1
|
Allison RL, Welby E, Ehlers V, Burand A, Isaeva O, Nieves Torres D, Highland J, Brandow AM, Stucky CL, Ebert AD. Sickle cell disease iPSC-derived sensory neurons exhibit increased excitability and sensitization to patient plasma. Blood 2024; 143:2037-2052. [PMID: 38427938 PMCID: PMC11143522 DOI: 10.1182/blood.2023022591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT Individuals living with sickle cell disease (SCD) experience severe recurrent acute and chronic pain. Challenges to gaining mechanistic insight into pathogenic SCD pain processes include differential gene expression and function of sensory neurons between humans and mice with SCD, and extremely limited availability of neuronal tissues from patients with SCD. Here, we used induced pluripotent stem cells (iPSCs), derived from patients with SCD, differentiated into sensory neurons (SCD iSNs) to begin to overcome these challenges. We characterize key gene expression and function of SCD iSNs to establish a model to investigate intrinsic and extrinsic factors that may contribute to SCD pain. Despite similarities in receptor gene expression, SCD iSNs show pronounced excitability using patch clamp electrophysiology. Furthermore, we find that plasma taken from patients with SCD during acute pain associated with a vaso-occlusive event increases the calcium responses to the nociceptive stimulus capsaicin in SCD iSNs compared with those treated with paired plasma from patients with SCD at steady state baseline or healthy control plasma samples. We identified high levels of the polyamine spermine in baseline and acute pain states of plasma from patients with SCD, which sensitizes SCD iSNs to subthreshold concentrations of capsaicin. Together, these data identify potential intrinsic mechanisms within SCD iSNs that may extend beyond a blood-based pathology.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Vanessa Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Olena Isaeva
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Janelle Highland
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
2
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
3
|
Allison RL, Burand A, Torres DN, Brandow AM, Stucky CL, Ebert AD. Sickle cell disease patient plasma sensitizes iPSC-derived sensory neurons from sickle cell disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523446. [PMID: 36711992 PMCID: PMC9882050 DOI: 10.1101/2023.01.10.523446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Individuals living with sickle cell disease (SCD) experience severe recurrent acute and chronic pain. In order to develop novel therapies, it is necessary to better understand the neurobiological mechanisms underlying SCD pain. There are many barriers to gaining mechanistic insight into pathogenic SCD pain processes, such as differential gene expression and function of sensory neurons between humans and mice with SCD, as well as the limited availability of patient samples. These can be overcome by utilizing SCD patient-derived induced pluripotent stem cells (iPSCs) differentiated into sensory neurons (SCD iSNs). Here, we characterize the key gene expression and function of SCD iSNs to establish a model for higher-throughput investigation of intrinsic and extrinsic factors that may contribute to increased SCD patient pain. Importantly, identified roles for C-C Motif Chemokine Ligand 2 (CCL2) and endothelin 1 (ET1) in SCD pain can be recapitulated in SCD iSNs. Further, we find that plasma taken from SCD patients during acute pain increases SCD iSN calcium response to the nociceptive stimulus capsaicin compared to those treated with paired SCD patient plasma at baseline or healthy control plasma samples. Together, these data provide the framework necessary to utilize iSNs as a powerful tool to investigate the neurobiology of SCD and identify potential intrinsic mechanisms of SCD pain which may extend beyond a blood-based pathology.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
4
|
Qin L, Cui J, Li J. Sympathetic Nerve Activity and Blood Pressure Response to Exercise in Peripheral Artery Disease: From Molecular Mechanisms, Human Studies, to Intervention Strategy Development. Int J Mol Sci 2022; 23:ijms231810622. [PMID: 36142521 PMCID: PMC9505475 DOI: 10.3390/ijms231810622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sympathetic nerve activity (SNA) regulates the contraction of vascular smooth muscle and leads to a change in arterial blood pressure (BP). It was observed that SNA, vascular contractility, and BP are heightened in patients with peripheral artery disease (PAD) during exercise. The exercise pressor reflex (EPR), a neural mechanism responsible for BP response to activation of muscle afferent nerve, is a determinant of the exaggerated exercise-induced BP rise in PAD. Based on recent results obtained from a series of studies in PAD patients and a rat model of PAD, this review will shed light on SNA-driven BP response and the underlying mechanisms by which receptors and molecular mediators in muscle afferent nerves mediate the abnormalities in autonomic activities of PAD. Intervention strategies, particularly non-pharmacological strategies, improving the deleterious exercise-induced SNA and BP in PAD, and enhancing tolerance and performance during exercise will also be discussed.
Collapse
|
5
|
Tominaga M, Takamori K. Peripheral itch sensitization in atopic dermatitis. Allergol Int 2022; 71:265-277. [PMID: 35624035 DOI: 10.1016/j.alit.2022.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a skin disorder caused by skin dryness and barrier dysfunction, resulting in skin inflammation and chronic itch (or pruritus). The pathogenesis of atopic dermatitis is thought to be initiated by a lowering of the itch threshold due to dry skin. This lowering of the itch threshold is at least partially due to the increase in intraepidermal nerve fibers and sensitization of sensory nerves by interleukin (IL)-33 produced and secreted by keratinocytes. Such skin is easily prone to itch due to mechanical stimuli, such as rubbing of clothing and chemical stimuli from itch mediators. In patients with atopic dermatitis, once itch occurs, further itch is induced by scratching, and the associated scratching breaks down the skin barrier. Disruption of the skin barrier allows entry into the epidermis of external foreign substances, such as allergens derived from house dust mites, leading to an increased induction of type 2 inflammatory responses. As a result, type 2 cytokines IL-4, IL-13, and IL-31 are mainly secreted by Th2 cells, and their action on sensory nerve fibers causes further itch sensitization. These sequences of events are thought to occur simultaneously in patients with atopic dermatitis, leading to a vicious itch-scratch cycle. This vicious cycle becomes a negative spiral that leads to disease burden. Therefore, controlling itch is essential for the treatment of atopic dermatitis. In this review, we summarize and discuss advances in the mechanisms of peripheral itch sensitization in atopic dermatitis, focusing on skin barrier-neuro-immune triadic connectivity.
Collapse
|
6
|
Qin C, Wang Y, Li S, Tang Y, Gao Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents. J Inflamm Res 2022; 15:1209-1226. [PMID: 35228812 PMCID: PMC8882030 DOI: 10.2147/jir.s346855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introductions Interstitial cystitis/bladder pain syndrome (IC/BPS) is a poorly understood chronic disorder characterized by bladder-related pain. Chronic psychological stress plays a key role in the exacerbation and development of IC/BPS via unclear mechanisms. This study aimed to investigate the role of endothelin 1 (ET-1) and its receptors in the development of chronic stress-induced bladder dysfunction. Methods Wistar‐Kyoto rats were exposed to chronic (10 days) water avoidance stress (WAS) or sham stress, with subgroups receiving capsaicin pretreatment to desensitize C-fiber afferents. Thereafter, cystometrograms (CMG) were obtained with visceromotor response (VMR) simultaneously during intravesical saline or ET-1 infusion. CMG recordings were analyzed for the first and the continuous voiding cycles, respectively. Endothelin receptor type A (ETAR) expression was examined in the bladder tissues and L6-S1 dorsal root ganglions (DRGs). Toluidine blue staining was to check the bladder inflammation and double-labeling immunofluorescence (IF) staining was to identify the locations of ETAR, respectively. Results During saline infusion, WAS rats elicited significant decreases in pressure threshold (PT) and in the ratio of VMR threshold/maximum intravesical pressure (IVPmax), and a significant increase in VMR duration and area under the curve (AUC). ET-1 infusion induced similar alternations in WAS rats, but further significantly diminished the pressure to trigger PT and VMR, together with a more forceful and longer VMR. The sole effect of WAS exposure or ET-1 administration on the micturition reflex could be suppressed by capsaicin pretreatment. WAS exposure significantly induced an increased number of total mast cells in the bladder, while capsaicin pretreatment possibly antagonized them. No significant difference in ETAR expression was found between all groups. IF staining indicated the co-localization of ETAR and calcitonin gene-related peptides in both bladder and DRGs. Conclusion The activation of ET-1 receptors could enhance chronic stress-induced bladder hypersensitization and hyperalgesia through capsaicin-sensitive C-fiber afferents. Targeting the endothelin pathway may have therapeutic value for IC/BPS.
Collapse
Affiliation(s)
- Chuying Qin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Sai Li
- Acupuncture and Tuina School, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yuanyuan Tang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Yunliang Gao, Department of Urology, The Second Xiangya Hospital, Central South University, No. 139. Renmin Road, Changsha, 410011, People’s Republic of China, Email
| |
Collapse
|
7
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
8
|
Positive Regulatory Domain I-binding Factor 1 Mediates Peripheral Nerve Injury-induced Nociception in Mice by Repressing Kv4.3 Channel Expression. Anesthesiology 2021; 134:435-456. [PMID: 33370445 DOI: 10.1097/aln.0000000000003654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The transcriptional repressor positive regulatory domain I-binding factor 1 (PRDM1) is expressed in adult mouse dorsal root ganglion and regulates the formation and function of peripheral sensory neurons. The authors hypothesized that PRDM1 in the dorsal root ganglion may contribute to peripheral nerve injury-induced nociception regulation and that its mechanism may involve Kv4.3 channel transcriptional repression. METHODS Nociception was induced in C57BL/6 mice by applying chronic constriction injury, complete Freund's adjuvant, or capsaicin plantar injection. Nociceptive response was evaluated by mechanical allodynia, thermal hyperalgesia, cold hyperalgesia, or gait analysis. The role of PRDM1 was evaluated by injection of Prdm1 knockdown and overexpression adeno-associated viruses. The interaction of PRDM1 at the Kv4.3 (Kcnd3) promoter was evaluated by chromatin immunoprecipitation assay. Excitability of dorsal root ganglion neurons was evaluated by whole cell patch clamp recordings, and calcium signaling in spinal dorsal horn neurons was evaluated by in vivo two-photon imaging. RESULTS Peripheral nerve injury increased PRDM1 expression in the dorsal root ganglion, which reduced the activity of the Kv4.3 promoter and repressed Kv4.3 channel expression (injured vs. uninjured; all P < 0.001). Knockdown of PRDM1 rescued Kv4.3 expression, reduced the high excitability of injured dorsal root ganglion neurons, and alleviated peripheral nerve injury-induced nociception (short hairpin RNA vs. Scram; all P < 0.05). In contrast, PRDM1 overexpression in naive mouse dorsal root ganglion neurons diminished Kv4.3 channel expression and induced hyperalgesia (PRDM1 overexpression vs. control, mean ± SD; n = 13; all P < 0.0001) as evaluated by mechanical allodynia (0.6 ± 0.3 vs. 1.2 ± 0.2 g), thermal hyperalgesia (5.2 ± 1.3 vs. 9.8 ± 1.7 s), and cold hyperalgesia (3.4 ± 0.5 vs. 5.3 ± 0.6 s). Finally, PRDM1 downregulation in naive mice reduced the calcium signaling response of spinal dorsal horn neurons to thermal stimulation. CONCLUSIONS PRDM1 contributes to peripheral nerve injury-induced nociception by repressing Kv4.3 channel expression in injured dorsal root ganglion neurons. EDITOR’S PERSPECTIVE
Collapse
|
9
|
Goto T, Sapio MR, Maric D, Robinson JM, Saligan LN, Mannes AJ, Iadarola MJ. Longitudinal Transcriptomic Profiling in Carrageenan-Induced Rat Hind Paw Peripheral Inflammation and Hyperalgesia Reveals Progressive Recruitment of Innate Immune System Components. THE JOURNAL OF PAIN 2020; 22:322-343. [PMID: 33227508 DOI: 10.1016/j.jpain.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022]
Abstract
Pain is a common but potentially debilitating symptom, often requiring complex management strategies. To understand the molecular dynamics of peripheral inflammation and nociceptive pain, we investigated longitudinal changes in behavior, tissue structure, and transcriptomic profiles in the rat carrageenan-induced peripheral inflammation model. Sequential changes in the number of differentially expressed genes are consistent with temporal recruitment of key leukocyte populations, mainly neutrophils and macrophages with each wave being preceded by upregulation of the cell-specific chemoattractants, Cxcl1 and Cxcl2, and Ccl2 and Ccl7, respectively. We defined 12 temporal gene clusters based on expression pattern. Within the patterns we extracted genes comprising the inflammatory secretome and others related to nociceptive tissue remodeling and to sensory perception of pain. Structural tissue changes, involving upregulation of multiple collagens occurred as soon as 1-hour postinjection, consistent with inflammatory tissue remodeling. Inflammatory expression profiling revealed a broad-spectrum, temporally orchestrated molecular and cellular recruitment process. The results provide numerous potential targets for modulation of pain and inflammation. PERSPECTIVE: This study investigates the highly orchestrated biological response during tissue inflammation with precise assessment of molecular dynamics at the transcriptional level. The results identify transcriptional changes that define an evolving inflammatory state in rats. This study provides foundational data for identifying markers of, and potential treatments for, inflammation and pain in patients.
Collapse
Affiliation(s)
- Taichi Goto
- National Institutes of Health, National Institute of Nursing Research, Symptom Biology Unit, Bethesda, Maryland
| | - Matthew R Sapio
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland
| | - Dragan Maric
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, Maryland
| | - Jeffrey M Robinson
- University of Maryland, Baltimore County, Translational Life Science Technology Program, Baltimore, Maryland
| | - Leorey N Saligan
- National Institutes of Health, National Institute of Nursing Research, Symptom Biology Unit, Bethesda, Maryland
| | - Andrew J Mannes
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland
| | - Michael J Iadarola
- National Institutes of Health, Clinical Center, Department of Perioperative Medicine, Bethesda, Maryland.
| |
Collapse
|
10
|
Potentiation of P2X3 receptor mediated currents by endothelin-1 in rat dorsal root ganglion neurons. Neuropharmacology 2020; 181:108356. [PMID: 33069757 DOI: 10.1016/j.neuropharm.2020.108356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
Abstract
Endothelin-1 (ET-1), an endogenous vasoconstrictor, has been known as a pro-nociceptive agent involved in multitude of pain. ET-1 acts on endothelin receptors on vascular endothelial cells, sensitizes release of ATP, which then acts on P2X3 receptors on nociceptors and results in mechanical hyperalgesia. Both endothelin receptors and P2X3 receptors are present in primary sensory neuron, where it remains unclear whether there is an interaction between them. Herein, we reported that ET-1 potentiated the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. ET-1 concentration-dependently increased α,β-methylene-ATP (α,β-meATP)-evoked inward currents, which were mediated by P2X3 receptors. ET-1 shifted the α,β-meATP concentration-response curve upwards, with an increase of 34.38 ± 4.72% in the maximal current response to α,β-meATP in the presence of ET-1. ET-1 potentiation of α,β-meATP-evoked currents was voltage-independent. ET-1 potentiated P2X3 receptor-mediated currents through endothelin-A receptors (ETAR), but not endothelin-B receptors (ETBR). ET-1 potentiation was supressed by blockade of intracellular G-protein or protein kinase C (PKC) signaling. Moreover, there is a synergistic effect on mechanical allodynia induced by intraplantar injection of ET-1 and α,β-meATP in rats. Pharmacological blockade of P2X3 receptors also alleviated ET-1-induced mechanical allodynia. These results suggested that ET-1 sensitized P2X3 receptors in primary sensory neurons via an ETAR and PKC signaling pathway. Our data provide evidence that cutaneous ET-1 induced mechanical allodynia not only by increasing the release of ATP from vascular endothelial cells, but also by sensitizing P2X3 receptors on nociceptive DRG neurons.
Collapse
|
11
|
Endothelin-1 enhances acid-sensing ion channel currents in rat primary sensory neurons. Acta Pharmacol Sin 2020; 41:1049-1057. [PMID: 32107467 PMCID: PMC7468575 DOI: 10.1038/s41401-019-0348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1−100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration–response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.
Collapse
|
12
|
Epstein JB, Miaskowski C. Oral Pain in the Cancer Patient. J Natl Cancer Inst Monogr 2019; 2019:5551353. [DOI: 10.1093/jncimonographs/lgz003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Abstract
Oral pain due to cancer and associated treatments is common. The prevalence and severity of oral cancer is high. Painful oral mucositis develops in head and neck cancer patients following surgery and associated radiation therapy and/or chemotherapy. In addition, oral pain, including pain from mucositis, occurs in patients receiving chemotherapy for cancers of the hematopoietic system and cancers at other anatomic sites. Despite pain management practices that include high-dose opioid analgesics, patients rarely obtain relief from either head and neck cancer pain or mucositis pain. Because oral pain in cancer patients is likely due to both nociceptive and neuropathic mechanisms, effective management of pain requires treatments for both processes. As knowledge of the pathophysiology of oral pain in cancer patients increases, new approaches for the prevention and management are anticipated. This article focuses on the emerging evidence that supports the molecular mechanisms and the unique oral micro-neuroanatomy that in combination produce the severe oral pain experienced by cancer patients. In addition, this article summarizes the current state of clinical management of oral mucositis pain.
Collapse
Affiliation(s)
- Joel B Epstein
- Department of Surgery, City of Hope, Duarte, CA
- Department of Surgery, Cedars-Sinai Health System, Los Angeles, CA
- Seattle Cancer Care Alliance, Seattle, WA
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA
| |
Collapse
|
13
|
Kopruszinski CM, dos Reis RC, Rae GA, Chichorro JG. Blockade of peripheral endothelin receptors abolishes heat hyperalgesia and spontaneous nociceptive behavior in a rat model of facial cancer. Arch Oral Biol 2019; 97:231-237. [DOI: 10.1016/j.archoralbio.2018.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
|
14
|
Lutz BM, Wu S, Gu X, Atianjoh FE, Li Z, Fox BM, Pollock DM, Tao YX. Endothelin type A receptors mediate pain in a mouse model of sickle cell disease. Haematologica 2018; 103:1124-1135. [PMID: 29545351 PMCID: PMC6029538 DOI: 10.3324/haematol.2017.187013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Sickle cell disease is associated with acute painful episodes and chronic intractable pain. Endothelin-1, a known pain inducer, is elevated in the blood plasma of both sickle cell patients and mouse models of sickle cell disease. We show here that the levels of endothelin-1 and its endothelin type A receptor are increased in the dorsal root ganglia of a mouse model of sickle cell disease. Pharmacologic inhibition or neuron-specific knockdown of endothelin type A receptors in primary sensory neurons of dorsal root ganglia alleviated basal and post-hypoxia evoked pain hypersensitivities in sickle cell mice. Mechanistically, endothelin type A receptors contribute to sickle cell disease-associated pain likely through the activation of NF-κB-induced Nav1.8 channel upregulation in primary sensory neurons of sickle cell mice. Our findings suggest that endothelin type A receptor is a potential target for the management of sickle cell disease-associated pain, although this expectation needs to be further verified in clinical settings.
Collapse
Affiliation(s)
- Brianna Marie Lutz
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.,Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Xiyao Gu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Fidelis E Atianjoh
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.,Intensive Care Unit, MedStar Southern Maryland Hospital Center, Clinton, MD, USA
| | - Zhen Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Yuan-Xiang Tao
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA.,Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
15
|
Blockade of endothelin receptors reduces tumor-induced ongoing pain and evoked hypersensitivity in a rat model of facial carcinoma induced pain. Eur J Pharmacol 2018; 818:132-140. [DOI: 10.1016/j.ejphar.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
16
|
Souza RFD, Oliveira LLD, Nones CFM, dos Reis RC, Araya EI, Kopruszinski CM, Rae GA, Chichorro JG. Mechanisms involved in facial heat hyperalgesia induced by endothelin-1 in female rats. Arch Oral Biol 2017; 83:297-303. [DOI: 10.1016/j.archoralbio.2017.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 01/29/2023]
|
17
|
Mule NK, Singh JN, Shah KU, Gulati A, Sharma SS. Endothelin-1 Decreases Excitability of the Dorsal Root Ganglion Neurons via ET B Receptor. Mol Neurobiol 2017. [PMID: 28623618 DOI: 10.1007/s12035-017-0640-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endothelin-1 (ET-1) has been demonstrated to be a pro-nociceptive as well as an anti-nociceptive agent. However, underlying molecular mechanisms for these pain modulatory actions remain unclear. In the present study, we evaluated the ability of ET-1 to alter the nociceptor excitability using a patch clamp technique in acutely dissociated rat dorsal root ganglion (DRG) neurons. ET-1 produced an increase in threshold current to evoke an action potential (I threshold) and hyperpolarization of resting membrane potential (RMP) indicating decreased excitability of DRG neurons. I threshold increased from 0.25 ± 0.08 to 0.33 ± 0.07 nA and hyperpolarized RMP from -57.51 ± 1.70 to -67.41 ± 2.92 mV by ET-1 (100 nM). The hyperpolarizing effect of ET-1 appears to be orchestrated via modulation of membrane conductances, namely voltage-gated sodium current (I Na) and outward transient potassium current (I KT). ET-1, 30 and 100 nM, decreased the peak I Na by 41.3 ± 6.8 and 74 ± 15.2%, respectively. Additionally, ET-1 (100 nM) significantly potentiated the transient component (I KT) of the potassium currents. ET-1-induced effects were largely attenuated by BQ-788, a selective ETBR blocker. However, a selective ETAR blocker BQ-123 did not alter the effects of ET-1. A selective ETBR agonist, IRL-1620, mimicked the effect of ET-1 on I Na in a concentration-dependent manner (IC50 159.5 ± 92.6 μM). In conclusion, our results demonstrate that ET-1 hyperpolarizes nociceptors by blocking I Na and potentiating I KT through selective activation of ETBR, which may represent one of the underlying mechanisms for reported anti-nociceptive effects of ET-1.
Collapse
Affiliation(s)
- Nandkishor K Mule
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Jitendra N Singh
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| | - Kunal U Shah
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Anil Gulati
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Shyam S Sharma
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
18
|
Huang PC, Tsai KL, Chen YW, Lin HT, Hung CH. Exercise Combined With Ultrasound Attenuates Neuropathic Pain in Rats Associated With Downregulation of IL-6 and TNF-α, but With Upregulation of IL-10. Anesth Analg 2017; 124:2038-2044. [DOI: 10.1213/ane.0000000000001600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Feldman-Goriachnik R, Hanani M. The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides 2017; 63:37-42. [PMID: 28342550 DOI: 10.1016/j.npep.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
Abstract
Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca2+]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca2+]in elevation in response to ET-1 was partially due to Ca2+ influx from the extracellular space and partially to Ca2+ release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
20
|
Fox BM, Kasztan M. Endothelin receptor antagonists in sickle cell disease: A promising new therapeutic approach. Life Sci 2016; 159:15-19. [PMID: 27049871 PMCID: PMC4992628 DOI: 10.1016/j.lfs.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell disease (SCD) is a genetic hematologic disorder that is characterized by a variety of potentially life threatening acute and chronic complications. Currently, hydroxyurea is the only clinically approved pharmacological therapy for the treatment of SCD, and the continued prevalence of severe disease complications underscores the desperate need for the development of new therapeutic agents. Central features of the sickle cell disease milieu, including hypoxia, oxidative stress, and thrombosis, are established enhancers of endothelin-1 (ET-1) synthesis. This conceptual connection between ET-1 and SCD was confirmed by multiple studies that demonstrated markedly elevated plasma and urinary levels of ET-1 in SCD patients. Direct evidence for the involvement of ET-1 signaling in the development of SCD pathologies has come from studies using endothelin receptor antagonists in SCD mice. This review summarizes recent studies that have implicated ET-1 signaling as a mechanistic contributor to renal, vascular, pulmonary, and nociceptive complications of sickle cell disease and discusses the potential for the use of ET receptor antagonists in the treatment of SCD.
Collapse
Affiliation(s)
- Brandon M Fox
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
Binz N, Rakoczy EP, Ali Rahman IS, Vagaja NN, Lai CM. Biomarkers for Diabetic Retinopathy - Could Endothelin 2 Be Part of the Answer? PLoS One 2016; 11:e0160442. [PMID: 27482904 PMCID: PMC4970817 DOI: 10.1371/journal.pone.0160442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose The endothelins are a family of three highly conserved and homologous vasoactive peptides that are expressed across all organ systems. Endothelin (Edn) dysregulation has been implicated in a number of pathophysiologies, including diabetes and diabetes-related complications. Here we examined Edn2 and endothelin receptor B (Endrb) expression in retinae of diabetic mouse models and measured serum Edn2 to assess its biomarker potential. Materials and Methods Edn2 and Ednrb mRNA and Edn2 protein expression were assessed in young (8wk) and mature (24wk) C57Bl/6 (wild type; wt), Kimba (model of retinal neovascularisation, RNV), Akita (Type 1 diabetes; T1D) and Akimba mice (T1D plus RNV) by qRT-PCR and immunohistochemistry. Edn2 protein concentration in serum was measured using ELISA. Results Fold-changes in Edn2 and Ednrb mRNA were seen only in young Kimba (Edn2: 5.3; Ednrb: 6.0) and young Akimba (Edn2: 7.9, Ednrb: 8.8) and in mature Kimba (Edn2:9.2, Ednrb:11.2) and mature Akimba (Edn2:14.0, Ednrb:17.5) mice. Co-localisation of Edn2 with Müller-cell-specific glutamine synthetase demonstrated Müller cells and photoreceptors as the major cell types for Edn2 expression in all animal models. Edn2 serum concentrations in young Kimba, Akita and Akimba mice were not elevated compared to wt. However, in mature mice, Edn2 serum concentration was increased in Akimba (6.9pg/mg total serum protein) compared to wt, Kimba and Akita mice (3.9, 4.6, and 3.8pg/mg total serum protein, respectively; p<0.05). Conclusions These results demonstrated that long-term hyperglycaemia in conjunction with VEGF-driven RNV increased Edn2 serum concentration suggesting Edn2 might be a candidate biomarker for vascular changes in diabetic retinopathy.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Endothelin-2/blood
- Endothelin-2/genetics
- Ependymoglial Cells/metabolism
- Ependymoglial Cells/pathology
- Gene Expression
- Glycated Hemoglobin/metabolism
- Hyperglycemia/blood
- Hyperglycemia/diagnosis
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Photoreceptor Cells, Vertebrate/metabolism
- Photoreceptor Cells, Vertebrate/pathology
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Receptor, Endothelin B/blood
- Receptor, Endothelin B/genetics
- Retinal Neovascularization/blood
- Retinal Neovascularization/diagnosis
- Retinal Neovascularization/genetics
- Retinal Neovascularization/pathology
- Vascular Endothelial Growth Factor A/blood
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Nicolette Binz
- Molecular Ophthalmology, Lions Eye Institute, Nedlands, WA, 6009, Australia
| | - Elizabeth P. Rakoczy
- Molecular Ophthalmology, Lions Eye Institute, Nedlands, WA, 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, 6009, Australia
- * E-mail:
| | - Ireni S. Ali Rahman
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nermina N. Vagaja
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Chooi-May Lai
- Molecular Ophthalmology, Lions Eye Institute, Nedlands, WA, 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
22
|
Akiyama T, Nagamine M, Davoodi A, Iodi Carstens M, Cevikbas F, Steinhoff M, Carstens E. Intradermal endothelin-1 excites bombesin-responsive superficial dorsal horn neurons in the mouse. J Neurophysiol 2015; 114:2528-34. [PMID: 26311187 DOI: 10.1152/jn.00723.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/24/2015] [Indexed: 01/21/2023] Open
Abstract
Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml(-1)·min(-1)), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans.
Collapse
Affiliation(s)
- T Akiyama
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - M Nagamine
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - A Davoodi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - M Iodi Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - F Cevikbas
- Departments of Dermatology and Surgery, University of California, San Francisco, California; and
| | - M Steinhoff
- Department of Dermatology and Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
| | - E Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California;
| |
Collapse
|
23
|
Lutz B, Meiler SE, Bekker A, Tao YX. Updated Mechanisms of Sickle Cell Disease-Associated Chronic pain. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2015; 2:8-17. [PMID: 26301256 PMCID: PMC4542088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sickle cell disease (SCD), a hemoglobinopathy, causes sickling of red blood cells, resulting in vessel blockage, stroke, anemia, inflammation, and extreme pain. A vast majority of SCD patients experience pain on a chronic basis, and many turn to opioids to provide limited relief. The side effects that come with chronic opioid use push for research into understanding the specific mechanisms of SCD-associated chronic pain. Current advances in SCD-associated pain have focused on alterations in the pain pathway including nociceptor sensitization and endogenous pain inducers. This article reviews the underlying pathophysiology of SCD, potential pain mechanisms, current treatments and their mechanism of action, and future directions of SCD-associated pain management. The information provided could help propel research in SCD-associated chronic pain and uncover novel treatment options for clinicians.
Collapse
Affiliation(s)
- Brianna Lutz
- Department of Anesthesiology, Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Steffen E. Meiler
- Department of Anesthesiology and Perioperative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
- Departments of Cell Biology & Molecular Medicine, Pharmacology & Physiology, and Neurology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
24
|
Koyama Y. Endothelin systems in the brain: involvement in pathophysiological responses of damaged nerve tissues. Biomol Concepts 2015; 4:335-47. [PMID: 25436584 DOI: 10.1515/bmc-2013-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022] Open
Abstract
In addition to their potent vasoconstriction effects, endothelins (ETs) show multiple actions in various tissues including the brain. The brain contains high levels of ETs, and their production is stimulated in many brain disorders. Accumulating evidence indicates that activation of brain ET receptors is involved in several pathophysiological responses in damaged brains. In this article, the roles of brain ET systems in relation to brain disorders are reviewed. In the acute phase of stroke, prolonged vasospasm of cerebral arteries and brain edema occur, both of which aggravate brain damage. Studies using ET antagonists show that activation of ETA receptors in the brain vascular smooth muscle induces vasospasm after stroke. Brain edema is induced by increased activity of vascular permeability factors, such as vascular endothelial growth factor and matrix metalloproteinases. Activation of ETB receptors stimulates astrocytic production of these permeability factors. Increases in reactive astrocytes are observed in neurodegenerative diseases and in the chronic phase of stroke, where they facilitate the repair of damaged nerve tissues by releasing neurotrophic factors. ETs promote the induction of reactive astrocytes through ETB receptors. ETs also stimulate the production of astrocytic neurotrophic factors. Recent studies have shown high expression of ETB receptors in neural progenitors. Activation of ETB receptors in neural progenitors promotes their proliferation and migration, suggesting roles for ETB receptors in neurogenesis. Much effort has been invested in the pursuit of novel drugs to induce protection or repair of damaged nerve tissues. From these studies, the pharmacological significance of brain ET systems as a possible target of neuroprotective drugs is anticipated.
Collapse
|
25
|
Hung VKL, Tai LW, Luo X, Wang XM, Chung SK, Cheung CW. Targeted Overexpression of Astrocytic Endothelin-1 Attenuates Neuropathic Pain by Upregulating Spinal Excitatory Amino Acid Transporter-2. J Mol Neurosci 2015; 57:90-6. [PMID: 25994587 DOI: 10.1007/s12031-015-0581-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that endogenous endothelin-1 (ET-1) inhibits pathological pain in a transgenic mouse model with astrocyte-specific ET-1 overexpression (GET-1 mice); however, the underlying mechanism is unclear. ET-1 regulates excitatory amino acid transporter-2 (EAAT-2), a predominant subtype of glutamate transporters that plays critical role in pain modulation in spinal astrocytes. We hypothesized that astrocytic ET-1 overexpression alleviates neuropathic pain through modulating EAAT-2. GET-1 or nontransgenic (NTg) mice either received sham operation or sciatic nerve ligation (SNL) with or without ceftriaxone (CEF, an EAAT-2 inducer, for 4 days before termination). In GET-1 mice, mRNA and protein expressions of EAAT-2, but not EAAT-1, were upregulated associated with reduced SNL-induced neuropathic pain. Despite that SNL induced a significant reduction of EAAT-2 mRNA expression in both genotypes of mice, post-SNL EAAT-2 mRNA expression was higher in GET-1 mice than that in NTg mice. EAAT-2 induction by CEF reduced SNL-induced neuropathic pain in both NTg and GET-1 mice. In cultured rat astrocytic cell line, overexpression of ET-1 mRNA expression also elevated EAAT-2 mRNA expression, which was reversed by ET receptor antagonists. In conclusion, overexpressed astrocytic ET-1 suppressed neuropathic pain by upregulating spinal EAAT-2 expression via ET receptors.
Collapse
Affiliation(s)
- Victor K L Hung
- Department of Anaesthesiology, The University of Hong Kong, Rm 424, 4/F, Block K, Queen Mary Hospital, 102, Pokfulam, HKSAR, China
| | | | | | | | | | | |
Collapse
|
26
|
Transcutaneous electrical nerve stimulation attenuates postsurgical allodynia and suppresses spinal substance P and proinflammatory cytokine release in rats. Phys Ther 2015; 95:76-85. [PMID: 25212520 DOI: 10.2522/ptj.20130306] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) is often used for management of chronic pain. OBJECTIVE The purpose of this study was to investigate whether TENS altered postincisional allodynia, substance P, and proinflammatory cytokines in a rat model of skin-muscle incision and retraction (SMIR). DESIGN This was an experimental study. METHODS High-frequency (100-Hz) TENS therapy began on postoperative day 3 and was administered for 20 minutes daily to SMIR-operated rats by self-adhesive electrodes delivered to skin innervated via the ipsilateral dorsal rami of lumbar spinal nerves L1-L6 for the next 27 days. The expressions of substance P, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β) in the spinal cord and mechanical sensitivity to von Frey stimuli (4g and 10g) were evaluated. RESULTS The SMIR-operated rats displayed a marked hypersensitivity to von Frey stimuli on postoperative day 3. In contrast to the SMIR-operated rats, SMIR-operated rats after TENS administration showed a quick recovery of mechanical hypersensitivity. On postoperative days 3, 16, and 30, SMIR-operated rats exhibited an upregulation of substance P and cytokines (TNF-α, IL-6, and IL-1β) in the spinal cord, whereas SMIR-operated rats after TENS therapy inhibited that upregulation. By contrast, the placebo TENS following SMIR surgery did not alter mechanical hypersensitivity and the levels of spinal substance P, TNF-α, IL-6, and IL-1β. LIMITATIONS The experimental data are limited to animal models and cannot be generalized to postoperative pain in humans. CONCLUSIONS The results revealed that TENS attenuates prolonged postoperative allodynia following SMIR surgery. Increased levels of spinal substance P and proinflammatory cytokines, activated after SMIR surgery, are important in the processing of persistent postsurgical allodynia. The protective effect of TENS may be related to the suppression of spinal substance P and proinflammatory cytokines in SMIR-operated rats.
Collapse
|
27
|
Barr TP, Kornberg D, Montmayeur JP, Long M, Reichheld S, Strichartz GR. Validation of endothelin B receptor antibodies reveals two distinct receptor-related bands on Western blot. Anal Biochem 2015; 468:28-33. [PMID: 25232999 DOI: 10.1016/j.ab.2014.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Antibodies are important tools for the study of protein expression but are often used without full validation. In this study, we used Western blots to characterize antibodies targeted to the N or C terminal (NT or CT, respectively) and the second or third intracellular loop (IL2 or IL3, respectively) of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50-kDa band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37-kDa band but failed to detect endogenous ETB in rat brain. Bands detected by the CT- or IL3-targeted antibody were found to be unrelated to ETB. Our findings show that functional ETB can be detected at 50 or 37kDa on Western blot, with drastic differences in antibody affinity for these bands. The 37-kDa band likely reflects ETB processing, which appears to be dependent on cell type and/or culture condition.
Collapse
Affiliation(s)
- Travis P Barr
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Daniel Kornberg
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Jean-Pierre Montmayeur
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Melinda Long
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Stephen Reichheld
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Gary R Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Chen YW, Tzeng JI, Lin MF, Hung CH, Wang JJ. Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion. THE JOURNAL OF PAIN 2014; 15:827-34. [PMID: 24854064 DOI: 10.1016/j.jpain.2014.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. PERSPECTIVE Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Yongkang, Tainan City, Taiwan
| | - Jann-Inn Tzeng
- Department of Food Sciences and Technology, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan; Department of Anesthesiology, Chi-Mei Medical Center, Yongkang, Tainan City, Taiwan
| | - Min-Fei Lin
- Institute & Department of Physical Therapy, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hsia Hung
- Institute & Department of Physical Therapy, National Cheng Kung University, Tainan City, Taiwan.
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Yongkang, Tainan City, Taiwan
| |
Collapse
|
29
|
Barr TP, Hrnjic A, Khodorova A, Sprague JM, Strichartz GR. Sensitization of cutaneous neuronal purinergic receptors contributes to endothelin-1-induced mechanical hypersensitivity. Pain 2014; 155:1091-1101. [PMID: 24569146 DOI: 10.1016/j.pain.2014.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Endothelin (ET-1), an endogenous peptide with a prominent role in cutaneous pain, causes mechanical hypersensitivity in the rat hind paw, partly through mechanisms involving local release of algogenic molecules in the skin. The present study investigated involvement of cutaneous ATP, which contributes to pain in numerous animal models. Pre-exposure of ND7/104 immortalized sensory neurons to ET-1 (30nM) for 10min increased the proportion of cells responding to ATP (2μM) with an increase in intracellular calcium, an effect prevented by the ETA receptor-selective antagonist BQ-123. ET-1 (3nM) pre-exposure also increased the proportion of isolated mouse dorsal root ganglion neurons responding to ATP (0.2-0.4μM). Blocking ET-1-evoked increases in intracellular calcium with the IP3 receptor antagonist 2-APB did not inhibit sensitization to ATP, indicating a mechanism independent of ET-1-mediated intracellular calcium increases. ET-1-sensitized ATP calcium responses were largely abolished in the absence of extracellular calcium, implicating ionotropic P2X receptors. Experiments using quantitative polymerase chain reaction and receptor-selective ligands in ND7/104 showed that ET-1-induced sensitization most likely involves the P2X4 receptor subtype. ET-1-sensitized calcium responses to ATP were strongly inhibited by broad-spectrum (TNP-ATP) and P2X4-selective (5-BDBD) antagonists, but not antagonists for other P2X subtypes. TNP-ATP and 5-BDBD also significantly inhibited ET-1-induced mechanical sensitization in the rat hind paw, supporting a role for purinergic receptor sensitization in vivo. These data provide evidence that mechanical hypersensitivity caused by cutaneous ET-1 involves an increase in the neuronal sensitivity to ATP in the skin, possibly due to sensitization of P2X4 receptors.
Collapse
Affiliation(s)
- Travis P Barr
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, MA, USA Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden Neurobiology Department, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA Harvard School of Dental Medicine, Boston, MA, USA Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
30
|
He L, Üçeyler N, Krämer HH, Colaço MN, Lu B, Birklein F, Sommer C. Methylprednisolone prevents nerve injury-induced hyperalgesia in neprilysin knockout mice. Pain 2013; 155:574-580. [PMID: 24333776 DOI: 10.1016/j.pain.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The pathophysiology of the complex regional pain syndrome involves enhanced neurogenic inflammation mediated by neuropeptides. Neutral endopeptidase (neprilysin, NEP) is a key enzyme in neuropeptide catabolism. Our previous work revealed that NEP knock out (ko) mice develop more severe hypersensitivity to thermal and mechanical stimuli after chronic constriction injury (CCI) of the sciatic nerve than wild-type (wt) mice. Because treatment with glucocorticoids is effective in early complex regional pain syndrome, we investigated whether methylprednisolone (MP) reduces pain and sciatic nerve neuropeptide content in NEP ko and wt mice with nerve injury. After CCI, NEP ko mice developed more severe thermal and mechanical hypersensitivity and hind paw edema than wt mice, confirming previous findings. Hypersensitivity was prevented by MP treatment in NEP ko but not in wt mice. MP treatment had no effect on protein levels of calcitonin-gene related peptide, substance P, and bradykinin in sciatic nerves of NEP ko mice. Endothelin-1 (ET-1) levels were higher in naïve and nerve-injured NEP ko than in wt mice, without an effect of MP treatment. Gene expression of the ET-1 receptors ETAR and ETBR was not different between genotypes and was not altered after CCI, but was increased after additional MP treatment. The ETBR agonist IRL-1620 was analgesic in NEP ko mice after CCI, and the ETBR antagonist BQ-788 showed a trend to reduce the analgesic effect of MP. The results provide evidence that MP reduces CCI-induced hyperalgesia in NEP ko mice, and that this may be related to ET-1 via analgesic actions of ETBR.
Collapse
Affiliation(s)
- Lan He
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Cerebral activation during von Frey filament stimulation in subjects with endothelin-1-induced mechanical hyperalgesia: a functional MRI study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:610727. [PMID: 24151613 PMCID: PMC3789290 DOI: 10.1155/2013/610727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/14/2013] [Indexed: 11/17/2022]
Abstract
Endothelin-1 (ET-1) is an endogenously expressed potent peptide vasoconstrictor. There is growing evidence that ET-1 plays a role in the pain signaling system and triggers overt nociception in humans. The underlying neuronal pathways are still a matter of great debate. In the present study, we applied an intradermal ET-1 sensitization model to induce mechanical hyperalgesia in healthy subjects. Functional magnetic resonance imaging (fMRI) was used to tease out the cortical regions associated with the processing of ET-1-induced punctate hyperalgesia, as compared to a nonnoxious mechanical stimulation of the contralateral arm. Von Frey hair testing revealed the presence of increased responsiveness to punctate stimulation in all subjects. Activational patterns between nonpainful control stimulation and hyperalgesic stimulation were compared. Two major observations were made: (1) all cortical areas that showed activation during the control stimulation were also present during hyperalgesic stimulation, but in addition, some areas showed bilateral activation only during hyperalgesic stimulation, and (2) some brain areas showed significantly higher signal changes during hyperalgesic stimulation. Our findings suggest that injection of ET-1 leads to a state of punctate hyperalgesia, which in turn causes the activation of multiple brain regions. This indicates that ET-1 activates an extended neuronal pathway.
Collapse
|
32
|
Exercise Training Attenuates Postoperative Pain and Expression of Cytokines and N-methyl-D-aspartate Receptor Subunit 1 in Rats. Reg Anesth Pain Med 2013; 38:282-8. [PMID: 23640243 DOI: 10.1097/aap.0b013e31828df3f9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Over-expression of endothelin-1 in astrocytes, but not endothelial cells, ameliorates inflammatory pain response after formalin injection. Life Sci 2012; 91:618-22. [DOI: 10.1016/j.lfs.2012.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 06/24/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|