH conditions. Previous studies reported interindividual differences in circulating concentrations of PVA and 3αPVA. This study investigated the functional consequences of PVA isomerization on OATP1B1-mediated transport. We characterized 3αPVA inhibition of OATP1B1-mediated PVA uptake into human embryonic kidney 293 cells expressing the four different OATP1B1 proteins (*1a, *1b, *5, and *15). 3αPVA inhibited OATP1B1-mediated PVA uptake in all four OATP1B1 gene products but with lower IC50/Ki values for OATP1B1*5 and *15 than for the reference proteins (*1a and *1b). PVA and 3αPVA were transported by all four OATP1B1 proteins. Kinetic experiments revealed that maximal transport rates (Vmax values) for OATP1B1 variants *5 and *15 were lower than for *1a and *1b for both substrates. Apparent affinities for 3αPVA transport were similar for all four variants. However, the apparent affinity of OATP1B1*5 for 3αPVA was higher (lower Km value) than for PVA. These data confirm that PVA conversion to 3αPVA can have functional consequences on PVA uptake and impacts OATP1B1 variants more than the reference protein, thus highlighting another source variation that must be taken into consideration when optimizing the PVA dose-exposure relationship for patients. SIGNIFICANCE STATEMENT: 3'α-iso-pravastatin acid inhibits pravastatin uptake for all OATP1B1 protein types; however, the IC50 values were significantly lower in OATP1B1*5 and *15 transfected cells. This suggests that a lower concentration of 3'α-iso-pravastatin is needed to disrupt OATP1B1-mediated pravastatin uptake, secondary to decreased cell surface expression of functional OATP1B1 in variant-expressing cells. These data will refine previous pharmacokinetic models that are utilized to characterize pravastatin interindividual variability with an ultimate goal of maximizing efficacy at the lowest possible risk for toxicity.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| | - Melissa Ruggiero
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| | - J Steven Leeder
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| | - Bruno Hagenbuch
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| |
Collapse
|