1
|
Li Z, Chen F, Liu J, Zhi L, Junaid M, Chen G, Xiao Z, Wang J, Chong Y. Polystyrene nanoplastics sequester the toxicity mitigating potential of probiotics by altering gut microbiota in grass carp (Ctenopharyngodon idella). JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136778. [PMID: 39644853 DOI: 10.1016/j.jhazmat.2024.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study evaluated the role of probiotics in enhancing intestinal immunity and mitigating polystyrene nanoplastics (PS-NPs)-induced toxicity in grass carp (Ctenopharyngodon idella). Grass carp were fed probiotics (Bacillus subtilis, Bacillus velezensis, Lactobacillus reuteri, and Lactococcus lactis) for two weeks before being exposed to PS-NPs for five days. Probiotic pretreatment alleviated PS-NPs-induced intestinal damage, with Bacillus velezensis and Lactococcus lactis groups showing milder vacuolation and villus breakage than other groups. Probiotic-treated fish exhibited transient increases in antioxidant enzyme activities (CAT, SOD, MPO) and immune gene expression (IL-6, IL-8, IL-10, IL-1β, TNF-α, and IFN-γ2) shortly after exposure, followed by significant downregulation over time. Higher abundance of the gut dominant phylum Proteobacteria was observed in four probiotic groups exposed to PS-NPs than that in the blank control group. The Clostridium phylum showed a significant decrease in the abundance both in the LRS-PS100 and LLS-PS100 groups, while the abundance of the Thick-walled phylum increased. The Spearman correlation matrix revealed that specific gut microbiota, such as Serratia, Neisseria, and Lactococcus, were significantly associated with enzymatic activities and immune system related genes' expressions. Probiotic pretreatment enhanced the intestinal immune response of grass carp. However, this enhanced immune response was insufficient to counteract the toxic effects of PS-NPs exposure, particularly in terms of oxidative stress levels and gut microbial diversity. This study offers new insights into the potential of probiotics to combat NPs pollution in aquaculture. It emphasizes the need for further research to explore various probiotic combinations. Future studies should also investigate optimal dosages and durations to effectively mitigate the biological toxicity of NPs pollution.
Collapse
Affiliation(s)
- Zhen Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Fang Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- College of Science and Technology, University of Macau, Macau 999078, China
| | - Linyong Zhi
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhengzhong Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Yunxiao Chong
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Niu D, Feng N, Xi S, Xu J, Su Y. Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics. Mol Genet Genomics 2024; 299:24. [PMID: 38438804 DOI: 10.1007/s00438-024-02101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/16/2023] [Indexed: 03/06/2024]
Abstract
The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.
Collapse
Affiliation(s)
- Dekai Niu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Siteng Xi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Jianjian Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China.
| |
Collapse
|
3
|
Sánchez MC, Herráiz A, Tigre S, Llama-Palacios A, Hernández M, Ciudad MJ, Collado L. Evidence of the Beneficial Impact of Three Probiotic-Based Food Supplements on the Composition and Metabolic Activity of the Intestinal Microbiota in Healthy Individuals: An Ex Vivo Study. Nutrients 2023; 15:5077. [PMID: 38140334 PMCID: PMC10745619 DOI: 10.3390/nu15245077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Scientific evidence has increasingly supported the beneficial effects of probiotic-based food supplements on human intestinal health. This ex vivo study investigated the effects on the composition and metabolic activity of the intestinal microbiota of three probiotic-based food supplements, containing, respectively, (1) Bifidobacterium longum ES1, (2) Lactobacillus acidophilus NCFM®, and (3) a combination of L. acidophilus NCFM®, Lactobacillus paracasei Lpc-37™, Bifidobacterium lactis Bi-07™, and Bifidobacterium lactis Bl-04™. This study employed fecal samples from six healthy donors, inoculated in a Colon-on-a-plate® system. After 48 h of exposure or non-exposure to the food supplements, the effects were measured on the overall microbial fermentation (pH), changes in microbial metabolic activity through the production of short-chain and branched-chain fatty acids (SCFAs and BCFAs), ammonium, lactate, and microbial composition. The strongest effect on the fermentation process was observed for the combined formulation probiotics, characterized by the significant stimulation of butyrate production, a significant reduction in BCFAs and ammonium in all donors, and a significant stimulatory effect on bifidobacteria and lactobacilli growth. Our findings suggest that the combined formulation probiotics significantly impact the intestinal microbiome of the healthy individuals, showing changes in metabolic activity and microbial abundance as the health benefit endpoint.
Collapse
Affiliation(s)
- María Carmen Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
| | - Sindy Tigre
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | | | - María José Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (S.T.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
4
|
Basharat S, Meng T, Zhai L, Hussain A, Aqeel SM, Khan S, Shah OU, Liao X. Bacterial diversity of stingless bee honey in Yunnan, China: isolation and genome sequencing of a novel acid-resistant Lactobacillus pentosus ( SYBC-MI) with probiotic and L. tryptophan producing potential via millet fermentation. Front Bioeng Biotechnol 2023; 11:1272308. [PMID: 38107618 PMCID: PMC10722240 DOI: 10.3389/fbioe.2023.1272308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Stingless bee (Hymenoptera, Apidae, and Trigona) honey is a remarkable "miracle liquid" with a wide range of medical benefits for conditions including gastroenteritis, cataracts, and wound healing. Our study aimed to isolate, identify, and characterize acid-resistant Lactobacillus spp. from sour honey distributed in Yunnan, China. To assess the safety of an entirely novel Lactobacillus pentosus strain, S4 (OM618128), based on probiotic property evaluation and whole-genome sequencing analysis. A 16S rRNA gene high-throughput sequencing analysis showed that Lactobacillus was abundant at the genus level in sour honey. Seven Lactobacillus strains (viz. S1-7) were isolated from sour honey using a multiple-anaerobic culture enrichment method. One potential acid-resistant isolate, Lactobacillus sp. S4, was obtained after screening the seven Lactobacillus isolates, and it had the highest lactic acid production (17.62 g/L), followed by Lactobacillus sp. S3 (17.07 g/L). Phylogenetic and comparative analyses of conserved sequence regions have shown that all seven strains are phylogenetically located in the Lactobacillus pentosus sub-cluster. In L. pentosus SYBC-MI, there is a circular chromosome (3288615 bps) and 11,466 bps plasmids. GC content is 44.03%. The number of predicted genes is 3,129, with 16 rRNAs and 74 tRNAs present. During the fermentation of foxtail millet by seven Lactobacillus pentosus (S1-7) strains isolated from sour honey, a potential tryptophan accumulating isolate, Lactobacillus pentosus S4, was obtained, which could reach a maximum tryptophan content of 238.43 mgL-1 that is 1.80 times the initial tryptophan content in the fermentation broth. This strain has strong acid tolerance, salt tolerance, and fermentation acid production abilities. This strain degrades nitrite at a rate of over 99%, and it has high probiotic potential as well. This project has established a solid foundation for further exploring the excellent lactic acid bacteria in sour honey. It is also investigating the key taxa and their role in the environment. According to the results of our studies, these LAB isolates provide a lot of potential for use in the future, as a source of probiotics for human, animals, and starter cultures for food applications.
Collapse
Affiliation(s)
- Samra Basharat
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Tiantian Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Lixin Zhai
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Institute of Molecular Detection Technology and Equipment, Xuchang University, Xuchang, Henan, China
| | - Asif Hussain
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Sahibzada Muhammad Aqeel
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Salman Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Obaid Ullah Shah
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou, China
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Schwaiger K, Storch J, Bauer C, Bauer J. Lactobacillus ( Limosilactobacillus) reuteri: a probiotic candidate to reduce neonatal diarrhea in calves. Front Microbiol 2023; 14:1266905. [PMID: 37854332 PMCID: PMC10579909 DOI: 10.3389/fmicb.2023.1266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
Background Diarrhea in newborn calves is considered life-threatening and results in large economic losses in dairy farms. Lactobacilli generally play an important role in intestinal health, and Lactobacillus (Limosilactobacillus; L.) reuteri is the dominant Lactobacillus species in the feces of healthy calves during the first week of life. In calves with diarrhea on day 2 postpartum, lactobacilli are significantly reduced even up to 24 h before the onset of clinical signs. Since the probability of occurrence of diarrheal disease decreases as the L. reuteri count in the feces increases, oral administration of this species might have a protective effect against diarrhea. Objective These studies were designed to demonstrate whether oral administration of preselected L. reuteri isolates can reduce the incidence of diarrhea in newborn calves on dairy farms. Microorganisms 46 L. reuteri isolates from 2-day-old healthy calves were available from a previous study. Animals 170 newborn calves of Simmental breed of 10 dairy farms in Bavaria (Germany), were included in the study; of 166 animals the data could be evaluated. Methods Microbiological (antibiotic sensitivity test, acid and bile salt stability test, antimicrobial activity of the supernatants), molecular biological (PCR, RAPD-PCR) and toxicological methods (MTT test) were used to select and to characterize suitable L. reuteri isolates. The administration of a suspension of two selected L. reuteri isolates (6-8 × 108 colony forming units per day) to calves was performed from day 2 to day 5 after birth in a double-blinded placebo-controlled study. Clinical monitoring of the calves continued until the 14th day of life. Results Out of 46 L. reuteri isolates, only 2 met the set criteria and were used in the feeding trial. In the placebo group, 44 of 83 calves developed diarrhea within the first 2 weeks of life, whereas in the L. reuteri group this was only the case in 31 of 83 animals (p < 0.05). Conclusion L. reuteri appears to be of particular importance for the intestinal health of newborn calves. The diarrhea protective effect could be even more pronounced if an improved administration regimen is developed in terms of start, frequency, and duration.
Collapse
Affiliation(s)
- Karin Schwaiger
- Institute for Food Safety, Food Technology and Veterinary Public Health, Unit of Food Hygiene and Technology, University of Veterinary Medicine, Vienna, Austria
| | - Julia Storch
- Veterinary Office Landratsamt Fürstenfeldbruck, Fürstenfeldbruck, Germany
| | - Christoph Bauer
- Department of Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Freising, Germany
| | - Johann Bauer
- Chair of Animal Hygiene, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
6
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
7
|
Schettini F, Fontana A, Gattazzo F, Strina C, Milani M, Cappelletti MR, Cervoni V, Morelli L, Curigliano G, Iebba V, Generali D. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: A prospective cross-sectional exploratory study. Eur J Cancer 2023; 191:112948. [PMID: 37454444 DOI: 10.1016/j.ejca.2023.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Cyclin-dependent kinase (CDK)4/6-inhibitors with endocrine therapy represent the standard of treatment of hormone receptor-positive(HR+)/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC). Gut microbiota seems to predict treatment response in several tumour types, being directly implied in chemotherapy resistance and development of adverse effects. No evidence is available on gut microbiota impact on efficacy of HR+ breast cancer treatment. PATIENTS AND METHODS We assessed the potential association among faecal microbiota and therapeutic efficacy of CDK4/6-inhibitors on 14 MBC patients classified as responders (R) and non-responders (NR) according to progression-free survival. A stool sample was collected at baseline and V3-V4 16S targeted sequencing was employed to assess its bacterial composition. Statistical associations with R and NR were studied. RESULTS No significant differences were observed between R and NR in terms of α-/β-diversity at the phylum and species level. Machine-learning (ML) algorithms evidenced four bacterial species as a discriminant for R (Bifidobacterium longum, Ruminococcus callidus) and NR (Clostridium innocuum, Schaalia odontolytica), and an area under curve (AUC) of 0.946 after Random Forest modelling. Network analysis evidenced two major clusters of bacterial species, named Species Interacting Groups (SIG)1-2, with SIG1 harbouring 75% of NR-related bacterial species, and SIG2 regrouping 76% of R-related species (p < 0.001). Cross-correlations among several patients' circulating immune cells or biomarkers and bacterial species' relative abundances showed associations with potential prognostic implications. CONCLUSIONS Our results provide initial insights into the gut microbiota involvement in sensitivity and/or resistance to CDK4/6-inhibitors + endocrine therapy in MBC. If confirmed in larger trials, several microbiota manipulation strategies might be hypothesised to improve response to CDK4/6-inhibitors.
Collapse
Affiliation(s)
- Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Federica Gattazzo
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carla Strina
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Manuela Milani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Maria Rosa Cappelletti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Valeria Cervoni
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
8
|
Birmann PT, Casaril AM, Pesarico AP, Rodrigues RR, Conceição FR, Sousa FSS, Collares T, Seixas FK, Savegnago L. Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice. Mol Neurobiol 2023; 60:4017-4029. [PMID: 37016046 DOI: 10.1007/s12035-023-03326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 μg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1β in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.
Collapse
Affiliation(s)
- Paloma T Birmann
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Angela M Casaril
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Ana Paula Pesarico
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Rafael R Rodrigues
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
9
|
Hajj Hussein I, Dosh L, Al Qassab M, Jurjus R, El Masri J, Abi Nader C, Rappa F, Leone A, Jurjus A. Highlights on two decades with microbiota and inflammatory bowel disease from etiology to therapy. Transpl Immunol 2023; 78:101835. [PMID: 37030558 DOI: 10.1016/j.trim.2023.101835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Inflammatory Bowel diseases (IBDs) constitute a complex panel of disorders characterized with chronic inflammation affecting the alimentary canal along with extra intestinal manifestations. Its exact etiology is still unknown; however, it seems to be the result of uncharacterized environmental insults in the intestine and their immunological consequences along with dysbiosis, in genetically predisposed individuals. It was the main target of our team since 2002 to explore the etiology of IBD and the related role of bacteria. For almost two decades, our laboratory, among others, has been involved in the reciprocal interaction between the host gastrointestinal lining and the homing microbiota. In the first decade, the attention of scientists focused on the possible role of enteropathogenic E. coli and its relationship to the mechanistic pathways involved in IBD induced in both rats and mice by chemicals like Iodoacetamide, Dextran Sodium Sulfate, Trinitrobenzene, thus linking microbial alteration to IBD pathology. A thorough characterization of the various models was the focus of research in addition to exploring how to establish an active homeostatic composition of the commensal microbiota, including its wide diversity by restoration of gut microbiota by probiotics and moving from dysbiosis to eubiosis. In the last six years and in order to effectively translate such findings into clinical practice, it was critical to explore their relationship to colorectal cancer CRC both in solid tumors and chemically induced CRC. It was also critical to explore the degree of intestinal dysbiosis and linking to IBD, CRC and diabetes. Remarkably, the active mechanistic pathways were proposed as well as the role of microbiota or bacterial metabolites involved. This review covers two decades of investigations in our laboratory and sheds light on the different aspects of the relationship between microbiota and IBD with an emphasis on dysbiosis, probiotics and the multiple mechanistic pathways involved.
Collapse
Affiliation(s)
- Inaya Hajj Hussein
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Laura Dosh
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Mohamad Al Qassab
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jad El Masri
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Celine Abi Nader
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
10
|
Nowicki KN, Pories WJ. Bacteria with potential: Improving outcomes through probiotic use following Roux-en-Y gastric bypass. Clin Obes 2023; 13:e12552. [PMID: 36127843 PMCID: PMC10078542 DOI: 10.1111/cob.12552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 01/19/2023]
Abstract
Obesity impairs the gastrointestinal microbiome (GM) and may promote micronutrient deficiencies. Bariatric surgery (BS), the most efficacious treatment for severe obesity, produces sustained weight loss and improvements in obesity-related comorbidities, but might not fully restore microbial balance. Moreover, BS may result in deleterious consequences that affect weight loss and further intensify post-operative micronutrient deficiencies. To date, the use of probiotics appears to be associated with greater weight loss in bariatric patients, improved vitamin synthesis and availability, and decreased instances of small intestinal bacterial overgrowth. Thus, manipulation of the GM through probiotics represents a promising therapeutic approach in bariatric patients. This review aims to highlight the benefits of using probiotics in bariatric surgical patients by addressing the impact of probiotics on the GM, how BS impacts the microbial environment, associations between gastrointestinal dysbiosis and negative health outcomes, how BS contributes to dysbiosis, and how probiotics may prove efficacious in treating patients who undergo Roux-en-Y gastric bypass (RYGB). Based on currently available data, the role of microbial manipulation post-RYGB through probiotics has shown great potential, but a further clinical investigation is warranted to better understand their efficacy.
Collapse
|
11
|
Microencapsulation by a Spray Drying Approach to Produce Innovative Probiotics-Based Products Extending the Shelf-Life in Non-Refrigerated Conditions. Molecules 2023; 28:molecules28020860. [PMID: 36677918 PMCID: PMC9862012 DOI: 10.3390/molecules28020860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Recently, there has been a growing interest in producing functional foods containing encapsulated probiotic bacteria due to their positive effects on human health. According to their perceived health benefits, probiotics have been incorporated into a range of dairy products, but the current major challenge is to market new, multicomponent probiotic foods and supplements. Nevertheless, only a few products containing encapsulated probiotic cells can be found as non-refrigerated products. In this work, spray drying technology was investigated in order to produce an innovative nutraceutical formulation based on lactic acid bacteria (LAB), and was able to ensure a good storage stability of probiotics (no less than 109 CFU/cps) in non-refrigerated conditions. Probiotic-loaded microparticles from spray drying experiments were produced under different conditions and compared by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and the enumeration of the number of viable cells in order to identify the formulation exhibiting the most promising characteristics. Results from the dissolution test revealed that the optimized formulation provides a suitable amount of living cells after digestion of microparticles stored for 12 months at room temperature and confirmed that the microencapsulation process by spray drying ensures a good protection of probiotics for nutraceutical purposes.
Collapse
|
12
|
Huang K, Shi W, Yang B, Wang J. The probiotic and immunomodulation effects of Limosilactobacillus reuteri RGW1 isolated from calf feces. Front Cell Infect Microbiol 2023; 12:1086861. [PMID: 36710979 PMCID: PMC9879569 DOI: 10.3389/fcimb.2022.1086861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Limosilactobacillus reuteri is a gut symbiont with multiple remarkable beneficial effects on host health, and members of L. reuteri are valuable probiotic agents. However, L. reuteri showed obvious host specificity. Methods In our study, a novel L. reuteri RGW1 was isolated from feces of healthy calves, and its potential as a probiotic candidate were assessed, by combining in vitro, in vivo experiments and genomic analysis. Results and discussion RGW1 was sensitive to all the antibiotics tested, and it did not contain any virulence factor-coding genes. This isolate showed good tolerance to acid (pH 3.0), 0.3% bile salt, and simulated gastric fluid. Moreover, this isolate showed a high hydrophobicity index (73.7 ± 4.6%) and was able to adhere to Caco-2 cells, and antagonize Escherichia coli F5. Treatment of LPS-induced mice with RGW1 elevated TGF-β and IL-10 levels, while RGW1 cell-free supernatant (RCS) decreased TNF-α levels in the sera. Both RGW1 and RCS increased the villus height and villus height/crypt depth ratio of colon. Genomic analysis revealed the mechanism of the probiotic properties described above, and identified the capacity of RGW1 to biosynthesize L-lysine, folate, cobalamin and reuterin de novo. Our study demonstrated the novel bovine origin L. reuteri RGW1 had multiple probiotic characteristics and immunomodulation effects, and provided a deeper understanding of the relationship between these probiotic properties and genetic features.
Collapse
|
13
|
Postbiotics enhance the functionality of a probiotic edible coating for salmon fillets and the probiotic stability during simulated digestion. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Mhd Omar NA, Dicksved J, Kruger J, Zamaratskaia G, Michaëlsson K, Wolk A, Frank J, Landberg R. Effect of a diet rich in galactose or fructose, with or without fructooligosaccharides, on gut microbiota composition in rats. Front Nutr 2022; 9:922336. [PMID: 36034892 PMCID: PMC9412906 DOI: 10.3389/fnut.2022.922336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that a diet rich in sugars significantly affects the gut microbiota. Adverse metabolic effects of sugars may partly be mediated by alterations of gut microbiota and gut health parameters, but experimental evidence is lacking. Therefore, we investigated the effects of high intake of fructose or galactose, with/without fructooligosaccharides (FOS), on gut microbiota composition in rats and explored the association between gut microbiota and low-grade systemic inflammation. Sprague-Dawley rats (n = 6/group) were fed the following isocaloric diets for 12 weeks (% of the dry weight of the sugars or FOS): (1) starch (control), (2) fructose (50%), (3) galactose (50%), (4) starch+FOS (15%) (FOS control), (5) fructose (50%)+FOS (15%), (6) galactose (50%)+FOS (15%), and (7) starch+olive (negative control). Microbiota composition in the large intestinal content was determined by sequencing amplicons from the 16S rRNA gene; 341F and 805R primers were used to generate amplicons from the V3 and V4 regions. Actinobacteria, Verrucomicrobia, Tenericutes, and Cyanobacteria composition differed between diets. Bifidobacterium was significantly higher in all diet groups where FOS was included. Modest associations between gut microbiota and metabolic factors as well as with gut permeability markers were observed, but no associations between gut microbiota and inflammation markers were observed. We found no coherent effect of galactose or fructose on gut microbiota composition. Added FOS increased Bifidobacterium but did not mitigate potential adverse metabolic effects induced by the sugars. However, gut microbiota composition was associated with several metabolic factors and gut permeability markers which warrant further investigations.
Collapse
Affiliation(s)
- Nor Adila Mhd Omar
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanita Kruger
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Rikard Landberg
- Department of Public Health and Clinical Medicine, Nutritional Research. Umeå University, Umeå, Sweden.,Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Sarmadi B, Jamilian P, Jamilian P, Tutunchi H, Dehghan P. Probiotic therapy, a novel and efficient adjuvant approach to improve glycemic status: An umbrella meta-analysis. Pharmacol Res 2022; 183:106397. [PMID: 35981707 DOI: 10.1016/j.phrs.2022.106397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Probiotics exert several promoting effects on the glycemic status, however, the results of meta-analyses are inconsistent. we conducted an umbrella meta-analysis, across existing systematic reviews and meta-analyses of clinical trials to determine the definite effects of supplementation with probiotics on glycemic indices. METHODS A comprehensive systematic search of PubMed/Medline, Scopus, EMBASE, and Web of Science was carried out till August 2021. The random-effects model was employed to conduct meta-analysis. Meta-analysis studies of randomized clinical trials examining the impacts of probiotics supplementation on glycemic indices were qualified in the current umbrella meta-analysis. RESULTS 48 articles out of 693 in the literature search qualified for inclusion in the umbrella meta-analysis. Pooled effects of probiotics on fasting plasma glucose (FPG), hemoglobin A1C (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), and insulin levels were reported in articles 45, 21, 35, and 33, respectively. The analysis indicated a significant decrease of FPG (ES= -0.51 mg/dL; 95% CI: -0.63, -0.38, p < 0.001), HbA1c (ES = -0.32 mg/dL; 95% CI: -0.44, -0.20, p < 0.001), HOMA-IR (ES= -0.56; 95% CI: -0.66, -0.47, p < 0.001), and insulin levels (ES= -1.09 IU/mL; 95% CI: -1.37, -0.81, p = 0.006) by probiotics supplementation. CONCLUSION Probiotics have amending effects on FPG, HbA1c, HOMA-IR, and insulin levels. A < 8-week period of probiotic supplementation in the moderate dosages (108 or 109 CFU) is an efficacious approach in improving glycemic parameters. Overall, probiotics could be recommended as an adjuvant anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahareh Sarmadi
- Department of Nutrition sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Wu Y, Wu C, Che Y, Zhang T, Dai C, Nguyễn AD, Duan K, Huang Y, Li N, Zhou H, Wan X, Wang Y, Lei H, Hao P, Li C, Wu Y. Effects of Glycyrrhiza Polysaccharides on Chickens' Intestinal Health and Homeostasis. Front Vet Sci 2022; 9:891429. [PMID: 35647094 PMCID: PMC9134109 DOI: 10.3389/fvets.2022.891429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 01/20/2023] Open
Abstract
The overuse of antibiotics in poultry farming causes the accumulation of drug residue in animals' bodies and the occurrence of antibiotic-resistant bacteria, which not only compromise animals' health but ultimately endanger human health. Thus, there is an urgent need for a novel poultry feed additive to substitute for excessive antibiotics. Glycyrrhiza polysaccharides (GPS) derived from Chinese licorice have shown promising immunomodulatory effects in previous studies. The present study investigated the pharmacological effects of GPS on poultry intestines to assess whether it can be used as a feed additive. The results show that GPS can increase production of sIgA, promote the secretion activity of goblet cells, alter the gut microbial composition and lead to changes in short-chain fatty acids. GPS also elevated both Th1 and Th2 immune responses by facilitating the expression of IL-2, IL-4, IL-1β, and IFN-γ while increasing the proportion of both CD4+ and CD8+ cells in the intestine. Moreover, the results of 16S rRNA gene sequencing showed that GPS could significantly change intestinal microbiota composition in the intestine, evidenced by the increased proportion of Bacteroides, Butyricicoccus and Eisenbergiella, as well as a decreased portion of Erysipelatoclostridium, leading to a healthier intestinal microbiota composition for the host. Taken together, it can be concluded that GPS is safe to use as a novel feed additive that can be used as an alternative to prophylactic antibiotics in poultry feeding.
Collapse
Affiliation(s)
- Yu Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenyang Wu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- College of Life Sciences, Experimental Teaching Center of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Audrey D. Nguyễn
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Nannan Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuedi Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjun Lei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Caiyue Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu ;
| |
Collapse
|
17
|
Fiore G, Di Profio E, Sculati M, Verduci E, Zuccotti GV. Health effects of yogurt consumption during paediatric age: a narrative review. Int J Food Sci Nutr 2022; 73:738-759. [PMID: 35450518 DOI: 10.1080/09637486.2022.2065467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Yogurt is a fermented milk product characterised by a peculiar nutritional composition with live and viable cultures of bacteria. Few studies have analysed the benefits of yogurt consumption on health outcomes during paediatric age. Recent epidemiological studies evaluating the nutritional impact of yogurt have demonstrated its significant contribution to nutrients intakes among children. Thus, consuming yogurt is a strategy to achieve recommended nutrient intake and healthier dietary choices, with potential impact on obesity and cardiometabolic outcome in children. Yogurt's effects on paediatric infectious diseases, gastrointestinal diseases and atopic-related disorders are ascribed to the specific probiotic strain administered. Interestingly, the benefits of yogurt consumption are most likely due to effects mediated through the gut microbiota and the enhancement of innate and adaptive immune responses. Therefore, supplementing standard yogurt cultures with probiotic strains could be useful to promote health at different paediatric ages, although more evidence is needed regarding the strain-related effects and their interplay within the paediatric immune system.
Collapse
Affiliation(s)
- Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Michele Sculati
- Department of Public Health, Experimental and Forensic Medicine, Master Course in Dietetics and Clinical Nutrition, University of Pavia, Pavia, Italy.,Italian Danone Institute Foundation, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Li Y, Gao J, Xue L, Shang Y, Cai W, Xie X, Jiang T, Chen H, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Determination of Antiviral Mechanism of Centenarian Gut-Derived Limosilactobacillus fermentum Against Norovirus. Front Nutr 2022; 9:812623. [PMID: 35419394 PMCID: PMC8997286 DOI: 10.3389/fnut.2022.812623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Although noroviruses are the causative agents of most non-bacterial foodborne disease outbreaks, effective antivirals are currently unavailable. Certain probiotic strains have been reported as active antivirals for norovirus infections, but their mechanisms have not been fully elucidated. Herein, we examined the antiviral potential of 122 lactic acid bacteria isolates against murine norovirus (MNV), a human norovirus surrogate. A centenarian gut-derived strain, Limosilactobacillus fermentum PV22, exhibited the strongest MNV antagonism and reduced the viral titer by 2.23 ± 0.38 (log-value) in 5 min with stable activity at 25°C (P < 0.01). Genome mining revealed that its antiviral activity can be attributed to the synthesis of γ-aminobutyric acid, and this finding was experimentally verified. Furthermore, we demonstrated the safety of the isolate and its high intestinal colonization ability. In conclusion, we discovered a centenarian gut-derived L. fermentum strain with strong anti-norovirus activity and identified its antiviral metabolite. Our results will offer new solutions for the prevention and treatment of food-related norovirus infections.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanyan Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
20
|
Yu B, Wang J. The efficacy of parenteral nutrition (PN) and enteral nutrition (EN) supports in cirrhosis: A systematic review and network meta-analysis. Medicine (Baltimore) 2022; 101:e28618. [PMID: 35060537 PMCID: PMC8772655 DOI: 10.1097/md.0000000000028618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Multiple nutritional therapies are currently available for patients with liver cirrhosis, yet many interventions have not been compared head-to-head within randomized clinical trials. OBJECTIVE To evaluate the improvement of nutritional indicators and liver function indexes of liver cirrhosis treated with different nutrition intervention. DATA SOURCE We searched PubMed, Embase. com and Cochrane Library database from construction to April 3, 2020. After eliminating the duplicated or overlapping reports, 6 studies were included. We performed a Bayesian network meta-analysis by Stata 12.0 and GeMTC 0.14.3 in order to compare different nutritional interventions with consistency model. STUDY SELECTION Randomized clinical trials comparing 2 or more therapies in patients with cirrhosis were evaluated. Six randomized clinical trials met the selection criteria. DATA EXTRACTION AND SYNTHESIS Two investigators independently reviewed the full manuscripts of eligible studies and extracted information into an electronic database: patients' characteristics study design, interventions, the number of events of interest in each group. MAIN OUTCOMES AND MEASURES Body mass index, Child-Pugh score, model for end-stage liver disease score, total bilirubin, alanine transaminase, aspartate transaminase, total protein, Triceps skinfold, Midarm Muscle Circumference, Fischer ratio, overall survival. RESULTS There are 6 studies enrolling a total of 1148 patients who received different nutrition supports including parenteral nutrition (PN), enteral nutrition (EN), EN (without branched-chain amino acids), EN + intestinal probiotics, PN + EN, late evening snacks (LES), EN + LES, noLES. The direct comparisons showed that the effect of EN was better than EN (without branched-chain amino acids); EN + intestinal probiotics was better than EN and PN; PN + EN was better than them alone; EN + LES was better than LES and EN; LES was better than noLES. Although the difference of indirect comparisons between the included regimens was not statistically significant, the results showed that EN + intestinal probiotics appeared to be superior to PN + EN. While LES and EN + LES seemed to rank behind them and the difference between them was extremely small. CONCLUSION AND RELEVANCE Available evidence suggests that EN + intestinal probiotics appear to be the most effective strategy for patients with cirrhosis compared with other interventions.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiting Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Mirzaei H, Sharafati Chaleshtori R. Role of fermented goat milk as a nutritional product to improve anemia. J Food Biochem 2021; 46:e13969. [PMID: 34658048 DOI: 10.1111/jfbc.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Goat milk, like cow milk, needs some modifications to be used as the sole source of nutrition during early infancy. For goat milk to be more like human milk and more nutritionally complete, sugar, vitamins and minerals need to be added to it and for reduction of renal solute load, it needs to be diluted. To prevent megaloblastic anemia in infants fed exclusively on goat milk, folic acid should be supplied either by adding it to goat milk or by an oral folic acid supplement. In fortification of milk products, thermal processing, fermentation, and species differences in milk folate bioavailability are three additional factors that should be considered besides absolute difference in folate concentration between goat and human milk. Whether different feeding regimes (e.g., iron and folate content of diets) influence milk folate content needs to be elucidated by more research. Our findings showed that fermented goat milk during anemia recovery can be improve antioxidant status, protection from oxidative damage to biomolecules, protective effects on testis, improve Fe and skeletal muscle homeostasis as well as improve cardiovascular health. PRACTICAL APPLICATIONS: To be used as part of a postweaning nutritionally well-balanced diet, fermented goat milk is most likely an excellent source of nutrition for the human.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Dehghani N, Tafvizi F, Jafari P. Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. BIOIMPACTS 2021; 11:245-252. [PMID: 34631486 PMCID: PMC8494254 DOI: 10.34172/bi.2021.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/13/2020] [Accepted: 07/04/2020] [Indexed: 12/25/2022]
Abstract
![]()
Introduction: Nowadays, probiotic bacteria have been considered as a factor in the prevention and treatment of cancer, especially by induction of apoptosis. This study aimed to evaluate the cytotoxic, anti-proliferative, and apoptotic effects of the supernatant of probiotic Lactobacillus rhamnosus on HT-29 cell line.
Methods : Molecular identification of probiotic L. rhamnosus was carried out using specific primers of 16S rRNA gene and sequencing. HT-29 cells were treated with different concentrations of bacterial supernatants at 24, 48, and 72 hours. MTT assay, Annexin V-FITC, real-time PCR, cell cycle analysis, and DAPI staining tests were conducted to evaluate the induction of apoptosis. The level of cyclin D1 protein was measured by immunocytochemistry method.
Results: The supernatant of L. rhamnosus inhibited the growth of HT-29 cancer cells in a dose- and time-dependent manner. The results of flow cytometry confirmed apoptotic cell death. Probiotic bacterial supernatant caused up-regulation of pro-apoptotic genes including caspase-3, caspase-9, and Bax. In addition, they resulted in down-regulation of Bcl2 and a decrease in expression levels of cyclin D1, cyclin E, and ERBB2 genes. Cancer cells were arrested in the G0/G1 phase of the cell cycle. The results of immunocytochemistry showed significant down-regulation of cyclin D1 protein during the 48 hours treatment with bacterial supernatant compared to the untreated cells.
Conclusion: The supernatant of probiotic L. rhamnosus has a great potential to inhibit the proliferation of HT-29 cells and the induction of apoptosis. L. rhamnosus might be used as a biological anti-cancer factor in the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Najme Dehghani
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
23
|
THE INTESTINAL COMMENSAL, Bacteroides fragilis, MODULATES HOST RESPONSES TO VIRAL INFECTION AND THERAPY: LESSONS FOR EXPLORATION DURING Mycobacterium tuberculosis INFECTION. Infect Immun 2021; 90:e0032121. [PMID: 34606367 DOI: 10.1128/iai.00321-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota has emerged as a critical player in host health. Bacteroides fragilis is a prominent member of the gut microbiota within the phyla Bacteroidetes. This commensal bacterium produces unique capsular polysaccharides processed by antigen-presenting cells and activates CD4+ T cells to secrete inflammatory cytokines. Indeed, due to their immunomodulatory functions, B. fragilis and its capsular polysaccharide-A (PSA) are arguably the most explored single commensal microbiota/symbiotic factor. B. fragilis/PSA has been shown to protect against colitis, encephalomyelitis, colorectal cancer, pulmonary inflammation, and asthma. Here, we review (1) recent data on the immunomodulatory role of B. fragilis/PSA during viral infections and therapy, (2) B. fragilis PSA's dual ability to mediate pro-and anti-inflammatory processes, and the potential for exploring this unique characteristic during intracellular bacterial infections such as with Mycobacterium tuberculosis (3) discuss the protective roles of single commensal-derived probiotic species including B. fragilis in lung inflammation and respiratory infections that may provide essential cues for possible exploration of microbiota based/augmented therapies in tuberculosis (TB). Available data on the relationship between B. fragilis/PSA, the immune system, and disease suggest clinical relevance for developing B. fragilis into a next-generation probiotic or, possibly, the engineering of PSA into a potent carbohydrate-based vaccine.
Collapse
|
24
|
Bioactive packaging based on delipidated egg yolk protein edible films with lactobionic acid and Lactobacillus plantarum CECT 9567: Characterization and use as coating in a food model. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Bindu A, Lakshmidevi N. In vitro and in silico approach for characterization of antimicrobial peptides from potential probiotic cultures against Staphylococcus aureus and Escherichia coli. World J Microbiol Biotechnol 2021; 37:172. [PMID: 34518944 DOI: 10.1007/s11274-021-03135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
The focus of the present study was to characterize antimicrobial peptide produced by potential probiotic cultures of Enterococcus durans DB-1aa (MCC4243), Lactiplantibacillus plantarum Cu2-PM7 (MCC4246) and Limosilactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus MTCC 96 and Escherichia coli MTCC118. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound of all the three selected cultures after ion-exchange chromatography was found to be thermoresistant and stable under a wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, α-amylase and lipase. Comparatively, bacteriocins from L. fermentum Cu3-PM8 and L. plantarum Cu2-PM7 showed higher stability under studied parameter, hence was taken up for further investigation. The apparent molecular weight of bacteriocin from L. fermentum MCC4233 and L. plantarum MCC4246 was found to be 3.5 kDa. Further, plantaricin gene from MCC4246 was characterized in silico. The translated partial amino acid sequence of the plnA gene in MCC4246 displayed 48 amino acids showing 100 % similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 β sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The predicted properties of the peptide included an isoelectric point of 10.82 and a hydrophobicity of 48.6 %. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts "KSSAYSLQMGATAIKQVKKLFKKWGW" to be a peptide responsible for antimicrobial activity. The study provides information about a broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as a biopreservative agent.
Collapse
Affiliation(s)
- Amrutha Bindu
- DOS in Microbiology, University of Mysore, Manasa Gangothri, Mysore, 570005, India
| | - N Lakshmidevi
- DOS in Microbiology, University of Mysore, Manasa Gangothri, Mysore, 570005, India.
| |
Collapse
|
26
|
Walton GE, Gibson GR, Hunter KA. Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. Br J Nutr 2021; 126:219-227. [PMID: 33032673 PMCID: PMC7684010 DOI: 10.1017/s0007114520003980] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
The recent COVID-19 pandemic has altered the face of biology, social interaction and public health worldwide. It has had a destructive effect upon millions of people and is approaching a devastating one million fatalities. Emerging evidence has suggested a link between the infection and gut microbiome status. This is one of the several factors that may contribute towards severity of infection. Given the fact that the gut is heavily linked to immunity, inflammatory status and the ability to challenge pathogens, it is worthwhile to consider dietary intervention of the gut microbiota as means of potentially challenging the viral outcome. In this context, probiotics and prebiotics have been used to mitigate similar respiratory infections. Here, we summarise links between the gut microbiome and COVID-19 infection, as well as propose mechanisms whereby probiotic and prebiotic interventions may act.
Collapse
Affiliation(s)
- Gemma E. Walton
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6AP, UK
| | - Glenn R. Gibson
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6AP, UK
| | - Kirsty A. Hunter
- Exercise and Health Research Group, Department of Sport Science, Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, NottinghamNG11 8NS, UK
| |
Collapse
|
27
|
Jantararussamee C, Rodniem S, Taweechotipatr M, Showpittapornchai U, Pradidarcheep W. Hepatoprotective Effect of Probiotic Lactic Acid Bacteria on Thioacetamide-Induced Liver Fibrosis in Rats. Probiotics Antimicrob Proteins 2021; 13:40-50. [PMID: 32468435 DOI: 10.1007/s12602-020-09663-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response characterized by the accumulation of extracellular matrix. Probiotics have been used to prevent and treat various disorders. The aim of the present study was to investigate the hepatoprotective effects of probiotic lactic acid bacteria (mixture of Lactobacillus paracasei, Lactobacillus casei, and Weissella confusa) on thioacetamide (TAA)-induced liver fibrosis in rats. Thirty-five male Wistar rats were randomly divided into five groups: (1) control, (2) TAA, (3) TAA+probiotics, (4) TAA+silymarin, and (5) probiotics. Group 1 rats received a standard diet. In groups 2-4, fibrosis was induced by intraperitoneal injection of TAA (200 mg/kg BW) 3 times weekly for 8 consecutive weeks. Group 4 received TAA plus 100 mg/kg BW of silymarin 2 times weekly. Groups 3 and 5 were fed 109 CFU/mL viable microbial cells daily by gavage. The rats were sacrificed after 8 weeks of treatment. Liver tissues were collected immediately and processed for histopathological, lipid peroxidation, and Western blot analyses of TNF-α, TGF-β1, and α-SMA. Blood serum was collected to measure liver enzymes. Rats in the TAA groups suffered from hepatic injury (increased serum enzyme levels, liver inflammation, and increased concentration of TNF-α, TGF-β1, and α-SMA proteins) and extensive liver fibrosis. In contrast, TAA-treated rats receiving probiotics or silymarin had significantly lower serum enzyme levels, less inflammation, and less fibrosis. Liver damage was lower in the TAA+probiotics-treated group. Consumption of a mixture of probiotic lactic acid bacteria attenuates the development of liver fibrosis.
Collapse
Affiliation(s)
- Chittapon Jantararussamee
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23 Rd, Bangkok, 10110, Thailand
| | - Siripa Rodniem
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23 Rd, Bangkok, 10110, Thailand
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23 Rd, Bangkok, 10110, Thailand
| | - Udomsri Showpittapornchai
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23 Rd, Bangkok, 10110, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23 Rd, Bangkok, 10110, Thailand.
| |
Collapse
|
28
|
Pavel FM, Vesa CM, Gheorghe G, Diaconu CC, Stoicescu M, Munteanu MA, Babes EE, Tit DM, Toma MM, Bungau S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 11:diagnostics11061090. [PMID: 34203609 PMCID: PMC8232187 DOI: 10.3390/diagnostics11061090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 01/11/2023] Open
Abstract
Two different conditions are included in inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), being distinguished by chronic recurrence of gut inflammation in persons that are genetically predisposed and subjected to environmental causative factors. The normal structure of the gut microbiome and its alterations in IBD were defined in several microbial studies. An important factor in the prolonged inflammatory process in IBD is the impaired microbiome or "dysbiosis". Thus, gut microbiome management is likely to be an objective in IBD treatment. In this review, we analyzed the existing data regarding the pathophysiological/therapeutic implications of intestinal microflora in the development and evolution of IBD. Furthermore, the main effects generated by the administration of probiotics, prebiotics, fecal transplantation, and phytochemicals supplementation were analyzed regarding their potential roles in improving the clinical and biochemical status of patients suffering from Crohn's disease (CD) and ulcerative colitis (UC), and are depicted in the sections/subsections of the present paper. Data from the literature give evidence in support of probiotic and prebiotic therapy, showing effects such as improving remission rate, improving macroscopic and microscopic aspects of IBD, reducing the pro-inflammatory cytokines and interleukins, and improving the disease activity index. Therefore, the additional benefits of these therapies should not be ignored as adjuvants to medical therapy.
Collapse
Affiliation(s)
- Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia C. Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
29
|
Heidari Z, Tajbakhsh A, Gheibi-Hayat SM, Moattari A, Razban V, Berenjian A, Savardashtaki A, Negahdaripour M. Probiotics/ prebiotics in viral respiratory infections: implication for emerging pathogens. Recent Pat Biotechnol 2021; 15:112-136. [PMID: 33874878 DOI: 10.2174/1872208315666210419103742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Viral respiratory infections could result in perturbation of the gut microbiota due to a probable cross-talk between lungs and gut microbiota. This can affect the pulmonary health and the gastrointestinal system. OBJECTIVE This review aimed to discuss the impact of probiotics/ prebiotics and supplements on the prevention and treatment of respiratory infections, especially emerging pathogens. METHODS The data were searched were searched in PubMed, Scopus, Google Scholar, Google Patents, and The Lens-Patent using keywords of probiotics and viral respiratory infections in the title, abstract, and keywords. RESULT Probiotics consumption could decrease the susceptibility to viral respiratory infections, such as COVID-19 and simultaneously enhance vaccine efficiency in infectious disease prevention through the immune system enhancement. Probiotics improve the gut microbiota and the immune system via regulating the innate system response and production of anti-inflammatory cytokines. Moreover, treatment with probiotics contributes to the intestinal homeostasis restitution under antibiotic pressure and decreasing the risk of secondary infections due to viral respiratory infections. Probiotics present varied performances in different conditions; thus, promoting their efficacy through combining with supplements (prebiotics, postbiotics, nutraceuticals, berberine, curcumin, lactoferrin, minerals, and vitamins) is important. Several supplements reported to enhance the probiotics' efficacy and their mechanisms as well as probiotics related patents are summarized in this review. Using nanotechnology and microencapsulation techniques can also improve probiotics efficiency. CONCLUSION Given the global challenge of COVID-19, probiotic/prebiotic and following nutritional guidelines should be regarded seriously. Additionally, their role as an adjuvant in vaccination for immune response augmentation needs attention.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd. Iran
| | - Afagh Moattari
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton. New Zealand
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz. Iran
| |
Collapse
|
30
|
Cui S, Chen C, Gu J, Mao B, Zhang H, Zhao J, Chen W. Tracing Lactobacillus plantarum within the intestinal tract of mice: green fluorescent protein-based fluorescent tagging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1758-1766. [PMID: 32892354 DOI: 10.1002/jsfa.10789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lactobacillus plantarum is an important probiotic with a variety of physiologic functions. Studies have focused on the effects of L. plantarum on host physiology and microbiota, but studies of the fate of strains after they enter the intestine are lacking. In this study, L. plantarum ST-III was genetically engineered to express green fluorescent protein (GFP). Mice were administered ST-III-GFP, and fluorescence imaging was used to study the distribution, location and quantity of strains within 8 h after entry into the intestine. RESULTS The results indicated that genetic modification did not affect the growth of ST-III, tolerance to simulated gastric juice and intestinal fluid or tolerance to antibiotics (with the exception of chloramphenicol). Fluorescence imaging and colony counting indicated that ST-III-GFP can be detected in the small intestine 5 min after oral gavage. After 30 min, nearly all ST-III-GFP was located in the small intestine. After 1.5 h, ST-III-GFP was detected in both the cecum and large intestine. After 4 and 8 h, ST-III-GFP was mainly concentrated in the cecum and large intestine. Compared to the initial amount ingested, the survival rate of ST-III-GFP within the intestine of mice was 10% after 8 h. In addition, a strong linear relationship was found between the fluorescence intensity and the viable count of ST-III-GFP. CONCLUSIONS The obtained data indicate that the amount of ST-III-GFP can be estimated by measuring the fluorescence intensity of this novel strain within the intestinal tract. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, PR China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| |
Collapse
|
31
|
Li XY, Li LX, Li Y, Zhou RC, Li B, Gu X, Fu SC, Jin BY, Zuo XL, Li YQ. Complete genome sequencing of Peyer's patches-derived Lactobacillus taiwanensis CLG01, a potential probiotic with antibacterial and immunomodulatory activity. BMC Microbiol 2021; 21:68. [PMID: 33639835 PMCID: PMC7916312 DOI: 10.1186/s12866-021-02127-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background The genus Lactobacillus is an important component of the gastrointestinal tract of human and animals and commonly considered as probiotic. L. taiwanensis has long been proposed to be a probiotic whereas understanding on this species is still in its infancy. Genomic information of L. taiwanensis is fairly limited. Extensive characterization of its beneficial traits is needed. Results A new strain CLG01 of L. taiwanensis was isolated from mouse Peyer’s patches. We established its probiotic profile through in vitro experiments. Complete genome of this strain was also sequenced and analyzed. L. taiwanensis CLG01 showed robust tolerance to acid and a degree of tolerance to bile salt with a promising antibacterial activity against a broad spectrum of pathogenic bacteria. In vitro treatment of mouse RAW 264.7 macrophage cells with heat-killed bacteria and bacterial supernatant of L. taiwanensis CLG01 resulted in enhancement of immune responses and upregulated expression of TNF-α and IL-6. The strain CLG01 also increased the IL-10 production of macrophages when co-treated with lipopolysaccharide (LPS). Complete genome of L. taiwanensis CLG01 contained a 1.89 Mb chromosome and two plasmids. Further genomic analysis revealed the presence of genes related to its resistance to different stresses and the beneficial effects mentioned above. Moreover, biosynthetic gene clusters (BGCs) encoding antimicrobial peptides, like bacteriocin, linear azol(in)e-containing peptide (LAP) and lanthipeptide, were also identified in the genome of L. taiwanensis CLG01. Conclusions L. taiwanensis CLG01, isolated from mouse Peyer’s patches, is the first L. taiwanensis strain with both phenotypes and genotypes systematically studied. These preliminary data confirmed the role of L. taiwanensis CLG01 as a potential probiotic candidate with antibacterial and immunomodulatory activity, which provide insight for further investigation to this species. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02127-z.
Collapse
Affiliation(s)
- Xiao-Yu Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ru-Chen Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shi-Chen Fu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bi-Ying Jin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China. .,Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
32
|
Bioactive synbiotic coatings with lactobionic acid and Lactobacillus plantarum CECT 9567 in the production and characterization of a new functional dairy product. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Evaluation of the Antibacterial Activity and Probiotic Potential of Lactobacillus plantarum Isolated from Chinese Homemade Pickles. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2020. [DOI: 10.1155/2020/8818989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study investigated the antipathogenic activity and probiotic potential of indigenous lactic acid bacteria (LAB) isolated from Chinese homemade pickles. In total, 27 samples were collected from different sites in China. Fifty-nine yielded pure colonies were identified by 16S rRNA gene sequencing as LAB and were initially evaluated for the antibacterial activity in vitro. Initial screening yielded Lactobacillus plantarum GS083, GS086, and GS090, which showed a broad-spectrum antibacterial activity against food-borne pathogens, especially multidrug-resistant pathogens. Meanwhile, organic acids were mainly responsible for the antimicrobial activity of the LAB strains, and the most abundant of these was lactic acid (19.32 ± 0.95 to 24.79 ± 0.40 g/l). Additionally, three L. plantarum strains demonstrated several basic probiotic characteristics including cell surface hydrophobicity, autoaggregation, and survival under gastrointestinal (GI) tract conditions. The safety of these isolates was also evaluated based on their antibiotic susceptibility, hemolytic risk, bile salt hydrolase activity, and existence of virulence or antibiotic resistance genes. All strains were safe at both the genomic and phenotypic levels. Therefore, L. plantarum GS083, GS086, and GS090 are fairly promising probiotic candidates and may be favorable for use as preservatives in the food industry.
Collapse
|
34
|
Soares MH, Rodrigues GA, Barbosa LMR, Valente Júnior DT, Santos FC, Rocha GC, Campos PHRF, Saraiva A. Effects of crude protein and lactose levels in diets on growth performance, intestinal morphology, and expression of genes related to intestinal integrity and immune system in weaned piglets. Anim Sci J 2020; 91:e13429. [PMID: 32696533 DOI: 10.1111/asj.13429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 05/03/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022]
Abstract
To evaluate the effects of crude protein (CP) and lactose (LAC) for weaned piglets on performance, intestinal morphology, and expression of genes related to intestinal integrity and immune system, 144 piglets with initial weight 7.17 ± 0.97 kg were allotted in a randomized design, in a 2 × 3 factorial arrangement (20.0% and 24.0% CP and 8.0%, 12.0%, and 16.0% LAC) with eight replicates. Piglets fed 20.0% CP had greater weight gain and feed intake. Including 12.0% LAC in the 20.0% CP diet provided higher villous height in the duodenum than 8.0% LAC, and 12.0% or 16.0% LAC in the 24.0% CP diet resulted in higher villous height in the jejunum and ileum, and higher villi/crypt ratio in the ileum than 8.0% LAC. No effects of CP and LAC on interleukin-1β and tumor necrosis factor-α mRNA were observed. The 16.0% LAC diet provided higher gene expression of transforming-β1 growth factor. Feeding 20.0% CP resulted in better performance than 24.0% CP. The 12.0% LAC diet promoted greater genetic expression of occludin and zonula occludens. Including 12.0% LAC in the diet may improve intestinal epithelial morphology and integrity, and these improvements are more evident when piglets are fed diets with 24.0% CP.
Collapse
Affiliation(s)
- Marcos H Soares
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Gustavo A Rodrigues
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Lívia M R Barbosa
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | | | - Felipe C Santos
- Department of Biology, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Gabriel C Rocha
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Paulo H R F Campos
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Alysson Saraiva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| |
Collapse
|
35
|
Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr) 2020; 48:771-788. [PMID: 32763025 DOI: 10.1016/j.aller.2020.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Allergic diseases have been a global problem over the past few decades. The effect of allergic diseases on healthcare systems and society is generally remarkable and is considered as one of the most common causes of chronic and hospitalized disease. The functional ability of probiotics to modulate the innate/acquired immune system leads to the initiation of mucosal/systemic immune responses. Gut microbiota plays a beneficial role in food digestion, development of the immune system, control/growth of the intestinal epithelial cells and their differentiation. Prescribing probiotics causes a significant change in the intestinal microflora and modulates cytokine secretion, including networks of genes, TLRs, signaling molecules and increased intestinal IgA responses. The modulation of the Th1/Th2 balance is done by probiotics, which suppress Th2 responses with shifts to Th1 and thereby prevent allergies. In general, probiotics are associated with a decrease in inflammation by increasing butyrate production and induction of tolerance with an increase in the ratio of cytokines such as IL-4, IL-10/IFN-γ, Treg/TGF-β, reducing serum eosinophil levels and the expression of metalloproteinase-9 which contribute to the improvement of the allergic disease's symptoms. Finally, it can be said that the therapeutic approach to immunotherapy and the reduction of the risk of side effects in the treatment of allergic diseases is the first priority of treatment and the final approach that completes the first priority in maintaining the condition and sustainability of the tolerance along with the recovery of the individual.
Collapse
|
36
|
Laomongkholchaisri P, Teanpaisan R, Wonglapsuwan M, Piwat S. Impact of Potential Probiotic Lactobacillus Strains on Host Growth and Development in a Drosophila melanogaster Model. Probiotics Antimicrob Proteins 2020; 13:390-397. [PMID: 32875521 DOI: 10.1007/s12602-020-09705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 11/24/2022]
Abstract
Lactobacillus paracasei SD1, Lactobacillus rhamnosus SD11, and Lactobacillus gasseri SD12 were proposed as potential probiotics for oral health. However, the effects of them on host physiology are still unknown. This study aimed to select strains that can promote host growth and development in monocolonized Drosophila model compared with axenic and the commercial Lactobacillus rhamnosus GG-treated flies. The morphogenesis and growth of axenic Drosophila melanogaster were assessed from embryo to adult stage when provided with each probiotic strain-supplemented food. The colonization and persistence of probiotic in fly gut were also evaluated. The results indicated that axenic condition caused the lowest adult weight and emergence rate. All probiotic groups had higher weight than axenic group. Lact. rhamnosus SD11 group presented high adult emergence rate equivalent to Lact. rhamnosus GG group, which is significantly higher than the others. However, Lact. gasseri SD12 group had significantly lower adult weight and emergence rate when compared with Lact. rhamnosus GG group. The gut probiotics levels were rapidly increased within the first day after receiving probiotics. After probiotic cessation, their number in gut decreased and was maintained at low level, except for Lact. gasseri SD12, which completely vanished since day one. In conclusion, Lact. paracasei SD1, Lact. rhamnosus SD11, and Lact. rhamnosus GG can affect morphogenesis and weight of flies when fed since immature stage and have short period gut colonization. The findings of this study could possibly imply comparable health-promoting effects between Lact. paracasei SD1 and Lact. rhamnosus SD11 to commercial strain in Drosophila model.
Collapse
Affiliation(s)
- Pasaraporn Laomongkholchaisri
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Thailand.,Common Oral Diseases and Epidemiology Research Center, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Thailand
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiology Research Center, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Thailand.,Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Thailand
| | - Monwadee Wonglapsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | - Supatcharin Piwat
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Thailand. .,Common Oral Diseases and Epidemiology Research Center, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, Thailand.
| |
Collapse
|
37
|
Schmidt AC, Leroux JC. Treatments of trimethylaminuria: where we are and where we might be heading. Drug Discov Today 2020; 25:1710-1717. [DOI: 10.1016/j.drudis.2020.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
38
|
Pazhoohan M, Sadeghi F, Moghadami M, Soltanmoradi H, Davoodabadi A. Antimicrobial and antiadhesive effects of Lactobacillus isolates of healthy human gut origin on Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC). Microb Pathog 2020; 148:104271. [PMID: 32835777 DOI: 10.1016/j.micpath.2020.104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Diarrhea is one of the five leading causes of mortality in children under the age of five, especially in developing countries. Nowadays, by increasing the resistance of pathogens to antibiotics, employment of probiotics as novel therapeutic method, could be considered as a necessity.The aim of this study was to examine the features and antagonistic action of Lactobacillus strains, against the growth and adhesion of Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC) strains creating diarrhea in children. Then, we introduced new strains of Lactobacillus as probiotic candidates, to prevent diarrheal infections in children. METHODS Stool samples were collected from healthy individuals, and Lactobacillus strains were isolated. The antimicrobial effect of the isolates against ETEC and EAEC strains investigated by agar well diffusion method and their resistance to acidic and bile conditions. The potency of selected isolates in adhesion to HT-29 epithelial cells and their ability to inhibit the adhesion of ETEC and EAEC strains to this cell were measured. At the end, identification of the optimally efficient Lactobacillus isolates was performed by 16S rDNA sequencing and making Phylogenetic tree using MEGA (version 4.0) software. RESULTS In total, 157 isolates suspected to Lactobacillus were isolated from 115 stool samples. In antimicrobial activity test, ETEC and EAEC growth was inhibited by 132 and 84 isolates respectively, while 17 isolates showed resistance to Bile. Of 17 Bile resistant Lactobacillus isolates, 15 isolates were resistant to pH: 3.2. Further, among 15 isolates, only two isolates, were resistant to pH: 2.5. In the adhesion assay, five isolates had more adhesion tendency to HT-29 epithelial cells than L. rhamnosus GG, which was considered as a positive control. Investigation of isolates that inhibit adhesion of ETEC and EAEC strains to HT-29 cells showed that four isolates were able to inhibit ETEC adhesion. However, only one out of four isolates was relatively able to have an impact on EAEC adhesion. CONCLUSION In conclusion, three species of Lactobacillus including L. paracasei (two strain), L. fermentum (two strain) and L. plantarum showed good probiotic properties compared to other isolates that were identified by sequencing. In this study, strain L. fermentum 61.1 had the highest adhesion ability to HT-29 cells and strain L. paracasei 47.2 had the highest potency to inhibit ETEC adhesion to HT-29 cells. These isolates have good probiotic properties and are likely to be effective in preventing or treating diarrheal infections, especially in children.
Collapse
Affiliation(s)
- Maryam Pazhoohan
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Farzin Sadeghi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Morteza Moghadami
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Soltanmoradi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Davoodabadi
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran; Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
39
|
Yu H, Liu W, Li D, Liu C, Feng Z, Jiang B. Targeting Delivery System for Lactobacillus Plantarum Based on Functionalized Electrospun Nanofibers. Polymers (Basel) 2020; 12:polym12071565. [PMID: 32679713 PMCID: PMC7407523 DOI: 10.3390/polym12071565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
With the increased interest in information on gut microbes, people are realizing the benefits of probiotics to health, and new technologies to improve the viability of probiotics are still explored. However, most probiotics have poor resistance to adverse environments. In order to improve the viability of lactic acid bacteria, polylactic acid (PLA) nanofibers were prepared by coaxial electrospinning. The electrospinning voltage was 16 kV, and the distance between spinneret and collector was 15 cm. The feed rates of the shell and core solutions were 1.0 and 0.25 mL/h, respectively. The lactic acid bacteria were encapsulated in the coaxial electrospun nanofibers with PLA and fructooligosaccharides (FOS) as the shell materials. Scanning electron microscopy, transmission electron microscopy, and laser scanning confocal microscopy showed that lactic acid bacteria were encapsulated in the coaxial electrospun nanofibers successfully. The water contact angle test indicated that coaxial electrospun nanofiber films had good hydrophobicity. An in vitro simulated digestion test exhibited that the survival rate of lactic acid bacteria encapsulated in coaxial electrospun nanofiber films was more than 72%. This study proved that the viability of probiotics can be improved through encapsulation within coaxial electrospun PLA nanofibers and provided a novel approach for encapsulating bioactive substances.
Collapse
Affiliation(s)
| | | | | | | | - Zhibiao Feng
- Correspondence: (Z.F.); (B.J.); Tel.: +86-451-5519-02-22 (Z.F.); +86-451-5519-09-74 (B.J.)
| | - Bin Jiang
- Correspondence: (Z.F.); (B.J.); Tel.: +86-451-5519-02-22 (Z.F.); +86-451-5519-09-74 (B.J.)
| |
Collapse
|
40
|
Rahimlou M, Hosseini SA, Majdinasab N, Haghighizadeh MH, Husain D. Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr Neurosci 2020; 25:411-422. [PMID: 32500827 DOI: 10.1080/1028415x.2020.1758887] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Mental disorders is one of the main causes of disability and lower life expectancy among patients with Multiple Sclerosis (MS). The present trial aimed to examine the efficacy of multi-strain probiotic supplementation on circulating levels of BDNF, NGF, IL-6 and mental health in patients with MS.Methods: This trial was conducted among 70 patients with MS that referred to the MS Association. Patients were randomized into intervention and control groups to receive 2 multi-strain probiotic capsules or placebo, daily for six months. Serum BDNF, NGF and IL-6 was measured by ELISA kits. Mental health parameters were assessed by valid questionnaires in the baseline and end of the study.Results: Of the 70 patients enrolled in this study, 65 subjects were included in the final analysis. From baseline to 6 months, probiotic supplementation resulted in a significant increase in BDNF and a significant reduction in the IL-6 levels (P < 0.001). Our findings revealed that probiotic supplementation compared to placebo caused a significant improvement in the general health questionnaire-28 (GHQ-28) (-5.31 ± 4.62 vs. -1.81 ± 4.23; P = 0.002), Beck Depression Inventory-II (BDI-II) (-4.81 ± 0.79 vs. -1.90 ± 0.96; P = 0.001), Fatigue Severity Scale (FSS) (-3.81 ± 6.56 vs. 0.24 ± 5.44; P = 0.007) and Pain Rating Index (PRI) (-3.15 ± 4.51 vs. -0.09 ± 3.67; P = 0.004). However, we not found any significant difference between the two groups in other factors (P > 0.05).Conclusion: Overall, six months of probiotic supplementation resulted in greater improvement in mental health parameters.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Majdinasab
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hosein Haghighizadeh
- Department of Biostatistics and Epidemiology, School of Health Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Durdana Husain
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Mbye M, Baig MA, AbuQamar SF, El-Tarabily KA, Obaid RS, Osaili TM, Al-Nabulsi AA, Turner MS, Shah NP, Ayyash MM. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci Food Saf 2020; 19:1110-1124. [PMID: 33331686 DOI: 10.1111/1541-4337.12554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Probiotics are defined as live microorganisms that improve the health of the host when administered in adequate quantities. Nonetheless, probiotics encounter extreme environmental conditions during food processing or along the gastrointestinal tract. This review discusses different environmental stresses that affect probiotics during food preparation, storage, and along the alimentary canal, including high temperature, low temperature, low and alkaline pH, oxidative stress, high hydrostatic pressure, osmotic pressure, and starvation. The understanding of how probiotics deal with environmental stress and thrive provides useful information to guide the selection of the strains with enhanced performance in specific situations, in food processing or during gastrointestinal transit. In most cases, multiple biological functions are affected upon exposure of the cell to environmental stress. Sensing of sublethal environmental stress can allow for adaptation processes to occur, which can include alterations in the expression of specific proteins.
Collapse
Affiliation(s)
- Mustapha Mbye
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Mohd Affan Baig
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE.,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University (UAEU), Al-Ain, UAE.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mark S Turner
- School of Agriculture and Food Sciences, the University of Queensland (UQ), Brisbane, Queensland, Australia
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mutamed M Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| |
Collapse
|
42
|
Recent Advances in the Physiology of Spore Formation for Bacillus Probiotic Production. Probiotics Antimicrob Proteins 2020; 11:731-747. [PMID: 30515722 DOI: 10.1007/s12602-018-9492-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spore-forming probiotic bacteria have received a wide and constantly increasing scientific and commercial interest. Among them, Bacillus species are the most studied and well-characterized Gram-positive bacteria. The use of bacilli as probiotic products is expanding especially rapidly due to their inherent ability to form endospores with unique survivability and tolerance to extreme environments and to produce a large number of valuable metabolites coupled with their bio-therapeutic potential demonstrating immune stimulation, antimicrobial activities and competitive exclusion. Ease of Bacillus spp. production and stability during processing and storage make them a suitable candidate for commercial manufacture of novel foods or dietary supplements for human and animal feeds for livestock, especially in the poultry and aquaculture industries. Therefore, the development of low-cost and competitive technologies for the production of spore-forming probiotic bacteria through understanding physiological peculiarities and mechanisms determining the growth and spore production by Bacillus spp. became necessary. This review summarizes the recent literature and our own data on the physiology of bacilli growth and spore production in the submerged and solid-state fermentation conditions, focusing on the common characteristics and unique properties of individual bacteria as well as on several approaches providing enhanced spore formation.
Collapse
|
43
|
Feng K, Huang RM, Wu RQ, Wei YS, Zong MH, Linhardt RJ, Wu H. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions. Food Chem 2020; 310:125977. [DOI: 10.1016/j.foodchem.2019.125977] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
|
44
|
Probiotic and Cytotoxic Potential of Vaginal Lactobacillus Isolated from Healthy Northeast Indian Women. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Bonner MTL, Allen DE, Brackin R, Smith TE, Lewis T, Shoo LP, Schmidt S. Tropical Rainforest Restoration Plantations Are Slow to Restore the Soil Biological and Organic Carbon Characteristics of Old Growth Rainforest. MICROBIAL ECOLOGY 2020; 79:432-442. [PMID: 31372686 PMCID: PMC7033081 DOI: 10.1007/s00248-019-01414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Widespread and continuing losses of tropical old-growth forests imperil global biodiversity and alter global carbon (C) cycling. Soil organic carbon (SOC) typically declines with land use change from old-growth forest, but the underlying mechanisms are poorly understood. Ecological restoration plantations offer an established means of restoring aboveground biomass, structure and diversity of forests, but their capacity to recover the soil microbial community and SOC is unknown due to limited empirical data and consensus on the mechanisms of SOC formation. Here, we examine soil microbial community response and SOC in tropical rainforest restoration plantings, comparing them with the original old-growth forest and the previous land use (pasture). Two decades post-reforestation, we found a statistically significant but small increase in SOC in the fast-turnover particulate C fraction. Although the δ13C signature of the more stable humic organic C (HOC) fraction indicated a significant compositional turnover in reforested soils, from C4 pasture-derived C to C3 forest-derived C, this did not translate to HOC gains compared with the pasture baseline. Matched old-growth rainforest soils had significantly higher concentrations of HOC than pasture and reforested soils, and soil microbial enzyme efficiency and the ratio of gram-positive to gram-negative bacteria followed the same pattern. Restoration plantings had unique soil microbial composition and function, distinct from baseline pasture but not converging on target old growth rainforest within the examined timeframe. Our results suggest that tropical reforestation efforts could benefit from management interventions beyond re-establishing tree cover to realize the ambition of early recovery of soil microbial communities and stable SOC.
Collapse
Affiliation(s)
- Mark T L Bonner
- School of Agriculture and Food Science, University of Queensland, Brisbane, Queensland, 4072, Australia.
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90736, Umeå, Sweden.
| | - Diane E Allen
- School of Agriculture and Food Science, University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Environment and Science, Brisbane, Queensland, 4001, Australia
| | - Richard Brackin
- School of Agriculture and Food Science, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Tim E Smith
- Department of Agriculture and Fisheries, Queensland Government, University of the Sunshine Coast, Sippy Downs, 4556, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4556, Australia
| | - Tom Lewis
- Department of Agriculture and Fisheries, Queensland Government, University of the Sunshine Coast, Sippy Downs, 4556, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4556, Australia
| | - Luke P Shoo
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
46
|
Rocha-Ramírez LM, Hernández-Ochoa B, Gómez-Manzo S, Marcial-Quino J, Cárdenas-Rodríguez N, Centeno-Leija S, García-Garibay M. Evaluation of Immunomodulatory Activities of the Heat-Killed Probiotic Strain Lactobacillus casei IMAU60214 on Macrophages In Vitro. Microorganisms 2020; 8:microorganisms8010079. [PMID: 31936101 PMCID: PMC7022880 DOI: 10.3390/microorganisms8010079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/16/2022] Open
Abstract
Most Lactobacillus species have beneficial immunological (“immunoprobiotic”) effects in the host. However, it is unclear how probiotic bacteria regulate immune responses. The present study investigated the effects of heat-killed Lactobacillus casei IMAU60214 on the activity of human monocyte-derived macrophages (MDMs). Human MDMs were treated with heat-killed L. casei at a ratio (bacteria/MDM) of 50:1, 100:1, 250:1, and 500:1, and then evaluated for the following: NO production, by Griess reaction; phagocytosis of FITC-labeled Staphylococcus aureus particles; cytokine secretion profile (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-12p70, IL-10, and transforming growth factor (TGF)-β) by ELISA; and costimulatory molecule (CD80 and CD86) surface expression, by flow cytometry. Heat-killed L. casei IMAU60214 enhanced phagocytosis, NO production, cytokine release, and surface expression of CD80 and CD86 in a dose-dependent manner. All products were previously suppressed by pretreatment with a Toll-like receptor 2 (TLR2)-neutralizing antibody. Overall, our findings suggest that this probiotic strain promotes an M1-like pro-inflammatory phenotype through the TLR2 signaling pathway. These effects on macrophage phenotype help explain the probiotic efficacy of Lactobacillus and provide important information for the selection of therapeutic targets and treatments compatible with the immunological characteristics of this probiotic strain.
Collapse
Affiliation(s)
- Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico
- Correspondence: ; Tel.: +52-55-5228-9917 (ext. 2084)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica y Biología Celular, Hospital Infantil de México Federico Gómez, Secretaría de Salud. Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaria de Salud, Ciudad de México 04530, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Sara Centeno-Leija
- Consejo Nacional Ciencia y Tecnologia (CONACYT) Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28629, Mexico;
| | - Mariano García-Garibay
- Departamento de Ciencias de la Alimentación, Unidad Lerma, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col Vicentina, Ciudad de México 09340, Mexico;
| |
Collapse
|
47
|
Ahmad I, Khalique A, Shahid MQ, Ahid Rashid A, Faiz F, Ikram MA, Ahmed S, Imran M, Khan MA, Nadeem M, Afzal MI, Umer M, Kaleem I, Shahbaz M, Rasool B. Studying the Influence of Apple Peel Polyphenol Extract Fortification on the Characteristics of Probiotic Yoghurt. PLANTS 2020; 9:plants9010077. [PMID: 31936135 PMCID: PMC7020425 DOI: 10.3390/plants9010077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 02/03/2023]
Abstract
The aim of the current study was to evaluate the effect of apple peel polyphenol extract (APPE) on the physicochemical and microbiological properties of probiotic yoghurt. Five concentrations of APPE were added in probiotic yoghurt as: (1) CTL, control without APPE; (2) AE1, addition of 1% APPE; (3) AE2, addition of 2% APPE; (4) AE3, addition of 3% APPE; (5) AE4, addition of 4% APPE; and (6) AE5, addition of 5% APPE. The prepared probiotic yoghurt was stored at 4 °C for 21 days and analyzed for physicochemical and microbiological properties. The initial viable count of L. bulgaricus, S. thermophilus, B. lactis and L. acidophilus were similar in all yoghurt samples at day 1. The maximum viability loss of probiotics was observed in CTL (p < 0.05). The lowest viability loss of probiotics was observed in AE5 samples (p < 0.05). The acidity, water holding capacity and viscosity were increased with the addition of APPE. No significant effects were observed on milk fat and total solid contents of probiotic yoghurt with the addition of APPE. The total phenolic contents of probiotic yoghurt increased significantly as 0.59, 0.71, 0.97, 1.18, 1.35 in AE1, AE2, AE3, AE4 and AE5, samples respectively. It was observed that AE3 and AE4 samples had better taste, flavour and colour with good texture. The survival of probiotics and antioxidant activity of the yoghurts were enhanced with the addition of APPE. In conclusion, apple peels could be successfully used as prebiotic in yoghurt with increased viable counts of probiotics.
Collapse
Affiliation(s)
- Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (I.A.); (M.A.I.)
| | - Anjum Khalique
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Muhammad Qamar Shahid
- Department of Livestock Production, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Abdul Ahid Rashid
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore 54000, Pakistan;
| | - Furukh Faiz
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit 15100, Pakistan;
| | - Muhammad Asim Ikram
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (I.A.); (M.A.I.)
| | - Sheraz Ahmed
- Department of Food Sciences, Faculty of Biosciences, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan;
| | - Muhammad Asif Khan
- University of Agriculture, Faisalabad, Sub-Campus Burewala, Vehari 61100, Pakistan;
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus 61100, Pakistan;
| | - Muhammad Inam Afzal
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (M.I.A.); (M.U.); (K.I.)
| | - Muhammad Umer
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (M.I.A.); (M.U.); (K.I.)
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (M.I.A.); (M.U.); (K.I.)
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture, Multan 66000, Pakistan
- Correspondence: (M.S.); (B.R.)
| | - Bilal Rasool
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Punjab 38000, Pakistan
- Correspondence: (M.S.); (B.R.)
| |
Collapse
|
48
|
Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Diez-Gutiérrez L, San Vicente L, R. Barrón LJ, Villarán MDC, Chávarri M. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103669] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
Ducray HAG, Globa L, Pustovyy O, Roberts MD, Rudisill M, Vodyanoy V, Sorokulova I. Prevention of excessive exercise-induced adverse effects in rats with Bacillus subtilis BSB3. J Appl Microbiol 2019; 128:1163-1178. [PMID: 31814258 PMCID: PMC7079029 DOI: 10.1111/jam.14544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Aims To characterize efficacy of the Bacillus subtilis BSB3 (BSB3) strain in the prevention of excessive exercise‐induced side effects and in maintaining stability of the gut microbiota. Methods and Results Rats were pretreated by oral gavage with B. subtilis BSB3 (BSB3) or with phosphate‐buffered saline (PBS) twice a day for 2 days, and were either exposed forced treadmill running or remained sedentary. Histological analysis of intestine, immunofluorescence staining of tight junction (TJ) proteins, serum lipopolysaccharide and intestinal fatty acid‐binding protein assay, culture‐based analysis and pyrosequencing for the gut microbiota were performed for each rat. Forced running resulted in a substantial decrease in intestinal villi height and total mucosa thickness, the depletion of Paneth cells, an inhibition of TJ proteins expression. Short‐term treatment of rats with BSB3 before running prevented these adverse effects. Culture‐based analysis of the gut microbiota revealed significant elevation of pathogenic microorganisms only in treadmill‐exercised rats pretreated with PBS. High‐throughput 16S rRNA gene sequencing also revealed an increase in pathobionts in this group. Preventive treatment of animals with BSB3 resulted in predominance of beneficial bacteria. Conclusions BSB3 prevents excessive exercise‐associated complications by beneficial modulation of the gut microbiota. Significance and Impact of the Study Our study shows a new application of beneficial bacteria for prevention the adverse effects of excessive exercise.
Collapse
Affiliation(s)
- H A G Ducray
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - L Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - O Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - M D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - M Rudisill
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - V Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - I Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| |
Collapse
|