1
|
Wang H, Luo J, Luo K, Wu L, Hu T, Yang J, Zhou H. Glycyrrhizin alleviates the toxicity of hydroxychloroquine in treating oral lichen planus by occupying heat shock protein 90 alpha. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156059. [PMID: 39550918 DOI: 10.1016/j.phymed.2024.156059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Oral lichen planus (OLP) is a common chronic inflammatory disease with the potential of malignant transformation. Hydroxychloroquine (HCQ), derived from quinine originating from Cinchona spp. bark, is a commonly prescribed off-label for OLP. However, it lacks robust evidence-based medicine practice, as well as theoretical guidance for its pharmacodynamic targets and for mitigating adverse reactions. PURPOSE To compare the efficacy of HCQ with first-line treatment prednisone for treating severe erosive OLP and to identify compatible phytomedicine that is reasonably available based on elucidating the molecular targets related to clinical benefits and adverse reactions. METHODS We performed a single-center, randomized, investigator-blinded, positive-controlled, non-inferiority trial. Patients who met the enrollment criteria were randomly allocated (1:1) to receive either HCQ or prednisone therapy for 4 weeks and follow-up for 3 months. The primary outcome measures included reductions in the erosion area and pain level. Potential targets of HCQ and associated toxic effects in treating OLP were identified through in silico analysis and validated through histological evaluation. Common hepatoprotective agents, including glycyrrhizin and total glucosides of peony, were analyzed for their potential targets. Then tri-molecular docking study was performed to screen available phytomedicine agent for alleviating adverse reaction of HCQ. Finally, in vitro experiments were performed to validate these targeted effects. RESULTS A total of 62 patients were enrolled from January 2021 to August 2023. After a 4-week treatment, there's no significant difference between patients receiving HCQ and PDN in the reduction of erosion area (median, 44 vs 58.5; HCQ - PDN difference: -11; 95 % CI, -39 to 13; p = 0.438) or pain level (median, 3 vs 3; HCQ - PDN difference: 0; 95 % CI, -1 to 1; p = 0.925). Heat shock protein 90 (HSP90) alpha and beta were identified as potential therapeutic targets of HCQ for treating OLP, while HSP90α is also associated with the adverse reactions of HCQ. The expressions of HSP90α and HSP90β in OLP tissue were significantly reduced compared to normal tissue. The phytomedicine glycyrrhizin was selected due to its specific interaction with the GLY-181 site of HSP90α, same as HCQ's toxic targets. HCQ exerted pro-proliferative and anti-inflammatory effects in vitro. And both HCQ and glycyrrhizin treatment restore the expression of HSP90β, while HCQ treatment also restored the expression of HSP90α. CONCLUSIONS HCQ was not inferior to prednisone for treating severe erosive OLP, suggesting it as an alternative to first-line treatment. Integrating phytopreparation glycyrrhizin into conventional HCQ treatment in OLP can help detoxify by occupying the HSP90α binding site.
Collapse
Affiliation(s)
- Houshang Wang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Kunmeng Luo
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lanyan Wu
- Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center of Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan, China.
| |
Collapse
|
2
|
Yang Y, Ke Y, Xie W, Li Z, Tao L, Shen W, Chen Y, Cheng H, Chen J, Yan G, Li W, Li M, Li J. Amphiphilic disodium glycyrrhizin as a co-former for ketoconazole co-amorphous systems: Biopharmaceutical properties and underlying molecular mechanisms. Int J Pharm 2024; 665:124673. [PMID: 39245085 DOI: 10.1016/j.ijpharm.2024.124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Co-amorphous systems (CAMs) have been extensively investigated to improve the dissolution of hydrophobic drugs. However, drug precipitation during the storage or dissolution of CAMs has still been a major challenge. Here, disodium glycyrrhizin (Na2GA) was first used as a co-former in CAMs based on its multiple hydroxyl groups and amphiphilic structure. Ketoconazole (KTZ), a BCS class II drug, was selected as a model drug. KTZ-Na2GA CAMs at mass ratios of 1:1, 1:2.5, 1:5 and 1:10 were prepared by the spray drying method and further characterised by PXRD and DSC. The 1:2.5, 1:5 and 1:10 groups exhibited significantly enhanced Cmax (all approximately 26.67-fold) and stable maintenance of supersaturation compared to the crystalline KTZ and the corresponding physical mixtures in non-sink dissolution tests, while the 1:1 group exhibited an unstable medium Cmax (all approximately 14.67-fold). The permeability tests revealed that the permeation rate of KTZ in KTZ-Na2GA CAMs under the concentration of Na2GA in solution above the critical micelle concentration (CMC) showed a significant downwards trend compared to that below CMC. The underlying molecular mechanisms were involved in molecular miscibility, hydrogen bond interactions, solubilisation and crystallisation inhibition by Na2GA. Pharmacokinetic studies demonstrated that the AUC0-∞ of KTZ in 1:1, 1:2.5, 1:5 and 1:10 groups were significantly higher than those of the crystalline KTZ group with 2.13-, 2.30-, 2.16- and 1.86-fold, respectively (p < 0.01). In conclusion, Na2GA has proven to be a promising co-former in CAMs to enhance hydrophobic drug dissolution and bioavailability. Its effect on intestinal permeation rate of drugs also deserves attention.
Collapse
Affiliation(s)
- Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Beichen Institute for Drug Control, Tianjin Institute for Drug Control, Tianjin 300400, China
| | - Yixin Ke
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wei Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Zhuoyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Lin Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China; Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Wen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Yaxi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Jinfeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China
| | - Wen Li
- Department of Pharmacy, The Affiliated Hospital of Nanjing University of Chinese Medicine, 157 Daming Avenue, Nanjing 210001, China
| | - Mengyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
3
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
4
|
Zhang S, Du R, Li Q, Xu M, Yang Y, Fang S, Wan Z, Yang X. Food-grade emulsion gels and oleogels prepared by all-natural dual nanofibril system from citrus fiber and glycyrrhizic acid. Food Res Int 2024; 192:114830. [PMID: 39147519 DOI: 10.1016/j.foodres.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
The natural dual nanofibril system consisting of the rigid semicrystalline nanofibrils disintegrated from citrus fiber (CF) and soft semiflexible nanofibrils self-assembled from glycyrrhizic acid (GA) has been recently shown to be effective structural building blocks for fabrication of emulsion gels. In this work, the effect of the CF nanofibrils prepared by different mechanical disintegration approaches (i.e., high-pressure microfluidization and hydrodynamic cavitation) on the interfibrillar CF-GA interactions and the subsequent formation and properties of emulsion gels were investigated, with the aim of evaluating the potential of the dual nanofibril-stabilized emulsion gels as templates for synthesizing all-natural edible oleogels. The obtained results demonstrate that compared to the cavitation, the high-pressure microfluidization is more capable of generating CF nanofibrils with a higher degree of nanofibrillation and individualization, thus forming a denser CF-GA gel network with higher viscoelasticity and structural stability due to the stronger multiple intrafibrillar and interfibrillar interactions. The emulsion gels stabilized by the dual nanofibril system are demonstrated to be an efficient template to fabricate solid-like oleogels, and the structural properties of the oleogels can be well tuned by the mechanical disintegration of CF and the GA nanofibril concentration. The prepared oleogels possess high oil loading capacity, dense network microstructure, superior rheological and large deformation compression performances, and satisfactory thermal stability, which is attributed to the compact and ordered CF-GA dual nanofibrillar network via multiple hydrogen-bonding interactions in the continuous phase as well as at the droplet surface. This study highlights the unique use of all-natural dual nanofibrils to develop oil structured soft materials for sustainable applications.
Collapse
Affiliation(s)
- Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Ruijie Du
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | | | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Wang G, Hiramoto K, Ma N, Ohnishi S, Morita A, Xu Y, Yoshikawa N, Chinzei Y, Murata M, Kawanishi S. Immunohistochemical analyses reveal FoxP3 expressions in spleen and colorectal cancer in mice treated with AOM/DSS, and their suppression by glycyrrhizin. PLoS One 2024; 19:e0307038. [PMID: 39150932 PMCID: PMC11329161 DOI: 10.1371/journal.pone.0307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 08/18/2024] Open
Abstract
We previously demonstrated that glycyrrhizin (GL) suppressed inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer (CC). In this study, we found an accumulation of regulatory T cells (Tregs) in the spleen and suppression by GL in model mice. ICR mice were divided into four groups: Control, GL, CC, and GL-treated CC (CC+GL), and were sacrificed 20 weeks after AOM/DSS treatment. We measured spleen weight, areas of white and red pulp, and CD8+ T cells (cytotoxic T lymphocytes, CTL), and CD11c-positive cells (dendritic cells) in splenic tissues and forkhead box protein 3 (FoxP3)-positive cells (Tregs) in colorectal and splenic tissues. In all cases, the CC group showed a significant increase compared with those in Control group, and GL administration significantly attenuated this increase. These results indicate that Tregs accumulated in the spleen may participate in inflammation-related carcinogenesis by suppressing CTL. We also suggest that GL which binds to high-mobility group box 1 (HMGB1), suppresses carcinogenesis with decreasing Tregs in the spleen. Furthermore, there was an expression of FoxP3 in cancer cells, indicating that it may be involved in the malignant transformation of cancer cells.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Acupuncture and Moxibustion Medical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yifei Xu
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Yasuo Chinzei
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
6
|
Kononova PA, Selyutina OY, Fomenko VV, Salakhutdinov NF, Polyakov NE. The mutual lipid-mediated effect of the transmembrane domain of SARS-CoV-2 E-protein and glycyrrhizin nicotinate derivatives on the localization in the lipid bilayer. Arch Biochem Biophys 2024; 758:110080. [PMID: 38960345 DOI: 10.1016/j.abb.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.
Collapse
Affiliation(s)
- Polina A Kononova
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya St., 630090, Novosibirsk, Russia
| | - Olga Yu Selyutina
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya St., 630090, Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, 18 Kutateladze St., 630128, Novosibirsk, Russia.
| | - Vladislav V Fomenko
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya St., 630090, Novosibirsk, Russia; N. N. Vorozhtsov Institute of Organic Chemistry, 9 Lavrentiev Ave, 630090, Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Institute of Organic Chemistry, 9 Lavrentiev Ave, 630090, Novosibirsk, Russia
| | - Nikolay E Polyakov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya St., 630090, Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, 18 Kutateladze St., 630128, Novosibirsk, Russia
| |
Collapse
|
7
|
Polyakov NE, Mastova AV, Kruppa AI, Asfandiarov NL, Pshenichnyuk SA. Glycyrrhetinic acid interaction with solvated and free electrons studied by the CIDNP and dissociative electron attachment techniques. J Chem Phys 2024; 161:035102. [PMID: 39007395 DOI: 10.1063/5.0214342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest. In the present study, using chemically induced dynamic nuclear polarization (CIDNP) and dissociative electron attachment (DEA) techniques, we have elucidated the affinity of solvated and free electrons to glycyrrhetinic acid (GA)-the aglicon of glycyrrhizin (the main active component of Licorice root). CIDNP is a powerful instrument to study the mechanisms of electron transfer reactions in solution, but the DEA technique shows its effectiveness in gas phase processes. For CIDNP experiments, the photoionization of the dianion of 5-sulfosalicylic acid (HSSA2-) was used as a model reaction of solvated electron generation. DEA experiments testify that GA molecules are even better electron acceptors than molecular oxygen, at least under gas-phase conditions. In addition, the effect of the solvent on the energetics of the reactants is discussed.
Collapse
Affiliation(s)
- Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - Anna V Mastova
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - Alexander I Kruppa
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya Str. 3, 630090 Novosibirsk, Russia
| | - Nail L Asfandiarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| | - Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| |
Collapse
|
8
|
Wang HQ, Shi QY, Ma SG, Yu SS. Minor Hydroxylated Triterpenoids Produced in Engineered Yeast by the Enzymes OSC and CYP716s from the Plant Enkianthus chinensis and Their Anti-Inflammatory and Hepatoprotective Activities. JOURNAL OF NATURAL PRODUCTS 2024; 87:1036-1043. [PMID: 38600636 DOI: 10.1021/acs.jnatprod.3c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6β-OH derivatives, marking the first confirmed C-6β hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1β and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 μM.
Collapse
Affiliation(s)
- Hai-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qin-Yan Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
9
|
Zhang J, Li Y, Xie S, Lou H, Chen H, Zhang G. Baicalein glycymicelle ophthalmic solution: Preparation, in vitro antimicrobial activities, and antimicrobial mechanism evaluations. Int J Pharm 2024; 654:123964. [PMID: 38430948 DOI: 10.1016/j.ijpharm.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The purpose of this study was to develop a novel baicalein (BAI) loaded glycymicelle ophthalmic solution with small molecule phytochemical glycyrrhizin as nanocarriers and to explore this solution's potential as an antimicrobial agent against ocular infections. The optimized BAI glycymicelles had a high encapsulation efficiency (98.76 ± 1.25 %), a small particle size (54.38 ± 2.41 nm), a uniform size distribution (polydispersity index = 0.293 ± 0.083), and a zeta potential of -28.3 ± 1.17 mV. The BAI glycymicelle ophthalmic solution exhibited an excellent short-term storage stability. BAI glycymicelles significantly increased the apparent solubility and in vitro release capability of BAI. The BAI glycymicelle ophthalmic solution exhibited no hen's egg-chorioallantoic membrane' irritation and strong in vivo ocular tolerance in rabbits. The BAI glycymicelles noticeably enhanced the in vivo corneal permeation. The BAI glycymicelles also precipitated increased in vitro antioxidant activity and significantly improved in vitro antipathogen activities. Various antimicrobial mechanisms, including the destruction of the bacterial cell wall, damage to the bacterial cell membranes, interruptions to the biofilm structure, and the apoptosis of bacteria, were inflicted on BAI glycymicelles. These findings provided useful knowledge regarding the development of a novel ophthalmic solution and formulation of BAI.
Collapse
Affiliation(s)
- Jing Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuhang Li
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Sibin Xie
- Qingdao Central Medical Group, Qingdao, China
| | - Huadong Lou
- The Eighth People's Hospital of Qingdao, Qingdao, China
| | - Hao Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.
| | - Guowen Zhang
- The Eighth People's Hospital of Qingdao, Qingdao, China.
| |
Collapse
|
10
|
Meng X, Na R, Peng X, Li H, Ouyang W, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Tang H, Zhuang G, Peng Z. Musashi-2 potentiates colorectal cancer immune infiltration by regulating the post-translational modifications of HMGB1 to promote DCs maturation and migration. Cell Commun Signal 2024; 22:117. [PMID: 38347600 PMCID: PMC10863188 DOI: 10.1186/s12964-024-01495-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Clinical Research Center for Cancer Therapy; Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
11
|
Cai J, Wu J, Yu X, Wan Z, Yang X. Interfacial assembly and rheology of multi-responsive glycyrrhizic acid at liquid interfaces. SOFT MATTER 2024; 20:1173-1185. [PMID: 38164656 DOI: 10.1039/d3sm00973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.
Collapse
Affiliation(s)
- Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
13
|
Bailly C. Efficacy and safety of the traditional herbal medication Chai-Ling-Tang (in China), Siryung-tang (in Republic of Korea) or Sairei-To (in Japan). JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117127. [PMID: 37683930 DOI: 10.1016/j.jep.2023.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbal medicine designated Chai-Ling-Tang in China, Siryung-tang in South Korea, and Sairei-To (or Tsumura Saireito extract granules, TJ-114) in Japan is a complex polyherbal formulations with 12 plant components. It is used historically to treat Shaoyang syndrome, recorded in an ancient Chinese medical text "Treatise on Cold Damage Disorder" (Shanghan Lun). Chai-Ling-Tang formula combines two traditional Chinese herbal medicine prescriptions: Xiao-Chai-Hu-Tang and Wu-Ling-San (known as Sho-Saiko-To and Goreisan in Japan, and So Shi Ho Tang and Oreonsang in Korea, respectively). These traditional Chinese/Korean medicines and Kampo medicine have been used for more than 2000 years in East Asia, notably as regulators of body fluid homeostasis. AIM OF THE STUDY This study aims to evaluate clinical uses, pharmacological effects and unwanted effects of Sairei-To through a narrative literature survey. The main active phytoconstituents and their mechanism of actions are also collated based on the literature. METHODS Several databases including SciFinder and PubMed were searched in sourcing information using keywords corresponding to the medicinal treatment names and the corresponding plants and phytochemicals. Relevant textbooks, reviews, and digital documents (mostly in English) were consulted to collate all available scientific literature and to provide a complete science-based survey of the topic. RESULTS Sairei-To derives from ten plants and two fungi. The three major components are Bupleuri radix (Saiko), Pinelliae rhizoma (Hange), and Alismatis rhizoma (Takusha). The rest includes the species Scutellariae radix, Zizyphi fructus, Ginseng radix, Glycyrrhizae radix, Zingiberis rhizoma, Cinnamomi cortex, Atractylodis lanceae rhizoma, Poria sclerotium, and Polyporus sclerotium. The therapeutic uses of Sairei-To are very diversified, ranging from the treatment of autoimmune diseases, intestinal inflammatory disorders, edema, intestinal and kidney diseases, cancers, inflammatory skin pathologies, and other conditions such as reproductive failure. Sairei-To is considered as a safe and efficient medication, with potential rare unwanted side effects, notably lung injuries (pneumonitis essentially). Marked anti-inflammatory and immune-modulatory effects of Sairei-To have been reported, generally associated to the action of saponins (saikosaponins, glycyrrhizin), terpenoids (alisols) and flavonoids (baicalin, oroxylin A). CONCLUSION Sairei-To is commonly used to treat inflammatory diseases and appears efficient to decrease the side effects of corticosteroids. Its immune-regulatory action is well recognized and exploited to treat certain skin lesions and chemotherapy-related toxic effects. The activity of the Sairei-To product relies on the synergistic action of its individual ingredients. Further studies are warranted to quantify the synergy of action inherent to this interesting botanical medication.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille, Wasquehal, 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000, Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France.
| |
Collapse
|
14
|
Zendejas-Hernandez U, Alcántara-Martínez N, Vivar DT, Valenzuela F, Sosa Espinoza A, Cervera Ceballos EE. Nebulized glycyrrhizin/enoxolone drug modulates IL-17A in COVID-19 patients: a randomized clinical trial. Front Immunol 2024; 14:1282280. [PMID: 38283346 PMCID: PMC10811189 DOI: 10.3389/fimmu.2023.1282280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Glycyrrhizin (GA) and its derivative Enoxolone (18β), isolated from the Glycyrrhiza glabra plant, are two potential molecules for treating viral diseases. Both demonstrate to regulate immune system with antiviral and anti-inflammatory activities, with the latter mainly due to modulation of inflammatory cytokines. The aim of this clinical trial was to evaluate the safety and efficacy of a nebulized GA/18β drug for treating COVID-19 patients. Methods An open label, randomized, placebo-controlled clinical trial was conducted in Mexico City from January-August 2022 (Registration No. PROTAP-CLI-00). Clinical and biochemical parameters were recorded. Blood samples from patients were regularly collected to evaluate interleukins IL-4, IL-2, IL-1b, TNF-α, IL-17A, IL-6, IL-10,IFN-γ, IL-12, IL-8 and TGF-β1, as well as IgM and IgG against SARS-CoV-2. Two doses of the drug were used - 30/2 mg (dose A) and 90/4 mg (dose B). Results and discussion Both GA/18β doses modulated inflammatory response by reducing mainly IL-17A expression, which in turn kept IL-1β, IL-6, IL-8 and TNF-α interleukins unchanged, indicating significant modulation of key interleukin levels to prevent exacerbation of the immune response in COVID-19 patients. Early on, dose A increased IgM, while dose B induced expression of the antiviral IFN-γ. No severe side effects were seen with either dose, indicating nebulized GA/18β is a safe treatment that could be used for COVID-19 and potentially other viral infections involving inflammatory response.
Collapse
Affiliation(s)
| | - Nemi Alcántara-Martínez
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
- Science Faculty, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Tovar Vivar
- Research and Development Department, Columbia Laboratories, Mexico City, Mexico
| | - Fermín Valenzuela
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
| | | | | |
Collapse
|
15
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
17
|
Zhang Y, Li H, Liu X, Wang Q, Zhao D, Su M, Jia Z, Shen S. Integrating Metabolomics and Network Pharmacology to Decipher the Hepatoprotective Effect Mechanisms of Magnesium Isoglycyrrhizinate Injection. Curr Issues Mol Biol 2023; 46:279-298. [PMID: 38248321 PMCID: PMC10813909 DOI: 10.3390/cimb46010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the liver protective effects of a fourth-generation glycyrrhizic acid product (magnesium isoglycyrrhizinate injection, MII) in the treatment of mice with drug-induced liver injury-specifically, to determine its effects on plasma metabolites. Moreover, the possible mechanism of its intervention in lipid metabolism and amino acid metabolism through the liver protective effect was preliminarily explored, combined with network pharmacology. The liver injury model of mice was established using acetaminophen (APAP). The protective effect of MII on the mice model was evaluated using pathological tissue sections and biochemical indices such as alanine transaminase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD). Metabolomics analysis of plasma was performed using the UHPLC-QTOF/MS technique to screen for potential biomarkers and enriched metabolic pathways. The potential targets and pathways of MII were predicted by network pharmacology, and the mechanism was verified by Western blot analysis. MII significantly improved the pathological liver changes in mice with liver injury. The content of ALT and AST was decreased, and the activity of SOD was increased significantly (p < 0.05, 0.01). A total of 29 potential biomarkers were identified in the metabolomics analysis, mainly involving seven pathways, such as lipid metabolism and amino acid metabolism. A total of 44 intersection targets of MII in the treatment of liver injury were obtained by network pharmacology, involving lipid metabolism and other related pathways. Western blot analysis results showed that MII could significantly reduce the expression of JAK2 and STAT3. MII can effectively ameliorate liver injury in modeled mice through related pathways such as lipid metabolism and amino acid metabolism. This study could provide not only a scientific basis for the elucidation of the mechanism of action of MII in exerting a hepatoprotective effect, but also a reference for its rational clinical application.
Collapse
Affiliation(s)
- Yihua Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Hui Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Xueli Liu
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Qiang Wang
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Dong Zhao
- NDMA Key Laboratory for Quality Control and Evaluation of Generic Drug, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (X.L.); (Q.W.); (D.Z.)
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
| | - Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 102629, China;
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (Y.Z.); (H.L.); (M.S.)
| |
Collapse
|
18
|
Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, Daniel AP, Pathak S, Duttaroy AK, Banerjee A. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection 2023; 51:1603-1618. [PMID: 36906872 PMCID: PMC10008189 DOI: 10.1007/s15010-023-02017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE The COVID-19 pandemic caused by the novel Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has put the world in a medical crisis for the past three years; nearly 6.3 million lives have been diminished due to the virus outbreak. This review aims to update the recent findings on COVID-19 infections from an epigenetic scenario and develop future perspectives of epi-drugs to treat the disease. METHODS Original research articles and review studies related to COVID-19 were searched and analyzed from the Google Scholar/PubMed/Medline databases mainly between 2019 and 2022 to brief the recent work. RESULTS Numerous in-depth studies of the mechanisms used by SARS-CoV-2 have been going on to minimize the consequences of the viral outburst. Angiotensin-Converting Enzyme 2 receptors and Transmembrane serine protease 2 facilitate viral entry to the host cells. Upon internalization, it uses the host machinery to replicate viral copies and alter the downstream regulation of the normal cells, causing infection-related morbidities and mortalities. In addition, several epigenetic regulations such as DNA methylation, acetylation, histone modifications, microRNA, and other factors (age, sex, etc.) are responsible for the regulations of viral entry, its immune evasion, and cytokine responses also play a major modulatory role in COVID-19 severity, which has been discussed in detail in this review. CONCLUSION Findings of epigenetic regulation of viral pathogenicity open a new window for epi-drugs as a possible therapeutical approach against COVID-19.
Collapse
Affiliation(s)
- Amit Dey
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - K Vaishak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc., CP 76130, San Pablo, Querétaro, Mexico
| | - Priyadarshini Shanmugam
- Department of Microbiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, 603103, India
| | - Alice Peace Daniel
- Department of Microbiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, 603103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India.
| |
Collapse
|
19
|
Wang Q, Zhao X, Jiang Y, Jin B, Wang L. Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants. Biomolecules 2023; 13:1725. [PMID: 38136596 PMCID: PMC10741589 DOI: 10.3390/biom13121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Terpenoids are the broadest and richest group of chemicals obtained from plants. These plant-derived terpenoids have been extensively utilized in various industries, including food and pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants, emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances in the technology of sequencing, the genomes of certain important medicinal plants have been assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba, and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment interactions as well as their significance in the pharmaceutical and food industries. Additionally, we highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology seeding, and genetic engineering in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.Z.); (Y.J.); (B.J.)
| |
Collapse
|
20
|
Liu M, Wang Q, Xu W, Wu J, Xu X, Yang H, Li X. Natural products for treating cytokine storm-related diseases: Therapeutic effects and mechanisms. Biomed Pharmacother 2023; 167:115555. [PMID: 37776639 DOI: 10.1016/j.biopha.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.
Collapse
Affiliation(s)
- Mei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanai Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Jingyu Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, China
| | - Xingyue Xu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
21
|
Maurya DK, Sharma D. Culinary spices and herbs in managing early and long-COVID-19 complications: A comprehensive review. Phytother Res 2023; 37:4908-4931. [PMID: 37468320 DOI: 10.1002/ptr.7957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Human race is preparing for the upsurge and aftermath of COVID-19 pandemic complicated by novel variants, new waves, variable mortality rate, and post-COVID complications. Despite use of repurposed drugs, symptomatic treatments and licensing of multiple vaccines, the daily number of cases and rate of transmission are significant. Culinary spices and herbs have been historically used in pandemic and non-pandemic times to reduce respiratory viral burden. Specific food items and culinary spices can boost the levels of protective immunity and also offer therapeutic benefits against impervious bugs via well-known as well as less-known but scientifically testable mechanisms. Here, we analyzed the phytochemicals profile of Ayurvedic herbs and inferred from the clinical trials/observational studies to provide a focused and succinct perspective on the relevance of "food-based" traditional decoction to moderate COVID-19 disease and long-COVID via modulation of immunity and reinstatement of homeostasis. We also underscore the druggable targets in pathogenesis of COVID-19 which are relevant to the ongoing clinical trials using spices and herbs. This information will provide a strong scientific rationale for standardization of the traditional herbs-based therapies and adopting the use of herbs, spices, and their formulations for reducing SARS-CoV-2 transmission, long-COVID symptoms, and COVID-19 disease progression.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
22
|
Shin S, Kim HW, Ko MK, Park SH, Kim SM, Park JH, Lee MJ. Inactivated vaccine with glycyrrhizic acid adjuvant elicits potent innate and adaptive immune responses against foot-and-mouth disease. Front Microbiol 2023; 14:1289065. [PMID: 38029108 PMCID: PMC10644816 DOI: 10.3389/fmicb.2023.1289065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Foot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability. Methods To address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs). Results Glycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules. Conclusion Collectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
23
|
Wang C, Wu D, Jiang L, Liu X, Xie T. Multi-Omics Elucidates Difference in Accumulation of Bioactive Constituents in Licorice ( Glycyrrhiza uralensis) under Drought Stress. Molecules 2023; 28:7042. [PMID: 37894521 PMCID: PMC10609028 DOI: 10.3390/molecules28207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (PAL, 4CL, CHS, CHI, CYP93C, HIDH, HI4OMT, and CYP81E1_7) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Dawei Wu
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Liying Jiang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Xie
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| |
Collapse
|
24
|
Alikiaie B, Shalamzari SMH, Soltani R, Yegdaneh A, Mousavi S. Efficacy of Licorice as Adjunctive Therapy in Critically Ill Patients with COVID-19: A Randomized, Placebo-Controlled, Double-Blind Clinical Trial. J Res Pharm Pract 2023; 12:141-147. [PMID: 39262414 PMCID: PMC11386065 DOI: 10.4103/jrpp.jrpp_22_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 09/13/2024] Open
Abstract
Objective There is no definitive pharmacological strategy for COVID-19; thus, medicinal herbs can be an appropriate option for COVID-19 management. We investigated the efficacy of a D-reglis® tablet (root extract of licorice) as adjuvant therapy in critically ill patients with COVID-19 at intensive care units (ICUs) of Alzahra Teaching Hospital affiliated with Isfahan University of Medical Sciences, Isfahan, Iran. Methods In the present double-blind, randomized, placebo-controlled clinical trial, critically ill cases with COVID-19 (n = 52) received a D-reglis® tablet (760 mg) or a placebo tablet for 5 days. The ICU stay length was the primary outcome. The secondary outcome included the changes in oxygen saturation, duration of mechanical ventilation, mortality rate, and Sequential Organ Failure Assessment (SOFA) Score during the study period. Findings The ICU stay was significantly lower in the licorice group than in the placebo group (P = 0.015). No significant difference was detected between the groups regarding oxygen saturation, SOFA score, duration of mechanical ventilation, and mortality rate. Conclusion The licorice tablet (D-reglis®) as an adjuvant treatment showed promising results regarding the ICU stay length in critically ill COVID-19 patients. However, further clinical trials with larger sample sizes, further duration of intervention, measurement of inflammatory markers, and further study about the molecular mechanism of the effect of licorice on COVID-19 should be done to obtain more conclusive findings.
Collapse
Affiliation(s)
- Babak Alikiaie
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Sun C, Tian L, Wei Y, Chen P, Wu X, Jie Y. Novel bisdemethoxycurcumin@phytomicelle ophthalmic solution: In vitro formulation appraisal and in vivo prompting rapid corneal wound healing evaluations. Exp Eye Res 2023; 234:109608. [PMID: 37517540 DOI: 10.1016/j.exer.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A simple and novel phytochemical-based nano-ophthalmic solution was developed for the treatment of eye diseases. This nanoformulation was produced from the mixture of the phytochemicals glycyrrhizin and alpha-glycosyl hesperidin, which serve as the phytonanomaterials that solubilize bisdemethoxycurcumin (BDMC), a promising phytochemical with strong pharmacological activities but with poor water solubility. This novel nanoformulation is a clear solution named as BDMC@phytomicelle ophthalmic solution, which was formulated using a simple preparation process. The BDMC@phytomicelles were characterized by a BDMC encapsulation efficiency of 98.37% ± 2.26%, a small phytomicelle size of 4.06 ± 0.22 nm, and a small polydispersity index of 0.25 ± 0.04. With the optimization of the BDMC@phytomicelles, the apparent solubility of BDMC (i.e., the loading of BDMC in the phytomicelles) in the simulated lacrimal fluid was 3.19 ± 0.02 mg/ml. The BDMC@phytomicelle ophthalmic solution demonstrated a good storage stability. Moreover, it did not cause irritations in rabbit eyes, and it facilitated the excellent corneal permeation of BDMC in mice. The BDMC@phytomicelles demonstrated a marked effect on the in vivo induction of corneal wound healing both in healthy and denervated corneas, as seen in the induction of corneal epithelial wound healing, recovery of corneal sensitivity, and increase in corneal subbasal nerve fiber density. These strong pharmacological activities involve the inhibition of hmgb1 signaling and the induction of VIP signaling. Overall, the BDMC@phytomicelle ophthalmic solution is a novel and promising simple ocular nano-formulation of BDMC with significantly improved in vivo profiles.
Collapse
Affiliation(s)
- Cun Sun
- Ophthalmology Department, Beijing HuiMin Hospital, Beijing, China; Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Mei Y, Yang Y, Gao R, Xu M, Li Q, Wan Z, Yang X. Development of antibacterial nanocomposites by combination of bacterial cellulose/chitin nanofibrils and all-natural bioactive nanoparticles. Curr Res Food Sci 2023; 7:100584. [PMID: 37711906 PMCID: PMC10497795 DOI: 10.1016/j.crfs.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, a functional composite membrane was facilely fabricated by using a dual nanofibril system of bacterial cellulose (BC) and chitin (CH) nanofibrils as bio-based building blocks. The BC-CH membranes with enhanced antibacterial activity were constructed by incorporation of all-natural bioactive nanoparticles (GBTPs), which were formed by spontaneous molecular interactions of three naturally occurring active small molecules, i.e., glycyrrhizic acid (GA), berberine (BR), and tannic acid (TA). The microstructure, physicochemical properties, and antibacterial behaviors of the resulting BC-CH-GBTPs nanocomposites were then characterized. The obtained results showed that the GBTPs with a diameter of around 50-100 nm and membrane matrix were bound by non-covalent interactions, and the addition of GBTPs did not compromise the structural integrity and thermal stability of the composites, which retained good mechanical properties. Furthermore, the addition of GBTPs led to a rougher surface structure and increased the water contact angle of the membrane surfaces from 48.13° to 59.80°. The antimicrobial tests indicate that the BC-CH-GBTPs nanocomposites exhibited significant inhibitory effects against Escherichia coli and Staphylococcus aureus, showing a satisfactory antibacterial ability. These results suggest that the BC-CH-GBTPs nanocomposites based on all-natural, plant-based building blocks, hold promising potentials as active packaging materials for sustainable applications.
Collapse
Affiliation(s)
- Yuqi Mei
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Ruohang Gao
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, the Netherlands
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
27
|
Tuñón-Molina A, Cano-Vicent A, Serrano-Aroca Á. Tiger Nut Milk's Antiviral Properties against Enveloped and Non-Enveloped Viruses: Effect of Concentration and Adding Sugar. Int J Mol Sci 2023; 24:12018. [PMID: 37569397 PMCID: PMC10419018 DOI: 10.3390/ijms241512018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The global COVID-19 pandemic has warned scientists of the requirement to look for new antimicrobial compounds to prevent infection by this type of viral pathogen. Natural compounds are becoming a promising avenue of research thanks to their renewable, biodegradable, and non-toxic properties. In this work, tiger nut milk's (TNM) antiviral properties, with and without sugar, were studied against enveloped and non-enveloped viruses. The antiviral properties of TNM were evaluated at different concentrations. The antiviral tests showed that TNM is antiviral against the enveloped bacteriophage phi 6, which is commonly used as a surrogate for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although it did not have any antiviral effect against the non-enveloped bacteriophage MS2. We also found that adding sugar to this natural drink can improve its antiviral properties against enveloped viruses and render it antiviral against non-enveloped viruses like bacteriophage MS2. The antiviral activity of TNM depends on the TNM concentration. TNM is a natural bioproduct that could help to fight against viral infections and protect against a wide range of viral illnesses. These results confirm that the typical sweetened drink made from tiger nut extract and sugar (known as horchata in Spain) possesses broad-spectrum antiviral properties.
Collapse
Affiliation(s)
| | | | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (A.T.-M.); (A.C.-V.)
| |
Collapse
|
28
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
29
|
El Bakri Y, Mohamed SK, Saravanan K, Ahmad S, Mahmoud AA, Abdel-Raheem SAA, El-Sayed WM, Mague JT, Goumri Said S. 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1 H)-one, a natural product as a potential inhibitor of COVID-19: Extraction, crystal structure, and virtual screening approach. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102628. [PMID: 36908997 PMCID: PMC9984236 DOI: 10.1016/j.jksus.2023.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
In the present work, we describe the extraction of a natural product namely 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, and its structure was confirmed by single crystal X-ray diffraction analysis. The conformations of the 5-, 6-, and 7-membered rings in the title compound, C15H24O2, have been probed by a Cremer-Pople puckering analysis. C-H···O hydrogen bonds generate chains in the crystal that stretch along the c-axis direction. The Hirshfeld surface analysis method was used to stabilize the crystal packing of the natural compound. Accompanied by experimental studies, quantum chemical calculations were also performed to compare the structural elucidation and the results of these geometrical parameters exhibited excellent agreement. The compound was also docked with several drug targets of the SARS-CoV-2 virus and found to show the best binding with the main protease enzyme, having a binding energy of -12.31 kcal/mol and interacting with His41 and Cys145 residues. The dynamic stability deciphered the complex to be stable with an average RMSD of 3.8 Å. The compound dynamics with the enzyme showed the compound conformation to be highly stable. The intermolecular binding free energy determined the compound-main protease enzyme to show high interaction energy of < 40 kcal/mol. Together, these studies demonstrate the compound to be a lead structure against SARS-CoV-2.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, United Kingdom
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Ahmed A Mahmoud
- Department of Chemistry, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | | | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia 11566, Cairo, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Souraya Goumri Said
- Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
30
|
Wulandari S, Hartono, Wibawa T. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets: A review. Immunology 2023; 169:117-131. [PMID: 36571562 PMCID: PMC9880760 DOI: 10.1111/imm.13623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Hyperinflammation characterized by elevated proinflammatory cytokines known as 'cytokine storms' is the major cause of high severity and mortality seen in COVID-19 patients. The pathology behind the cytokine storms is currently unknown. Increased HMGB1 levels in serum/plasma of COVID-19 patients were reported by many studies, which positively correlated with the level of proinflammatory cytokines. Dead cells following SARS-CoV-2 infection might release a large amount of HMGB1 and RNA of SARS-CoV-2 into extracellular space. HMGB1 is a well-known inflammatory mediator. Additionally, extracellular HMGB1 might interact with SARS-CoV-2 RNA because of its high capability to bind with a wide variety of molecules including nucleic acids and could trigger massive proinflammatory immune responses. This review aimed to critically explore the many possible pathways by which HMGB1-SARS-CoV-2 RNA complexes mediate proinflammatory responses in COVID-19. The contribution of these pathways to impair host immune responses against SARS-CoV-2 infection leading to a cytokine storm was also evaluated. Moreover, since blocking the HMGB1-SARS-CoV-2 RNA interaction might have therapeutic value, some of the HMGB1 antagonists have been reviewed. The HMGB1- SARS-CoV-2 RNA complexes might trigger endocytosis via RAGE which is linked to lysosomal rupture, PRRs activation, and pyroptotic death. High levels of the proinflammatory cytokines produced might suppress many immune cells leading to uncontrolled viral infection and cell damage with more HMGB1 released. Altogether these mechanisms might initiate a proinflammatory cycle leading to a cytokine storm. HMGB1 antagonists could be considered to give benefit in alleviating cytokine storms and serve as a potential candidate for COVID-19 therapy.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of MedicinePublic Health and Nursing Universitas Gadjah MadaYogyakartaIndonesia
- Department of Physiology, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Hartono
- Department of Physiology, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of MedicinePublic Health and Nursing Universitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
31
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
32
|
Zhou S, Yu Z, Chen Z, Ning F, Hu X, Wu T, Li M, Xin H, Reilly S, Zhang X. Olmesartan alleviates SARS-CoV-2 envelope protein induced renal fibrosis by regulating HMGB1 release and autophagic degradation of TGF-β1. Front Pharmacol 2023; 14:1187818. [PMID: 37256223 PMCID: PMC10225711 DOI: 10.3389/fphar.2023.1187818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Background and aims: Renal damage in severe coronavirus disease 2019 (COVID-19) is highly associated with mortality. Finding relevant therapeutic candidates that can alleviate it is crucial. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) have been shown to be harmless to COVID-19 patients, but it remains elusive whether ACEIs/ARBs have protective benefits to them. We wished to determine if ACEIs/ARBs had a protective effect on the renal damage associated with COVID-19, and to investigate the mechanism. Methods: We used the envelope (E) protein of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) to induce COVID-19-like multiple organ damage and observed renal fibrosis. We induced the epithelial-mesenchymal transformation of HK-2 cells with E protein, and found that olmesartan could alleviate it significantly. The protective effects of olmesartan on E protein-induced renal fibrosis were evaluated by renal-function assessment, pathologic alterations, inflammation, and the TGF-β1/Smad2/3 signaling pathway. The distribution of high-mobility group box (HMGB)1 was examined after stimulation with E protein and olmesartan administration. Results: E protein stimulated HMGB1 release, which triggered the immune response and promoted activation of TGF-β1/Smad2/3 signaling: both could lead to renal fibrosis. Olmesartan regulated the distribution of HMGB1 under E protein stimulation. Olmesartan inhibited the release of HMGB1, and reduced the inflammatory response and activation of TGF-β1/Smad2/3 signaling. Olmesartan increased the cytoplasmic level of HMGB1 to promote the autophagic degradation of TGF-β1, thereby alleviating fibrosis further. Conclusion: Olmesartan alleviates E protein-induced renal fibrosis by regulating the release of HMGB1 and its mediated autophagic degradation of TGF-β1.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zihui Chen
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Tiangang Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Kononova PA, Selyutina OY, Polyakov NE. The Interaction of the Transmembrane Domain of SARS-CoV-2 E-Protein with Glycyrrhizic Acid in Lipid Bilayer. MEMBRANES 2023; 13:membranes13050505. [PMID: 37233566 DOI: 10.3390/membranes13050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
The interaction of the transmembrane domain of SARS-CoV-2 E-protein with glycyrrhizic acid in a model lipid bilayer (small isotropic bicelles) is demonstrated using various NMR techniques. Glycyrrhizic acid (GA) is the main active component of licorice root, and it shows antiviral activity against various enveloped viruses, including coronavirus. It is suggested that GA can influence the stage of fusion between the viral particle and the host cell by incorporating into the membrane. Using NMR spectroscopy, it was shown that the GA molecule penetrates into the lipid bilayer in a protonated state, but localizes on the bilayer surface in a deprotonated state. The transmembrane domain of SARS-CoV-2 E-protein facilitates deeper GA penetration into the hydrophobic region of bicelles at both acidic and neutral pH and promotes the self-association of GA at neutral pH. Phenylalanine residues of the E-protein interact with GA molecules inside the lipid bilayer at neutral pH. Furthermore, GA influences the mobility of the transmembrane domain of SARS-CoV-2 E-protein in the bilayer. These data provide deeper insight into the molecular mechanism of antiviral activity of glycyrrhizic acid.
Collapse
Affiliation(s)
- Polina A Kononova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, 630090 Novosibirsk, Russia
| | - Olga Yu Selyutina
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, 630090 Novosibirsk, Russia
| | - Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
34
|
Jin X, He R, Liu J, Wang Y, Li Z, Jiang B, Lu J, Yang S. An herbal formulation "Shenshuaifu Granule" alleviates cisplatin-induced nephrotoxicity by suppressing inflammation and apoptosis through inhibition of the TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116168. [PMID: 36646160 DOI: 10.1016/j.jep.2023.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenshuaifu Granule (SSF) is an in-hospital preparation approved by the Guangdong Food and Drug Administration of China. It has been clinically used against kidney diseases for more than 20 years with a definite curative effect. AIM OF THE STUDY Cisplatin (CDDP) is a first-line chemotherapeutic drug in clinical practice, primarily excreted by the kidney with nephrotoxicity as a common side effect. Approximately 5-20% of cancer patients develop acute kidney injury (AKI) after chemotherapy; however, prevention and control strategies are currently unavailable. Therefore, it is important to identify safe and effective drugs that can prevent the nephrotoxicity of CDDP. SSF is an herbal formulation with 8 herbs, and has been used to protect the kidney in China. Nonetheless, its mechanism in relieving CDDP nephrotoxicity remains unclear. Therefore, this work attempt to prove that SSF can alleviate CDDP nephrotoxicity. We also explore its mechanism. MATERIALS AND METHODS First, Thin Layer Chromatography (TLC) of a few herbs in SSF were performed for quality control. Several open-access databases were used to identify the active ingredients of SSF, their corresponding targets, and CDDP-induced nephrotoxicity targets. We performed Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Next, the results of network pharmacology were validated using CDDP-induced nephrotoxicity mouse models. Renal function in the mice was assessed by analyzing the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). On the other hand, renal damage was assessed by determining the level of tubular injury and apoptotic cells using Periodic acid-Schiff (PAS) staining and Terminal Dutp Nick End-Labeling (TUNEL) staining, respectively. The expression of inflammatory and apoptotic-related targets including IL-1β, IL-6, TNF-α, Cox-2, Bax, Bcl-2, Cleaved-caspase 3, and Cleaved-caspase 9 was determined using Western Blot (WB) and Immunohistochemistry (IHC). Furthermore, WB was used to analyze the expression of proteins associated with the TLR4/MyD88/NF-κB pathway in the kidneys of mice with CDDP-induced nephrotoxicity. Finally, molecular docking simulations were performed to evaluate the binding abilities between major active ingredients of SSF and core targets. RESULT Through network pharmacology, we identified 127 active ingredients of SSF and their corresponding 134 targets. Additional screening identified 14 active ingredients and 17 targets for further analysis. In biological process (BP), the targets were enriched in inflammation and apoptosis, among others. In KEGG terms, they were enriched in apoptosis and NF-κB pathways. Animal experiments revealed that SSF significantly reduced the levels of Scr and BUN and prevented renal tubular damage in mice treated with CDDP. In addition, SSF inhibited inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Molecular docking revealed good binding capacities of active ingredients and core targets. CONCLUSION In summary, the experimental findings were consistent with the network pharmacological predictions. SSF can inhibit inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Taken together, our data suggest that SSF is an alternative agent for the treatment of CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiahui Liu
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Beibei Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, 518033, China.
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
35
|
Zuo J, Meng T, Wang Y, Tang W. A Review of the Antiviral Activities of Glycyrrhizic Acid, Glycyrrhetinic Acid and Glycyrrhetinic Acid Monoglucuronide. Pharmaceuticals (Basel) 2023; 16:ph16050641. [PMID: 37242424 DOI: 10.3390/ph16050641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licorice, a natural medicine derived from the roots and rhizomes of Glycyrrhiza species, possesses a wide range of therapeutic applications, including antiviral properties. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) is the active metabolite of GL. GL and its metabolites have a wide range of antiviral activities against viruses, such as, the hepatitis virus, herpes virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and so on. Although their antiviral activity has been widely reported, the specific mechanism of action involving multiple links such as the virus itself, cells, and immunity are not clearly established. In this review, we will give an update on the role of GL and its metabolites as antiviral agents, and detail relevant evidence on the potential use and mechanisms of actions. Analyzing antivirals, their signaling, and the impacts of tissue and autoimmune protection may provide promising new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
36
|
Bafandeh S, Khodadadi E, Ganbarov K, Asgharzadeh M, Köse Ş, Samadi Kafil H. Natural Products as a Potential Source of Promising Therapeutics for COVID-19 and Viral Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5525165. [PMID: 37096202 PMCID: PMC10122587 DOI: 10.1155/2023/5525165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023]
Abstract
Background A global pandemic has recently been observed due to the new coronavirus disease, caused by SARS-CoV-2. Since there are currently no antiviral medicines to combat the highly contagious and lethal COVID-19 infection, identifying natural sources that can either be viricidal or boost the immune system and aid in the fight against the disease can be an essential therapeutic support. Methods This review was conducted based on published papers related to the herbal therapy of COVID-19 by search on databases including PubMed and Scopus with herbal, COVID-19, SARS-CoV-2, and therapy keywords. Results To combat this condition, people may benefit from the therapeutic properties of medicinal plants, such as increasing their immune system or providing an antiviral impact. As a result, SARS-CoV-2 infection death rates can be reduced. Various traditional medicinal plants and their bioactive components, such as COVID-19, are summarized in this article to assist in gathering and debating techniques for combating microbial diseases in general and boosting our immune system in particular. Conclusion The immune system benefits from natural products and many of these play a role in activating antibody creation, maturation of immune cells, and stimulation of innate and adaptive immune responses. The lack of particular antivirals for SARS-CoV-2 means that apitherapy might be a viable option for reducing the hazards associated with COVID-19 in the absence of specific antivirals.
Collapse
Affiliation(s)
- Soheila Bafandeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, Dokuz Eylül Üniversitesi, Izmir, Turkey
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
38
|
Broni E, Ashley C, Adams J, Manu H, Aikins E, Okom M, Miller WA, Wilson MD, Kwofie SK. Cheminformatics-Based Study Identifies Potential Ebola VP40 Inhibitors. Int J Mol Sci 2023; 24:ijms24076298. [PMID: 37047270 PMCID: PMC10094735 DOI: 10.3390/ijms24076298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Ebola virus (EBOV) is still highly infectious and causes severe hemorrhagic fevers in primates. However, there are no regulatorily approved drugs against the Ebola virus disease (EVD). The highly virulent and lethal nature of EVD highlights the need to develop therapeutic agents. Viral protein 40 kDa (VP40), the most abundantly expressed protein during infection, coordinates the assembly, budding, and release of viral particles into the host cell. It also regulates viral transcription and RNA replication. This study sought to identify small molecules that could potentially inhibit the VP40 protein by targeting the N-terminal domain using an in silico approach. The statistical quality of AutoDock Vina’s capacity to discriminate between inhibitors and decoys was determined, and an area under the curve of the receiver operating characteristic (AUC-ROC) curve of 0.791 was obtained. A total of 29,519 natural-product-derived compounds from Chinese and African sources as well as 2738 approved drugs were successfully screened against VP40. Using a threshold of −8 kcal/mol, a total of 7, 11, 163, and 30 compounds from the AfroDb, Northern African Natural Products Database (NANPDB), traditional Chinese medicine (TCM), and approved drugs libraries, respectively, were obtained after molecular docking. A biological activity prediction of the lead compounds suggested their potential antiviral properties. In addition, random-forest- and support-vector-machine-based algorithms predicted the compounds to be anti-Ebola with IC50 values in the micromolar range (less than 25 μM). A total of 42 natural-product-derived compounds were identified as potential EBOV inhibitors with desirable ADMET profiles, comprising 1, 2, and 39 compounds from NANPDB (2-hydroxyseneganolide), AfroDb (ZINC000034518176 and ZINC000095485942), and TCM, respectively. A total of 23 approved drugs, including doramectin, glecaprevir, velpatasvir, ledipasvir, avermectin B1, nafarelin acetate, danoprevir, eltrombopag, lanatoside C, and glycyrrhizin, among others, were also predicted to have potential anti-EBOV activity and can be further explored so that they may be repurposed for EVD treatment. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area calculations corroborated the stability and good binding affinities of the complexes (−46.97 to −118.9 kJ/mol). The potential lead compounds may have the potential to be developed as anti-EBOV drugs after experimental testing.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joseph Adams
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
| | - Hammond Manu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Ebenezer Aikins
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Mary Okom
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra LG 581, Ghana
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: (W.A.M.III); (S.K.K.); Tel.: +1(708)-2168451 (W.A.M.III); +23-320-3797922 (S.K.K.)
| |
Collapse
|
39
|
Li Z, Liu W, Sun C, Wei X, Liu S, Jiang Y. Gastrointestinal pH-Sensitive Pickering Emulsions Stabilized by Zein Nanoparticles Coated with Bioactive Glycyrrhizic Acid for Improving Oral Bioaccessibility of Curcumin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884340 DOI: 10.1021/acsami.2c21549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pickering emulsions have received considerable attention for their stability and functionality. Environmentally responsive Pickering emulsions could be used as vehicles for oral administration. However, challenges still exist, such as nonbiocompatibility of emulsifier and mismatched response behavior in the gastrointestinal environment. In this study, a strategy was proposed that bioactive saponin glycyrrhizic acid (GA) was used as a pH-responsive substance to functionalize zein nanoparticles, and tannic acid (TA) was used as a primer for cross-linking GA and zein nanoparticles. The Pickering emulsions fabricated by zein/TA/GA nanoparticles (ZTGs) exhibited excellent stability at acid conditions while slowly demulsifying at neutral conditions, which can be further used as an intestine-targeted delivery system. Curcumin was encapsulated into ZTG-stabilized Pickering emulsions, and the encapsulation efficiency results suggested that the presence of GA coating remarkably facilitated the encapsulation of curcumin. An in vitro digestion study suggested that ZTGs provided protection for emulsions from pepsin hydrolysis and exhibited higher free fatty acid release as well as higher bioaccessibility of curcumin during simulated intestine digestion. This study provides an effective strategy to prepare pH-responsive Pickering emulsions for improving the oral bioaccessibility of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Zhiqiang Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiqi Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenbo Sun
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinyi Wei
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyuan Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
40
|
Li C, Han P, Mao H, Lv C, Huang K, Jin M. Glycyrrhizic Acid-Based Carbonized Dots Boost Antiviral Activity against Influenza A Virus via Multisite Inhibition Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10441-10451. [PMID: 36789721 DOI: 10.1021/acsami.2c21319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Influenza A virus (IVA) has been continuously causing pandemics in several animal hosts and has become a worldwide public health threat. Currently, antiviral drugs have become associated with a lot of side effects and limited activity against emerging drug-resistant influenza viruses. Therefore, the development of novel antiviral drugs is of great importance. In this study, we synthesized a kind of carbon dots (CDs) with high dispersibility from glycyrrhizic acid (GA) using a simple dry heating method. Compared with glycyrrhizic acid alone, GA-CDs exhibit superior solubility and significantly improve the antiviral property against IVA. Investigation of the mechanism revealed that GA-CDs act against IVA mainly by inhibiting viral internalization, replication of the viral genome, neuraminidase activity, and host inflammatory responses. More importantly, in a mouse model, GA-CDs can significantly alleviate the clinical symptoms and decrease mortality and lung viral titers. In vitro and in vivo experiments demonstrate that GA-CDs possess extraordinary therapeutic effects; therefore, we propose that GA-CDs may be a promising alternative therapy for IVA infection.
Collapse
Affiliation(s)
- Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, P. R. China
| | - Pengfei Han
- College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, P. R. China
| | - Changjie Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, P. R. China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, P. R. China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, P. R. China
| |
Collapse
|
41
|
Wang H, Yu T, An N, Sun Y, Xu P, Han P, Zhao Y, Wang L, Ni X, Li Y, Li G, Liu Y, Peng J, Hou M, Hou Y. Enhancing regulatory T-cell function via inhibition of high mobility group box 1 protein signaling in immune thrombocytopenia. Haematologica 2023; 108:843-858. [PMID: 36263841 PMCID: PMC9973480 DOI: 10.3324/haematol.2022.281557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is the most common acquired autoimmune bleeding disorder. Abnormally increased levels of High Mobility Group Box 1 (HMGB1) protein associate with thrombocytopenia and therapeutic outcome in ITP. Previous studies proposed that a natural inhibitor of HMGB1, 18β-glycyrrhetinic acid (18β-GA), could be used for its anti-inflammatory and immune-modulatory effects, although its ability to correct immune balance in ITP is unclear. In this study, we showed that plasma HMGB1 correlated negatively with platelet counts in ITP patients, and confirmed that 18β-GA stimulated the production of regulatory T cells (Treg), restored the balance of CD4+ T-cell subsets and enhanced the suppressive function of Treg through blocking the effect on HMGB1 in patients with ITP. HMGB1 short hairpin RNA interference masked the effect of 18β-GA in Treg of ITP patients. Furthermore, we found that 18β-GA alleviated thrombocytopenia in mice with ITP. Briefly, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to induce a murine model of severe ITP. The proportion of circulating Treg increased significantly, while the level of plasma HMGB1 and serum antiplatelet antibodies decreased significantly in ITP mice along 18β-GA treatment. In addition, 18β-GA reduced phagocytic activity of macrophages towards platelets both in ITP patients and ITP mice. These results indicate that 18β-GA has the potential to restore immune balance in ITP via inhibition of HMGB1 signaling. In short, this study reveals the role of HMGB1 in ITP, which may serve as a potential target for thrombocytopenia therapy.
Collapse
Affiliation(s)
- Haoyi Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Ning An
- Laboratory of Cancer Signaling, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) Stem Cells, University of Liège, CHU, Sart-Tilman, Liège, 4000 Belgium
| | - Yunqi Sun
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Pengcheng Xu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Panpan Han
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Lingjun Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Xiaofei Ni
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Yubin Li
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan.
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan.
| |
Collapse
|
42
|
Zamzami MA. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J Biomol Struct Dyn 2023; 41:1846-1858. [PMID: 35037842 DOI: 10.1080/07391102.2021.2025147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SARS-CoV-2 is the causative agent of Coronavirus Disease (COVID-19), which is a life-threatening disease. The World Health Organization has classified COVID-19 as a severe worldwide public health pandemic due to its high death rate, quick transmission, and lack of medicines. To counteract the recurrence of the severe acute respiratory syndrome, active antiviral medications are urgently required. Glycyrrhizin was documented with activity on different viral proteins, including SARS-CoV-2; in this study, the activity of glycyrrhizin and its substructures (604 molecules) were screened on SARS-CoV-2 RNA-dependent-RNA polymerase using molecular docking, molecular dynamic (MD) simulation, and MM/GBSA. Sixteen molecules exhibited docking energy higher than -7 kcal/mol; four compounds (10772603, 101088272, 154730753 and glycyrrhizin) showed the highest binding energy, and good stability during MD simulation. The glycyrrhizin compound exhibited favorable docking energy (-7.9 kcal/mol), and it was the most stable complex during MD simulation. The predicted binding free energy of the glycyrrhizin complex was -57 ± 8 kcal/mol. These findings suggest that this molecule, after more validation, could become a good candidate for developing and manufacturing an anti-SARS-CoV-2 medication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Sun M, Xin Q, Hou K, Qiu J, Wang L, Chao E, Su X, Zhang X, Chen S, Wang C. Production of 11-Oxo-β-Amyrin in Saccharomyces cerevisiae at High Efficiency by Fine-Tuning the Expression Ratio of CYP450:CPR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3766-3776. [PMID: 36795896 DOI: 10.1021/acs.jafc.2c08261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The production of glycyrrhetinic acid (GA) and 11-oxo-β-amyrin, the major bioactive components in liquorice, was typically inhibited by P450 oxidation in Saccharomyces cerevisiae. This study focused on optimizing CYP88D6 oxidation by balancing its expression with cytochrome P450 oxidoreductase (CPR) for the efficient production of 11-oxo-β-amyrin in yeast. Results indicated that a high CPR:CYP88D6 expression ratio could decrease both 11-oxo-β-amyrin concentration and turnover ratio of β-amyrin to 11-oxo-β-amyrin, whereas a high CYP88D6:CPR expression ratio is beneficial for improving the catalytic activity of CYP88D6 and 11-oxo-β-amyrin production. Under such a scenario, 91.2% of β-amyrin was converted into 11-oxo-β-amyrin in the resulting S. cerevisiae Y321, and 11-oxo-β-amyrin production was further improved to 810.6 mg/L in fed-batch fermentation. Our study provides new insights into the expression of cytochrome P450 and CPR in maximizing the catalytic activity of P450s, which could guide the construction of cell factories in producing natural products.
Collapse
Affiliation(s)
- Mengchu Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Qi Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Kangxin Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- Department of Food Science, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jie Qiu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Linmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Erkun Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301607, P. R. China
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P. R. China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| |
Collapse
|
44
|
Paul A, Chakraborty N, Sarkar A, Acharya K, Ranjan A, Chauhan A, Srivastava S, Singh AK, Rai AK, Mubeen I, Prasad R. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1977602. [PMID: 36860811 PMCID: PMC9970710 DOI: 10.1155/2023/1977602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.
Collapse
Affiliation(s)
- Anamika Paul
- Department of Botany, Scottish Church College, Kolkata 700006, India
| | | | - Anik Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, U.P., India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| |
Collapse
|
45
|
Cao R, Li Y, Hu X, Qiu Y, Li S, Xie Y, Xu C, Lu C, Chen G, Yang J. Glycyrrhizic acid improves tacrolimus-induced renal injury by regulating autophagy. FASEB J 2023; 37:e22749. [PMID: 36688808 DOI: 10.1096/fj.202201409rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Tacrolimus (TAC)-induced renal injury is detrimental to long-term kidney function, but a treatment medication is not available. Glycyrrhizic acid (GA) is an active ingredient in licorice widely used to treat kidney disease. Thus, this study explored the mechanisms of renoprotection by GA on TAC-induced renal injury. C57BL/6 mice were subjected daily to TAC or a combination of TAC and GA for 4 weeks, and then renal function, histopathology, and autophagy were assessed to examine the effect of GA on a renal injury. Next, Human kidney proximal tubular epithelial (HK-2) cells were pretreated with GA for 2 h and then treated with TAC for 24 h. The effect of GA on TAC-induced HK-2 cell injury was assessed by measuring cell viability, apoptosis, autophagy, and lysosomes. Mice exposed to TAC and treated with GA had significantly greater improvements in renal function and tubulointerstitial fibrosis in comparison to mice not treated with GA. In addition, fibrosis-related protein expression, including α-smooth muscle actin and fibronectin, decreased after GA treatment. GA treatment also relieved autophagic clearance in TAC-induced renal injury. Several in vitro studies found that TAC inhibited cell viability, autophagy, lysosomal acidification, and promoted apoptosis. However, these results were less pronounced with GA pretreatment. In addition, bafilomycin A1 (which inhibits lysosomal function) reduced the protective effect of GA, indicating that lysosomal function plays an important role in this effect. Our data suggest that GA improves lysosomal function and regulates autophagy to protect against TAC-induced renal injury.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Yakun Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
- Kidney Diseases Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Shanglin Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
- Department of General Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, and Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| |
Collapse
|
46
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
47
|
Zhao SW, Li YM, Li YL, Su C. Liver injury in COVID-19: Clinical features, potential mechanisms, risk factors and clinical treatments. World J Gastroenterol 2023; 29:241-256. [PMID: 36687127 PMCID: PMC9846943 DOI: 10.3748/wjg.v29.i2.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been a serious threat to global health for nearly 3 years. In addition to pulmonary complications, liver injury is not uncommon in patients with novel COVID-19. Although the prevalence of liver injury varies widely among COVID-19 patients, its incidence is significantly increased in severe cases. Hence, there is an urgent need to understand liver injury caused by COVID-19. Clinical features of liver injury include detectable liver function abnormalities and liver imaging changes. Liver function tests, computed tomography scans, and ultrasound can help evaluate liver injury. Risk factors for liver injury in patients with COVID-19 include male sex, preexisting liver disease including liver transplantation and chronic liver disease, diabetes, obesity, and hypertension. To date, the mechanism of COVID-19-related liver injury is not fully understood. Its pathophysiological basis can generally be explained by systemic inflammatory response, hypoxic damage, ischemia-reperfusion injury, and drug side effects. In this review, we systematically summarize the existing literature on liver injury caused by COVID-19, including clinical features, underlying mechanisms, and potential risk factors. Finally, we discuss clinical management and provide recommendations for the care of patients with liver injury.
Collapse
Affiliation(s)
- Shu-Wu Zhao
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, Hunan Province, China
| | - Yi-Ming Li
- School of Basic Medical Science, Naval Medical University/Second Military University, Shanghai 200433, China
| | - Yi-Lin Li
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, Hunan Province, China
| | - Chen Su
- Department of Anesthesiology and Pain, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, Hunan Province, China
| |
Collapse
|
48
|
Dong Q, Qiao H, Jiang H, Liu L, Ge Y, Zong FJ, Li Y, Dong B, Hu S, Meng D, Jin R, Wang X, Chang H, Xu X, Wang C, Cao Y, Zhang HT, Liu Q. Jin-Zhen oral liquid for pediatric coronavirus disease (COVID-19): A randomly controlled, open-label, and non-inferiority trial at multiple clinical centers. Front Pharmacol 2023; 14:1094089. [PMID: 36923353 PMCID: PMC10008848 DOI: 10.3389/fphar.2023.1094089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Background: As the coronavirus disease 2019 (COVID-19) pandemic progressed, especially with the emergence of the Omicron variant, the proportion of infected children and adolescents increased significantly. Some treatment such as Chinese herbal medicine has been administered for COVID-19 as a therapeutic option. Jin-Zhen Oral Liquid is widely used for pediatric acute bronchitis, while the efficacy and safety in the treatment of pediatric COVID-19 are unclear. Methods: We conducted a randomized controlled, open-label, multicenter, non-inferiority clinical study involving hospitalized children with mild to moderate COVID-19. Children eligible for enrollment were randomly assigned in a 1:1 ratio to Jin-Zhen Oral Liquid (the treatment group) and Jinhua Qinggan Granules (the positive control group) and received the respective agent for 14 days, followed by a 14-day follow-up after discontinuation of the treatment. The primary efficacy endpoint was the time to first negative viral testing. The secondary endpoints were the time and rate of major symptoms disappearance, duration of hospitalization, and the proportion of symptoms changed from asymptomatic or mild to moderate or severe/critical illness. In addition, the safety end points of any adverse events were observed. Results: A total of 240 child patients were assigned randomly into the Jin-Zhen Oral Liquid (117 patients) and Jinhua Qinggan Granules (123 patients) groups. There was no significant difference of the baselines in terms of the clinical characteristics and initial symptoms between the two groups. After 14-day administration, the time to first negative viral testing in the Jin-Zhen group (median 6.0 days, 95% CI 5.0-6.0) was significantly shorter compared with the positive control Jinhua Qinggan Granules group (median 7.0 days, 95% CI 7.0-8.0). The time and rate of major clinical symptoms disappearance were comparable to the positive control. The symptom disappearance time of pharyngalgia and hospitalization duration were significantly shortened in the Jin-zhen Oral Liquid group. No participants in either group experienced post-treatment exacerbation to severe or critical illness. No adverse events were observed in the Jin-Zhen Oral Liquid treatment group (0.0%) while 1 patient with adverse events occurred in the positive control Jinhua Qinggan granules group (0.8%). No serious adverse events were observed during the study period in both groups. Conclusion: Jin-Zhen Oral Liquid is safe and effective in the treatment of mild to medium COVID-19 in children. It is non-inferior to Jinhua Qinggan granules in shortening the time to first negative viral testing, the time and rate of major clinical symptoms disappearance, and the hospitalization duration. The results suggest that Jin-Zhen Oral Liquid can be a recommended drug for treatment of pediatric COVID-19 patients.
Collapse
Affiliation(s)
- Qian Dong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongmei Qiao
- Department of pediatric respiratory medicine, The First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Eastern Division of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Lixiao Liu
- Department of pediatrics, Shanghai Pudong Hospital, Shanghai, China
| | - Yanling Ge
- Department of Infection Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Fang-Jiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yanan Li
- Department of pediatric respiratory medicine, The First Hospital of Jilin University, Changchun, China
| | - Bingzi Dong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sujuan Hu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongmei Meng
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rong Jin
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangshi Wang
- Department of Infection Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Hailing Chang
- Department of Infection Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaolong Xu
- Emergency Department, Beijing hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chenjing Wang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Cao
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Qingquan Liu
- Emergency Department, Beijing hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Tuñón-Molina A, Cano-Vicent A, Serrano-Aroca Á. Antimicrobial Lipstick: Bio-Based Composition against Viruses, Bacteria, and Fungi. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56658-56665. [PMID: 36516340 DOI: 10.1021/acsami.2c19460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has speeded up the race to find materials that could help limit or avoid the spread of SARS-CoV-2, while infections by multidrug-resistant bacteria and fungi are now becoming a serious threat. In this study, we developed a novel bio-based lipstick containing cranberry extract, a substance able to inactivate a broad range of microorganisms: enveloped viruses such as bacteriophage Φ6, a surrogate of SARS-CoV-2; non-enveloped viruses including bacteriophage MS2; multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis, a surrogate of Mycobacterium tuberculosis; and the Candida albicans fungus. The proposed antimicrobial lipstick offers a new form of protection against a broad range of microorganisms, including enveloped and non-enveloped viruses, bacteria, and fungi, in the current COVID-19 pandemic and microbial-resistant era.
Collapse
Affiliation(s)
- Alberto Tuñón-Molina
- Doctoral School, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Alba Cano-Vicent
- Doctoral School, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
50
|
Yang C, Shi G, Li Y, Luo M, Wang H, Wang J, Yuan L, Wang Y, Li Y. Genome-Wide Identification of SnRK1 Catalytic α Subunit and FLZ Proteins in Glycyrrhiza inflata Bat. Highlights Their Potential Roles in Licorice Growth and Abiotic Stress Responses. Int J Mol Sci 2022; 24:ijms24010121. [PMID: 36613561 PMCID: PMC9820696 DOI: 10.3390/ijms24010121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) and its scaffolding proteins, FCS-like zinc finger proteins (FLZs), are well conserved in land plants and involved in various processes of plant growth and stress responses. Glycyrrhiza inflata Bat. is a widely used licorice species with strong abiotic stress resistance, in which terpenoids and flavonoids are the major bioactive components. Here, we identified 2 SnRK1 catalytic α subunit encoding genes (GiSnRK1α1 and GiSnRK1α2) and 21 FLZ genes in G. inflata. Polygenetic analysis showed that the 21 GiFLZs could be divided into three groups. A total of 10 representative GiFLZ proteins interact with GiSnRK1α1, and they display overlapped subcellular localization (mainly in the nucleus and the cytoplasm) when transiently expressed in Nicotiana benthamiana leaf cells. Coinciding with the existence of various phytohormone-responsive and stress-responsive cis-regulatory elements in the GiSnRK1α and GiFLZ gene promoters, GiFLZs are actively responsive to methyl jasmonic acid (MeJA) and abscisic acid (ABA) treatments, and several GiFLZs and GiSnRK1α1 are regulated by drought and saline-alkaline stresses. Interestingly, GiSnRK1α and 20 of 21 GiFLZs (except for GiFLZ2) show higher expression in the roots than in the leaves. These data provide comprehensive information on the SnRK1 catalytic α subunit and the FLZ proteins in licorice for future functional characterization.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyu Shi
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jihua Wang
- Key Laboratory of Crops Genetic Improvement of Guangdong, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: (Y.W.); (Y.L.)
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.W.); (Y.L.)
| |
Collapse
|