1
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Millar JE, Craven TH, Shankar-Hari M. Steroids and Immunomodulatory Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:885-894. [PMID: 39443005 DOI: 10.1016/j.ccm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by a dysregulated immune response to infection or injury. This framework has driven long-standing interest in immunomodulatory therapies as treatments for ARDS. In this narrative review, we first define what constitutes a dysregulated immune response in ARDS. In this context, we describe the rationale and available evidence for immunomodulatory therapies studied in randomized controlled trials of ARDS patients to date. Finally, we address factors that have contributed to the failure to develop therapies in the past and highlight current and future developments designed to address them.
Collapse
Affiliation(s)
- Jonathan E Millar
- Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Critical Care, Intensive Care Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas H Craven
- Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
4
|
Keshavarz Shahbaz S, Koushki K, Keshavarz Hedayati S, McCloskey AP, Kesharwani P, Naderi Y, Sahebkar A. Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases. Med Res Rev 2024; 44:2793-2824. [PMID: 39031446 DOI: 10.1002/med.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadije Koushki
- Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yazdan Naderi
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Gomes Daré R, Beatriz Chieco Costa A, Silva Martins T, Lopes LB. Simvastatin and adenosine-co-loaded nanostructured lipid carriers for wound healing: Development, characterization and cell-based investigation. Eur J Pharm Biopharm 2024:114533. [PMID: 39414092 DOI: 10.1016/j.ejpb.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Chronic wounds represent a significant global health burden, characterized by delayed skin healing and associated comorbidities. The present study aimed to develop nanostructured lipid carriers (NLCs) as a topical delivery system for the co-administration of simvastatin and adenosine to address chronic wound management. The rationale behind the co-delivery approach was to mitigate the cytotoxicity associated with high-dose simvastatin, while preserving its therapeutic benefits through a potential synergistic or additive effect. A significant challenge in the development of these NLCs was the encapsulation of the highly hydrophilic adenosine within the hydrophobic lipid matrix. The NLCs were prepared using a hot homogenization-sonication method with a double emulsion technique and optimized through a series of formulation trials, employing various surfactants, solid and liquid lipids, to achieve efficient drug encapsulation, particularly for the hydrophilic adenosine. Optimized formulations F5- and F10-S/A 0.6 %/2 % (containing 0.6 % simvastatin and 2 % adenosine), exhibited promising physicochemical properties. The main difference was the liquid lipid used: F5 containing Miglyol 810 N, while F10 Capmul MCM C-8. Both formulations displayed a mean particle size below 230 nm, a polydispersity index (PDI) of approximately 0.2, and a zeta potential of around -22 mV. While simvastatin association efficiency (AE) was nearly 100 %, adenosine AE was higher for F10 (24 %), compared to F5 (13.5 %). F5 demonstrated superior stability compared to F10, maintaining consistent particle size and PDI over a 60-day period. Formulation F5 also demonstrated superior cell-based in vitro performance compared to F10, with higher cell viability (MTT assay), greater cell proliferation induction (SRB assay), and enhanced cell proliferation and migration in the wound-scratch assay. While F10 displayed higher adenosine AE, F5 excelled in terms of stability and biological activity. The slightly increase in intracellular reactive oxygen species levels observed with F5 may contribute to its enhanced proliferative effects. In-depth characterization revealed that F5 comprised spherical nanoparticles, and thermal analysis indicated no significant changes in the nanocarrier structure upon drug encapsulation. Additionally, ex vivo permeability study demonstrated superior skin retention of both simvastatin and adenosine for F5 compared to an emulsion control. Overall, the F5 nanocarrier demonstrated suitable physicochemical properties, cellular biocompatibility, induction of cell proliferation and migration events, and drug retention capacity in the skin layers, indicating its potential as a promising topical treatment for difficult-to-heal wounds.
Collapse
Affiliation(s)
- Regina Gomes Daré
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil.
| | - Ana Beatriz Chieco Costa
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil
| | - Tereza Silva Martins
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 210 São Nicolau Street, 09913-030 Diadema, SP, Brazil
| | - Luciana B Lopes
- Institute of Biomedical Sciences, University of São Paulo, 1524 Professor Lineu Prestes Avenue, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Henry JP, Gabriel L, Luchian ML, Higny J, Benoit M, Xhaët O, Blommaert D, Telbis AM, Robaye B, Guedes A, Demeure F. Evaluating the Efficacy of a Pre-Established Lipid-Lowering Algorithm in Managing Hypercholesterolemia in Patients at Very High Cardiovascular Risk. J Pers Med 2024; 14:1044. [PMID: 39452551 PMCID: PMC11509033 DOI: 10.3390/jpm14101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Recent data from European studies (EUROASPIRE V, DA VINCI, SANTORINI) indicate that achieving the LDL cholesterol (LDL-C) target in patients at very high cardiovascular risk is uncommon. Additionally, using a combination therapy involving statins and ezetimibe remains infrequent. METHODS A single-center assessment of a pre-defined lipid lowering treatment algorithm's effectiveness at achieving the LDL-C target in patients at very high cardiovascular risk one month and one year after hospitalization. RESULTS 81 patients were included, all in secondary prevention. The average age of the patient was 66.9 years, and the main cardiovascular risk factors included hypertension, diabetes mellitus, and smoking history. Following the predefined lipid-lowering algorithm specific to our study, which involves initiating high-intensity statin therapy or a combination of statin and ezetimibe depending on initial LDL-C levels and patient history; 30 (37%) patients initiated high-intensity statin therapy (Atorvastatin (40 mg, 80 mg) or Rosuvastatin (20 mg, 40 mg)), while 51 (63%) started combination therapy with high-intensity statin and ezetimibe 10 mg. After one year, 57 (70.4%) remained adherent to their initial treatment, achieving a mean LDL-C of 49.5 ± 16.9 mg/dL, with 36 (63.2%) of them reaching the LDL-C target of <55 mg/dL. A total of 13 patients discontinued treatment, and 9 were lost to follow-up, withdrew from the study, or died. CONCLUSION Initiating dual statin and ezetimibe therapy or high-intensity statin therapy early, based on the expected treatment efficacy, holds the potential to more rapidly and effectively achieve LDL-C targets in a larger proportion of very high-risk cardiovascular patients.
Collapse
Affiliation(s)
- Jean Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (L.G.); (M.-L.L.); (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (A.G.); (F.D.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lin YC, Lai TS, Chen YT, Chou YH, Chen YM, Hung KY, Tu YK. Comparative efficacy and choice of lipid-lowering drugs for cardiovascular and kidney outcomes in patients with chronic kidney disease: A systematic review and network meta-analysis. J Formos Med Assoc 2024:S0929-6646(24)00474-1. [PMID: 39389802 DOI: 10.1016/j.jfma.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The effect of exact classes of lipid-lowering drugs (LLDs) on preventing major adverse cardiovascular events (MACEs) and poor renal outcomes is not well characterized in the chronic kidney disease (CKD) population. METHODS We performed a frequentist random-effects network meta-analysis of randomized controlled trials (RCTs) to evaluate the protective effect of the LLDs in non-dialysis CKD patients. The PubMed, Embase, Web of Science, and Cochrane Library databases were systematically searched for relevant trials published before March 31, 2024. The primary outcome was the incidence of MACEs. The secondary outcomes comprised all-cause mortality, end-stage kidney disease, changes in estimated glomerular filtration rate (eGFR) and proteinuria, and safety. RESULTS Forty-nine eligible RCTs with 77,826 participants with non-dialysis CKD were included. With moderate confidence in the evidence, rosuvastatin and atorvastatin showed statistically significantly more efficacy in reducing the risk of MACE, with a pooled risk ratio of 0.55 (95% CI 0.33-0.91) for rosuvastatin and 0.67 (0.49-0.90) for atorvastatin, respectively, compared with the control group. For the change in the eGFR, atorvastatin (mean difference [MD], 1.40; 95% CI, 0.61 to 2.18), rosuvastatin (MD, 1.73; 95% CI, 0.63 to 2.83), and statin plus ezetimibe (MD, 2.35; 95% CI, 0.44 to 4.26) showed statistically significant increases in the mean eGFR. CONCLUSION In patients with non-dialysis CKD, there is sufficient evidence to show that rosuvastatin and atorvastatin were statistically significantly more effective and preferable in reducing the risk of MACE and increasing the mean eGFR compared with the control group.
Collapse
Affiliation(s)
- Yi-Chih Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medicine, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan
| | - Tai-Shuan Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yi-Ting Chen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Health Data Research Center, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Wu J, Chen T, Zhang M, Li X, Fu R, Xu J, Nüssler A, Gu C. Atorvastatin exerts a preventive effect against steroid-induced necrosis of the femoral head by modulating Wnt5a release. Arch Toxicol 2024; 98:3365-3380. [PMID: 38971901 DOI: 10.1007/s00204-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minghang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou, China
| | - Rongkun Fu
- Department of Zhengzhou University Clinical Medicine, Zhengzhou, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Chenxi Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Wang L, Xu S, Zhou M, Hu H, Li J. The role of DGAT1 and DGAT2 in tumor progression via fatty acid metabolism: A comprehensive review. Int J Biol Macromol 2024; 278:134835. [PMID: 39154689 DOI: 10.1016/j.ijbiomac.2024.134835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Fatty acid metabolism is a complex biochemical process, including the production, breakdown and application of fatty acids. Not only is it an important component of lipid metabolism, fatty acid metabolism is also connected to the energy metabolism pathways of cells and plays a vital role in maintaining the energy balance of organisms. Diacylglycerol-O-acyltransferase 1 (DGAT1) and Diacylglycerol-O-acyltransferase 2 (DGAT2) are key components in regulating lipid metabolism, which provide energy for cell proliferation and growth. Recent studies have shown that DGAT1 and DGAT2 influence tumor progression through fatty acid metabolism in cancer. Although DGAT1 and DGAT2 have similar names, they differ significantly in various aspects and play distinct roles in individual tumors. A comparative analysis of the physiological roles of these enzymes and their differential expressions in different types of tumors will enhance our understanding of their unique characteristics. This article summarizes the characteristics of tumor fatty acid metabolism and explains how DGAT1 and DGAT2 specifically promote tumor progression. In addition, this review discusses the potential of lipid-lowering drugs in tumor treatment, providing a new perspective on targeting fatty acid metabolism to inhibit tumor progression in the future, while emphasizing the importance of DGAT1 and DGAT2 as potential targets for tumor treatment.
Collapse
Affiliation(s)
- Leisheng Wang
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Shiwei Xu
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China
| | - Mengzhen Zhou
- Southeast University School of Medicine, Nanjing 210009, China
| | - Hao Hu
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Wang Y, Liu S, Lin G, Huang E, Keller JJ, Wang L. Association between statin use and dry eye disease in patients with hyperlipidemia: A population-based retrospective cohort study. Clin Transl Sci 2024; 17:e70039. [PMID: 39356083 PMCID: PMC11445710 DOI: 10.1111/cts.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Higher serum cholesterol levels have been associated with an increased risk of dry eye disease (DED). The relationship between statin (HMG-CoA reductase inhibitor) use and DED in patients with hyperlipidemia remains unclear. To investigate the association between statin use and the risk of DED in patients with hyperlipidemia, we conducted a population-based retrospective cohort study utilizing data from Taiwan's Longitudinal Generation Tracking Database. Patients were categorized into statin users and nonusers, with a 5-year follow-up period. The study identified patients with newly diagnosed hyperlipidemia, excluding those with prior DED diagnoses. Matching and adjustments for covariates resulted in 41,931 individuals in each group. Patients receiving statin therapy were compared with those unexposed. Cumulative exposure doses were also evaluated to assess dose-response relationships. The primary outcome was the incidence of DED diagnosed during the follow-up period. Cox proportional hazards regression models estimated the risk of DED, and conditional logistic regression analyzed the dose-response effect of statin exposure. Among 41,931 matched pairs, statin users exhibited a slightly increased risk of developing DED compared with nonusers (adjusted hazard ratio, 1.06; 95% CI, 1.02-1.11; p < 0.01). However, no dose-response relationship was observed between statin exposure and DED risk. Statin use among patients with hyperlipidemia is associated with a marginally higher risk of DED. These findings underscore the importance of regular eye examinations in this patient population to facilitate early detection and management of DED.
Collapse
Affiliation(s)
- Yong‐Wei Wang
- School of PharmacyCollege of Pharmacy, Taipei Medical UniversityTaipei CityTaiwan
- Department of PharmacyNational Taiwan University Cancer CenterTaipei CityTaiwan
| | - Sian‐De Liu
- Department of PharmacyNew Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation)New Taipei CityTaiwan
| | - Guan‐Ling Lin
- School of PharmacyCollege of Pharmacy, Taipei Medical UniversityTaipei CityTaiwan
| | - Evelyn‐Jou‐Chen Huang
- Department of OphthalmologyTaipei Medical University HospitalTaipei CityTaiwan
- Department of Ophthalmology, School of MedicineCollege of Medicine, Taipei Medical UniversityTaipei CityTaiwan
| | - Joseph Jordan Keller
- Department of PsychiatryWestern Michigan University Homer Stryker M.D. School of MedicineKalamazooMichiganUSA
| | - Li‐Hsuan Wang
- School of PharmacyCollege of Pharmacy, Taipei Medical UniversityTaipei CityTaiwan
- Department of PharmacyTaipei Medical University HospitalTaipei CityTaiwan
| |
Collapse
|
12
|
He X, Gao Y, Deng Y, He J, Nolte I, Murua Escobar H, Yu F. The Comparative Oncology of Canine Malignant Melanoma in Targeted Therapy: A Systematic Review of In Vitro Experiments and Animal Model Reports. Int J Mol Sci 2024; 25:10387. [PMID: 39408717 PMCID: PMC11476434 DOI: 10.3390/ijms251910387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
Canine malignant melanoma (CMM) is highly aggressive and mostly located in the oral cavity. CMM is the predominant type of canine oral malignancy and shows striking homologies with human mucosal melanoma. In comparative oncology, canine oral melanomas (COMs), as spontaneous tumor models, have the potential to acquire a unique value as a translational model of rare human melanoma subtypes. This review aims to provide a comprehensive summary of targeted therapies for canine malignant melanoma and to enrich the field of comparative oncology. Following the PRISMA guidelines, a comprehensive literature search was conducted across databases for studies from 1976 to April 2024. Studies were selected based on their relevance to targeted treatments. A total of 30 studies met the inclusion criteria. Based on the treatment approaches, the studies were further categorized into immunotherapies, small molecule signaling inhibitors, indirect kinase inhibitors, and other alternative strategies. Some treatments have been shown to result in stable disease or partial response, accounting for 29% (monoclonal antibody) and 76.5% (micro-RNA therapies) in clinical trials. Moreover, in vitro experiments of small molecule inhibitors, including cell signaling inhibitors and indirect kinase inhibitors, have shown the potential to be an effective treatment option for the development of therapeutic strategies in canine malignant melanoma. The observed response in in vitro experiments of CMM (particularly the oral and certain cutaneous subtypes) to drugs used in the treatment of human melanoma underlines the resemblance to human melanoma, therefore supporting the notion that CMM may be a valuable model for understanding rare human melanoma subtypes and exploring potential therapeutic avenues in preclinical trials. Finally, this literature review serves as a valuable resource for the development of therapeutic strategies for CMM and highlights the potential for translating these findings to human cancer treatment.
Collapse
Affiliation(s)
- Xiaohui He
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Yu Gao
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Yuqing Deng
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Junying He
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Feng Yu
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| |
Collapse
|
13
|
Taherkhani M, Khanifar Z, Taherkhani A, Hajishah H, Tavasol A. Assessing the effect of high-dose rosuvastatin in elderly patients over 75 with acute coronary syndrome. BMC Cardiovasc Disord 2024; 24:474. [PMID: 39243009 PMCID: PMC11378640 DOI: 10.1186/s12872-024-04142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUNDS AND OBJECTIVE Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, are pivotal in managing hypercholesterolemia and reducing cardiovascular risk. While rosuvastatin demonstrates superior efficacy and tolerability compared to other statins, its safety profile in elderly patients older than 75 years old with acute coronary syndrome (ACS) remains underexplored. So, the objective of this study is to evaluate the frequency of adverse reactions and investigate the efficacy of high-dose rosuvastatin on lipid profiles in elderly patients aged over 75 with ACS. METHODS In this observational study, 110 consecutive elderly ACS patients attending Modarres Hospital in Tehran, Iran, in 2019 were enrolled. The effects of high-dose rosuvastatin were assessed in elderly patients older than 75 years old by comparison of the adverse effects, lipid profile, cardiac function, and other biomarkers at the baseline and after 6 weeks of rosuvastatin therapy with a dose of 40 mg. RESULTS Following 6 weeks of treatment, there was a significant reduction in total cholesterol (136.2 ± 24.3 to 115.5 ± 24.0, p = 0.001) and LDL levels (72.6 ± 17.5 to 50.9 ± 18.9, p = 0.001), accompanied by a notable increase in HDL levels (38.3 ± 7.1 to 47.2 ± 7.4, p = 0.001). Cardiac function, as measured by ejection fraction (EF), significantly improved from 43.4 ± 8.8 to 48.5 ± 8.5 (p = 0.001). Adverse effects such as cramps (N = 12, p = 0.001), weakness (N = 28, p = 0.001), and anorexia (N = 12, p = 0.001) were reported but did not warrant discontinuation of therapy. Notably, no cases of jaundice were observed. Two deaths occurred due to major adverse cardiac events (MACE) during the study period, unrelated to stroke or recurrent myocardial infarction. CONCLUSION Totally, high-dose rosuvastatin therapy effectively improved lipid profiles, cardiac function, and liver enzyme levels in elderly ACS patients, with manageable adverse effects. These findings underscore the importance of rosuvastatin in optimizing cardiovascular health in this vulnerable population.
Collapse
Affiliation(s)
- Maryam Taherkhani
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Khanifar
- Department of Cardiology, Ahvaz Jundishapur University of Medical Sciences, Shoush, Iran
| | - Adineh Taherkhani
- Department of Gastroenterology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hajishah
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gou Y, Cai S, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Atorvastatin improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism. Life Sci 2024; 351:122790. [PMID: 38852795 DOI: 10.1016/j.lfs.2024.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS Atorvastatin is a commonly used cholesterol-lowering drug that possesses non-canonical anti-inflammatory properties. However, the precise mechanism underlying its anti-inflammatory effects remains unclear. MATERIALS AND METHODS The acute phase of ulcerative colitis (UC) was induced using a 5 % dextran sulfate sodium (DSS) solution for 7 consecutive days and administrated with atorvastatin (10 mg/kg) from day 3 to day 7. mRNA-seq, histological pathology, and inflammatory response were determined. Intestinal microbiota alteration, tryptophan, and its metabolites were analyzed through 16S rRNA sequencing and untargeted metabolomics. KEY FINDINGS Atorvastatin relieved the DSS-induced UC in mice, as evidenced by colon length, body weight, disease activity index score and pathological staining. Atorvastatin treatment reduced the level of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Atorvastatin also relieved the intestinal microbiota disorder caused by UC and decreased the proliferation of pernicious microbiota such as Akkermansia and Bacteroides. Atorvastatin dramatically altered tryptophan metabolism and increased the fecal contents of tryptophan, indolelactic acid (ILA), and indole-3-acetic acid (IAA). Furthermore, atorvastatin enhanced the expression level of aryl hydrocarbon receptor (AhR) and interleukin-22 (IL-22) and further promoted the expression level of intestinal tight junction proteins, such as ZO-1 and occludin, in colitis mice. SIGNIFICANCE These findings indicated that atorvastatin could alleviate UC by regulating intestinal flora disorders, promoting microbial tryptophan metabolism, and repairing the intestinal barrier.
Collapse
Affiliation(s)
- Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
15
|
Zhang Y, Wu D, Sun Q, Luo Z, Zhang Y, Wang B, Chen W. Atorvastatin combined with imipenem alleviates lung injury in sepsis by inhibiting neutrophil extracellular trap formation via the ERK/NOX2 signaling pathway. Free Radic Biol Med 2024; 220:179-191. [PMID: 38704053 DOI: 10.1016/j.freeradbiomed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Di Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Zhen Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yuhao Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Bowei Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
16
|
Boujonnier F, Lemaitre F, Scailteux LM. Pharmacokinetic Interactions Between Abiraterone, Apalutamide, Darolutamide or Enzalutamide and Antithrombotic Drugs: Prediction of Clinical Events and Review of Pharmacological Information. Cardiovasc Drugs Ther 2024; 38:757-767. [PMID: 37126188 DOI: 10.1007/s10557-023-07453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Abiraterone, apalutamide, darolutamide and enzalutamide are second-generation hormone therapies used for advanced prostate cancer; the majority of patients receiving these treatments are elderly, poly-medicated patients. Since their first market authorizations, their pharmacokinetic (PK) characteristics are increasingly well known. A potential risk of drug-drug interaction (DDI), especially with cardiovascular drugs, needs to be considered. In the case of antithrombotics, treatment imbalance can lead to severe consequences. OBJECTIVES To describe PK profiles of hormone therapies and antithrombotics and to predict DDIs and potentially related clinical events. METHODS PK profiles (CYP450 and P-gp substrate, inducer or inhibitor) are described by cross-referencing data sources (summary of product characteristics, European public assessment reports, PubMed database, Micromedex®, etc.); a description of the potential interactions with anti-cancer drugs for each DDI and related clinical events is provided. We discuss management recommendations, including those set out in international guidelines. RESULTS Antithrombotics are mainly metabolized by CYP 2C9, 2C19 or 3A4. For abiraterone (CYP 2C8, 2D6 inhibitor) and darolutamide (CYP 3A4 inducer), no interaction was identified with antithrombotics. For apalutamide (CYP 2C9, 2C19, 3A4 and P-gp inducer) and enzalutamide (CYP 2C9, 2C19, 3A4 inducer and P-gp inhibitor), several PK interactions were identified with antithrombotics, which could lead to various clinical events (haemorrhage or thromboembolism). CONCLUSION Numerous interactions are expected between enzalutamide or apalutamide and antithrombotics, for which management should be deployed on a case-by-case basis. PK and pharmaco-epidemiological studies could shed light on whether or not there are clinically significant events related to DDIs with antithrombotics.
Collapse
Affiliation(s)
- François Boujonnier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Florian Lemaitre
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
- Department of Clinical and Biological Pharmacology, Rennes University Hospital, 35033, Rennes, France
| | - Lucie-Marie Scailteux
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
- Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Department of Clinical Pharmacology, Rennes University Hospital, 35033, Rennes, France.
| |
Collapse
|
17
|
Hu L, Hu B, zhang L, Hu Y, Zhang Y, Zhang R, Yu H, Liu D, Wang X, Lin O, Gong Y, Zhang Y, Li C, Li J. Role of gut microbiota and metabolomics in the lipid-lowering efficacy of statins among Chinese patients with coronary heart disease and hypercholesterolemia. Front Cell Infect Microbiol 2024; 14:1408581. [PMID: 39119290 PMCID: PMC11306155 DOI: 10.3389/fcimb.2024.1408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Background Statins, being the primary pharmacological intervention for hypercholesterolemia, exhibit a notable degree of interpatient variability in their effectiveness, which may be associated with gut microbiota. This study sought to identify the biomarkers for evaluating differences in statin efficacy. Methods A quasi case-control study was conducted among participants with hypercholesterolemia and coronary heart disease taking rosuvastatin essential. According to the level of low density lipoprotein cholesterol (LDL-C), participants was divided into the "Up to standard" (US) group and the "Below standard" (BS) group. 16S rDNA sequencing and untargeted metabolomics were applied to detected the information of gut microbiota and related metabolites. Results A total of 8 US and 8 BS group matched by age and sex were included in the final analysis. 16S rDNA sequencing results indicated that the characteristic strains of the US group were f-Eubacterium_coprostanoligenes and g-Papillibacter, while the characteristic flora of the BS group were o-C0119, g-Pseudolabrys, s-Dyella-Marensis and f-Xanthobacaceae. Metabolomic results suggested that the levels of chenodeoxycholic acid-3-β-D-glucuronide, 1-methylnicotinamide and acetoacetate in stool samples of the US group were significantly higher than those of the BS group. By identifying the differentially abundant bacterial taxa, the gut microbiota could modulate the efficacy of statins through producing enzymes involved in cholesterol metabolism. Conclusions The findings suggest that the difference in statin efficacy may be related to gut microbiota strains that can produce short-chain fatty acids and secondary bile acids and affect the efficacy of statins by regulating the activities of cholesterol metabolite-related proteins. Metabolites related to short-chain fatty acids and secondary bile acids in the gut are expected to be biomarkers indicating the efficacy of statins.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Boxian Hu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Long zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yuhong Hu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ruihang Zhang
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Hongxi Yu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Dan Liu
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Xiaolei Wang
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Ouya Lin
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Yanjun Gong
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
| | - Cheng Li
- School of Engineering Medicine of Beihang University and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
| |
Collapse
|
18
|
Zhang Y, Jiang Z, Chen L, Lei T, Zheng X. Repurposing lipid-lowering drugs on asthma and lung function: evidence from a genetic association analysis. J Transl Med 2024; 22:615. [PMID: 38961500 PMCID: PMC11223406 DOI: 10.1186/s12967-024-05359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE To explore the correlation between asthma risk and genetic variants affecting the expression or function of lipid-lowering drug targets. METHODS We conducted Mendelian randomization (MR) analyses using variants in several genes associated with lipid-lowering medication targets: HMGCR (statin target), PCSK9 (alirocumab target), NPC1L1 (ezetimibe target), APOB (mipomersen target), ANGPTL3 (evinacumab target), PPARA (fenofibrate target), and APOC3 (volanesorsen target), as well as LDLR and LPL. Our objective was to investigate the relationship between lipid-lowering drugs and asthma through MR. Finally, we assessed the efficacy and stability of the MR analysis using the MR Egger and inverse variance weighted (IVW) methods. RESULTS The elevated triglyceride (TG) levels associated with the APOC3, and LPL targets were found to increase asthma risk. Conversely, higher LDL-C levels driven by LDLR were found to decrease asthma risk. Additionally, LDL-C levels (driven by APOB, NPC1L1 and HMGCR targets) and TG levels (driven by the LPL target) were associated with improved lung function (FEV1/FVC). LDL-C levels driven by PCSK9 were associated with decreased lung function (FEV1/FVC). CONCLUSION In conclusion, our findings suggest a likely causal relationship between asthma and lipid-lowering drugs. Moreover, there is compelling evidence indicating that lipid-lowering therapies could play a crucial role in the future management of asthma.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Zichao Jiang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Lingli Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Hunan, 410008, China.
| | - Ting Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan, 410008, China.
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Hunan, 410008, China.
| |
Collapse
|
19
|
Bell G, Thoma A, Hargreaves IP, Lightfoot AP. The Role of Mitochondria in Statin-Induced Myopathy. Drug Saf 2024; 47:643-653. [PMID: 38492173 DOI: 10.1007/s40264-024-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Statins represent the primary therapy for combatting hypercholesterolemia and reducing mortality from cardiovascular events. Despite their pleiotropic effects in lowering cholesterol synthesis, circulating cholesterol, as well as reducing the risk of other systemic diseases, statins have adverse events in a small, but significant, population of treated patients. The most prominent of these adverse effects is statin-induced myopathy, which lacks precise definition but is characterised by elevations in the muscle enzyme creatine kinase alongside musculoskeletal complaints, including pain, weakness and fatigue. The exact aetiology of statin-induced myopathy remains to be elucidated, although impaired mitochondrial function is thought to be an important underlying cause. This may result from or be the consequence of several factors including statin-induced inhibition of coenzyme Q10 (CoQ10) biosynthesis, impaired Ca2+ signalling and modified reactive oxygen species (ROS) generation. The purpose of this review article is to provide an update on the information available linking statin therapy with mitochondrial dysfunction and to outline any mechanistic insights, which may be beneficial in the future treatment of myopathic adverse events.
Collapse
Affiliation(s)
- Gavin Bell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Anastasia Thoma
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Adam P Lightfoot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
20
|
Butera E, Termite F, Esposto G, Galasso L, Mignini I, Borriello R, Ainora ME, Miele L, Gasbarrini A, Zocco MA. Exploring the Role of Bempedoic Acid in Metabolic Dysfunction Associated Steatotic Liver Disease: Actual Evidence and Future Perspectives. Int J Mol Sci 2024; 25:6938. [PMID: 39000046 PMCID: PMC11241610 DOI: 10.3390/ijms25136938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) involves excessive lipid accumulation in hepatocytes, impacting global healthcare due to its high prevalence and risk of progression to severe liver conditions. Its pathogenesis involves genetic, metabolic, and inflammatory factors, with cardiovascular events as the leading cause of mortality. This review examines the role of lipid-lowering therapies in MASLD, with a particular focus on bempedoic acid, a recently approved cholesterol-lowering agent for hypercholesterolemia and high cardiovascular-risk patients. It explores its potential in liver disease by modulating lipid metabolism and inflammatory pathways based on the most recent studies available. Bempedoic acid inhibits ATP-citrate lyase, reducing cholesterol and fatty acid synthesis while activating AMP-activated protein kinase to suppress gluconeogenesis and lipogenesis. Animal studies indicate its efficacy in reducing hepatic steatosis, inflammation, and fibrosis. Bempedoic acid holds promise as a therapeutic for MASLD, offering dual benefits in lipid metabolism and inflammation. Further clinical trials are required to confirm its efficacy and safety in MASLD patients, potentially addressing the multifaceted nature of this disease.
Collapse
Affiliation(s)
- Elena Butera
- Internal Medicine, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Fabrizio Termite
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giorgio Esposto
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Linda Galasso
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Irene Mignini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Raffaele Borriello
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Elena Ainora
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Miele
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
21
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
22
|
Jiang Y, Glandorff C, Sun M. GSH and Ferroptosis: Side-by-Side Partners in the Fight against Tumors. Antioxidants (Basel) 2024; 13:697. [PMID: 38929136 PMCID: PMC11201279 DOI: 10.3390/antiox13060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glutathione (GSH), a prominent antioxidant in organisms, exhibits diverse biological functions and is crucial in safeguarding cells against oxidative harm and upholding a stable redox milieu. The metabolism of GSH is implicated in numerous diseases, particularly in the progression of malignant tumors. Consequently, therapeutic strategies targeting the regulation of GSH synthesis and metabolism to modulate GSH levels represent a promising avenue for future research. This study aimed to elucidate the intricate relationship between GSH metabolism and ferroptosis, highlighting how modulation of GSH metabolism can impact cellular susceptibility to ferroptosis and consequently influence the development of tumors and other diseases. The paper provides a comprehensive overview of the physiological functions of GSH, including its structural characteristics, physicochemical properties, sources, and metabolic pathways, as well as investigate the molecular mechanisms underlying GSH regulation of ferroptosis and potential therapeutic interventions. Unraveling the biological role of GSH holds promise for individuals afflicted with tumors.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- University Clinic of Hamburg at the HanseMerkur Center of TCM, 20251 Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.J.); (C.G.)
- Internal Medicine in Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Shi L, Liu X, Li E, Zhang S, Zhou A. Association of lipid-lowering drugs with gut microbiota: A Mendelian randomization study. J Clin Lipidol 2024:S1933-2874(24)00187-9. [PMID: 38971663 DOI: 10.1016/j.jacl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The gut microbiota can be influenced by lipid metabolism. We aimed to evaluate the impact of lipid-lowering medications, such as proproteinconvertase subtilisin/kexin type 9 (PCSK9) inhibitors, Niemann-Pick C1-like protein (NPC1L1) inhibitors, and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors, on gut microbiota through drug target Mendelian randomization (MR) investigation. METHODS We used genetic variants that were associated with low-density lipoprotein cholesterol (LDL-C) in genome-wide association studies and located within or near drug target genes as proxies for lipid-lowering drug exposure. In addition, expression trait loci in drug target genes were used as complementary genetic tools. We used effect estimates calculated using inverse variance weighted MR (IVW-MR) and summary data-based MR (SMR). Multiple sensitivity analyses were performed. RESULTS Genetic proxies for lipid-lowering drugs broadly affected the abundance of gut microbiota. High expression of NPC1L1 was significantly associated with an increase in the genus Eggerthella (β = 1.357, SE = 0.337, P = 5.615 × 10-5). An HMGCR-mediated increase in LDL-C was significantly associated with the order Pasteurellales (β = 0.489, SE = 0.123, P = 6.955 × 10-5) and the genus Haemophilus (β = 0.491, SE = 0.125, P = 8.379 × 10-5), whereas a PCSK9-mediated increase in LDL-C was associated with the genus Terrisporobacter (β = 0.666, SE = 0.127, P = 1.649 × 10-5). No pleiotropy was detected. CONCLUSIONS This drug target MR highlighted the potential interventional effects of lipid-lowering drugs on the gut microbiota and separately revealed the possible effects of different types of lipid-lowering drugs on specific gut microbiota.
Collapse
Affiliation(s)
- Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou)
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders , Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, PR China (Dr Liu)
| | - Enze Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, PR China (Dr Li)
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou).
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou).
| |
Collapse
|
24
|
Wang J, Li S, Pu H, He J. The association between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and the risk of osteoporosis among U.S. adults: analysis of NHANES data. Lipids Health Dis 2024; 23:161. [PMID: 38831342 PMCID: PMC11145830 DOI: 10.1186/s12944-024-02152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Osteoporosis and atherosclerosis frequently afflict older adults, and recent insights suggest a deeper connection between these conditions that surpasses mere aging effects. The ratio of non-high-density to high-density lipoprotein cholesterol (NHHR) has emerged as a novel lipid marker for evaluating the risk of cardiovascular diseases. Nonetheless, investigations into the correlation of the NHHR with the risk of developing osteoporosis remain unexplored. METHODS We collected NHHR and bone mineral density (BMD) data from 11,024 National Health and Nutrition Examination Survey (NHANES) participants between 2011 and 2018. Multivariate linear regression was employed to examine the correlation between BMD and NHHR. Smooth curves were employed to deal with the nonlinearity. To further account for the nonlinear link, we used a two-part linear regression model. The threshold effects were estimated using two components of a linear regression model. Subgroup and sensitivity analyses were carried out to ascertain the stability of the findings. RESULTS We discovered a negative relationship between the NHHR and lumbar spine BMD in all three models. An L-shaped curvilinear association existed between the NHHR and lumbar spine BMD, with a key inflection point of 6.91. The fully adjusted model showed that the BMD of the lumbar spine fell by 0.03 g/cm2 in those who were in the fourth quartile as opposed to the lowest quartile. The sensitivity analysis using unweighted logistic analysis verified the stability of the results. In addition, BMD in the nondiabetic group was more significantly affected by the negative effect of the NHHR in the subgroup analysis. CONCLUSIONS According to this research, there appears to be a negative correlation between BMD and NHHR in US Adults. To clarify the precise physiological mechanisms by which the NHHR contributes to the onset of osteoporosis, more research is necessary.
Collapse
Affiliation(s)
- Jinzhou Wang
- The Department of Orthopaedic Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China
| | - Shanshan Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Hongyu Pu
- The Department of Orthopaedic Surgery, Fushun People's Hospital, Zigong, Sichuan Province, 643000, China
| | - Jiangtao He
- The Department of Orthopaedic Surgery, the Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, China.
| |
Collapse
|
25
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
26
|
Liao M, He X, Zhou Y, Peng W, Zhao XM, Jiang M. Coenzyme Q10 in atherosclerosis. Eur J Pharmacol 2024; 970:176481. [PMID: 38493916 DOI: 10.1016/j.ejphar.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerotic disease is a chronic disease that predominantly affects the elderly and is the most common cause of cardiovascular death worldwide. Atherosclerosis is closely related to processes such as abnormal lipid transport and metabolism, impaired endothelial function, inflammation, and oxidative stress. Coenzyme Q10 (CoQ10) is a key component of complex Ⅰ in the electron transport chain and an important endogenous antioxidant that may play a role in decelerating the progression of atherosclerosis. Here, the different forms of CoQ10 presence in the electron transport chain are reviewed, as well as its physiological role in regulating processes such as oxidative stress, inflammatory response, lipid metabolism and cellular autophagy. It was also found that CoQ10 plays beneficial effects in atherosclerosis by mitigating lipid transportation, endothelial inflammation, metabolic abnormalities, and thrombotic processes from the perspectives of molecular mechanisms, animal experiments, and clinical evidence. Besides, the combined use of CoQ10 with other drugs has better synergistic therapeutic effects. It seems reasonable to suggest that CoQ10 could be used in the treatment of atherosclerotic cardiovascular diseases while more basic and clinical studies are needed.
Collapse
Affiliation(s)
- Minjun Liao
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xueke He
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China
| | - Yangyang Zhou
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Weiqiang Peng
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
27
|
Diévart F, Bruckert E, Aboyans V, Bekka S, Boccara F, Bourdon Baron Munoz B, Emmerich J, Farnier M, Gallo A, Lemesle G, Paillard F, Schiele F, Kownator S. Management of lipid variables in primary cardiovascular prevention: A position paper from the Heart, Vessels and Metabolism Group of the French Society of Cardiology. Arch Cardiovasc Dis 2024; 117:358-378. [PMID: 38762344 DOI: 10.1016/j.acvd.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 05/20/2024]
Abstract
Low-density lipoprotein cholesterol has been established as a powerful cardiovascular risk factor; its reduction provides a clinical benefit in primary cardiovascular prevention, irrespective of the characteristics of the patients treated. It is useful to tailor low-density lipoprotein cholesterol targets according to the magnitude of cardiovascular risk (low, high or very high) in order to reduce the cardiovascular risk as fully as possible. In order to provide a uniform approach, it is necessary to propose recommendations for good practice, defining strategies for reducing low-density lipoprotein cholesterol. It is also necessary to know their merits, to analyse their practical limits and to propose adaptations, taking into account limitations and national specifics. This position paper aims to analyse the contribution and limits, as well as the adaptation to French practice, of 2019 and 2021 European Society of Cardiology recommendations for the management of lipid variables and cardiovascular prevention.
Collapse
Affiliation(s)
- François Diévart
- Elsan clinique Villette, 18, rue Parmentier, 59240 Dunkerque, France.
| | | | | | - Saïd Bekka
- Institut de diabétologie et nutrition du centre, 28300 Mainvilliers, France
| | | | | | | | - Michel Farnier
- Institut de recherche cardiovasculaire, CHU François-Mitterrand, 21000 Dijon, France
| | | | - Gilles Lemesle
- Institut cœur-poumon, CHRU de Lille, 59000 Lille, France
| | | | | | | |
Collapse
|
28
|
Zhang S, Ren X, Zhang B, Lan T, Liu B. A Systematic Review of Statins for the Treatment of Nonalcoholic Steatohepatitis: Safety, Efficacy, and Mechanism of Action. Molecules 2024; 29:1859. [PMID: 38675679 PMCID: PMC11052408 DOI: 10.3390/molecules29081859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver component of a cluster of conditions, while its subtype, nonalcoholic steatohepatitis (NASH), emerges as a potentially progressive liver disorder that harbors the risk of evolving into cirrhosis and culminating in hepatocellular carcinoma (HCC). NASH and cardiovascular disease (CVD) have common risk factors, but compared to liver-related causes, the most common cause of death in NASH patients is CVD. Within the pharmacological armamentarium, statins, celebrated for their lipid-modulating prowess, have now garnered attention for their expansive therapeutic potential in NASH. Evidence from a plethora of studies suggests that statins not only manifest anti-inflammatory and antifibrotic properties but also impart a multifaceted beneficial impact on hepatic health. In this review, we used "statin", "NAFLD", "NASH", and "CVD" as the major keywords and conducted a literature search using the PubMed and Web of Science databases to determine the safety and efficacy of statins in patients and animals with NASH and NAFLD, and the mechanism of statin therapy for NASH. Simultaneously, we reviewed the important role of the intestinal microbiota in statin therapy for NASH, as it is hoped that statins will provide new insights into modulating the harmful inflammatory microbiota in the gut and reducing systemic inflammation in NASH patients.
Collapse
Affiliation(s)
- Shiqin Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| | - Xiaoling Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| | - Bingzheng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Z.); (X.R.); (B.Z.)
| |
Collapse
|
29
|
Guo P, Chen M, Wang W, Li Q, Chen X, Liang J, He Y, Wu Y. Exploration of Polysaccharides from Phyllanthus emblica: Isolation, Identification, and Evaluation of Antioxidant and Anti-Glycolipid Metabolism Disorder Activities. Molecules 2024; 29:1751. [PMID: 38675571 PMCID: PMC11052227 DOI: 10.3390/molecules29081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Phyllanthus emblica is a natural medicinal herb with diverse bioactivities. Certain extracts from this herb have been confirmed to possess anti-glycolipid metabolic disorder activity. To further develop its utility value and explore its potential in combating glycolipid metabolic disorders, we designed a series of experiments to investigate the structure, antioxidant activity, and anti-glycolipid metabolic disorder activity of Phyllanthus emblica polysaccharides. In this study, we extracted and purified polysaccharides from Phyllanthus emblica and thoroughly analyzed their structure using various techniques, including NMR, methylation analysis, and surface-enhanced Raman spectroscopy. We investigated the hypolipidemic and anti-glycolipid metabolism disorder activity of Phyllanthus emblica polysaccharides for the first time utilizing oleic acid (OA) and advanced glycation end products (AGEs) as inducers. Additionally, the antioxidant activity of Phyllanthus emblica polysaccharides was assessed in vitro. These findings lay the groundwork for future investigations into the potential application of Phyllanthus emblica polysaccharides as an intervention for preventing and treating diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Wu
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
30
|
Khan Z, Gul A, Mlawa G, Bhattacharjee P, Muhammad SA, Carpio J, Yera H, Wahinya M, Kazeza AP, Amin MS, Gupta A. Statins As Anti-Hypertensive Therapy: A Systematic Review and Meta-Analysis. Cureus 2024. [DOI: 10.7759/cureus.57825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
|
31
|
Firouzjaei AA, Mahmoudi A, Almahmeed W, Teng Y, Kesharwani P, Sahebkar A. Identification and analysis of the molecular targets of statins in colorectal cancer. Pathol Res Pract 2024; 256:155258. [PMID: 38522123 DOI: 10.1016/j.prp.2024.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Hao Z, Wang J, Lv Y, Wu W, Zhang S, Hao S, Chu J, Wan H, Feng J, Ji N. Identification of MGMT promoter methylation as a specific lipid metabolism biomarker, reveals the feasibility of atorvastatin application in glioblastoma. Metabolism 2024; 153:155794. [PMID: 38301843 DOI: 10.1016/j.metabol.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Glioblastoma is one of the deadliest tumors, and limited improvement in managing glioblastoma has been achieved in the past decades. The unmethylated promoter area of 6-O-Methylguanine-DNA Methyltransferase (MGMT) is a significant biomarker for recognizing a subset of glioblastoma that is resistant to chemotherapy. Here we identified MGMT methylation can also work as a specific biomarker to classify the lipid metabolism patterns between methylated and unmethylated glioblastoma and verify the potential novel therapeutic strategy for unmethylated MGMT glioblastoma. METHODS Liquid Chromatograph Mass Spectrometer has been applied for non-targeted metabolome and targeted lipidomic profiling to explore the metabolism pattern correlated with MGMT promoter methylation. Transcriptome has been performed to explore the biological differences and the potential mechanism of lipid metabolism in glioblastoma samples. In vivo and ex vivo assays were performed to verify the anti-tumor activity of atorvastatin in the administration of glioblastoma. RESULTS Multi-omics assay has described a significant difference in lipid metabolism between MGMT methylated and unmethylated glioblastoma. Longer and unsaturated fatty acyls were found enriched in MGMT-UM tumors. Lipid droplets have been revealed remarkably decreased in MGMT unmethylated glioblastoma. In vivo and ex vivo assays revealed that atorvastatin and also together with temozolomide showed significant anti-tumor activity, and atorvastatin alone was able to achieve better survival and living conditions for tumor-hosting mice. CONCLUSIONS MGMT promoter methylation status might be a well-performed biomarker of lipid metabolism in glioblastoma. The current study can be the basis of further mechanism studies and implementation of clinical trials, and the results provide preclinical evidence of atorvastatin administration in glioblastoma, especially for MGMT unmethylated tumors.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiejun Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiqi Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Su J, Yang L, Sun Z, Zhan X. Personalized Drug Therapy: Innovative Concept Guided With Proteoformics. Mol Cell Proteomics 2024; 23:100737. [PMID: 38354979 PMCID: PMC10950891 DOI: 10.1016/j.mcpro.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.
Collapse
Affiliation(s)
- Junwen Su
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziran Sun
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
34
|
Ray S. Role of statins in the management of dyslipidaemia. Indian Heart J 2024; 76 Suppl 1:S33-S37. [PMID: 38599727 PMCID: PMC11019333 DOI: 10.1016/j.ihj.2023.11.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 04/12/2024] Open
Abstract
Blood cholesterol has firmly been established as a crucial risk factor for the development of atherosclerotic cardiovascular disease (ASCVD) by elegant epidemiological studies. Naturally, means to reduce blood cholesterol level took the centerstage of research in this field. After initial lukewarm results with nicotinic acid, fibrates and some other agents, statins emerged as the most effective class of medicine to reduce blood cholesterol; in particular, the most atherogenic low density lipoprotein cholesterol (LDL-C). Also, they are very safe and well tolerated. As ASCVD comes in various stages, statins have also been tried in different settings, e.g., primary prevention, secondary prevention, as part of coronary intervention strategy, familial hypercholesterolemia, etc. Almost in all clinical scenarios, statins proved themselves to impart clinical benefit. Though side effects of statins are outweighed by their benefits, nonetheless clinicians should detect the side effects early to avoid major problems.
Collapse
Affiliation(s)
- Saumitra Ray
- Intervention Cardiology, Advanced Medical Research Institute (Dhakuria), 99/5/C, Ballygunge Place, Kolkata, West Bengal, India.
| |
Collapse
|
35
|
Xiao M, Li L, Zhu W, Wu F, Wu B. Statin-related neurocognitive disorder: a real-world pharmacovigilance study based on the FDA adverse event reporting system. Expert Rev Clin Pharmacol 2024; 17:255-261. [PMID: 38275183 DOI: 10.1080/17512433.2024.2311875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Concerns regarding statin-related neurocognitive disorders have emerged in recent years. However, previous studies have reported inconsistent results. We evaluated the association between statins and neurocognitive disorders using the FDA Adverse Event Reporting System (FAERS). RESEARCH DESIGN AND METHODS Data from 2004 to 2022 were obtained from the FAERS database. After deduplication and standardization of drug names, we extracted neurocognitive disorder event (NCDE) cases reported with statins as the suspected drugs. The significant association between statins and NCDE was evaluated using the reporting odds ratio (ROR) and information component. RESULTS In total, 6,959 NCDE cases with statins as the primary suspected drugs were identified. Signals were detected in pravastatin (ROR, 1.49; 95% CI: 1.32-1.67), atorvastatin (ROR, 1.39; 95% CI: 1.34-1.44), and simvastatin (ROR, 1.31; 95% CI: 1.25-1.38). Age-stratified analysis showed that (1) in the population aged 65 years and older, signals were detected for atorvastatin, simvastatin, rosuvastatin, pravastatin, lovastatin, fluvastatin, and pitavastatin; and (2) in populations under 65 years of age, signals were detected for atorvastatin, simvastatin, rosuvastatin, pravastatin, and lovastatin. CONCLUSIONS This study suggests a significant association between the NCDE and statins, including atorvastatin, simvastatin, and pravastatin. The intensity of the association increased with age.
Collapse
Affiliation(s)
- Min Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Zhu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Thau H, Neuber S, Emmert MY, Nazari-Shafti TZ. Targeting Lipoprotein(a): Can RNA Therapeutics Provide the Next Step in the Prevention of Cardiovascular Disease? Cardiol Ther 2024; 13:39-67. [PMID: 38381282 PMCID: PMC10899152 DOI: 10.1007/s40119-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Henriette Thau
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute for Regenerative Medicine, University of Zurich, 8044, Zurich, Switzerland.
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| |
Collapse
|
37
|
Dai C, Tian JX, Chen YF, Ni YH, Cui L, Cao HX, Song LL, Xu SY, Wang YJ, Zheng YG. Computer-aided design to enhance the stability of aldo-keto reductase KdAKR. Biotechnol J 2024; 19:e2300637. [PMID: 38472092 DOI: 10.1002/biot.202300637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
The aldo-keto reductase (AKR) KdAKR from Kluyvermyces dobzhanskii can reduce t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) to t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), which is the key chiral intermediate of rosuvastatin. Herein, a computer-aided design that combined the use of PROSS platform and consensus design was employed to improve the stability of a previously constructed mutant KdAKRM6 . Experimental verification revealed that S196C, T232A, V264I and V45L produced improved thermostability and activity. The "best" mutant KdAKRM10 (KdAKRM6 -S196C/T232A/V264I/V45L) was constructed by combining the four beneficial mutations, which displayed enhanced thermostability. Its T50 15 and Tm values were increased by 10.2 and 10.0°C, respectively, and half-life (t1/2 ) at 40°C was increased by 17.6 h. Additionally, KdAKRM10 demonstrated improved resistance to organic solvents compared to that of KdAKRM6 . Structural analysis revealed that the increased number of hydrogen bonds and stabilized hydrophobic core contributed to the rigidity of KdAKRM10 , thus improving its stability. The results validated the feasibility of the computer-aided design strategy in improving the stability of AKRs.
Collapse
Affiliation(s)
- Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jia-Xin Tian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Feng Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yue-Han Ni
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lei Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hai-Xing Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lin-Lin Song
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
38
|
Granat MM, Eifler-Zydel J, Kolmas J. Statins-Their Role in Bone Tissue Metabolism and Local Applications with Different Carriers. Int J Mol Sci 2024; 25:2378. [PMID: 38397055 PMCID: PMC10888549 DOI: 10.3390/ijms25042378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.
Collapse
Affiliation(s)
- Marcin Mateusz Granat
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Eifler-Zydel
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Kolmas
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| |
Collapse
|
39
|
Mormone A, Tortorella G, Esposito F, Caturano A, Marrone A, Cozzolino D, Galiero R, Marfella R, Sasso FC, Rinaldi L. Advances in Pharmacological Approaches for Managing Hypercholesterolemia: A Comprehensive Overview of Novel Treatments. Biomedicines 2024; 12:432. [PMID: 38398034 PMCID: PMC10887105 DOI: 10.3390/biomedicines12020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Hypercholesterolemia plays a crucial role in the formation of lipid plaques, particularly with elevated low-density lipoprotein (LDL-C) levels, which are linked to increased risks of cardiovascular disease, cerebrovascular disease, and peripheral arterial disease. Controlling blood cholesterol values, specifically reducing LDL-C, is widely recognized as a key modifiable risk factor for decreasing the morbidity and mortality associated with cardiovascular diseases. Historically, statins, by inhibiting the enzyme β-hydroxy β-methylglutaryl-coenzyme A (HMG)-CoA reductase, have been among the most effective drugs. However, newer non-statin agents have since been introduced into hypercholesterolemia therapy, providing a viable alternative with a favorable cost-benefit ratio. This paper aims to delve into the latest therapies, shedding light on their mechanisms of action and therapeutic benefits.
Collapse
Affiliation(s)
- Andrea Mormone
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Francesca Esposito
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
- Department of Experimental Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (A.M.); (G.T.); (F.E.); (A.C.); (A.M.); (D.C.); (R.G.); (R.M.); (F.C.S.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| |
Collapse
|
40
|
Su XZ, Zhang LF, Hu K, An Y, Zhang QP, Tang JW, Yan BC, Li XR, Cai J, Li XN, Sun HD, Jiang SY, Puno PT. Discovery of Natural Potent HMG-CoA Reductase Degraders for Lowering Cholesterol. Angew Chem Int Ed Engl 2024; 63:e202313859. [PMID: 38055195 DOI: 10.1002/anie.202313859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Exploitation of key protected wild plant resources makes great sense, but their limited populations become the major barrier. A particular strategy for breaking this barrier was inspired by the exploration of a resource-saving fungal endophyte Penicillium sp. DG23, which inhabits the key protected wild plant Schisandra macrocarpa. Chemical studies on the cultures of this strain afforded eight novel indole diterpenoids, schipenindolenes A-H (1-8), belonging to six diverse skeleton types. Importantly, semisyntheses suggested some key nonenzymatic reactions constructing these molecules and provided targeted compounds, in particular schipenindolene A (Spid A, 1) with low natural abundance. Remarkably, Spid A was the most potent HMG-CoA reductase (HMGCR) degrader among the indole diterpenoid family. It degraded statin-induced accumulation of HMGCR protein, decreased cholesterol levels and acted synergistically with statin to further lower cholesterol. Mechanistically, transcriptomic and proteomic profiling suggested that Spid A potentially activated the endoplasmic reticulum-associated degradation (ERAD) pathway to enhance the degradation of HMGCR, while simultaneously inhibiting the statin-activated expression of many key enzymes in the cholesterol and fatty acid synthesis pathways, thereby strengthening the efficacy of statins and potentially reducing the side effects of statins. Collectively, this study suggests the potential of Spid A for treating cardiovascular disease.
Collapse
Affiliation(s)
- Xiao-Zheng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lin-Fei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang An
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University Shanghai 201210 (China)
| | - Qiao-Peng Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian-Wei Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Cai
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shi-You Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
41
|
Hoste E, Haufroid V, Deldicque L, Balligand JL, Elens L. Atorvastatin-associated myotoxicity: A toxicokinetic review of pharmacogenetic associations to evaluate the feasibility of precision pharmacotherapy. Clin Biochem 2024; 124:110707. [PMID: 38182100 DOI: 10.1016/j.clinbiochem.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.
Collapse
Affiliation(s)
- Emilia Hoste
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure Elens
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
42
|
Kolnikaj TS, Herman R, Janež A, Jensterle M. The Current and Emerging Role of Statins in the Treatment of PCOS: The Evidence to Date. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:244. [PMID: 38399531 PMCID: PMC10890374 DOI: 10.3390/medicina60020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) manifests a multifactorial pathology characterized by polycystic ovaries, menstrual cycle disorders, varying degrees of hyperandrogenism, and an ad-verse metabolic risk profile. The position of hyperandrogenism in this syndrome has been extensively studied. A multitude of mechanisms place it in the position of cause but also of consequence; therefore, ongoing research efforts are focused on identifying medications that can effectively reduce levels of androgens in women with PCOS. Moreover, lipid abnormalities are common in this population, with up to 70% of patients having dyslipidemia. Statins may have potential therapeutic benefits for women with PCOS, as they have been shown to improve insulin resistance and reduce the risk of cardiovascular disease. In addition, their role in accelerated steroidogenesis by limiting one source of cholesterol, influencing enzymatic activity, and providing several other beneficial mechanisms is widely investigated. This review aimed to provide a comprehensive overview of the pathogenesis of androgen excess and dyslipidemia in PCOS, as well as the therapeutic potential of statins.
Collapse
Affiliation(s)
- Tea Shehu Kolnikaj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University of Medicine Tirana, 1000 Tirana, Albania;
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (R.H.); (A.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (R.H.); (A.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia; (R.H.); (A.J.)
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Poursistany H, Azar ST, Azar MT, Raeisi S. The current and emerging Klotho-enhancement strategies. Biochem Biophys Res Commun 2024; 693:149357. [PMID: 38091839 DOI: 10.1016/j.bbrc.2023.149357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Klotho is well known as a gene with antiaging properties. It has membrane and soluble forms, providing a unique system that controls various metabolic processes essential to health and disease. Klotho deficiency has been revealed to be associated with various aging-related disorders. Based on its various known and unknown protective properties, upregulating the Klotho gene may be a possible therapeutic and/or preventive approach in aging-related complications. Some agents, such as hormonal compounds, renin-angiotensin system inhibitors, antioxidants, peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, statins, vitamin D receptor agonists, antioxidants, anti-inflammatory agents, mammalian target of rapamycin (mTOR) signaling inhibitors, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors, can possibly lead to the upregulation and elevation of Klotho levels. Demethylation and deacetylation of the Klotho gene can also be considered other possible Klotho-enhancement methods. Some emerging techniques, such as RNA modifications, gene therapy, gene editing, and exosome therapy, probably have the potential to be applied for increasing Klotho. In the present study, these current and emerging Klotho-enhancement strategies and their underlying mechanisms were comprehensively reviewed, which could highlight some potential avenues for future research.
Collapse
Affiliation(s)
- Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Tabibi Azar
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsan Tabibi Azar
- Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Spoiala EL, Cinteza E, Vatasescu R, Vlaiculescu MV, Moisa SM. Statins-Beyond Their Use in Hypercholesterolemia: Focus on the Pediatric Population. CHILDREN (BASEL, SWITZERLAND) 2024; 11:117. [PMID: 38255430 PMCID: PMC10813894 DOI: 10.3390/children11010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Statins are a class of medications primarily used in adults to lower cholesterol levels and reduce the risk of cardiovascular events. However, the use of statins in children is generally limited and carefully considered despite the well-documented anti-inflammatory, anti-angiogenic, and pro-apoptotic effects, as well as their effect on cell signaling pathways. These multifaceted effects, known as pleiotropic effects, encompass enhancements in endothelial function, a significant reduction in oxidative stress, the stabilization of atherosclerotic plaques, immunomodulation, the inhibition of vascular smooth muscle proliferation, an influence on bone metabolism, anti-inflammatory properties, antithrombotic effects, and a diminished risk of dementia. In children, recent research revealed promising perspectives on the use of statins in various conditions including neurological, cardiovascular, and oncologic diseases, as well as special situations, such as transplanted children. The long-term safety and efficacy of statins in children are still subjects of ongoing research, and healthcare providers carefully assess the individual risk factors and benefits before prescribing these medications to pediatric patients. The use of statins in children is generally less common than in adults, and it requires close monitoring and supervision by healthcare professionals. Further research is needed to fully assess the pleiotropic effects of statins in the pediatric population.
Collapse
Affiliation(s)
- Elena Lia Spoiala
- Department of Pediatrics, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.L.S.); (S.M.M.)
| | - Eliza Cinteza
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Radu Vatasescu
- Cardio-Thoracic Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Emergency Hospital, 014461 Bucharest, Romania
| | | | - Stefana Maria Moisa
- Department of Pediatrics, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (E.L.S.); (S.M.M.)
- “Sfanta Maria” Clinical Emergency Hospital for Children, 700309 Iasi, Romania
| |
Collapse
|
45
|
Zhao Y, Duan C, Zhang H, Gong W, Wang Y, Ren J, Nie X, Li J. Response of lipid metabolism, energy supply, and cell fate in yellowstripe goby (Mugilogobius chulae) exposed to environmentally relevant concentrations atorvastatin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122991. [PMID: 37995957 DOI: 10.1016/j.envpol.2023.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid β-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| |
Collapse
|
46
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
47
|
Zhao J, Chen R, Luo M, Gong H, Li K, Zhao Q. Lipid-lowering drugs and inflammatory bowel disease's risk: a drug-target Mendelian randomization study. Diabetol Metab Syndr 2024; 16:12. [PMID: 38191425 PMCID: PMC10775535 DOI: 10.1186/s13098-023-01252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has been associated with lipid-lowering drugs in observational studies. Drug-target Mendelian randomization (MR) was utilized in this study to examine the causal relationship between lipid-lowering drugs and incidence of IBD, aiming to identify new preventive uses for the drugs. METHODS We identified instrumental variables for three classes of lipid-lowering drugs: HMGCR inhibitors, PCSK9 inhibitors, and NPC1L1 inhibitors, using data from the Global Lipids Genetics Consortium. Summary statistics of IBD were obtained from UK Inflammatory Bowel Disease Genetics. The summary-data-based MR (SMR) and the inverse-variance weighted (IVW) MR were used for analysis. Sensitivity analyses were performed by conventional MR methods. RESULTS The SMR analysis showed no significant genetic association between increased gene expression of HMGCR, PCSK9, and NPC1L1 and IBD, Crohn's disease (CD) and ulcerative colitis (UC). According to IVW-MR analysis, increased HMGCR expression is associated with a reduced risk of IBD (OR = 0.73, 95% confidence interval (CI) 0.59-0.90, P = 0.003) and CD (OR = 0.75, 95% CI 0.57-0.97, P = 0.03), but not with UC. Additionally, increased NPC1L1 gene expression was associated with elevated risk of IBD (OR = 1.60, 95% CI 1.07-2.40, P = 0.023), but not with CD and UC. However, no significant causal relationships were found between PCSK9 gene expression and IBD, CD, and UC. The sensitivity analysis demonstrated no evidence of heterogeneity or pleiotropy among the reported results. CONCLUSIONS The heightened expression of genetic variations in HMGCR inhibitor targets could potentially reduce the risk of IBD and CD, while genetic variation in the expression of NPC1L1 targets was positively associated with IBD.
Collapse
Affiliation(s)
- Jiaxi Zhao
- General Practice Ward/International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengqi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongping Gong
- General Practice Ward/International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kaixin Li
- Department of Nephrology, Huadong Hospital, Shanghai, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
48
|
Han JH, Joung KH, Lee JC, Kim OS, Choung S, Kim JM, Kang YE, Yi HS, Lee JH, Ku BJ, Kim HJ. Comparative Efficacy of Rosuvastatin Monotherapy and Rosuvastatin/Ezetimibe Combination Therapy on Insulin Sensitivity and Vascular Inflammatory Response in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2024; 48:112-121. [PMID: 38173371 PMCID: PMC10850282 DOI: 10.4093/dmj.2022.0402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Type 2 diabetes mellitus (T2DM) induces endothelial dysfunction and inflammation, which are the main factors for atherosclerosis and cardiovascular disease. The present study aimed to compare the effects of rosuvastatin monotherapy and rosuvastatin/ezetimibe combination therapy on lipid profile, insulin sensitivity, and vascular inflammatory response in patients with T2DM. METHODS A total of 101 patients with T2DM and dyslipidemia were randomized to either rosuvastatin monotherapy (5 mg/day, n=47) or rosuvastatin/ezetimibe combination therapy (5 mg/10 mg/day, n=45) and treated for 12 weeks. Serum lipids, glucose, insulin, soluble intercellular adhesion molecule-1 (sICAM-1), and peroxiredoxin 4 (PRDX4) levels were determined before and after 12 weeks of treatment. RESULTS The reduction in low density lipoprotein cholesterol (LDL-C) by more than 50% from baseline after treatment was more in the combination therapy group. The serum sICAM-1 levels increased significantly in both groups, but there was no difference between the two groups. The significant changes in homeostasis model assessment of insulin resistance (HOMA-IR) and PRDX4 were confirmed only in the subgroup in which LDL-C was reduced by 50% or more in the combination therapy group. However, after adjusting for diabetes mellitus duration and hypertension, the changes in HOMA-IR and PRDX4 were not significant between the two groups. CONCLUSION Although rosuvastatin/ezetimibe combination therapy had a greater LDL-C reduction effect than rosuvastatin monotherapy, it had no additional effects on insulin sensitivity and vascular inflammatory response. Further studies are needed on the effect of long-term treatment with ezetimibe on insulin sensitivity and vascular inflammatory response.
Collapse
Affiliation(s)
- Ji Hye Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of International Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jun Choul Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Ok Soon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sorim Choung
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of International Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
49
|
Al-Shalchi RF, Mohammad FK. Oxidative Stress-Induced Adverse Effects of Three Statins Following Single or Repetitive Treatments in Mice. Cureus 2024; 16:e51433. [PMID: 38298275 PMCID: PMC10828976 DOI: 10.7759/cureus.51433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Background and objective The hypolipidemic statins have been associated with various side effects, and in some cases, adverse reactions in humans and experimental animals, such as myotoxicity, neurobehavioral toxicity, as well as liver and kidney injuries. The purpose of the present study was to examine the possibility of the induction of oxidative stress in the brain and plasma of mice dosed with single or repetitive doses of three statins (atorvastatin, simvastatin, and rosuvastatin). Methods Male Swiss-origin mice were dosed orally with single doses of each of the three statins at 500 or 1000 mg/kg of body weight. Other groups of mice were dosed orally with repeated daily doses of each of the statins at 200 mg/kg of body weight/day for 14 or 28 consecutive days. These doses of statins were chosen to not produce overt toxicity in mice within the time frame allocated for each experiment. Brain and plasma glutathione (GSH) and malondialdehyde (MDA) levels, as well as liver enzymes activities alanine transaminase (ALT) and aspartate transaminase (AST), were determined using commercial kits. Results Single-dose treatments of the mice with the statins at either 500 or 1000 mg/kg significantly and dose-dependently (p < 0.05) reduced the GSH level in the plasma and the whole brain when compared with respective control values. Atorvastatin was the least effective statin, as only the high dose achieved a significant reduction in brain GSH level in comparison with the respective control value. Repetitive administration of the three statins at 200 mg/kg of body weight/day for 14 or 28 consecutive days significantly and time-dependently reduced plasma and brain GSH levels in comparison with respective control values. The oxidative stress biomarker MDA level significantly increased in the plasma and brain of mice following single or repetitive treatments with the three statins, and the most effective one was rosuvastatin. In association with these changes, activities of the liver enzymes ALT and AST were also increased in the plasma with single and repetitive statin treatments, and the most effective one was rosuvastatin. Conclusion The data suggest an association of high doses of three statins (atorvastatin, simvastatin, and rosuvastatin) with the induction of oxidative stress manifested as GSH reduction and MDA elevation as adverse effects in the brain and plasma of mice, which suffered from the additional burden of liver injury. These effects could be the basis of an in-depth exploration of statin adverse effects in experimental animals and to find an animal model, probably the mice, for the induction of adverse effects of statins that target the brain, as well as to shed light on potential statin intolerance outcomes following single-dose treatments in this species.
Collapse
Affiliation(s)
- Rawnaq F Al-Shalchi
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, IRQ
| | - Fouad K Mohammad
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, IRQ
- College of Nursing, The American University of Kurdistan, Duhok, IRQ
| |
Collapse
|
50
|
Xie X, Wu C, Hao Y, Wang T, Yang Y, Cai P, Zhang Y, Huang J, Deng K, Yan D, Lin H. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: a comprehensive review. Front Endocrinol (Lausanne) 2023; 14:1301093. [PMID: 38179301 PMCID: PMC10766371 DOI: 10.3389/fendo.2023.1301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Diabetes is a chronic metabolic disease, and its therapeutic goals focus on the effective management of blood glucose and various complications. Drug combination therapy has emerged as a comprehensive treatment approach for diabetes. An increasing number of studies have shown that, compared with monotherapy, combination therapy can bring significant clinical benefits while controlling blood glucose, weight, and blood pressure, as well as mitigating damage from certain complications and delaying their progression in diabetes, including both type 1 diabetes (T1D), type 2 diabetes (T2D) and related complications. This evidence provides strong support for the recommendation of combination therapy for diabetes and highlights the importance of combined treatment. In this review, we first provided a brief overview of the phenotype and pathogenesis of diabetes and discussed several conventional anti-diabetic medications currently used for the treatment of diabetes. We then reviewed several clinical trials and pre-clinical animal experiments on T1D, T2D, and their common complications to evaluate the efficacy and safety of different classes of drug combinations. In general, combination therapy plays a pivotal role in the management of diabetes. Integrating the effectiveness of multiple drugs enables more comprehensive and effective control of blood glucose without increasing the risk of hypoglycemia or other serious adverse events. However, specific treatment regimens should be tailored to individual patients and implemented under the guidance of healthcare professionals.
Collapse
Affiliation(s)
- Xueqin Xie
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Changchun Wu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuduo Hao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianyu Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhe Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Huang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kejun Deng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|