1
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Zarei M, Sahebi Vaighan N, Farjoo MH, Talebi S, Zarei M. Incretin-based therapy: a new horizon in diabetes management. J Diabetes Metab Disord 2024; 23:1665-1686. [PMID: 39610543 PMCID: PMC11599551 DOI: 10.1007/s40200-024-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/22/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus, a metabolic syndrome characterized by hyperglycemia and insulin dysfunction, often leads to serious complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Incretins, gut peptide hormones released post-nutrient intake, have shown promising therapeutic effects on these complications due to their wide-ranging biological impacts on various body systems. This review focuses on the role of incretin-based therapies, particularly Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, in managing diabetes and its complications. We also discuss the potential of novel agents like semaglutide, a recently approved oral compound, and dual/triple agonists targeting GLP-1/GIP, GLP-1/glucagon, and GLP-1/GIP/glucagon receptors, which are currently under investigation. The review aims to provide a comprehensive understanding of the beneficial impacts of natural incretins and the therapeutic potential of incretin-based therapies in diabetes management.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soosan Talebi
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- John B. Little Center for Radiation Sciences, Harvard T.H Chan School of Public Health, Boston, MA USA
| |
Collapse
|
3
|
Ahammed MS, Wang X. Promoting proteostasis by cAMP/PKA and cGMP/PKG. Trends Mol Med 2024:S1471-4914(24)00273-9. [PMID: 39477759 DOI: 10.1016/j.molmed.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
Proteasome functional insufficiency (PFI) is implicated in neurodegeneration and heart failure, where aberrant protein aggregation is common and impairs the ubiquitin (Ub)-proteasome system (UPS), exacerbating increased proteotoxic stress (IPTS) and creating a vicious circle. Breaking this circle represents a key to treating these diseases. Protein kinase (PK)-A and PKG can activate the proteasome and promote proteasomal degradation of misfolded proteins. PKA does so by phosphorylating Ser14-RPN6/PSMD11, but how PKG activates the proteasome remains unknown. Emerging evidence supports a strategy to treat diseases with IPTS by augmenting cAMP/PKA and cGMP/PKG. Conceivably, targeted activation of PKA and PKG at proteasome nanodomains would minimize the undesired effects from their actions on other targets. In this review, we discuss PKA and PKG regulation of proteostasis via the UPS.
Collapse
Affiliation(s)
- Md Salim Ahammed
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| |
Collapse
|
4
|
Younis W, Cui C, Sadeghian T, Burboa P, Shu P, Qin Y, Xie LH, Gallardo ML, Beuve A. Soluble guanylyl cyclase, the NO-receptor, regulates endothelium-dependent vascular relaxation via its transnitrosation activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620487. [PMID: 39554196 PMCID: PMC11565717 DOI: 10.1101/2024.10.28.620487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We previously demonstrated that the NO-receptor soluble guanylyl cyclase (GC1) has the ability to transnitrosate other proteins in a reaction that involves, in some cases, oxidized Thioredoxin 1 (oTrx1). This transnitrosation cascade was established in vitro and we identified by mass spectrometry and mutational analysis Cys 610 (C610) of GC1 α-subunit as a major donor of S-nitrosothiols (SNO). To assay the relevance of GC1 transnitrosation under physiological conditions and in oxidative pathologies, we studied a knock-in mouse in which C610 was replaced with a serine (KI αC 610S ) under basal or angiotensin II (Ang II)-treated conditions. Despite similar GC1 expression and NO-stimulated cGMP-forming activity, the Ang II-treated KI mice displayed exacerbated oxidative pathologies including higher mean arterial pressure and more severe cardiac dysfunctions compared to the Ang II-treated WT. These phenotypes were associated with a drastic decrease in global S-nitrosation and in levels of SNO-Trx1 and SNO-RhoA in the KI mice. To investigate the mechanism underlying the dysregulation of blood pressure despite an intact NO-cGMP axis, pressure myography and in vivo intravital microscopy were conducted to analyze the vascular resistance tone. Both approaches indicated that, even in the absence of oxidative stress, the single mutation C610S led to a significant deficiency in acetylcholine-induced vasorelaxation while smooth muscle relaxation in response to NO remained unchanged. These findings indicate that the C610S mutation uncoupled the two NO signaling pathways involved in the endothelium and smooth muscle vasorelaxation and suggest that GC1-dependent S-nitrosation is a key player in endothelium-derived hyperpolarization.
Collapse
|
5
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Nagaraj G, Vellaichamy E. Triiodo-L-thyronine (T3) downregulates Npr1 gene (coding for natriuretic peptide receptor-A) transcription in H9c2 cells: involvement of β-AR-ROS signaling. Endocrine 2024; 85:1075-1090. [PMID: 38713329 DOI: 10.1007/s12020-024-03849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Natriuretic peptide receptor-A (NPR-A) signaling system is considered as an intrinsic productive mechanism of the heart that opposes abnormal cardiac remodeling and hypertrophic growth. NPR-A is coded by Npr1 gene, and its expression is downregulated in the hypertrophied heart. AIM We sought to examine the levels of Npr1 gene transcription in triiodo-L-thyronine (T3) treated hypertrophied cardiomyocyte (H9c2) cells, in vitro, and also the involvement of β-adrenergic receptor (β-AR) - Reactive oxygen species (ROS) signaling system in the down-regulation of Npr1 transcription also studied. MAIN METHODS Anti-hypertrophic Npr1 gene transcription was monitored in control and T3-treated (dose and time dependent) H9c2 cells, using a real time PCR method. Further, cell size, intracellular cGMP, ROS, hypertrophy markers (ANP, BNP, α-sk, α-MHC and β-MHC), β-AR, and protein kinase cGMP-dependent 1 (PKG-I) genes expression were also determined. The intracellular cGMP and ROS levels were determined by ELISA and DCF dye method, respectively. In addition, to neutralize T3 mediated ROS generation, H9c2 cells were treated with T3 in the presence and absence of antioxidants [curcumin (CU) or N-acetyl-L-cysteine (NAC)]. RESULTS A dose dependent (10 pM, 100 pM, 1 nM and 10 nM) and time dependent (12 h, 24 h and 48 h) down-regulation of Npr1 gene transcription (20, 39, 60, and 74% respectively; 18, 55, and 85%, respectively) were observed in T3-treated H9c2 cells as compared with control cells. Immunofluorescence analysis also revealed that a marked down regulation of NPR- A protein in T3-treated cells as compared with control cells. Further, a parallel downregulation of cGMP and PKG-I (2.4 fold) were noticed in the T3-treated cells. In contrast, a time dependent increased expression of β-AR (60, 72, and 80% respectively) and ROS (26, 48, and 74%, respectively) levels were noticed in T3-treated H9c2 cells as compared with control cells. Interestingly, antioxidants, CU or NAC co-treated T3 cells displayed a significant reduction in ROS (69 and 81%, respectively) generation and to increased Npr1 gene transcription (81 and 88%, respectively) as compared with T3 alone treated cells. CONCLUSION Our result suggest that down regulation of Npr1 gene transcription is critically involved in T3- induced hypertrophic growth in H9c2 cells, and identifies the cross-talk between T3-β-AR-ROS and NPR-A signaling.
Collapse
Affiliation(s)
- Gopinath Nagaraj
- Peptide Research and Molecular Cardiology Unit, Department of Biochemistry, University of Madras, Guindy campus, Chennai, Tamil Nadu, 600025, India
| | - Elangovan Vellaichamy
- Peptide Research and Molecular Cardiology Unit, Department of Biochemistry, University of Madras, Guindy campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
7
|
Tabish TA, Hussain MZ, Zervou S, Myers WK, Tu W, Xu J, Beer I, Huang WE, Chandrawati R, Crabtree MJ, Winyard PG, Lygate CA. S-nitrosocysteamine-functionalised porous graphene oxide nanosheets as nitric oxide delivery vehicles for cardiovascular applications. Redox Biol 2024; 72:103144. [PMID: 38613920 PMCID: PMC11026843 DOI: 10.1016/j.redox.2024.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10-10 mol cm-2 min-1 for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10-10 mol cm-2 min-1). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom.
| | - Mian Zahid Hussain
- School of Natural Sciences and Catalysis Research Centre, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom; James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Irina Beer
- Institute of Water Chemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom; Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Headington, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
8
|
Che Y, Shimizu Y, Hayashi T, Suzuki J, Pu Z, Tsuzuki K, Narita S, Shibata R, Murohara T. Chronic circadian rhythm disorder induces heart failure with preserved ejection fraction-like phenotype through the Clock-sGC-cGMP-PKG1 signaling pathway. Sci Rep 2024; 14:10777. [PMID: 38734687 PMCID: PMC11088651 DOI: 10.1038/s41598-024-61710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.
Collapse
Affiliation(s)
- Yiyang Che
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takumi Hayashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Zhongyue Pu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Tsuzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Stamerra CA, Di Giosia P, Giorgini P, Jamialahmadi T, Sahebkar A. Cardiovascular Effects of Stimulators of Soluble Guanylate Cyclase Administration: A Meta-analysis of Randomized Controlled Trials. Curr Atheroscler Rep 2024; 26:177-187. [PMID: 38564140 DOI: 10.1007/s11883-024-01197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW Heart failure (HF) is one of the main causes of cardiovascular mortality in the western world. Despite great advances in treatment, recurrence and mortality rates remain high. Soluble guanylate cyclase is an enzyme which, by producing cGMP, is responsible for the effects of vasodilation, reduction of cardiac pre- and after-load and, therefore, the improvement of myocardial performance. Thus, a new therapeutic strategy is represented by the stimulators of soluble guanylate cyclase (sGCs). The aim of this meta-analysis was to analyze the effects deriving from the administration of sGCs, in subjects affected by HF. A systematic literature search of Medline, SCOPUS, and Google Scholar was conducted up to December 2022 to identify RCTs assessing the cardiovascular effects, as NT-pro-BNP values and ejection fraction (EF), and all-cause mortality, of the sGCs. Quantitative data synthesis was performed using a random-effects model, with weighted mean difference (WMD) and 95% confidence interval (CI) as summary statistics. RECENT FINDINGS The results obtained documented a statistically significant improvement in NT-proBNP values (SMD: - 0.258; 95% CI: - 0.398, - 0.118; p < 0.001) and EF (WMD: 0.948; 95% CI: 0.485, 1.411; p < 0.001) in subjects treated with sGCs; however, no significant change was found in the all-cause mortality rate (RR 0.96; 95% CI 0.868 to 1.072; I2, p = 0). The sGCs represent a valid therapeutic option in subjects suffering from HF, leading to an improvement in cardiac performance.
Collapse
Affiliation(s)
| | - Paolo Di Giosia
- Department of Internal Medicine-Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Giorgini
- Department of Emergency-Madonna del Soccorso Hospital, San Benedetto del Tronto, Italy
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Sumi MP, Westcott R, Stuehr E, Ghosh C, Stuehr DJ, Ghosh A. Regional variations in allergen-induced airway inflammation correspond to changes in soluble guanylyl cyclase heme and expression of heme oxygenase-1. FASEB J 2024; 38:e23572. [PMID: 38512139 DOI: 10.1096/fj.202301626rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Asthma is characterized by airway remodeling and hyperreactivity. Our earlier studies determined that the nitric oxide (NO)-soluble guanylyl cyclase (sGC)-cGMP pathway plays a significant role in human lung bronchodilation. However, this bronchodilation is dysfunctional in asthma due to high NO levels, which cause sGC to become heme-free and desensitized to its natural activator, NO. In order to determine how asthma impacts the various lung segments/lobes, we mapped the inflammatory regions of lungs to determine whether such regions coincided with molecular signatures of sGC dysfunction. We demonstrate using murine models of asthma (OVA and CFA/HDM) that the inflamed segments of these murine lungs can be tracked by upregulated expression of HO1 and these regions in turn overlap with regions of heme-free sGC as evidenced by a decreased sGC-α1β1 heterodimer and an increased response to heme-independent sGC activator, BAY 60-2770, relative to naïve uninflamed regions. We also find that NO generated from iNOS upregulation in the inflamed segments has a higher impact on developing heme-free sGC as increasing iNOS activity correlates linearly with elevated heme-independent sGC activation. This excess NO works by affecting the epithelial lung hemoglobin (Hb) to become heme-free in asthma, thereby causing the Hb to lose its NO scavenging function and exposing the underlying smooth muscle sGC to excess NO, which in turn becomes heme-free. Recognition of these specific lung segments enhances our understanding of the inflamed lungs in asthma with the ultimate aim to evaluate potential therapies and suggest that regional and not global inflammation impacts lung function in asthma.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Rosemary Westcott
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Chaitali Ghosh
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Arayici ME, Gunes H, Ellidokuz H, Yilmaz MB. The efficacy and safety of soluble guanylate cyclase modulation in patients with heart failure: a comprehensive meta-analysis of randomized controlled trials. Sci Rep 2024; 14:6987. [PMID: 38523184 PMCID: PMC10961326 DOI: 10.1038/s41598-024-57695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Soluble guanylate cyclase (sGC) modulation has been scrutinized in several disease states including heart failure (HF). Recently, it was shown that an sGC modulator improved HF-related hospitalization significantly, though, there was no benefit related to mortality. Herein, a comprehensive meta-analysis of randomized controlled trials (RCTs) for sGC modulation in HF patients was provided in agreement with the PRISMA statement. A total of 10 RCTs yielding 12 papers were included. There were 7526 patients with heart failure of each phenotype, 4253 in the sGC modulator group and 3273 in the placebo group. Use of sGC modulators in HF patients yielded no significant difference in the risk of all-cause mortality compared to placebo (RR = 0.97, 95% CI 0.88-1.08, p = 0.62). The use of sGC modulators was associated with a trend toward a considerable but non-significant increase in the incidence of SAEs (RR = 1.10, 95% CI 0.99-1.22, p = 0.07), as well as an increased incidence of hypotension and anemia. There was an overall neutral effect of sGC modulation on NT-proBNP levels, 6MWD and mortality, at a cost of slight increase in hypotension and anemia. Of note, the improvement in EQ-5D-based quality of life was significant. Hence, the benefit seems to be driven by distinctive domains of quality of life.
Collapse
Affiliation(s)
- Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Hakan Gunes
- Department of Cardiology, Izmir Faculty of Medicine, University of Health Sciences, İzmir, Turkey
| | - Hulya Ellidokuz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, Inciralti-Balcova, 35340, İzmir, Turkey.
| |
Collapse
|
12
|
Barakat G, Assi G, Khalil H, El Khatib S. A Comprehensive Review on GLP-1 Signaling Pathways in the Management of Diabetes Mellitus - Focus on the Potential Role of GLP-1 Receptors Agonists and Selenium among Various Organ Systems. Curr Diabetes Rev 2024; 21:e160424228945. [PMID: 38629376 DOI: 10.2174/0115733998287178240403055901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 10/30/2024]
Abstract
Diabetes Mellitus develops when the body becomes unable to fuel its cells with glucose, which results in the accumulation of sugar excess in the bloodstream. Because it has diverse pathophysiological impacts on the body, diabetes mellitus represents a significant issue of concern in an attempt to find suitable treatment modalities and medications for afflicted diabetic patients. Glucagon-like peptide 1 (GLP-1) plays a pivotal role in the incretin effect, emerging as a prospective treatment for diabetes mellitus and a promising means of regenerating pancreatic cells, whether directly or through its receptor agonists. It has been shown that GLP-1 efficiently increases insulin production, lowers blood sugar levels in patients with type 2 diabetes mellitus, and decreases appetite, craving, and hunger, therefore amplifying the sensation of fullness and satiety. Moreover, since they are all dependent on GLP-1 effect, intricate signaling pathways share some similarities during specific phases, although the pathways continue to exhibit significant divergence engendered by specific reactions and effects in each organ, which encompasses the rationale behind observed differences. This triggers an expanding range of GLP-1 R agonists, creating new unforeseen research and therapeutic application prospects. This review aims to explain the incretin effect, discuss how GLP-1 regulates blood glucose levels, and how it affects different body organs, as well as how it transmits signals, before introducing selenium's role in the incretin impact.
Collapse
Affiliation(s)
- Ghinwa Barakat
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hussein Khalil
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
13
|
Yin Q, Zheng X, Song Y, Wu L, Li L, Tong R, Han L, Bian Y. Decoding signaling mechanisms: unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases. Front Pharmacol 2023; 14:1272073. [PMID: 38186653 PMCID: PMC10771398 DOI: 10.3389/fphar.2023.1272073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Soluble guanylate cyclase agonists and guanylate cyclase C agonists are two popular drugs for diseases of the cardiovascular system and digestive systems. The common denominator in these conditions is the potential therapeutic target of guanylate cyclase. Thanks to in-depth explorations of their underlying signaling mechanisms, the targets of these drugs are becoming clearer. This review explains the recent research progress regarding potential drugs in this class by introducing representative drugs and current findings on them.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujie Song
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Knihtilä HM, Kachroo P, Shadid I, Raissadati A, Peng C, McElrath TF, Litonjua AA, Demeo DL, Loscalzo J, Weiss ST, Mirzakhani H. Cord blood DNA methylation signatures associated with preeclampsia are enriched for cardiovascular pathways: insights from the VDAART trial. EBioMedicine 2023; 98:104890. [PMID: 37995466 PMCID: PMC10709000 DOI: 10.1016/j.ebiom.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Preeclampsia has been associated with maternal epigenetic changes, in particular DNA methylation changes in the placenta. It has been suggested that preeclampsia could also cause DNA methylation changes in the neonate. We examined DNA methylation in relation to gene expression in the cord blood of offspring born to mothers with preeclampsia. METHODS This study included 128 mother-child pairs who participated in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), where assessment of preeclampsia served as secondary outcome. We performed an epigenome-wide association study of preeclampsia and cord blood DNA methylation (Illumina 450 K chip). We then examined gene expression of the same subjects for validation and replicated the gene signatures in independent DNA methylation datasets. Lastly, we applied functional enrichment and network analyses to identify biological pathways that could potentially be involved in preeclampsia. FINDINGS In the cord blood samples (n = 128), 263 CpGs were differentially methylated (FDR <0.10) in preeclampsia (n = 16), of which 217 were annotated. Top pathways in the functional enrichment analysis included apelin signaling pathway and other endothelial and cardiovascular pathways. Of the 217 genes, 13 showed differential expression (p's < 0.001) in preeclampsia and 11 had been previously related to preeclampsia (p's < 0.0001). These genes were linked to apelin, cGMP and Notch signaling pathways, all having a role in angiogenic process and cardiovascular function. INTERPRETATION Preeclampsia is related to differential cord blood DNA methylation signatures of cardiovascular pathways, including the apelin signaling pathway. The association of these cord blood DNA methylation signatures with offspring's long-term morbidities due to preeclampsia should be further investigated. FUNDING VDAART is funded by National Heart, Lung, and Blood Institute grants of R01HL091528 and UH3OD023268. HMK is supported by Jane and Aatos Erkko Foundation, Paulo Foundation, and the Pediatric Research Foundation. HM is supported by K01 award from NHLBI (1K01HL146977-01A1). PK is supported by K99HL159234 from NIH/NHLBI.
Collapse
Affiliation(s)
- Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iskander Shadid
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alireza Raissadati
- Department of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Dawn L Demeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Fu M, He R, Zhang Z, Ma F, Shen L, Zhang Y, Duan M, Zhang Y, Wang Y, Zhu L, He J. Multinomial machine learning identifies independent biomarkers by integrated metabolic analysis of acute coronary syndrome. Sci Rep 2023; 13:20535. [PMID: 37996510 PMCID: PMC10667512 DOI: 10.1038/s41598-023-47783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
A multi-class classification model for acute coronary syndrome (ACS) remains to be constructed based on multi-fluid metabolomics. Major confounders may exert spurious effects on the relationship between metabolism and ACS. The study aims to identify an independent biomarker panel for the multiclassification of HC, UA, and AMI by integrating serum and urinary metabolomics. We performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics study on 300 serum and urine samples from 44 patients with unstable angina (UA), 77 with acute myocardial infarction (AMI), and 29 healthy controls (HC). Multinomial machine learning approaches, including multinomial adaptive least absolute shrinkage and selection operator (LASSO) regression and random forest (RF), and assessment of the confounders were applied to integrate a multi-class classification biomarker panel for HC, UA and AMI. Different metabolic landscapes were portrayed during the transition from HC to UA and then to AMI. Glycerophospholipid metabolism and arginine biosynthesis were predominant during the progression from HC to UA and then to AMI. The multiclass metabolic diagnostic model (MDM) dependent on ACS, including 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and cyclic GMP, demarcated HC, UA, and AMI, providing a C-index of 0.84 (HC vs. UA), 0.98 (HC vs. AMI), and 0.89 (UA vs. AMI). The diagnostic value of MDM largely derives from the contribution of 2-ketobutyric acid, and LysoPC(18:2(9Z,12Z)) in serum. Higher 2-ketobutyric acid and cyclic GMP levels were positively correlated with ACS risk and atherosclerosis plaque burden, while LysoPC(18:2(9Z,12Z)) and argininosuccinic acid showed the reverse relationship. An independent multiclass biomarker panel for HC, UA, and AMI was constructed using the multinomial machine learning methods based on serum and urinary metabolite signatures.
Collapse
Affiliation(s)
- Meijiao Fu
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ruhua He
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhihan Zhang
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, 723200, Shanxi, China
| | - Fuqing Ma
- Department of Cardiology, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, Ningxia, China
| | - Libo Shen
- Center for Cardiovascular Diseases, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Yu Zhang
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mingyu Duan
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yameng Zhang
- Department of Cardiology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yifan Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Jun He
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
16
|
Ali I, Iqbal MN, Ibrahim M, Haq IU, Alonazi WB, Siddiqi AR. Computational exploration of novel ROCK2 inhibitors for cardiovascular disease management; insights from high-throughput virtual screening, molecular docking, DFT and MD simulation. PLoS One 2023; 18:e0294511. [PMID: 37972144 PMCID: PMC10653426 DOI: 10.1371/journal.pone.0294511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Cardiovascular disorders are the world's major cause of death nowadays. To treat cardiovascular diseases especially coronary artery diseases and hypertension, researchers found potential ROCK2 (Rho-associated coiled-coil-containing protein kinase 2) target due to its substantial role in NO-cGMP and RhoA/ROCK pathway. Available drugs for ROCK2 are less effective and some of them depict side effects. Therefore, a set of novel compounds were screened that can potentially inhibit the activity of ROCK2 and help to treat cardiovascular diseases by employing In-silico techniques. In this study, we undertook ligand based virtual screening of 50 million compound's library, to that purpose shape and features (contain functional groups) based pharmacophore query was modelled and validated by Area Under Curve graph (AUC). 2000 best hits were screened for Lipinski's rule of 5 compliance. Subsequently, these selected compounds were docked into the binding site of ROCK2 to gain insights into the interactions between hit compounds and the target protein. Based on binding affinity and RMSD scores, a final cohort of 15 compounds were chosen which were further refined by pharmacokinetics, ADMET and bioactivity scores. 2 potential hits were screened using density functional theory, revealing remarkable biological and chemical activity. Potential inhibitors (F847-0007 and 9543495) underwent rigorous examination through MD Simulations and MMGBSA analysis, elucidating their stability and strong binding affinities. Results of current study unveil the potential of identified novel hits as promising lead compounds for ROCK2 associated with cardiovascular diseases. These findings will further investigate via In-vitro and In-vivo studies to develop novel druglike molecules against ROCK2.
Collapse
Affiliation(s)
- Iqra Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
- Programa de Pós-Graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wadi B. Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| |
Collapse
|
17
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
18
|
Nguyen L, Baker DE. Vericiguat. Hosp Pharm 2023; 58:431-436. [PMID: 37711406 PMCID: PMC10498964 DOI: 10.1177/00185787211016338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
|
19
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
20
|
Falco L, Brescia B, Catapano D, Martucci ML, Valente F, Gravino R, Contaldi C, Pacileo G, Masarone D. Vericiguat: The Fifth Harmony of Heart Failure with Reduced Ejection Fraction. J Cardiovasc Dev Dis 2023; 10:388. [PMID: 37754817 PMCID: PMC10531735 DOI: 10.3390/jcdd10090388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Heart failure with reduced ejection fraction is a chronic and progressive syndrome that continues to be a substantial financial burden for health systems in Western countries. Despite remarkable advances in pharmacologic and device-based therapy over the last few years, patients with heart failure with reduced ejection fraction have a high residual risk of adverse outcomes, even when treated with optimal guideline-directed medical therapy and in a clinically stable state. Worsening heart failure episodes represent a critical event in the heart failure trajectory, carrying high residual risk at discharge and dismal short- or long-term prognosis. Recently, vericiguat, a soluble guanylate cyclase stimulator, has been proposed as a novel drug whose use is already associated with a reduction in heart failure-related hospitalizations in patients in guideline-directed medical therapy. In this review, we summarized the pathophysiology of the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate cascade in patients with heart failure with reduced ejection fraction, the pharmacology of vericiguat as well as the evidence regarding their use in patients with HFrEF. Finally, tips and tricks for its use in standard clinical practice are provided.
Collapse
Affiliation(s)
- Luigi Falco
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Benedetta Brescia
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Dario Catapano
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Maria Luigia Martucci
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Fabio Valente
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Rita Gravino
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Carla Contaldi
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (L.F.); (D.C.); (M.L.M.); (F.V.); (R.G.); (C.C.); (G.P.)
| |
Collapse
|
21
|
Sahana U, Wehland M, Simonsen U, Schulz H, Grimm D. A Systematic Review of the Effect of Vericiguat on Patients with Heart Failure. Int J Mol Sci 2023; 24:11826. [PMID: 37511587 PMCID: PMC10380763 DOI: 10.3390/ijms241411826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Despite recent advances in heart failure (HF) therapy, the risk of cardiovascular (CV) mortality, morbidity, and HF hospitalization (HFH) are major challenges in HF treatment. We aimed to review the potential of vericiguat as a treatment option for HF. A systematic literature review was performed using the PubMed database and ClinicalTrials.gov. Four randomized controlled trials were identified, which study the safety and efficacy of vericiguat in HF patients. Vericiguat activates soluble guanylate cyclase (sGC) by binding to the beta-subunit, bypassing the requirement for NO-induced activation. The nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway plays an essential role in cardiovascular (CV) regulation and the protection of healthy cardiac function but is impaired in HF. Vericiguat reduced the risk of CV death and HFH in HF patients with reduced ejection fraction (HFrEF) but showed no therapeutic effect on HF with preserved ejection fraction (HFpEF). The trials demonstrated a favorable safety profile with most common adverse events such as hypotension, syncope, and anemia. Therefore, vericiguat is recommended for patients with HFrEF and a minimum systolic blood pressure of 100 mmHg. Treatment with vericiguat is considered when the individual patient experiences decompensation despite being on guideline-recommended medication, e.g., angiotensin-converting inhibitor/AT1 receptor antagonist, beta-adrenoceptor antagonist, spironolactone, and sodium-glucose transporter 2 inhibitors. Furthermore, larger studies are required to investigate any potential effect of vericiguat in HFpEF patients. Despite the limitations, vericiguat can be recommended for patients with HFrEF, where standard-of-care is insufficient, and the disease worsens.
Collapse
Affiliation(s)
- Urjosee Sahana
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| | - Ulf Simonsen
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| | - Daniela Grimm
- Department of Biomedicine, The Faculty of Health, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark (U.S.)
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.)
| |
Collapse
|
22
|
Ghatage T, Singh S, Mandal K, Dhar A. MasR and pGCA receptor activation protects primary vascular smooth muscle cells and endothelial cells against oxidative stress via inhibition of intracellular calcium. J Cell Biochem 2023. [PMID: 37210727 DOI: 10.1002/jcb.30422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
Cardiovascular diseases (CVDs) are associated with vascular smooth muscle cell (VSMC) and endothelial cell (EC) damage. Angiotensin1-7 (Ang1-7) and B-type natriuretic peptide (BNP) are responsible for vasodilation and regulation of blood flow. These protective effects of BNP are primarily mediated by the activation of sGCs/cGMP/cGKI pathway. Conversely, Ang1-7 inhibits Angiotensin II-induced contraction and oxidative stress via Mas receptor activation. Thus, the aim of the study was to determine the effect of co-activation of MasR and particulate guanylate cyclase receptor (pGCA) pathways by synthesized novel peptide (NP) in oxidative stress-induced VSMCs and ECs. MTT and Griess reagent assay kits were used for the standardization of the oxidative stress (H2 O2 ) induced model in VSMCs. The expression of targeted receptors in VSMC was done by RT-PCR and Western blot analysis. Protective effect of NP in VSMC and EC was determined by immunocytochemistry, FACS analysis, and Western blot analysis. Underlying mechanisms of EC-dependent VSMC relaxation were done by determining downstream mRNA gene expression and intracellular calcium imaging of cells. Synthesized NP significantly improved oxidative stress-induced injury in VSMCs. Remarkably, the actions of NP were superior to that of the Ang1-7 and BNP alone. Further, a mechanistic study in VSMC and EC suggested the involvement of upstream mediators of calcium inhibition for the therapeutic effect. NP is reported to possess vascular protective activities and is also involved in the improvement of endothelial damage. Moreover, it is highly effective than that of individual peptides BNP and Ang1-7 and therefore it may represent a promising strategy for CVDs.
Collapse
Affiliation(s)
- Trupti Ghatage
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Sameer Singh
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Abstract
The introduction of multiple new pharmacological agents over the past three decades in the field of heart failure with reduced ejection fraction (HFrEF) has led to reduced rates of mortality and hospitalizations, and consequently, the prevalence of HFrEF has increased, and up to 10% of patients progress to more advanced stages, characterized by high rates of mortality and hospitalizations and poor quality of life. Vericiguat, a novel oral soluble guanylate cyclase stimulator, has proved effective in patients with HFrEF who had recently been hospitalized or had received intravenous diuretic therapy. In these patients, vericiguat reduced the primary outcome of death from cardiovascular causes or first hospitalization for heart failure in comparison with placebo. By reducing hospital admissions in a population at a very high risk of re-hospitalization, vericiguat might have a positive impact on healthcare costs for the management of HFrEF.
Collapse
Affiliation(s)
| | - Barbara Sposato
- Department of Rehabilitation Cardiology, IRCCS San Raffaele, via della Pisana, 235, 00163, Rome, Italy
| | - Maurizio Volterrani
- Department of Rehabilitation Cardiology, IRCCS San Raffaele, via della Pisana, 235, 00163, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Telematic University, via di Val Cannuta, 247, 00166, Rome, Italy
| |
Collapse
|
24
|
Di Fusco SA, Alonzo A, Aimo A, Matteucci A, Intravaia RCM, Aquilani S, Cipriani M, De Luca L, Navazio A, Valente S, Gulizia MM, Gabrielli D, Oliva F, Colivicchi F. ANMCO position paper on vericiguat use in heart failure: from evidence to place in therapy. Eur Heart J Suppl 2023; 25:D278-D286. [PMID: 37213802 PMCID: PMC10194817 DOI: 10.1093/eurheartjsupp/suad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the growing therapeutic armamentarium for heart failure (HF) management, vericiguat represents an innovative therapeutic option. The biological target of this drug is different from that of other drugs for HF. Indeed, vericiguat does not inhibit neuro-hormonal systems overactivated in HF or sodium-glucose co-transporter 2 but stimulates the biological pathway of nitric oxide and cyclic guanosine monophosphate, which is impaired in patients with HF. Vericiguat has recently been approved by international and national regulatory authorities for the treatment of patients with HF and reduced ejection fraction who are symptomatic despite optimal medical therapy and have worsening HF. This ANMCO position paper summarises key aspects of vericiguat mechanism of action and provides a review of available clinical evidence. Furthermore, this document reports use indications based on international guideline recommendations and local regulatory authority approval at the time of writing.
Collapse
Affiliation(s)
- Stefania Angela Di Fusco
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Alessandro Alonzo
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Science, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Matteucci
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Rita Cristina Myriam Intravaia
- Cardiologia 4-Diagnostica e Riabilitativa, Dipartimento Cardiotoracovascolare ‘A. De Gasperis’, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore, 3, Milan, 20162, Italy
| | - Stefano Aquilani
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| | - Manlio Cipriani
- U.O. Cardiologia, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione-ISMETT, Via Ernesto Tricomi 5, Palermo, 90127, Italy
| | - Leonardo De Luca
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, Rome, 00152, Italy
| | - Alessandro Navazio
- S.O.C. Cardiologia Ospedaliera, Presidio Ospedaliero Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia—IRCCS, Viale Risorgimento 80, Reggio Emilia, 42123, Italy
| | - Serafina Valente
- Dipartimento Cardio-Toracico, A.O.U. Senese, Ospedale Santa Maria alle Scotte, Viale Mario Bracci 16, Siena, 53100, Italy
| | - Michele Massimo Gulizia
- U.O.C. Cardiologia, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione ‘Garibaldi’, Via Palermo 636, Catania, 95122, Italy
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, Rome, 00152, Italy
- Fondazione per il Tuo cuore—Heart Care Foundation, Via Alfonso la Marmora 36, Firenze, 50121, Italy
| | - Fabrizio Oliva
- Cardiologia 1-Emodinamica, Dipartimento Cardiotoracovascolare ‘A. De Gasperis’, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore, 3, Milan, 20162, Italy
| | - Furio Colivicchi
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—, ASL Roma 1, 00135, Italy
| |
Collapse
|
25
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
26
|
Sildenafil aggravates adriamycin-induced testicular toxicity in rats; a preliminary investigation. Drug Chem Toxicol 2023; 46:219-225. [PMID: 34965830 DOI: 10.1080/01480545.2021.2018455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Male reproductive toxicity is a well-established side effect of the chemotherapeutic drug adriamycin (ADR). Sildenafil (SIL) is a phosphodiesterase inhibitor known to enhance the chemosensitivity of cancer cells to ADR. However, there is a scarcity of information on the effect of SIL on ADR-induced testicular toxicity. In this study, SIL (5, 10, or 20 mg/kg/day) was administered to male rats for 7 days, followed by a single intraperitoneal injection of ADR (20 mg/kg) on day 7. Control rats received either ADR, SIL, or normal saline for 7 days. Epididymal sperm were collected from the testes to assess the effects on sperm quality, quantity, and serum testosterone concentration was also determined. ADR treatment caused a decrease in sperm motility and elevated the percentage of sperms with tail defects which worsened in combination with SIL (20 mg/kg). Furthermore, ADR alone or in combination with SIL dose-dependently increased total sperm abnormalities. SIL (20 mg/kg) plus ADR also decreased sperm count and lowered testosterone level compared to ADR-only rats. In conclusion, exposure of rats to SIL before ADR treatment has the potential to worsen ADR-induced testicular toxicity.
Collapse
|
27
|
Khan MS, Shahid I, Greene SJ, Mentz RJ, DeVore AD, Butler J. Mechanisms of current therapeutic strategies for heart failure: more questions than answers? Cardiovasc Res 2023; 118:3467-3481. [PMID: 36536991 DOI: 10.1093/cvr/cvac187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a complex, multifactorial and heterogeneous syndrome with substantial mortality and morbidity. Over the last few decades, numerous attempts have been made to develop targeted therapies that may attenuate the known pathophysiological pathways responsible for causing the progression of HF. However, therapies developed with this objective have sometimes failed to show benefit. The pathophysiological construct of HF with numerous aetiologies suggests that interventions with broad mechanisms of action which simultaneously target more than one pathway maybe more effective in improving the outcomes of patients with HF. Indeed, current therapeutics with clinical benefits in HF have targeted a wider range of intermediate phenotypes. Despite extensive scientific breakthroughs in HF research recently, questions persist regarding the ideal therapeutic targets which may help achieve maximum benefit. In this review, we evaluate the mechanism of action of current therapeutic strategies, the pathophysiological pathways they target and highlight remaining knowledge gaps regarding the mode of action of these interventions.
Collapse
Affiliation(s)
- Muhammad Shahzeb Khan
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Izza Shahid
- Division of Cardiovascular Prevention, Houston Methodist Academic Institute, Houston, TX, USA
| | - Stephen J Greene
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Robert J Mentz
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Adam D DeVore
- From the Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, 3434 Live Oak St Ste 501, Dallas 75204, TX, USA
| |
Collapse
|
28
|
Yumura S, Nakano M, Honda A, Hashimoto Y, Kondo T. Dynamics of intracellular cGMP during chemotaxis in Dictyostelium cells. J Cell Sci 2023; 136:286882. [PMID: 36601895 DOI: 10.1242/jcs.260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masaki Nakano
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Aika Honda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yuuki Hashimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomo Kondo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
29
|
Kass DA. Inhibiting Both Neprilysin and Phosphodiesterase Type 9: Turning on the Faucet While Plugging the Sink. JACC. HEART FAILURE 2023; 11:240-242. [PMID: 36754530 DOI: 10.1016/j.jchf.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023]
Affiliation(s)
- David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
30
|
Foussard N, Rouault P, Cornuault L, Reynaud A, Buys ES, Chapouly C, Gadeau AP, Couffinhal T, Mohammedi K, Renault MA. Praliciguat Promotes Ischemic Leg Reperfusion in Leptin Receptor-Deficient Mice. Circ Res 2023; 132:34-48. [PMID: 36448444 DOI: 10.1161/circresaha.122.322033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Lower-limb peripheral artery disease is one of the major complications of diabetes. Peripheral artery disease is associated with poor limb and cardiovascular prognoses, along with a dramatic decrease in life expectancy. Despite major medical advances in the treatment of diabetes, a substantial therapeutic gap remains in the peripheral artery disease population. Praliciguat is an orally available sGC (soluble guanylate cyclase) stimulator that has been reported both preclinically and in early stage clinical trials to have favorable effects in metabolic and hemodynamic outcomes, suggesting that it may have a potential beneficial effect in peripheral artery disease. METHODS We evaluated the effect of praliciguat on hind limb ischemia recovery in a mouse model of type 2 diabetes. Hind limb ischemia was induced in leptin receptor-deficient (Leprdb/db) mice by ligation and excision of the left femoral artery. Praliciguat (10 mg/kg/day) was administered in the diet starting 3 days before surgery. RESULTS Twenty-eight days after surgery, ischemic foot perfusion and function parameters were better in praliciguat-treated mice than in vehicle controls. Improved ischemic foot perfusion was not associated with either improved traditional cardiovascular risk factors (ie, weight, glycemia) or increased angiogenesis. However, treatment with praliciguat significantly increased arteriole diameter, decreased ICAM1 (intercellular adhesion molecule 1) expression, and prevented the accumulation of oxidative proangiogenic and proinflammatory muscle fibers. While investigating the mechanism underlying the beneficial effects of praliciguat therapy, we found that praliciguat significantly downregulated Myh2 and Cxcl12 mRNA expression in cultured myoblasts and that conditioned medium form praliciguat-treated myoblast decreased ICAM1 mRNA expression in endothelial cells. These results suggest that praliciguat therapy may decrease ICAM1 expression in endothelial cells by downregulating Cxcl12 in myocytes. CONCLUSIONS Our results demonstrated that praliciguat promotes blood flow recovery in the ischemic muscle of mice with type 2 diabetes, at least in part by increasing arteriole diameter and by downregulating ICAM1 expression.
Collapse
Affiliation(s)
- Ninon Foussard
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Paul Rouault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Lauriane Cornuault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Annabel Reynaud
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | | | - Candice Chapouly
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Alain-Pierre Gadeau
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Kamel Mohammedi
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Marie-Ange Renault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| |
Collapse
|
31
|
Structural Characterization of Murine Phosphodiesterase 5 Isoforms and Involvement of Cysteine Residues in Supramolecular Assembly. Int J Mol Sci 2023; 24:ijms24021108. [PMID: 36674621 PMCID: PMC9862819 DOI: 10.3390/ijms24021108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of evolutionarily conserved cyclic nucleotide (cAMP/cGMP)-hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Within this family, the cGMP-dependent PDE5 is the major hydrolyzing enzyme in many mammalian tissues, where it regulates a number of cellular and tissular processes. Using Kluyveromyces lactis as a model organism, the murine PDE5A1, A2 and A3 isoforms were successfully expressed and studied, evidencing, for the first time, a distinct role of each isoform in the control, modulation and maintenance of the cellular redox metabolism. Moreover, we demonstrated that the short N-terminal peptide is responsible for the tetrameric assembly of MmPDE5A1 and for the mitochondrial localization of MmPDE5A2. We also analyzed MmPDE5A1, A2 and A3 using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), structural mass spectrometry (MS) and polyacrylamide gel electrophoresis in their native conditions (native-PAGE) and in the presence of redox agents. These analyses pointed towards the role of a few specific cysteines in the isoforms' oligomeric assembly and the loss of enzymatic activity when modified.
Collapse
|
32
|
Jing G, Xia Z, Lei Q. Co-expression of soluble guanylyl cyclase subunits and PDE5A shRNA to elevate cellular cGMP level: A potential gene therapy for myocardial cell death. Technol Health Care 2022; 31:901-910. [PMID: 36442224 DOI: 10.3233/thc-220333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Genetic manipulation on the NO-sGC-cGMP pathway has been rarely achieved, partially due to complexity of the soluble guanylyl cyclase (sGC) enzyme. OBJECTIVE: We aim to develop gene therapy directly targeting the pathway to circumvent cytotoxicity and tolerance after prolonged use of NO-donors and the insufficiency of PDE inhibitors. METHODS: In this study, we constructed lentivirus vectors expressing GUCY1A3 and GUCY1B3 genes, which encoded the α1 and β1 subunits of soluble guanylyl cyclase (sGC), respectively, to enhance cGMP synthesis. We also constructed lentiviral vector harboring PDE5A shRNA to alleviate phosphodiesterase activity and cGMP degradation. RESULTS: Transductions of human HEK293 cells with the constructs were successful, as indicated by the fluorescent signal and altered gene expression produced by each vector. Overexpression of GUCY1A3 and GUCY1B3 resulted in increased sGC enzyme activity and elevated cGMP level in the cells. Expression of PDE5A shRNA resulted in decreased PDE5A expression and elevated cGMP level. Co-transduction of the three lentiviral vectors resulted in a more significant elevation of cGMP in HEK293 cells without obvious cytotoxicity. CONCLUSION: To the best of our knowledge, this is the first study to show that co-expression of exogenous subunits of the soluble guanylyl cyclase could form functional enzyme and increase cellular cGMP level in mammalian cells. Simultaneous expression of PDE5A shRNA could alleviate feedback up-regulation on PDE5A caused by cGMP elevation. Further studies are required to evaluate the effects of these constructs in vivo.
Collapse
Affiliation(s)
- Gao Jing
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
- Family Medicine Clinic, Tianjin United Family Healthcare, Tianjin, China
| | - Zhang Xia
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Quan Lei
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
33
|
Akram KM, Kulkarni NS, Brook A, Wyles MD, Anumba DOC. Transcriptomic analysis of the human placenta reveals trophoblast dysfunction and augmented Wnt signalling associated with spontaneous preterm birth. Front Cell Dev Biol 2022; 10:987740. [DOI: 10.3389/fcell.2022.987740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of death in under-five children. Worldwide, annually, over 15 million babies are born preterm and 1 million of them die. The triggers and mechanisms of spontaneous PTB remain largely unknown. Most current therapies are ineffective and there is a paucity of reliable predictive biomarkers. Understanding the molecular mechanisms of spontaneous PTB is crucial for developing better diagnostics and therapeutics. To address this need, we conducted RNA-seq transcriptomic analysis, qRT-PCR and ELISA on fresh placental villous tissue from 20 spontaneous preterm and 20 spontaneous term deliveries, to identify genes and signalling pathways involved in the pathogenesis of PTB. Our differential gene expression, gene ontology and pathway analysis revealed several dysregulated genes (including OCLN, OPTN, KRT7, WNT7A, RSPO4, BAMBI, NFATC4, SLC6A13, SLC6A17, SLC26A8 and KLF8) associated with altered trophoblast functions. We identified dysregulated Wnt, oxytocin and cellular senescence signalling pathways in preterm placentas, where augmented Wnt signalling could play a pivotal role in the pathogenesis of PTB due to its diverse biological functions. We also reported two novel targets (ITPR2 and MYLK2) in the oxytocin signalling pathways for further study. Through bioinformatics analysis on DEGs, we identified four key miRNAs, - miR-524-5p, miR-520d-5p, miR-15a-5p and miR-424-5p - which were significantly downregulated in preterm placentas. These miRNAs may have regulatory roles in the aberrant gene expressions that we have observed in preterm placentas. We provide fresh molecular insight into the pathogenesis of spontaneous PTB which may drive further studies to develop new predictive biomarkers and therapeutics.
Collapse
|
34
|
Patel R, Fu Y, Khang S, Benardeau AM, Thomson SC, Vallon V. Responses in Blood Pressure and Kidney Function to Soluble Guanylyl Cyclase Stimulation or Activation in Normal and Diabetic Rats. Nephron Clin Pract 2022; 147:281-300. [PMID: 36265461 PMCID: PMC10115913 DOI: 10.1159/000526934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Agonists of soluble guanylate cyclase (sGC) are being developed as treatment for cardiovascular disease. Most effects of nitric oxide (NO) on glomerular and tubular function are mediated through sGC but whether sGC agonists mimic these effects is unknown. Methods: Renal clearance and micropuncture studies were performed in Wistar-Froemter rats (WF), with or without streptozotocin diabetes (STZ-WF), and in Goto-Kakizaki rats (GK) with mild type-2 diabetes to test for acute effects of the sGC “stimulator” BAY 41-2272, which synergizes with endogenous NO, and the “activator” runcaciguat, which generates cGMP independent of NO. Results: Both sGC agonists reduced arterial blood pressure (MAP). For MAP reductions <10% the drugs increased GFR in WF and STZ-WF but not in GK. Larger MAP reductions outweighed this effect and GFR declined, with better preserved GFR in STZ-WF. Changes in GFR could not be accounted for by changes in RBF, suggesting parallel changes in ultrafiltration pressure and/or ultrafiltration coefficient. The doses chosen for micropuncture in WF and GK reduced MAP by 2–10% and the net effect on single nephron GFR and ultrafiltration pressure was neutral. Effects of the drugs on tubular reabsorption were dominated by declining MAP and no natriuretic effect observed at any dose. Discussion/Conclusion: sGC agonists impact kidney function directly and because they reduce MAP. The direct tendency to increase GFR is most apparent for MAP reductions <10%. The direct effect is otherwise subtle and overridden when MAP declines more. Effects of sGC agonists on tubular reabsorption are dominated by effects on MAP.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Yiling Fu
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Ser Khang
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | | | - Scott C. Thomson
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| |
Collapse
|
35
|
Ghosh A, Sumi MP, Tupta B, Okamoto T, Aulak K, Tsutsui M, Shimokawa H, Erzurum SC, Stuehr DJ. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic. Redox Biol 2022; 56:102478. [PMID: 36116161 PMCID: PMC9486108 DOI: 10.1016/j.redox.2022.102478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) is a signal molecule and plays a critical role in the regulation of vascular tone, displays anti-platelet and anti-inflammatory properties. While our earlier and current studies found that low NO doses trigger a rapid heme insertion into immature heme-free soluble guanylyl cyclase β subunit (apo-sGCβ), resulting in a mature sGC-αβ heterodimer, more recent evidence suggests that low NO doses can also trigger heme-maturation of hemoglobin and myoglobin. This low NO phenomena was not only limited to sGC and the globins, but was also found to occur in all three nitric oxide synthases (iNOS, nNOS and eNOS) and Myeloperoxidase (MPO). Interestingly high NO doses were inhibitory to heme-insertion for these hemeproteins, suggesting that NO has a dose-dependent dual effect as it can act both ways to induce or inhibit heme-maturation of key hemeproteins. While low NO stimulated heme-insertion of globins required the presence of the NO-sGC-cGMP signal pathway, iNOS heme-maturation also required the presence of an active sGC. These effects of low NO were significantly diminished in the tissues of double (n/eNOS−/−) and triple (n/i/eNOS−/−) NOS knock out mice where lung sGC was found be heme-free and the myoglobin or hemoglobin from the heart/lungs were found be low in heme, suggesting that loss of endogenous NO globally impacts the whole animal and that this impact of low NO is both essential and physiologically relevant for hemeprotein maturation. Effects of low NO were also found to be protective against ischemia reperfusion injury on an ex vivo lung perfusion (EVLP) system prior to lung transplant, which further suggests that low NO levels are also therapeutic. Low levels of NO enable heme-maturation of the globins by a process that required an NO triggered heme-insertion into sGCβ. •This effect of low NO was also found to occur for all three nitric oxide synthases (NOSs) and Myeloperoxidase (MPO). •Tissues from n/eNOS−/− and n/i/eNOS−/− knock out mice had low heme levels in the globins, while sGC was largely heme-free. •Low NO at ppm levels also manifests itself as a therapy during ischemic reperfusion injury of lungs on the EVLP.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Toshihiro Okamoto
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kulwant Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hiroaki Shimokawa
- Faculty of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
36
|
Kalluru R, Gadde S, Chikatimalla R, Dasaradhan T, Koneti J, Cherukuri SP. Cirrhotic Cardiomyopathy: The Interplay Between Liver and Heart. Cureus 2022; 14:e27969. [PMID: 36120195 PMCID: PMC9467492 DOI: 10.7759/cureus.27969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2022] [Indexed: 11/05/2022] Open
|
37
|
Razmjooee K, Oustadi F, Golaghaei A, Nassireslami E. Carboxymethyl chitosan-alginate hydrogel containing GSNO with the ability to nitric oxide release for diabetic wound healing. Biomed Mater 2022; 17. [PMID: 35931062 DOI: 10.1088/1748-605x/ac877c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
Today, despite significant progress in developing skin tissue engineering products, the fabrication of an ideal wound dressing that could meet the essential criteria, such as promoting angiogenesis -mainly in a diabetic wound- still remains a challenge. A diabetic wound is a chronic wound in which vascularization is low, and the wound healing process may stop. In this regard, Nitric oxide (NO) enhances the healing of diabetic wounds by promoting angiogenesis and providing antibacterial activity in wound sites. In this study, we produced a NO-releasing wound dressing (CMC-ALg-GSNO) composed of Carboxymethyl chitosan (CMC), sodium alginate (ALg), and Snitrosoglutathione (GSNO). The results obtained from the scanning electron microscopy (SEM) show that wound dressing has a porous structure. The water uptake and water vapor transmission for the wound dressing were obtained 4354.1 ± 179.3 % and 2753.8 ± 54.6 g/m2 per day, respectively. NO release study showed that NO release from CMC-ALg-GSNO continuously occurred within 168 hours. In vivo test, The CMC-ALg-GSNO wound dressing developed wound healing in a rat model of full-thickness diabetic wounds compared to the CMC-ALg and Gauze wound dressings. Thus, this study showed that CMC-ALg-GSNO wound dressing could lead to novel therapeutic invasions to treat diabetic wounds.
Collapse
Affiliation(s)
- Kavoos Razmjooee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Fereshteh Oustadi
- Amirkabir University of Technology, Unit 5, No.1,Emamreza St. North Poonak, Second East Ally, Tehran, Tehran, 1477695876, Iran (the Islamic Republic of)
| | - Alireza Golaghaei
- Aja University of Medical Sciences, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| | - Ehsan Nassireslami
- Aja University of Medical Sciences, Tehran, Iran, Tehran, 159163-4311, Iran (the Islamic Republic of)
| |
Collapse
|
38
|
Cardarelli S, Miele AE, Campolo F, Massimi M, Mancini P, Biagioni S, Naro F, Giorgi M, Saliola M. Cellular Redox Metabolism Is Modulated by the Distinct Localization of Cyclic Nucleotide Phosphodiesterase 5A Isoforms. Int J Mol Sci 2022; 23:ijms23158587. [PMID: 35955722 PMCID: PMC9368758 DOI: 10.3390/ijms23158587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
3′-5′ cyclic nucleotide phosphodiesterases (PDEs) are a family of evolutionarily conserved cAMP and/or cGMP hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Among them, cGMP-specific PDE5—being a regulator of vascular smooth muscle contraction—is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Production of full-length murine PDE5A isoforms in the milk-yeast Kluyveromyces lactis showed that the quaternary assembly of MmPDE5A1 is a mixture of dimers and tetramers, while MmPDE5A2 and MmPDE5A3 only assembled as dimers. We showed that the N-terminal peptide is responsible for the tetramer assembly of MmPDE5A1, while that of the MmPDE5A2 is responsible for its mitochondrial localization. Overexpression of the three isoforms alters at different levels the cAMP/cGMP equilibrium as well as the NAD(P)+/NAD(P)H balance and induces a metabolic switch from oxidative to fermentative. In particular, the mitochondrial localization of MmPDE5A2 unveiled the existence of a cAMP-cGMP signaling cascade in this organelle, for which we propose a metabolic model that could explain the role of PDE5 in some cardiomyopathies and some of the side effects of its inhibitors.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (S.C.); (S.B.); (M.S.)
| | - Adriana Erica Miele
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
- UMR 5280 ISA-CNRS-UCBL, Université de Lyon, 5 Rue de La Doua, 69100 Villeurbanne, France
- Correspondence: (A.E.M.); (M.G.)
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (F.C.); (P.M.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy;
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (F.C.); (P.M.)
| | - Stefano Biagioni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (S.C.); (S.B.); (M.S.)
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (S.C.); (S.B.); (M.S.)
- Correspondence: (A.E.M.); (M.G.)
| | - Michele Saliola
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; (S.C.); (S.B.); (M.S.)
| |
Collapse
|
39
|
Matta Reddy A, Iqbal M, Chopra H, Urmi S, Junapudi S, Bibi S, Kumar Gupta S, Nirmala Pangi V, Singh I, Abdel-Daim MM. Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. EXCLI JOURNAL 2022; 21:967-990. [PMID: 36110560 PMCID: PMC9441677 DOI: 10.17179/excli2022-4935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Vitamin D, a secosteroid hormone, appears to have significant beneficial effects on various physiological systems, including the musculoskeletal system. Vitamin D assists in the regulation of numerous critical biological functions and physiological processes in humans, including inflammation, oxidative stress, and mitochondrial respiration, and is also linked to cardiac diseases. It is also reported that vitamin D plays a central role in molecular and cellular mechanisms, which reduce oxidative stress, and tissue damage and regulate cellular health. On the other side, hypovitaminosis D reduces mitochondrial activity and increases oxidative stress and inflammation in the body. Hypervitaminosis D increases the prevalence and severity of cellular damage. It has also been reported that vitamin D is involved in many functions of the reproductive system in human and critically play an important role in the reproductive tissues of women and men. Its role is very well defined, starting from female menarche to menopause, pregnancy, and lactation, and finally in male fertility. Hence, the appropriate amount of vitamin D is necessary to maintain the normal function of cell organelles. Based on recent studies, it is understood that vitamin D is involved in the biological activities of mitochondria in cells, especially in cardiomyocytes. In this review, we emphasized the role of vitamin D in mitochondrial respiration, which could significantly influence heart health and human reproduction.
Collapse
Affiliation(s)
- Alavala Matta Reddy
- Department of Zoology, School of Life and Health Sciences, Adikavi Nannaya University, Rajahmundry 533296, Andhra Pradesh, India
| | - Mumtaz Iqbal
- College of Arts and Science, University of South Florida, Tampa, FL33620, USA
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab140401, India
| | - Shaheda Urmi
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL33612, USA
| | - Sunil Junapudi
- Department of Pharmaceutical Chemistry, Geethanjali College of Pharmacy, Cherryal, Keesara, Medchalmalkajgiri District, Telangana, 501301, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan,Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China,*To whom correspondence should be addressed: Shabana Bibi, Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China, E-mail:
| | | | - Viajaya Nirmala Pangi
- School of Life and Health Sciences, Adikavi Nannaya University, Rajahamahendravaram, Andhra Pradesh, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab140401, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
40
|
Petraina A, Nogales C, Krahn T, Mucke H, Lüscher TF, Fischmeister R, Kass DA, Burnett JC, Hobbs AJ, Schmidt HHHW. Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovasc Res 2022; 118:2085-2102. [PMID: 34270705 PMCID: PMC9302891 DOI: 10.1093/cvr/cvab240] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments centred around the second messenger cyclic guanosine-3'-5'-monophosphate (cGMP), which is regulating a number of cardiovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular disease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
Collapse
Affiliation(s)
- Alexandra Petraina
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Thomas Krahn
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hermann Mucke
- H.M. Pharma Consultancy, Enenkelstrasse 28/32, A-1160, Vienna, Austria
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospitals, Heart Division and National Heart and Lung Institute, Guy Scadding Building, Imperial College, Dovehouse Street London SW3 6LY, United Kingdom
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistreet 12, CH-8952 Schlieren, Switzerland
| | - Rodolphe Fischmeister
- INSERM UMR-S 1180, Faculty of Pharmacy, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - David A Kass
- Division of Cardiology, Department of Medicine, Ross Research Building, Rm 858, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - John C Burnett
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
41
|
McGill JR, Lagassé HAD, Hernandez N, Hopkins L, Jankowski W, McCormick Q, Simhadri V, Golding B, Sauna ZE. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci Rep 2022; 12:11388. [PMID: 35794133 PMCID: PMC9259575 DOI: 10.1038/s41598-022-15225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 virus is the most important public-health issue of our time. Understanding the diverse clinical presentations of the ensuing disease, COVID-19, remains a critical unmet need. Here we present a comprehensive listing of the diverse clinical indications associated with COVID-19. We explore the theory that anti-SARS-CoV-2 antibodies could cross-react with endogenous human proteins driving some of the pathologies associated with COVID-19. We describe a novel computational approach to estimate structural homology between SARS-CoV-2 proteins and human proteins. Antibodies are more likely to interrogate 3D-structural epitopes than continuous linear epitopes. This computational workflow identified 346 human proteins containing a domain with high structural homology to a SARS-CoV-2 Wuhan strain protein. Of these, 102 proteins exhibit functions that could contribute to COVID-19 clinical pathologies. We present a testable hypothesis to delineate unexplained clinical observations vis-à-vis COVID-19 and a tool to evaluate the safety-risk profile of potential COVID-19 therapies.
Collapse
Affiliation(s)
- Joseph R McGill
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - H A Daniel Lagassé
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nancy Hernandez
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Louis Hopkins
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Wojciech Jankowski
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Quinn McCormick
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Basil Golding
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
42
|
Jehle A, Garaschuk O. The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. Int J Mol Sci 2022; 23:7048. [PMID: 35806059 PMCID: PMC9266933 DOI: 10.3390/ijms23137048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer's disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear. Moreover, human patients and mouse models of the disease present with entangled deregulation of both cGMP and Ca2+ signaling, e.g., causing changes in cGMP-mediated Ca2+ release from the intracellular stores as well as Ca2+-mediated cGMP production. Still, the mechanisms governing such interplay are poorly understood. Here, we review the recent data on mechanisms underlying the brain cGMP signaling and its interconnection with Ca2+ signaling. We also discuss the recent evidence stressing the importance of such interplay for normal brain function as well as in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
43
|
Adhikari G, Baral N, Rauniyar R, Tse G, Karki S, Abdelazeem B, Gergis K, Savarapu P, Isa S, Sud P, Kunadi A. Meta-analysis examining phosphodiesterase-5 inhibitors in heart failure with preserved ejection fraction. Proc AMIA Symp 2022; 35:643-648. [DOI: 10.1080/08998280.2022.2078633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Govinda Adhikari
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Nischit Baral
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Rohit Rauniyar
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
| | - Sandip Karki
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Kirolos Gergis
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Pramod Savarapu
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Sakiru Isa
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Parul Sud
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| | - Arvind Kunadi
- Department of Internal Medicine, McLaren-Flint/Michigan State University, Flint, Michigan
| |
Collapse
|
44
|
Roncalli J, Tronchère H, Lax A, Kunduzova O. Editorial: Myocardial Remodeling: Mechanisms and Translational Implications. Front Pharmacol 2022; 13:930387. [PMID: 35694258 PMCID: PMC9178248 DOI: 10.3389/fphar.2022.930387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France
- INSERM I2MC - UMR1297, Toulouse, France
- *Correspondence: Jerome Roncalli,
| | | | - Antonio Lax
- ICTC Research Group/Heart Failure Health Science Campus, University of Murcia, Murcia, Spain
| | | |
Collapse
|
45
|
Manfra O, Calamera G, Froese A, Arunthavarajah D, Surdo NC, Meier S, Melleby AO, Aasrum M, Aronsen JM, Nikolaev VO, Zaccolo M, Moltzau LR, Levy FO, Andressen KW. CNP regulates cardiac contractility and increases cGMP near both SERCA and TnI: difference from BNP visualized by targeted cGMP biosensors. Cardiovasc Res 2022; 118:1506-1519. [PMID: 33970224 PMCID: PMC9074987 DOI: 10.1093/cvr/cvab167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Guanylyl cyclase-B (GC-B; natriuretic peptide receptor-B, NPR-B) stimulation by C-type natriuretic peptide (CNP) increases cGMP and causes a lusitropic and negative inotropic response in adult myocardium. These effects are not mimicked by NPR-A (GC-A) stimulation by brain natriuretic peptide (BNP), despite similar cGMP increase. More refined methods are needed to better understand the mechanisms of the differential cGMP signalling and compartmentation. The aim of this work was to measure cGMP near proteins involved in regulating contractility to understand compartmentation of cGMP signalling in adult cardiomyocytes. METHODS AND RESULTS We constructed several fluorescence resonance energy transfer (FRET)-based biosensors for cGMP subcellularly targeted to phospholamban (PLB) and troponin I (TnI). CNP stimulation of adult rat cardiomyocytes increased cGMP near PLB and TnI, whereas BNP stimulation increased cGMP near PLB, but not TnI. The phosphodiesterases PDE2 and PDE3 constrained cGMP in both compartments. Local receptor stimulation aided by scanning ion conductance microscopy (SICM) combined with FRET revealed that CNP stimulation both in the t-tubules and on the cell crest increases cGMP similarly near both TnI and PLB. In ventricular strips, CNP stimulation, but not BNP, induced a lusitropic response, enhanced by inhibition of either PDE2 or PDE3, and a negative inotropic response. In cardiomyocytes from heart failure rats, CNP increased cGMP near PLB and TnI more pronounced than in cells from sham-operated animals. CONCLUSION These targeted biosensors demonstrate that CNP, but not BNP, increases cGMP near TnI in addition to PLB, explaining how CNP, but not BNP, is able to induce lusitropic and negative inotropic responses.
Collapse
Affiliation(s)
- Ornella Manfra
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Gaia Calamera
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Alexander Froese
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Hamburg, Germany
| | - Dulasi Arunthavarajah
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Nicoletta C Surdo
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Silja Meier
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Arne Olav Melleby
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Viacheslav O Nikolaev
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Hamburg, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Lise Román Moltzau
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| |
Collapse
|
46
|
Dzobo KE, Kraaijenhof JM, Stroes ES, Nurmohamed NS, Kroon J. Lipoprotein(a): An underestimated inflammatory mastermind. Atherosclerosis 2022; 349:101-109. [DOI: 10.1016/j.atherosclerosis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
|
47
|
Schröder K. PKG, CXL, and HNO. Relax! Hypertension 2022; 79:957-959. [PMID: 35417224 DOI: 10.1161/hypertensionaha.122.19161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Katrin Schröder
- Institute of Cardiovascular Physiology, Vascular Research Center, Faculty of Medicine, Goethe-University, Germany
| |
Collapse
|
48
|
Numata G, Takimoto E. Cyclic GMP and PKG Signaling in Heart Failure. Front Pharmacol 2022; 13:792798. [PMID: 35479330 PMCID: PMC9036358 DOI: 10.3389/fphar.2022.792798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP), produced by guanylate cyclase (GC), activates protein kinase G (PKG) and regulates cardiac remodeling. cGMP/PKG signal is activated by two intrinsic pathways: nitric oxide (NO)-soluble GC and natriuretic peptide (NP)-particulate GC (pGC) pathways. Activation of these pathways has emerged as a potent therapeutic strategy to treat patients with heart failure, given cGMP-PKG signaling is impaired in heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Large scale clinical trials in patients with HFrEF have shown positive results with agents that activate cGMP-PKG pathways. In patients with HFpEF, however, benefits were observed only in a subgroup of patients. Further investigation for cGMP-PKG pathway is needed to develop better targeting strategies for HFpEF. This review outlines cGMP-PKG pathway and its modulation in heart failure.
Collapse
Affiliation(s)
- Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo Hospital, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
49
|
Boettcher M, Mikus G, Trenk D, Düngen HD, Donath F, Werner N, Karakas M, Besche N, Schulz-Burck D, Gerrits M, Hung J, Becker C. Vericiguat in combination with isosorbide mononitrate in patients with chronic coronary syndromes: The randomized, phase Ib, VISOR study. Clin Transl Sci 2022; 15:1204-1214. [PMID: 35299288 PMCID: PMC9099120 DOI: 10.1111/cts.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Vericiguat was developed for the treatment of symptomatic chronic heart failure (HF) in adult patients with reduced ejection fraction who are stabilized after a recent decompensation event. Guidelines recommend long‐acting nitrates, such as isosorbide mononitrate, for angina prophylaxis in chronic coronary syndromes (CCS), common comorbidities in HF. This study evaluated safety, tolerability, and the pharmacodynamic (PD) interaction between co‐administered vericiguat and isosorbide mononitrate in patients with CCS. In this phase Ib, double‐blind, multicenter study, patients were randomized 2:1 to receive vericiguat plus isosorbide mononitrate (n = 28) or placebo plus isosorbide mononitrate (n = 13). Isosorbide mononitrate was uptitrated to a stable dose of 60 mg once daily, followed by co‐administration with vericiguat (uptitrated every 2 weeks from 2.5 mg to 5 mg and 10 mg) or placebo. Thirty‐five patients completed treatment (vericiguat, n = 23; placebo, n = 12). Mean baseline‐ and placebo‐adjusted vital signs showed reductions of 1.4–5.1 mmHg (systolic blood pressure) and 0.4–2.9 mmHg (diastolic blood pressure) and increases of 0.0–1.8 beats per minute (heart rate) with vericiguat plus isosorbide mononitrate. No consistent vericiguat dose‐dependent PD effects were noted. The incidence of adverse events (AEs) was 92.3% and 66.7% in the vericiguat and placebo groups, respectively, and most were mild in intensity. Blood pressure and heart rate changes observed with vericiguat plus isosorbide mononitrate were not considered clinically relevant. This combination was generally well‐tolerated. Concomitant use of vericiguat with isosorbide mononitrate is unlikely to cause significant AEs beyond those known for isosorbide mononitrate.
Collapse
Affiliation(s)
- Michael Boettcher
- Clinical Pharmacology, Bayer AG, Wuppertal, Germany.,Graduate Physicist and Physician and Lecturer at the University of Applied Science at the RFH-Cologne, Cologne, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Trenk
- Department of Cardiology and Angiology II, Section Clinical Pharmacology, Heart Center, University of Freiburg, Bad Krozingen, Germany
| | - Hans-Dirk Düngen
- Department of Internal Medicine, Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Nikos Werner
- Heart Center Trier, Krankenhaus der Barmherzigen Bruder, Nordallee, Trier, Germany
| | - Mahir Karakas
- Department of Intensive Care Medicine, University Medical Center, Hamburg Eppendorf, Hamburg, Germany
| | - Nina Besche
- Chrestos Concept GmbH & Co. KG, Essen, Germany
| | | | - Mireille Gerrits
- Merck Sharp & Dohme Corp, a Subsidiary of Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - James Hung
- Clinical Operations, Study Medical Experts, Bayer SA, São Paulo, Brazil
| | | |
Collapse
|
50
|
Mongirdienė A, Skrodenis L, Varoneckaitė L, Mierkytė G, Gerulis J. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2022; 10:602. [PMID: 35327404 PMCID: PMC8945343 DOI: 10.3390/biomedicines10030602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
With respect to structural and functional cardiac disorders, heart failure (HF) is divided into HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Oxidative stress contributes to the development of both HFrEF and HFpEF. Identification of a broad spectrum of reactive oxygen species (ROS)-induced pathways in preclinical models has provided new insights about the importance of ROS in HFrEF and HFpEF development. While current treatment strategies mostly concern neuroendocrine inhibition, recent data on ROS-induced metabolic pathways in cardiomyocytes may offer additional treatment strategies and targets for both of the HF forms. The purpose of this article is to summarize the results achieved in the fields of: (1) ROS importance in HFrEF and HFpEF pathophysiology, and (2) treatments for inhibiting ROS-induced pathways in HFrEF and HFpEF patients. ROS-producing pathways in cardiomyocytes, ROS-activated pathways in different HF forms, and treatment options to inhibit their action are also discussed.
Collapse
Affiliation(s)
- Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania
| | - Laurynas Skrodenis
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Leila Varoneckaitė
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Gerda Mierkytė
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | - Justinas Gerulis
- Medical Academy, Lithuanian University of Health Sciences, Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|