1
|
Randolph L, Joshi J, Rodriguez Sanchez AL, Pratap UP, Gopalam R, Chen Y, Lai Z, Santhamma B, Kost ER, Nair HB, Vadlamudi RK, Subbarayalu P, Viswanadhapalli S. Significance of LIF/LIFR Signaling in the Progression of Obesity-Driven Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3630. [PMID: 39518071 PMCID: PMC11545110 DOI: 10.3390/cancers16213630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
American women with obesity have an increased incidence of triple-negative breast cancer (TNBC). The impact of obesity conditions on the tumor microenvironment is suspected to accelerate TNBC progression; however, the specific mechanism(s) remains elusive. This study explores the hypothesis that obesity upregulates leukemia inhibitory factor receptor (LIFR) oncogenic signaling in TNBC and assesses the efficacy of LIFR inhibition with EC359 in blocking TNBC progression. TNBC cell lines were co-cultured with human primary adipocytes, or adipocyte-conditioned medium, and treated with EC359. The effects of adiposity were measured using cell viability, colony formation, and invasion assays. Mechanistic studies utilized RNA-Seq, Western blotting, RT-qPCR, and reporter gene assays. The therapeutic potential of EC359 was tested using xenograft and patient-derived organoid (PDO) models. The results showed that adipose conditions increased TNBC cell proliferation and invasion, and these effects correlated with enhanced LIFR signaling. Accordingly, EC359 treatment reduced cell viability, colony formation, and invasion under adipose conditions and blocked adipose-mediated organoid growth and TNBC xenograft tumor growth. RNA-Seq analysis identified critical pathways modulated by LIF/LIFR signaling in diet-induced obesity mouse models. These findings suggest that adiposity contributes to TNBC progression via the activation of the LIF/LIFR pathway, and LIFR inhibition with EC359 represents a promising therapeutic approach for obesity-associated TNBC.
Collapse
Affiliation(s)
- Lois Randolph
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Jaitri Joshi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Alondra Lee Rodriguez Sanchez
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Rahul Gopalam
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Edward R. Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | | | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Panneerdoss Subbarayalu
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Li J, Wang Y, Wang Z, Wei Y, Diao P, Wu Y, Wang D, Jiang H, Wang Y, Cheng J. Super-Enhancer Driven LIF/LIFR-STAT3-SOX2 Regulatory Feedback Loop Promotes Cancer Stemness in Head and Neck Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404476. [PMID: 39206755 PMCID: PMC11516160 DOI: 10.1002/advs.202404476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Super-enhancers (SEs) have been recognized as key epigenetic regulators underlying cancer stemness and malignant traits by aberrant transcriptional control and promising therapeutic targets against human cancers. However, the SE landscape and their roles during head and neck squamous cell carcinoma (HNSCC) development especially in cancer stem cells (CSCs) maintenance remain underexplored yet. Here, we identify leukemia inhibitory factor (LIF)-SE as a representative oncogenic SE to activate LIF transcription in HNSCC. LIF secreted from cancer cells and cancer-associated fibroblasts promotes cancer stemness by driving SOX2 transcription in an autocrine/paracrine manner, respectively. Mechanistically, enhancer elements E1, 2, 4 within LIF-SE recruit SOX2/SMAD3/BRD4/EP300 to facilitate LIF transcription; LIF activates downstream LIFR-STAT3 signaling to drive SOX2 transcription, thus forming a previously unknown regulatory feedback loop (LIF-SE-LIF/LIFR-STAT3-SOX2) to maintain LIF overexpression and CSCs stemness. Clinically, increased LIF abundance in clinical samples correlate with malignant clinicopathological features and patient prognosis; higher LIF concentrations in presurgical plasma dramatically diminish following cancer eradication. Therapeutically, pharmacological targeting LIF-SE-LIF/LIFR-STAT3 significantly impairs tumor growth and reduces CSC subpopulations in xenograft and PDX models. Our findings reveal a hitherto uncharacterized LIF-SE-mediated auto-regulatory loop in regulating HNSCC stemness and highlight LIF as a novel noninvasive biomarker and potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yuhan Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Ziyu Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yuxiang Wei
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| | - Yanling Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
| | - Jie Cheng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityJiangsu210029China
- Jiangsu Key Laboratory of Oral DiseaseNanjing Medical UniversityJiangsu210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjing Medical UniversityJiangsu210029China
| |
Collapse
|
3
|
Zhu M, Yu R, Liu Y, Geng X, Liu Q, Liu S, Zhu Y, Li G, Guo Y, Xi X, Du B. LncRNA H19 Participates in Leukemia Inhibitory Factor Mediated Stemness Promotion in Colorectal Cancer Cells. Biochem Genet 2024; 62:3695-3708. [PMID: 38198021 DOI: 10.1007/s10528-023-10627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Colorectal cancer (CRC) is a common human malignancy and the third leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) were considered to play important roles in the genesis and development of many tumors. In recent years, it has been observed that leukemia inhibitory factor (LIF) might be involved in the regulation of stemness in cancer cells. In this study, we observed that LIF could increase the spheroid formation and stemness marker expression (inculding Nanog and SOX2) in CRC cell lines, such as HCT116 and Caco2 cells. Meanwhile, we also observed that LIF could upregulate LncRNA H19 expression via PI3K/AKT pathway. Knockdown of the expression of LncRNA H19 could decrease the spheroid formation and SOX2 expression in LIF-treated HCT116 and Caco2 cells, and thereby LncRNA H19 knockdown could compensate for the stemness enhancement effects induced by LIF. Our results indicated that LncRNA H19 might participate in the stemness promotion of LIF in CRC cells.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruihong Yu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Yirui Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Xiaoqing Geng
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Qiong Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Shuaitong Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Gang Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China.
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China.
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
4
|
Shahraz A, Penney M, Candido J, Opoku‐Ansah G, Neubauer M, Eyles J, Ojo O, Liu N, Luheshi NM, Phipps A, Vishwanathan K. A mechanistic PK/PD model of AZD0171 (anti-LIF) to support Phase II dose selection. CPT Pharmacometrics Syst Pharmacol 2024; 13:1670-1681. [PMID: 39041713 PMCID: PMC11494920 DOI: 10.1002/psp4.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
AZD0171 (INN: Falbikitug) is being developed as a humanized monoclonal antibody (mAb), immunoglobulin G subclass 1 (IgG1), which binds specifically to the immunosuppressive human cytokine leukemia inhibitory factor (LIF) and inhibits downstream signaling by blocking recruitment of glycoprotein 130 (gp130) to the LIF receptor (LIFR) subunit (gp190) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and is intended to treat adult participants with advanced solid tumors. LIF is a pleiotropic cytokine (and a member of the IL-6 family of cytokines) involved in many physiological and pathological processes and is highly expressed in a subset of solid tumors, including non-small cell lung cancer (NSCLC), colon, ovarian, prostate, and pancreatic cancer. The aim of this work was to develop a mechanistic PK/PD model to investigate the effect of AZD0171 on tumor LIF levels, predict the level of downstream signaling complex (LIF:LIFR:gp130) inhibition, and examine the dose-response relationship to support dose selection for a Phase II clinical study. Modeling results show that tumor LIF is inhibited in a dose-dependent manner with >90% inhibition for 95% of patients at the Phase II clinical dose of 1500 mg Q2W.
Collapse
Affiliation(s)
- Azar Shahraz
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaWalthamMassachusettsUSA
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZenecaCambridgeUK
| | | | | | | | - Jim Eyles
- Oncology R&D, AstraZenecaCambridgeUK
| | | | | | | | - Alex Phipps
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Karthick Vishwanathan
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaWalthamMassachusettsUSA
| |
Collapse
|
5
|
Wang H, Zhao T, Zeng J, Zhang R, Pu L, Qian S, Xu S, Jiang Y, Pan L, Dai X, Guo X, Han L. Methods and clinical biomarker discovery for targeted proteomics using Olink technology. Proteomics Clin Appl 2024; 18:e2300233. [PMID: 38726756 DOI: 10.1002/prca.202300233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE This paper is to offer insights for designing research utilizing Olink technology to identify biomarkers and potential therapeutic targets for disease treatment. EXPERIMENTAL DESIGN We discusses the application of Olink technology in oncology, cardiovascular, respiratory and immune-related diseases, and Outlines the advantages and limitations of Olink technology. RESULTS Olink technology simplifies the search for therapeutic targets, advances proteomics research, reveals the pathogenesis of diseases, and ultimately helps patients develop precision treatments. CONCLUSIONS Although proteomics technology has been rapidly developed in recent years, each method has its own disadvantages, so in the future research, more methods should be selected for combined application to verify each other.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Tian Zhao
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Jingjing Zeng
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Ruijie Zhang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Liyuan Pu
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Suying Qian
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Shan Xu
- Shen zhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Yannan Jiang
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Lifang Pan
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xiaoyu Dai
- Department of Anus & Intestine Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xu Guo
- Department of Rehabilitation Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Liyuan Han
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Zhao S, Deng H, Lu Y, Tao Y, Li D, Jiang X, Wei X, Chen X, Ma F, Wang Y, Gou L, Yang J. Antagonist anti-LIF antibody derived from naive human scFv phage library inhibited tumor growth in mice. BMC Immunol 2024; 25:56. [PMID: 39169307 PMCID: PMC11340043 DOI: 10.1186/s12865-024-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) is a multifunctional member of the IL-6 cytokine family that activates downstream signaling pathways by binding to the heterodimer consisting of LIFR and gp130 on the cell surface. Previous research has shown that LIF is highly expressed in various tumor tissues (e.g. pancreatic cancer, breast cancer, prostate cancer, and colorectal cancer) and promotes cancer cell proliferation, migration, invasion, and differentiation. Moreover, the overexpression of LIF correlates with poor clinicopathological characteristics. Therefore, we hypothesized that LIF could be a promising target for the treatment of cancer. In this work, we developed the antagonist antibody 1G11 against LIF and investigated its anti-tumor mechanism and its therapeutic efficacy in mouse models. RESULTS A series of single-chain variable fragments (scFvs) targeting LIF were screened from a naive human scFv phage library. These scFvs were reconstructed in complete IgG form and produced by the mammalian transient expression system. Among the antibodies, 1G11 exhibited the excellent binding activity to human, cynomolgus monkey and mouse LIF. Functional analysis demonstrated 1G11 could block LIF binding to LIFR and inhibit the intracellular STAT3 phosphorylation signal. Interestingly, 1G11 did not block LIF binding to gp130, another LIF receptor that is involved in forming the receptor complex together with LIFR. In vivo, intraperitoneal administration of 1G11 inhibited tumor growth in CT26 and MC38 models of colorectal cancer. IHC analysis demonstrated that p-STAT3 and Ki67 were decreased in tumor tissue, while c-caspase 3 was increased. Furthermore, 1G11 treatment improves CD3+, CD4 + and CD8 + T cell infiltration in tumor tissue. CONCLUSIONS We developed antagonist antibodies targeting LIF/LIFR signaling pathway from a naive human scFv phage library. Antagonist anti-LIF antibody exerts antitumor effects by specifically reducing p-STAT3. Further studies revealed that anti-LIF antibody 1G11 increased immune cell infiltration in tumor tissues.
Collapse
Grants
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2021-I2M-5-075 the CAMS Innovation Fund for Medical Sciences (CIFMS)
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
- 2018ZX09201018, 2017ZX09302010 the National Major Scientifc and Technological Special Project for Signifcant New Drugs Development
Collapse
Affiliation(s)
- Shengyan Zhao
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Deng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Lu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - David Li
- 503 Central Avenue, Sunnyvale, 94086, California, United States of America
| | - Xiaohua Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xian Wei
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Chen
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanxin Ma
- Sound Biopharmaceuticals Co., Ltd, Tianfu International Bio-Town, Huigu Dong 2nd Road 8, 610200, Chengdu, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lantu Gou
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jinliang Yang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
7
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
8
|
Zhou Q, Jin X, Zhao Y, Wang Y, Tao M, Cao Y, Yin X. Melanoma-associated fibroblasts in tumor-promotion flammation and antitumor immunity: novel mechanisms and potential immunotherapeutic strategies. Hum Mol Genet 2024; 33:1186-1193. [PMID: 38538564 PMCID: PMC11190611 DOI: 10.1093/hmg/ddae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 06/22/2024] Open
Abstract
Melanoma, renowned for its aggressive behavior and resistance to conventional treatments, stands as a formidable challenge in the oncology landscape. The dynamic and complex interplay between cancer cells and the tumor microenvironment has gained significant attention, revealing Melanoma-Associated Fibroblasts (MAFs) as central players in disease progression. The heterogeneity of MAFs endows them with a dual role in melanoma. This exhaustive review seeks to not only shed light on the multifaceted roles of MAFs in orchestrating tumor-promoting inflammation but also to explore their involvement in antitumor immunity. By unraveling novel mechanisms underlying MAF functions, this review aims to provide a comprehensive understanding of their impact on melanoma development. Additionally, it delves into the potential of leveraging MAFs for innovative immunotherapeutic strategies, offering new avenues for enhancing treatment outcomes in the challenging realm of melanoma therapeutics.
Collapse
Affiliation(s)
- Qiujun Zhou
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Xiaoliang Jin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Ying Zhao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Yueping Wang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| | - Xiaohu Yin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
9
|
Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P, Drel V, Santhamma B, Konda S, Li X, Sanchez ALR, Yan H, Sareddy GR, Xu Z, Singh BB, Valente PT, Chen Y, Lai Z, Rao M, Kost ER, Curiel T, Tekmal RR, Nair HB, Vadlamudi RK. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol 2024; 8:118. [PMID: 38789520 PMCID: PMC11126619 DOI: 10.1038/s41698-024-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gopalam Rahul
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Viktor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Hui Yan
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Department of Population Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Tyler Curiel
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, NH, 03755, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Mahmoudi-Filabadi F, Doosti A. pDNA-tachyplesin treatment stimulates the immune system and increases the probability of apoptosis in MC4-L2 tumor cells. Amino Acids 2024; 56:34. [PMID: 38691208 PMCID: PMC11062983 DOI: 10.1007/s00726-024-03393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Mahmoudi-Filabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
11
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Yang X, Wang J, Chang CY, Zhou F, Liu J, Xu H, Ibrahim M, Gomez M, Guo GL, Liu H, Zong WX, Wondisford FE, Su X, White E, Feng Z, Hu W. Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat Commun 2024; 15:627. [PMID: 38245529 PMCID: PMC10799847 DOI: 10.1038/s41467-024-44924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.
Collapse
Affiliation(s)
- Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Maria Gomez
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Biostatistics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Metabolomics Core Facility, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
13
|
Chen Y, Gong Y, Qin H, Wei S, Wei Y, Yu Y, Lin X, Shuai P, Wang T, Guo C, Wang Q, Li G, Meng L, Yi L. MDM2-p53 mediate a miR-181c-3p/LIF axis to regulate low dose-rate radiation-induced DNA damage in human B lymphocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115848. [PMID: 38134636 DOI: 10.1016/j.ecoenv.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS In this study, we irradiated C57BL/6J mice with 12.5μGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5μGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.
Collapse
Affiliation(s)
- Yonglin Chen
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyun Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yueqiu Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peimeng Shuai
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Tiantian Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Caimao Guo
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qingyu Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guoqing Li
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lijuan Meng
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
He Z, Chen M, Luo Z. Identification of immune-related genes and integrated analysis of immune-cell infiltration in melanoma. Aging (Albany NY) 2024; 16:911-927. [PMID: 38217549 PMCID: PMC10817386 DOI: 10.18632/aging.205427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE This study was conducted to screen out immune-related genes in connection with the prognosis of melanoma, construct a prognosis model and explore the relevant mechanisms. METHODS AND MATERIALS 1973 genes associated with immune system were derived from the Immport database, and RNA-seq data of melanoma and information of patients were searched from the Xena database. Cox univariate analysis, Lasso analysis and Cox multivariate analysis were used to screen out six genes to construct the model. Then the risk scores were estimated for patients based on our constructed prognosis model. Estimate was used to affirm that the model was about immune infiltration, and CIBERSORT was used to screen out immune cells associated with prognosis. TIDE was applied to predict the efficacy of immunotherapy. Finally, GSE65904 and GSE19234 were used to confirm the effectiveness of the model. RESULTS ADCYAP1R1, GPI, NTS might cause poor prognosis while IFITM1, KIR2DL4, LIF were more likely conductive to prognosis of melanoma patients and a model of prognosis was constructed on the basis of these six genes. The effectiveness of the model has been proven by the ROC curve, and the miRNAs targeting the screened genes were found out, suggesting that the immune system might impact on the prognosis of melanoma by T cell CD8+, T cell CD4+ memory and NK cells. CONCLUSIONS In this study, the screened six genes were associated with the prognosis of melanoma, which was conductive to clinical prognostic prediction and individualized treatment strategy.
Collapse
Affiliation(s)
- Zhenghao He
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Manli Chen
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Luo
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
15
|
Spencer N, Rodriguez Sanchez AL, Gopalam R, Subbarayalu P, Medina DM, Yang X, Ramirez P, Randolph L, Aller EJ, Santhamma B, Rao MK, Tekmal RR, Nair HB, Kost ER, Vadlamudi RK, Viswanadhapalli S. The LIFR Inhibitor EC359 Effectively Targets Type II Endometrial Cancer by Blocking LIF/LIFR Oncogenic Signaling. Int J Mol Sci 2023; 24:17426. [PMID: 38139260 PMCID: PMC10744027 DOI: 10.3390/ijms242417426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.
Collapse
Affiliation(s)
- Nicole Spencer
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Alondra Lee Rodriguez Sanchez
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Rahul Gopalam
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Panneerdoss Subbarayalu
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Daisy M. Medina
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Xue Yang
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Paulina Ramirez
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Lois Randolph
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Emily Jean Aller
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | | | - Manjeet K. Rao
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Rajeshwar Rao Tekmal
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | | | - Edward R. Kost
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Ratna K. Vadlamudi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM, Caffarel MM. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer 2023; 11:e007530. [PMID: 37945321 PMCID: PMC10649711 DOI: 10.1136/jitc-2023-007530] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic inflammation has been recognized as a canonical cancer hallmark. It is orchestrated by cytokines, which are master regulators of the tumor microenvironment (TME) as they represent the main communication bridge between cancer cells, the tumor stroma, and the immune system. Interleukin (IL)-6 represents a keystone cytokine in the link between inflammation and cancer. Many cytokines from the IL-6 family, which includes IL-6, oncostatin M, leukemia inhibitory factor, IL-11, IL-27, IL-31, ciliary neurotrophic factor, cardiotrophin 1, and cardiotrophin-like cytokine factor 1, have been shown to elicit tumor-promoting roles by modulating the TME, making them attractive therapeutic targets for cancer treatment.The development of immune checkpoint blockade (ICB) immunotherapies has radically changed the outcome of some cancers including melanoma, lung, and renal, although not without hurdles. However, ICB shows limited efficacy in other solid tumors. Recent reports support that chronic inflammation and IL-6 cytokine signaling are involved in resistance to immunotherapy. This review summarizes the available preclinical and clinical data regarding the implication of IL-6-related cytokines in regulating the immune TME and the response to ICB. Moreover, the potential clinical benefit of combining ICB with therapies targeting IL-6 cytokine members for cancer treatment is discussed.
Collapse
Affiliation(s)
- Maria Florencia Soler
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Andrea Abaurrea
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Peio Azcoaga
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Angela M Araujo
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria M Caffarel
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Bersano J, Lashuk K, Edinger A, Schueler J. A Subset of Colon Cancer Cell Lines Displays a Cytokine Profile Linked to Angiogenesis, EMT and Invasion Which Is Modulated by the Culture Conditions In Vitro. Cells 2023; 12:2539. [PMID: 37947617 PMCID: PMC10648033 DOI: 10.3390/cells12212539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers worldwide. The dysregulation of secretory pathways is a crucial driver of CRC progression, since it modulates cell proliferation, angiogenesis and survival. This study explores the changes in the CRC cytokine profile depending on the culture conditions and the presence of fibroblasts and macrophages as cellular components of the tumor microenvironment in 2D and in 3D formed spheroids. Upon analysis of 45 different cytokines, chemokines and growth factors, 20 CRC cell lines were categorized into high and low secretors. In the high secretor group cytokines related to angiogenesis, EMT and invasion were significantly upregulated. LIF and HFG were identified as the best discriminator between both groups. Independent of this grouping, the addition of normal as well as cancer-associated fibroblasts had a similar impact on the cytokine profile by increasing the total amount of secreted cytokines in most of the investigated cell lines. In contrast, the differentiation and polarization of macrophages was modulated differently by normal vs. cancer-associated fibroblasts. In summary, we identified two groups of CRC cell lines that differ in their cytokine profile. The dependance of this profile was analyzed in detail-not only from the tumor cell line but as well from the culture condition in vitro. Key cytokines that discriminate the two groups were identified and their importance as promising biomarker candidates for CRC discussed.
Collapse
Affiliation(s)
| | | | | | - Julia Schueler
- Charles River Discovery Research Services Germany GmbH, Am Flughafen 12–14, 79108 Freiburg, Germany; (J.B.); (K.L.); (A.E.)
| |
Collapse
|
18
|
Kennel KB, Bozlar M, De Valk AF, Greten FR. Cancer-Associated Fibroblasts in Inflammation and Antitumor Immunity. Clin Cancer Res 2023; 29:1009-1016. [PMID: 36399325 PMCID: PMC10011884 DOI: 10.1158/1078-0432.ccr-22-1031] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Tumor-associated inflammation (TAI) is a feature of essentially all cancers and can confer both tumor-promoting and -suppressive functions. Cancer-associated fibroblasts (CAF) comprise one very heterogeneous cellular component of the tumor microenvironment characterized by a high degree of plasticity. Recent single-cell sequencing analyses revealed distinct CAF populations in various human cancers and helped to define key CAF subtypes, such as myofibroblastic, inflammatory, and antigen-presenting CAFs, with the first two being present in virtually all tumors. Importantly, these three CAF populations are involved in and modulate the positive and negative consequences of TAI. The remarkable plasticity of CAFs allows them to shift phenotypically and functionally in response to environmental changes. In this review, we describe how CAFs nurture tumor-promoting inflammation and suppress adaptive immunity. We also summarize the recently emerging evidence pertaining to tumor-suppressive CAF functions in the context of TAI. Finally, we summarize therapeutic concepts that aim at modulating CAF functions or depleting immunosuppressive CAFs to synergize with immunotherapy.
Collapse
Affiliation(s)
- Kilian B Kennel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Müge Bozlar
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Adalbert F De Valk
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Di Giorgio C, Bellini R, Lupia A, Massa C, Bordoni M, Marchianò S, Rosselli R, Sepe V, Rapacciuolo P, Moraca F, Morretta E, Ricci P, Urbani G, Monti MC, Biagioli M, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Discovery of BAR502, as potent steroidal antagonist of leukemia inhibitory factor receptor for the treatment of pancreatic adenocarcinoma. Front Oncol 2023; 13:1140730. [PMID: 36998446 PMCID: PMC10043345 DOI: 10.3389/fonc.2023.1140730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionThe leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1).MethodsHerein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. ResultsThe transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile acids exert a weak antagonistic effect on LIF/LIFR signaling. In contrast, BAR502 a non-bile acid steroidal dual FXR and GPBAR1 ligand, potently inhibits binding of LIF to LIFR with an IC50 of 3.8 µM.DiscussionBAR502 reverses the pattern LIF-induced in a FXR and GPBAR1 independent manner, suggesting a potential role for BAR502 in the treatment of LIFR overexpressing-PDAC.
Collapse
Affiliation(s)
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Lupia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science srl, University “Magna Græcia”, Catanzaro, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science srl, University “Magna Græcia”, Catanzaro, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- Department of Gastroenterology, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Stefano Fiorucci,
| |
Collapse
|
20
|
Weidle UH, Birzele F. Triple-negative Breast Cancer: Identification of circRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:117-131. [PMID: 36870692 PMCID: PMC9989670 DOI: 10.21873/cgp.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 03/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with insufficient options for therapy. In order to identify new targets and treatment modalities we searched the literature for circular RNAs (circRNAs) which mediate efficacy in TNBC-related in vivo preclinical models. In addition to 5 down-regulated circRNAs which modulate tumor-suppressive pathways, we identified 15 up-regulated circRNAs. Down- and up-regulated refers to expression in corresponding non-transformed cells and tissues. The up-regulated circRNAs comprise five transmembrane receptors and secreted proteins as targets, five transcription factors and transcription-associated targets, four cell-cycle related circRNAs and one involved in paclitaxel resistance. In this review article we discuss drug-discovery related aspects and modalities of therapeutic intervention. Down-regulated circRNAs can be reconstituted by re-expression of corresponding circRNAs in tumor cells or up-regulation of corresponding targets. Up-regulated circRNAs can be inhibited by small-interfering RNA (siRNA) or short hairpin RNA (shRNA)-based approaches or inhibition of the corresponding targets with small molecules or antibody-related moieties.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Development, Roche Innovation Center, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
21
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Feng Z, Hu W. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol Ther 2023; 31:331-343. [PMID: 36575793 PMCID: PMC9931620 DOI: 10.1016/j.ymthe.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| |
Collapse
|
22
|
Ma K, Zhang P, Xia Y, Dong L, Li Y, Liu L, Liu Y, Wang Y. A signature based on five immune-related genes to predict the survival and immune characteristics of neuroblastoma. BMC Med Genomics 2022; 15:242. [PMID: 36419120 PMCID: PMC9685875 DOI: 10.1186/s12920-022-01400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND MYCN amplification (MNA) has been proved to be related to poor prognosis in neuroblastoma (NBL), but the MYCN-related immune signatures and genes remain unclear. METHODS Enrichment analysis was used to identify the significant enrichment pathways of differentially expressed immune-related genes (DEIRGs). Weight gene coexpression network analysis (WGCNA) was applied to reveal the correlation between these DEIRGs and MYCN status. Univariate and multivariate Cox analyses were used to construct risk model. The relevant fractions of immune cells were evaluated by CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). RESULTS Five genes, including CHGA, PTGER1, SHC3, PLXNC1, and TRIM55 were enrolled into the risk model. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve showed that our model performed well in predicting the outcomes of NBL (3-years AUC = 0.720, 5-year AUC = 0.775, 10-years AUC = 0.782), which has been validated in the GSE49711 dataset and the E-MTAB-8248 dataset. By comparing with the tumor immune dysfunction and exclusion (TIDE) and tumor inflammation signature (TIS), we further proved that our model is reliable. Univariate and multivariate Cox regression analyses indicated that the risk score, age, and MYCN can serve as independent prognostic factors in the E-MATB-8248. Functional enrichment analysis showed the DEIRGs were enriched in leukocyte adhesion-related signaling pathways. Gene set enrichment analysis (GSEA) revealed the significantly enriched pathways of the five MYCN-related DEIRGs. The risk score was negatively correlated with the immune checkpoint CD274 (PD-L1) but no significant difference with the TMB. We also confirmed the prognostic value of our model in predicting immunotherapeutics. CONCLUSION We constructed and verified a signature based on DEIRG that related to MNA and predicted the survival of NBL based on relevant immune signatures. These findings could provide help for predicting prognosis and developing immunotherapy in NBL.
Collapse
Affiliation(s)
- KeXin Ma
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - PeiPei Zhang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yu Xia
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - Lin Dong
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - Ying Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - Liu Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - YaJuan Liu
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| | - YouJun Wang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Zhengzhou, China
| |
Collapse
|
23
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Zhu S, Yu XZ, Liu C, O’Sullivan TE, Xie P, Feng Z, Hu W. Leukemia inhibitory factor protects against graft-versus-host disease while preserving graft-versus-leukemia activity. Blood 2022; 140:2076-2090. [PMID: 35981499 PMCID: PMC9837439 DOI: 10.1182/blood.2022015677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/29/2022] [Indexed: 01/21/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation, a widely used therapy for hematologic malignancies and blood disorders. Here, we report an unexpected role of cytokine leukemia inhibitory factor (LIF) in protecting against GVHD development. Administrating recombinant LIF protein (rLIF) protects mice from GVHD-induced tissue damage and lethality without compromising the graft-versus-leukemia activity, which is crucial to prevent tumor relapse. We found that rLIF decreases the infiltration and activation of donor immune cells and protects intestinal stem cells to ameliorate GVHD. Mechanistically, rLIF downregulates IL-12-p40 expression in recipient dendritic cells after irradiation through activating STAT1 signaling, which results in decreased major histocompatibility complex II levels on intestinal epithelial cells and decreased donor T-cell activation and infiltration. This study reveals a previously unidentified protective role of LIF for GVHD-induced tissue pathology and provides a potential effective therapeutic strategy to limit tissue pathology without compromising antileukemic efficacy.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, UCLA, Los Angeles, CA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| |
Collapse
|
24
|
Leukemia Inhibitory Factor Facilitates Self-Renewal and Differentiation and Attenuates Oxidative Stress of BMSCs by Activating PI3K/AKT Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5772509. [PMID: 36105481 PMCID: PMC9467750 DOI: 10.1155/2022/5772509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Objective. Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) remains a hopeful therapeutic approach for bone defect reconstruction. Herein, we investigated the effects and mechanisms of leukemia inhibitory factor (LIF) in the function and viability of hypoxic BMSCs as well as bone defect repair. Methods. The effects of LIF on apoptosis (flow cytometry, TUNEL staining), mitochondrial activity (JC-1 staining), proliferation (colony formation, EdU staining), and differentiation (CD105, CD90, and CD29 via flow sorting) were examined in hypoxic BMSCs. LIF, LIFR, gp130, Keap1, Nrf2, antioxidant enzymes (SOD1, catalase, GPx-3), bone-specific matrix proteins (ALP, BSP, OCN), PI3K, and Akt were detected via immunoblotting or immunofluorescent staining. BMSCs combined with biphasic calcium phosphate scaffolds were implanted into calvarial bone defect mice, and the therapeutic effect of LIF on bone defect was investigated. Results. Hypoxic BMSCs had increased apoptosis and oxidative stress and reduced mitochondrial activity. Additionally, LIF, LIFR, and gp130 were upregulated and PI3K/Akt activity was depressed in hypoxic BMSCs. Upregulated LIF alleviated apoptosis and oxidative stress and heightened mitochondrial activity and PI3K/Akt signaling in hypoxic BMSCs. Additionally, LIF overexpression promoted self-renewal and osteogenic differentiation of BMSCs with hypoxic condition. Mechanically, LIF facilitated self-renewal and differentiation as well as attenuated oxidative stress of BMSCs through enhancing PI3K/AKT signaling activity. Implantation of LIF-overexpressed BMSC-loaded BCP scaffolds promoted osteogenesis as well as alleviated oxidative stress and apoptosis through PI3K/Akt signaling. Conclusion. Our findings demonstrate that LIF facilitates self-renewal and differentiation and attenuates oxidative stress of BMSCs by PI3K/AKT signaling.
Collapse
|
25
|
Comparative Proteomic Analysis of Liver Tissues and Serum in db/db Mice. Int J Mol Sci 2022; 23:ijms23179687. [PMID: 36077090 PMCID: PMC9455973 DOI: 10.3390/ijms23179687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Non-alcoholic fatty liver disease (NAFLD) affects one-quarter of individuals worldwide. Liver biopsy, as the current reliable method for NAFLD evaluation, causes low patient acceptance because of the nature of invasive sampling. Therefore, sensitive non-invasive serum biomarkers are urgently needed. Results: The serum gene ontology (GO) classification and Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed the DEPs enriched in pathways including JAK-STAT and FoxO. GO analysis indicated that serum DEPs were mainly involved in the cellular process, metabolic process, response to stimulus, and biological regulation. Hepatic proteomic KEGG analysis revealed the DEPs were mainly enriched in the PPAR signaling pathway, retinol metabolism, glycine, serine, and threonine metabolism, fatty acid elongation, biosynthesis of unsaturated fatty acids, glutathione metabolism, and steroid hormone biosynthesis. GO analysis revealed that DEPs predominantly participated in cellular, biological regulation, multicellular organismal, localization, signaling, multi-organism, and immune system processes. Protein-protein interaction (PPI) implied diverse clusters of the DEPs. Besides, the paralleled changes of the common upregulated and downregulated DEPs existed in both the liver and serum were validated in the mRNA expression of NRP1, MUP3, SERPINA1E, ALPL, and ALDOB as observed in our proteomic screening. Methods: We conducted hepatic and serum proteomic analysis based on the leptin-receptor-deficient mouse (db/db), a well-established diabetic mouse model with overt obesity and NAFLD. The results show differentially expressed proteins (DEPs) in hepatic and serum proteomic analysis. A parallel reaction monitor (PRM) confirmed the authenticity of the selected DEPs. Conclusion: These results are supposed to offer sensitive non-invasive serum biomarkers for diabetes and NAFLD.
Collapse
|
26
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
27
|
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G, Yan D, Kang H, Sun Y, Shung KK, Shen K, Zhou Q. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1889-1897. [PMID: 35468061 PMCID: PMC9753557 DOI: 10.1109/tuffc.2022.3170074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasound single-beam acoustic tweezer system has attracted increasing attention in the field of biomechanics. Cell biomechanics play a pivotal role in leukemia cell functions. To better understand and compare the cell mechanics of the leukemia cells, herein, we fabricated an acoustic tweezer system in-house connected with a 50-MHz high-frequency cylinder ultrasound transducer. Selected leukemia cells (Jurkat, K562, and MV-411 cells) were cultured, trapped, and manipulated by high-frequency ultrasound single beam, which was transmitted from the ultrasound transducer without contacting any cells. The relative deformability of each leukemia cell was measured, characterized, and compared, and the leukemia cell (Jurkat cell) gaining the highest deformability was highlighted. Our results demonstrate that the high-frequency ultrasound single beam can be utilized to manipulate and characterize leukemia cells, which can be applied to study potential mechanisms in the immune system and cell biomechanics in other cell types.
Collapse
|
28
|
Yue X, Wang J, Chang CY, Liu J, Yang X, Zhou F, Qiu X, Bhatt V, Guo JY, Su X, Zhang L, Feng Z, Hu W. Leukemia inhibitory factor drives glucose metabolic reprogramming to promote breast tumorigenesis. Cell Death Dis 2022; 13:370. [PMID: 35440095 PMCID: PMC9018736 DOI: 10.1038/s41419-022-04820-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
LIF, a multifunctional cytokine, is frequently overexpressed in many types of solid tumors, including breast cancer, and plays an important role in promoting tumorigenesis. Currently, how LIF promotes tumorigenesis is not well-understood. Metabolic reprogramming is a hallmark of cancer cells and a key contributor to cancer progression. However, the role of LIF in cancer metabolic reprogramming is unclear. In this study, we found that LIF increases glucose uptake and drives glycolysis, contributing to breast tumorigenesis. Blocking glucose uptake largely abolishes the promoting effect of LIF on breast tumorigenesis. Mechanistically, LIF overexpression enhances glucose uptake via activating the AKT/GLUT1 axis to promote glycolysis. Blocking the AKT signaling by shRNA or its inhibitors greatly inhibits glycolysis driven by LIF and largely abolishes the promoting effect of LIF on breast tumorigenesis. These results demonstrate an important role of LIF overexpression in glucose metabolism reprogramming in breast cancers, which contributes to breast tumorigenesis. This study also reveals an important mechanism underlying metabolic reprogramming of breast cancers, and identifies LIF and its downstream signaling as potential therapeutic targets for breast cancers, especially those with LIF overexpression.
Collapse
Affiliation(s)
- Xuetian Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Xia Qiu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
- Department of Pharmacology, Rutgers University, Piscataway, NJ, USA.
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
- Department of Pharmacology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
29
|
Yuan Y, Li K, Teng F, Wang W, Zhou B, Zhou X, Lin J, Ye X, Deng Y, Liu W, Luo S, Zhang P, Liu D, Zheng M, Li J, Lu Y, Zhang H. Leukemia inhibitory factor protects against liver steatosis in non-alcoholic fatty liver disease patients and obese mice. J Biol Chem 2022; 298:101946. [PMID: 35447114 PMCID: PMC9123280 DOI: 10.1016/j.jbc.2022.101946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. However, the molecular mechanisms that promote dysregulation of hepatic triglyceride metabolism and lead to NAFLD are poorly understood, and effective treatments are limited. Leukemia inhibitory factor (LIF) is a member of the interleukin-6 cytokine family and has been shown to regulate a variety of physiological processes, although its role in hepatic triglyceride metabolism remains unknown. In the present study, we measured circulating LIF levels by ELISA in 214 patients with biopsy-diagnosed NAFLD as well as 314 normal control patients. We further investigated the potential role and mechanism of LIF on hepatic lipid metabolism in obese mice. We found that circulating LIF levels correlated with the severity of liver steatosis. Patients with ballooning, fibrosis, lobular inflammation, and abnormally elevated liver injury markers alanine transaminase and aspartate aminotransferase also had higher levels of serum LIF than control patients. Furthermore, animal studies showed that white adipose tissue–derived LIF could ameliorate liver steatosis through activation of hepatic LIF receptor signaling pathways. Together, our results suggested that targeting LIF-LIF receptor signaling might be a promising strategy for treating NAFLD.
Collapse
Affiliation(s)
- Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Kangli Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Weiwei Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuan Zhou
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Xueru Ye
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Wenhui Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease, Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jin Li
- Division of Endocrinology, Department of Medicine, Shanxi Medical University affiliated Second Hospital, Taiyuan, China
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China.
| |
Collapse
|
30
|
Na E, Allen E, Baird LA, Odom CV, Korkmaz FT, Shenoy AT, Matschulat AM, Jones MR, Kotton DN, Mizgerd JP, Varelas X, Traber KE, Quinton LJ. Epithelial LIF signaling limits apoptosis and lung injury during bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2022; 322:L550-L563. [PMID: 35137631 PMCID: PMC8957336 DOI: 10.1152/ajplung.00325.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown. Here, we demonstrate that antibody-induced LIF blockade remodels the lung epithelial transcriptome in association with increased apoptosis. Based on these data, we performed pneumonia studies using a novel mouse model in which LIFR (the unique receptor for LIF) is absent in lung epithelium. Although LIFR is expressed on the surface of epithelial cells, its absence only minimally contributed to tissue protection during pneumonia. Single-cell RNA-sequencing (scRNAseq) was conducted to identify adult murine lung cell types most prominently expressing Lifr, revealing endothelial cells, mesenchymal cells, and ATIIs as major sources of Lifr. Sequencing data indicated that ATII cells were significantly impacted by pneumonia, with additional differences observed in response to LIF neutralization, including but not limited to gene programs related to cell death, injury, and inflammation. Overall, our data suggest that LIF signaling on epithelial cells alters responses in this cell type during pneumonia. However, our results also suggest separate and perhaps more prominent roles of LIFR in other cell types, such as endothelial cells or mesenchymal cells, which provide grounds for future investigation.
Collapse
Affiliation(s)
- Elim Na
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Eri Allen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Lillia A Baird
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Christine V Odom
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Anukul T Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Adeline M Matschulat
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Darrell N Kotton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Xaralabos Varelas
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Yin S, Jin W, Qiu Y, Fu L, Wang T, Yu H. Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment. J Hematol Oncol 2022; 15:32. [PMID: 35313929 PMCID: PMC8935708 DOI: 10.1186/s13045-022-01248-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is well-known to be a highly prevalent malignant tumor, but the treatment of this pathological state has been still challenging. Solamargine (SM), a traditional Chinese herb-derived compound, has been widely reported to possess multiple antitumor properties. However, whether SM plays a vital role in HCC therapy and how it exerts an antitumor effect remains unclear. Thus, in this study, we demonstrated that SM inhibited the proliferation of HCC and effectively induced HCC cell apoptosis and autophagy in vitro and in vivo. Mechanistically, the oncogenic factor LIF was aberrantly elevated in HCC tissues and down-regulated by SM in HCC cells, as well as subsequently the overexpression of LIF could restore the anti-HCC effects of SM via miR-192-5p/CYR61/Akt signaling pathways. Additionally, SM could repolarize tumor associated macrophages by LIF/p-Stat3 to inhibit the growth and epithelial-mesenchymal transition of HCC, and simultaneously affected other immune cell populations in the immune (tumor) microenvironment by regulating macrophages, such as MDSCs, DCs and T cell populations. Together, these findings exploit the potential use of SM against HCC and shed light on exploring SM as a potent candidate drug for the future HCC therapeutics.
Collapse
Affiliation(s)
- Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Tao Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
32
|
Xie K, Xiong H, Xiao W, Xiong Z, Hu W, Ye J, Xu N, Shi J, Yuan C, Chen Z, Miao D, Zhang X, Yang H. Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia. Cancer Cell Int 2021; 21:627. [PMID: 34838029 PMCID: PMC8626920 DOI: 10.1186/s12935-021-02332-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer cachexia is a wasting disorder characterized by significant weight loss, and is attributed to skeletal muscle weakness. In the process of cancer development, microRNAs act as oncogenes or tumor suppressors. Moreover, they are implicated in muscle development and wasting. This study sought to explore the mechanisms and correlation between miR-29c and muscle wasting in lung cancer cachexia. METHODS Data for expression analysis were retrieved from the Cancer Genome Atlas (TCGA) database. qRT-PCR analyses were performed to explore the expression levels of miR-29c and Leukemia Inhibitory Factor (LIF). Lewis lung carcinoma (LLC) cell line was used to establish a cachexia model to explore the functions of miR-29c and LIF in lung cancer cachexia. Furthermore, in vitro (in C2C12 myotubes) and in vivo (in LLC tumor-bearing mice) experiments were performed to explore the mechanisms of miR-29c and LIF in lung cachexia. RESULTS Analysis of the lung cancer cachexia model showed that miR-29c was down-regulated, and its expression was negatively correlated with muscle catabolic activity. Overexpression of miR-29c mitigated the cachectic phenotype. Mechanistic studies showed that LIF was a direct target gene of miR-29c, and LIF was upregulated in vitro and in vivo. Analysis showed that LIF promoted muscle wasting through the JAK/STAT and MAP-kinase pathways. CONCLUSIONS The findings indicated that miR-29c was negatively correlated with the cachectic phenotype, and the miR-29c-LIF axis is a potential therapeutic target for cancer cachexia.
Collapse
Affiliation(s)
- Kairu Xie
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| | - Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaxin Ye
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changfei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixian Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
33
|
Li W, Soufiany I, Lyu X, Lu C, Wei Y, Shi Z, You Y. SP1-upregulated LBX2-AS1 promotes the progression of glioma by targeting the miR-491-5p/LIF axis. J Cancer 2021; 12:6989-7002. [PMID: 34729101 PMCID: PMC8558668 DOI: 10.7150/jca.63289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Mounting evidences have shown the importance of lncRNAs in carcinogenesis and cancer progression. LBX2-AS1 is identified as an oncogenic lncRNA that is abnormally expressed in gastric cancer and lung cancer samples. This study aims to explore the potential role of LBX2-AS1 in regulating proliferation and EMT in glioma, and the underlying mechanism. Methods: Relative levels of LBX2-AS1 in glioma samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on proliferation and EMT were examined in the xenograft glioma model and glioma cells. The interaction between SP1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene LIF was identified. Results: LBX2-AS1 was upregulated in glioma samples and cell lines, and its transcription was promoted by binding to the transcription factor SP1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 sponge miR-491-5p to further upregulate LIF. The subsequent activated LIF/STAT3 signaling was responsible for promoting proliferation and EMT in glioma. Conclusion: LBX2-AS1 is upregulated by SP1 in glioma, which promotes the progression of glioma by targeting the miR-491-5p/LIF axis. In view of this, LBX2-AS1 is suggested as a novel diagnostic biomarker and therapeutic target of glioma.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ismatullah Soufiany
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiao Lyu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yutian Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
34
|
Loriot Y, Marabelle A, Guégan JP, Danlos FX, Besse B, Chaput N, Massard C, Planchard D, Robert C, Even C, Khettab M, Tselikas L, Friboulet L, André F, Nafia I, Le Loarer F, Soria JC, Bessede A, Italiano A. Plasma proteomics identifies leukemia inhibitory factor (LIF) as a novel predictive biomarker of immune-checkpoint blockade resistance. Ann Oncol 2021; 32:1381-1390. [PMID: 34416362 DOI: 10.1016/j.annonc.2021.08.1748] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immune checkpoint blockers (ICBs) are now widely used in oncology. Most patients, however, do not derive benefit from these agents. Therefore, there is a crucial need to identify novel and reliable biomarkers of resistance to such treatments in order to prescribe potentially toxic and costly treatments only to patients with expected therapeutic benefits. In the wake of genomics, the study of proteins is now emerging as the new frontier for understanding real-time human biology. PATIENTS AND METHODS We analyzed the proteome of plasma samples, collected before treatment onset, from two independent prospective cohorts of cancer patients treated with ICB (discovery cohort n = 95, validation cohort n = 292). We then investigated the correlation between protein plasma levels, clinical benefit rate, progression-free survival and overall survival by Cox proportional hazards models. RESULTS By using an unbiased proteomics approach, we show that, in both discovery and validation cohorts, elevated baseline serum level of leukemia inhibitory factor (LIF) is associated with a poor clinical outcome in cancer patients treated with ICB, independently of other prognostic factors. We also demonstrated that the circulating level of LIF is inversely correlated with the presence of tertiary lymphoid structures in the tumor microenvironment. CONCLUSION This novel clinical dataset brings strong evidence for the role of LIF as a potential suppressor of antitumor immunity and suggests that targeting LIF or its pathway may represent a promising approach to improve efficacy of cancer immunotherapy in combination with ICB.
Collapse
Affiliation(s)
- Y Loriot
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - A Marabelle
- Département d'Innovation Précoce et d'Essais Thérapeutiques (DITEP), INSERM U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | | | - F X Danlos
- Département d'Innovation Précoce et d'Essais Thérapeutiques (DITEP), INSERM U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - B Besse
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre, France
| | - N Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23, Villejuif, France; Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France; Laboratory of Genetic Instability and Oncogenesis, UMR CNRS 8200, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - C Massard
- Département d'Innovation Précoce et d'Essais Thérapeutiques (DITEP), INSERM U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - D Planchard
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - C Robert
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - C Even
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - M Khettab
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - L Tselikas
- Interventional Radiology, Gustave Roussy, Villejuif, France
| | - L Friboulet
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, Villejuif, France
| | - F André
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre, France
| | | | - F Le Loarer
- Department of Pathology, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - J C Soria
- Cancer Medicine Department, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - A Italiano
- Département d'Innovation Précoce et d'Essais Thérapeutiques (DITEP), INSERM U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Medicine, Institut Bergonié, Bordeaux, France.
| |
Collapse
|
35
|
Tang W, Ramasamy K, Pillai SMA, Santhamma B, Konda S, Pitta Venkata P, Blankenship L, Liu J, Liu Z, Altwegg KA, Ebrahimi B, Pratap UP, Li X, Valente PT, Kost E, Sareddy GR, Vadlamudi RK, Nair HB, Tekmal RR, Viswanadhapalli S. LIF/LIFR oncogenic signaling is a novel therapeutic target in endometrial cancer. Cell Death Discov 2021; 7:216. [PMID: 34400617 PMCID: PMC8367961 DOI: 10.1038/s41420-021-00603-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer (EC) is the fourth most common cancer in women. Advanced-stage EC has limited treatment options with a poor prognosis. There is an unmet need for the identification of actionable drivers for the development of targeted therapies in EC. Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a major role in cancer progression, metastasis, stemness, and therapy resistance. However, little is known about the functional significance of the LIF/LIFR axis in EC progression. In this study using endometrial tumor tissue arrays, we identified that expression of LIF, LIFR is upregulated in EC. Knockout of LIFR using CRISPR/Cas9 in two different EC cells resulted in a significant reduction of their cell viability and cell survival. In vivo studies demonstrated that LIFR-KO significantly reduced EC xenograft tumor growth. Treatment of established and primary patient-derived EC cells with a novel LIFR inhibitor, EC359 resulted in the reduction of cell viability with an IC50 in the range of 20-100 nM and induction of apoptosis. Further, treatment with EC359 reduced the spheroid formation of EC cancer stem cells and reduced the levels of cancer stem cell markers SOX2, OCT4, NANOG, and Axin2. Mechanistic studies demonstrated that EC359 treatment attenuated the activation of LIF-LIFR driven pathways, including STAT3 and AKT/mTOR signaling in EC cells. Importantly, EC359 treatment resulted in a significant reduction of the growth of EC patient-derived explants ex vivo, EC cell line-derived xenografts, and patient-derived xenografts in vivo. Collectively, our work revealed the oncogenic potential of the LIF/LIFR axis in EC and support the utility of LIFR inhibitor, EC359, as a novel targeted therapy for EC via the inhibition of LIF/LIFR oncogenic signaling.
Collapse
Affiliation(s)
- Weiwei Tang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028, Nanjing, China
| | - Kumaraguruparan Ramasamy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Sureshkumar M A Pillai
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Logan Blankenship
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Hunan, China
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Hunan, China
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
36
|
Zuo Q, Cheng Z, Zhang G, Xia Y, Xu G, Cao W, Yang X, Fu Y, He R, Fang P, Guo Y, Nie L, Huang Y, Liu L, Zhan J, Liu S, Zhu Y. Role of IL-6-IL-27 Complex in Host Antiviral Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:577-589. [PMID: 34145061 DOI: 10.4049/jimmunol.2100179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
The IL family of cytokines participates in immune response and regulation. We previously found that soluble IL-6 receptor plays an important role in the host antiviral response. In this study, we detected the IL-6-IL-27 complex in serum and throat swab samples from patients infected with influenza A virus. A plasmid expressing the IL-6-IL-27 complex was constructed to explore its biological function. The results indicated that the IL-6-IL-27 complex has a stronger antiviral effect than the individual subunits of IL-6, IL-27A, and EBV-induced gene 3. Furthermore, the activity of the IL-6-IL-27 complex is mainly mediated by the IL-27A subunit and the IL-27 receptor α. The IL-6-IL-27 complex can positively regulate virus-triggered expression of IFN and IFN-stimulated genes by interacting with adaptor protein mitochondrial antiviral signaling protein, potentiating the ubiquitination of TNF receptor-associated factors 3 and 6 and NF-κB nuclear translocation. The secreted IL-6-IL-27 complex can induce the phosphorylation of STAT1 and STAT3 and shows antiviral activity. Our results demonstrate a previously unrecognized mechanism by which IL-6, IL-27A, and EBV-induced gene 3 form a large complex both intracellularly and extracellularly, and this complex acts in the host antiviral response.
Collapse
Affiliation(s)
- Qi Zuo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Guoqing Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Xiaodan Yang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yundong Fu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Rui He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Peining Fang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Lin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| |
Collapse
|
37
|
Liang Y, Zhou R, Liu X, Liu Z, You L, Chen C, Ye X. Investigation into the effects of leukemia inhibitory factor on the bone repair capacity of BMSCs-loaded BCP scaffolds in the mouse calvarial bone defect model. J Bioenerg Biomembr 2021; 53:381-391. [PMID: 34110599 DOI: 10.1007/s10863-021-09899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
Leukemia inhibitory factor (LIF) is known to play a major role in bone physiology. In the present study, we examined the in vitro effects of LIF on osteoblast differentiation of bone marrow stem cells (BMSCs) and explored in vivo effects of LIF on the bone repair capacity of BMSCs-loaded biphasic calcium phosphate (BCP) scaffolds in mouse calvarial bone defect model. The mRNA and protein expression levels in the BMSCs were determined by quantitative real-time PCR and western blot, respectively; the in vitro osteoblast differentiation of the BMSCs was evaluated by using Alizarin Red S staining. The bone volume and bone density in the repaired calvarial bone defect were determined by Micro-CT. Bone regeneration was also histologically evaluated by hematoxylin and eosin staining and Masson's trichrome staining. Hypoxia treatment induced the up-regulation of Lif mRNA and LIF protein in the BMSCs. Lif overexpression up-regulated the mRNA expression levels of osteopontin and Runt-related transcription factor 2, and increased intensity of Alizarin Red S staining in the BMSCs; while Lif silence exerted the opposite effects. The in vivo studies showed that implantation of Lif-overexpressing BMSCs-loaded BCP scaffolds significantly increased the bone volume and bone density at 4 and 8 weeks after transplantation, and promoted the regeneration of bone tissues in the mouse calvarial bone defect at 8 weeks after transplantation when compared to the BMSCs-loaded BCP scaffolds group; while Lif-silencing BMSCs-loaded BCP scaffolds had the opposite effects. The present study for the first time demonstrated that LIF promoted the in vitro osteoblast differentiation of hypoxia-treated BMSCs; and further studies revealed that LIF exerted enhanced effects on the bone repair capacity of BMSCs-load BCP scaffolds in mouse calvarial bone defect model. However, future studies are warranted to determine the detailed mechanisms of LIF in the large-scale bone defect repair.
Collapse
Affiliation(s)
- Youde Liang
- Department of Stomatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China. .,Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China.
| | - Ruiping Zhou
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Xin Liu
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Zhikang Liu
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Lin You
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Chang Chen
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Xiaoling Ye
- Department of Stomatology, Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| |
Collapse
|
38
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|