1
|
Liu J, Li B, Zhou X, Liu G, Li C, Hu Z, Peng R. Uncovering the mechanisms of Zhubi decoction against rheumatoid arthritis through an integrated study of network pharmacology, metabolomics, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118736. [PMID: 39186991 DOI: 10.1016/j.jep.2024.118736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1β and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.
Collapse
Affiliation(s)
- Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Chao Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhaoduan Hu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
2
|
Wang W, Yang C, Xia J, Tan Y, Peng X, Xiong W, Li N. Novel insights into the role of quercetin and kaempferol from Carthamus tinctorius L. in the management of nonalcoholic fatty liver disease via NR1H4-mediated pathways. Int Immunopharmacol 2024; 143:113035. [PMID: 39378656 DOI: 10.1016/j.intimp.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024]
Abstract
This study investigates the novel therapeutic potential of quercetin and kaempferol, two bioactive compounds derived from Carthamus tinctorius L., in treating nonalcoholic fatty liver disease (NAFLD) by modulating the bile acid receptor NR1H4 (Nuclear Receptor Subfamily 1 Group H Member 4) and its associated metabolic pathways. A rat model of NAFLD was established, and RNA sequencing and proteomics were carefully employed to identify differential gene expressions associated with the disease. The active components of Carthamus tinctorius L. were screened, followed by the construction of a comprehensive network that maps the interactions between these components, NR1H4 and NAFLD-related pathways. Both in vitro (using HepG2 cells) and in vivo experiments were conducted to evaluate the effects on NR1H4 expression levels through Western blot and RT-qPCR analyses. Our findings identify NR1H4 as a pivotal target in NAFLD. Network pharmacology analysis indicates that quercetin and kaempferol play crucial roles in combating NAFLD, with in vitro and in vivo experiments confirming their ability to mitigate hepatocyte steatosis by enhancing NR1H4 expression. Notably, the protective effects of these compounds were inhibited by the NR1H4 antagonist guggulsterone, highlighting the importance of NR1H4 upregulation. This study demonstrates the novel therapeutic efficacy of quercetin and kaempferol from Carthamus tinctorius L. in treating NAFLD through NR1H4 upregulation. This mechanism contributes to the regulation of lipid metabolism, improvement of liver function, reduction of inflammation, and alleviation of oxidative stress, offering a promising direction for future NAFLD treatment strategies.
Collapse
Affiliation(s)
- Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| |
Collapse
|
3
|
Wu H, Wu P, Zhu Y, Li J, Chen H, Zhu H. Bushen Huoxue Recipe inhibits endometrial epithelial-mesenchymal transition through the transforming growth factor-β/nuclear factor kappa-B pathway to improve polycystic ovary syndrome-mediated infertility. Gynecol Endocrinol 2024; 40:2325000. [PMID: 38477938 DOI: 10.1080/09513590.2024.2325000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVE To investigate the target and mechanism of action of Bushen Huoxue Recipe (BSHX) for the treatment of infertility in polycystic ovary syndrome (PCOS), to provide a basis for the development and clinical application of herbal compounds. METHODS Prediction and validation of active ingredients and targets of BSHX for the treatment of PCOS by using network pharmacology-molecular docking technology. In an animal experiment, the rats were randomly divided into four groups (control group, model group, BSHX group, metformin group, n = 16 in each group), and letrozole combined with high-fat emulsion gavage was used to establish a PCOS rat model. Body weight, vaginal smears, and number of embryos were recorded for each group of rats. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of ovarian and endometrial tissues, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the serum inflammatory factor levels. Expression levels of transforming growth factor-β (TGF-β), transforming growth factor beta activated kinase 1 (TAK1), nuclear factor kappa-B (NF-κB), Vimentin, and E-cadherin proteins were measured by western blot (WB). RESULTS Ninety active pharmaceutical ingredients were obtained from BSHX, involving 201 protein targets, of which 160 were potential therapeutic targets. The active ingredients of BSHX exhibited lower binding energy with tumor necrosis factor-α (TNF-α), TGF-β, TAK1, and NF-κB protein receptors (< -5.0 kcal/mol). BSHX significantly reduced serum TNF-α levels in PCOS rats (p < .01), effectively regulated the estrous cycle, restored the pathological changes in the ovary and endometrium, improved the pregnancy rate, and increased the number of embryos. The results of WB suggested that BSHX can down-regulate protein expression levels of TGF-β and NF-κB in endometrial tissue (p < .05), promote the expression level of E-cadherin protein (p < .001), intervene in the endometrial epithelial-mesenchymal transition (EMT) process. CONCLUSIONS TGF-β, TAK1, NF-κB, and TNF-α are important targets of BSHX for treating infertility in PCOS. BSHX improves the inflammatory state of PCOS, intervenes in the endometrial EMT process through the TGF-β/NF-κB pathway, and restores endometrial pathological changes, further improving the pregnancy outcome in PCOS.
Collapse
Affiliation(s)
- Hanxue Wu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijuan Wu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junjie Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Chen
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqiu Zhu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Dong H, Chen Q, Xu Y, Li C, Bai W, Zeng X, Wu Q, Xu H, Deng J. Effect and mechanism of polyphenols containing m-dihydroxyl structure on 2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) formation in chemical models and roast pork patties. Food Chem X 2024; 23:101672. [PMID: 39139490 PMCID: PMC11321440 DOI: 10.1016/j.fochx.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) is a prevalent heterocyclic amine (HAA) found in heated processed meat. This study investigated the inhibitory impact of eight different types of polyphenols containing m-dihydroxyl structure on PhIP formation through a chemical model system. The structure-activity relationship and potential sites of action of polyphenols containing m-dihydroxyl structure were also analyzed. Then, the mechanism of inhibiting PhIP formation by kaempferol, naringenin and quercetin was speculated by UPLC-MS. Results showed that 8 kinds of polyphenols containing m-dihydroxyl structure had significant (P < 0.05) inhibition on the formation of PhIP in the chemical model system in a dose-dependent manner. In addition, PhIP was most significantly inhibited by naringenin at the same concentration, followed by kaempferol and quercetin (83.27%, 80.81% and 79.26%, respectively). UPLC-MS results speculated that kaempferol, naringenin, and quercetin formed a new admixture via an electrophilic aromatic substitution reaction with the intermediate product phenylacetaldehyde, preventing the formation of PhIP.
Collapse
Affiliation(s)
- Hao Dong
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Qi Chen
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yan Xu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chao Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Huan Xu
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Jinhua Deng
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| |
Collapse
|
5
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
6
|
Li W, Liu Z, Song M, Shi Z, Zhang J, Zhou J, Liu Y, Qiao Y, Liu D. Mechanism of Yi-Qi-Bu-Shen Recipe for the Treatment of Diabetic Nephropathy Complicated with Cognitive Dysfunction Based on Network Pharmacology and Experimental Validation. Diabetes Metab Syndr Obes 2024; 17:3943-3963. [PMID: 39465123 PMCID: PMC11512782 DOI: 10.2147/dmso.s481740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
Context Diabetic nephropathy (DN) and cognitive dysfunction (CD) are common complications of diabetes. Yi-Qi-Bu-Shen Recipe (YQBS) can effectively reduce blood glucose, improve insulin resistance, and delay the progression of diabetic complications. The underlying mechanisms of its effects need to be further studied. Objective This study elucidates the mechanism of YQBS in DN with CD through network pharmacology and experimental validation. Materials and Methods Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Male Sprague-Dawley (SD) rats were divided into 6 groups: model, YQBS (2, 4, 8 g/kg), positive control (metformin, 200 mg/kg), and control; the DN model was established by high sugar and high fat diet combined with intraperitoneal streptozotocin injection. After the DN model was established, the rats were gavaged for 10 weeks. Serum, kidneys, and hippocampus tissues were collected to measure the expression levels of TLR4, NF-κB, TNF-α, and IL-6. Results The network pharmacology analysis showed that quercetin and kaempferol were the main active components of YQBS. TNF and IL-6 were the key targets, and TLR4/NF-κB pathway was crucial to YQBS in treating DN complicated with CD. Experimental validation showed that the intervention of YQBS can reduce TNF-α and IL-6 in serum, and also significantly decreases the protein expression of TLR4 and NF-κB. Conclusion YQBS exerts anti-inflammatory effects on DN with CD through TLR4/NF-κB pathway. This study provides a biological basis for the scientific usage of YQBS in inflammation diseases and supplies experimental evidence for future traditional Chinese medicine development.
Collapse
Affiliation(s)
- Wenyi Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhenguo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Min Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhenpeng Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jihang Zhang
- Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Junyu Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yidan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Zhang Y, Wu Q, Fu H, Pang J, Zhang Y, Zhou H, Zhuang L, Zhang X, Chen L, Yang Q. Kaempferol attenuates cyclosporine-induced renal tubular injury via inhibiting the ROS-ASK1-MAPK pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03409-9. [PMID: 39316086 DOI: 10.1007/s00210-024-03409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Cyclosporine (CSA) is a widely used immunosuppressive medication. CSA nephrotoxicity severely limits its application. Kaempferol (KPF), a naturally occurring phenolic compound, has a promising protective effect in reducing CSA-induced renal tubular injury, but the mechanism remains unknown. Our study aimed to determine the protective role of KPF against CSA-induced renal tubular injury. C57/B6 mice and the NRK-52E cell line were employed. CSA worsened renal function in mice, causing detachment and necrosis of tubular cells, leading to tubular vacuolation and renal interstitial fibrosis. CSA caused the detachment, rupture, and death of tubular cells in vitro, resulting in cell viability loss. KPF mitigated all these injurious alterations. KPF hindered CSA-induced ROS generation and protected renal tubular epithelial cells, similar to the antioxidant NAC. CSA lowered SOD activity and GSH levels while increasing MDA levels, and KPF ameliorated these changes. CSA caused phosphorylation of ASK1, JNK, and p38, similar to H2O2, whereas KPF significantly inhibited these changes. In conclusion, KPF reduces CSA-induced tubular epithelial cell injury via its antioxidant properties, inhibits the phosphorylation of ASK1, and inhibits the phosphorylation of p38 and JNK, implying that the synergistic use of KPF in CSA immunotherapy may be a promising option to reduce CSA-evoked renal injury.
Collapse
Affiliation(s)
- Yaowu Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qijing Wu
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huali Fu
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jieya Pang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiyuan Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hui Zhou
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Ling Zhuang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Xiaobo Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Lianhua Chen
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China.
| | - Qianqian Yang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China.
| |
Collapse
|
8
|
Yang L, Wu L, Li Y, Yang Y, Gu Y, Yang J, Zhang L, Meng F. Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of Neolamarckia cadamba (Roxb.) Bosser Fruits. Metabolites 2024; 14:511. [PMID: 39330518 PMCID: PMC11434403 DOI: 10.3390/metabo14090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Neolamarckia cadamba (Rubiaceae) is a well-recognized medicinal plant with recorded therapeutical attributes. However, a thorough assessment of active compounds in its fruits is lacking, limiting their use and valorization in pharmacological industries. METHODS Thus, this study investigated variations in the fruits' secondary metabolite (SM) profiles, as well as antioxidant activities in aqueous (WA) and ethanol (ET) extracts. RESULTS Liquid chromatography-electrospray ionization tandem mass spectrometry identified 541 SMs, of which 14 and 1 (di-O-glucosylquinic acid) were specifically detected in ET and WA, respectively. Phenolic acids (36.97%), flavonoids (28.10%), terpenoids (12.20%), and alkaloids (9.98%) were the dominant SMs. The SM profiles of the fruits in WA and ET were quite different. We revealed 198 differentially extracted (DE) metabolites between WA and ET, including 62 flavonoids, 57 phenolic acids, 45 terpenoids, 14 alkaloids, etc. Most DE flavones (36 out of 40), terpenoids (45 out of 45), and alkaloids (12 out of 14) had higher content in ET. Catechin and its derivatives, procyanidins, and tannins had higher content in WA. ABTS and DPPH assays showed that the antioxidant activity of ET was significantly higher than that of WA. CONCLUSIONS Our findings will facilitate the efficient extraction and evaluation of specific active compounds in N. cadamba.
Collapse
Affiliation(s)
- Lin Yang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| | - Liyan Wu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| | - Yongxin Li
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Yang
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Gu
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jialin Yang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
- College of Life Science, Jilin University, Changchun 130000, China
| | - Luzy Zhang
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| | - Fanxin Meng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China (L.W.)
| |
Collapse
|
9
|
Dwikarina A, Bayati M, Efrat N, Roy A, Lei Z, Ho KV, Sumner L, Greenlief M, Thomas AL, Applequist W, Townesmith A, Lin CH. Exploring American Elderberry Compounds for Antioxidant, Antiviral, and Antibacterial Properties Through High-Throughput Screening Assays Combined with Untargeted Metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.611920. [PMID: 39314315 PMCID: PMC11419141 DOI: 10.1101/2024.09.13.611920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
American elderberry (Sambucus nigra subsp. canadensis) is a rapidly emerging new perennial crop for Missouri, recognized for its high level of bioactive compounds with significant health benefits, including antibacterial, antiviral, and antioxidant properties. A high-throughput screening assay combined with untargeted metabolomics analysis was utilized on American elderberry juice from 21 genotypes to explore and characterize these bioactive compounds. Our metabolomics study has identified 32 putative bioactive compounds in the American Elderberry juices. An array of high-throughput screening bioassays was conducted to evaluate 1) total antioxidant capacity, 2) activation of antioxidant response elements (ARE), 3) antiviral activity, and 4) antibacterial activity of the putatively identified compounds. Our results revealed that 14 of the 32 American elderberry compounds exhibited strong antioxidant activity. Four compounds (isorhamnetin 3-O-glucoside, kaempferol, quercetin, and naringenin) activated ARE activity and were found to be non-cytotoxic to cells. Notably, six of the 32 compounds demonstrated significant antiviral activity in an in vitro TZM-bl assay against two strains of HIV-1 virus, CXCR4-dependent NL4-3 virus and CCR5-dependent BaL virus. Luteolin showed the most potent anti-HIV activity against the NL4-3 virus (IC50 = 1.49 μM), followed by isorhamnetin (IC50 = 1.67 μM). The most potent anti-HIV compound against the BaL virus was myricetin (IC50 = 1.14 μM), followed by luteolin (IC50 = 4.38 μM). Additionally, six compounds were found to have antibacterial activity against gram-positive bacteria S. aureus, with cyanidin 3-O-rutinoside having the most potent antibacterial activity in vitro (IC50 = 2.9 μM), followed by cyanidin 3-O-glucoside (IC50 = 3.7 μM). These findings support and validate the potential health benefits of compounds found in American elderberry juices and highlight their potential for use in dietary supplements as well as innovative applications in health and medicine.
Collapse
Affiliation(s)
- Amanda Dwikarina
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
| | - Mohamed Bayati
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
- Environmental Engineering Department, Tikrit University, Tikrit, Iraq
| | - Novianus Efrat
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS
| | - Zhentian Lei
- Division of Biochemistry, Bond Life Sciences Center, Interdisciplinary Plant Group, MU Metabolomics Center
| | - Khanh-Van Ho
- Division of Biochemistry, Bond Life Sciences Center, Interdisciplinary Plant Group, MU Metabolomics Center
| | - Lloyd Sumner
- Division of Biochemistry, Bond Life Sciences Center, Interdisciplinary Plant Group, MU Metabolomics Center
| | - Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, U.S.A
| | - Andrew L. Thomas
- Division of Plant Science and Technology, Southwest Research, Extension, and Education Center, University of Missouri, Mt. Vernon, MO, U.S.A
| | | | | | - Chung-Ho Lin
- Center for Agroforestry, University of Missouri, Columbia, MO, U.S.A
- School of Natural Resources, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
10
|
Pang L, Zhao Y, Xu Y, Gao C, Wang C, Yu X, Wang F, He K. Mechanisms Underlying the Therapeutic Effects of JianPiYiFei II Granules in Treating COPD Based on GEO Datasets, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. BIOLOGY 2024; 13:711. [PMID: 39336138 PMCID: PMC11428342 DOI: 10.3390/biology13090711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND JianPiYiFei (JPYF) II granules are a Chinese medicine for the treatment of chronic obstructive pulmonary disease (COPD). However, the main components and underlying mechanisms of JPYF II granules are not well understood. This study aimed to elucidate the potential mechanism of JPYF II granules in the treatment of COPD using network pharmacology, molecular docking, and molecular dynamics simulation techniques. METHODS The active compounds and corresponding protein targets of the JPYF II granules were found using the TCMSP, ETCM, and Uniport databases, and a compound-target network was constructed using Cytoscape3.9.1. The COPD targets were searched for in GEO datasets and the OMIM and GeneCards databases. The intersection between the effective compound-related targets and disease-related targets was obtained, PPI networks were constructed, and GO and KEGG enrichment analyses were performed. Then, molecular docking analysis verified the results obtained using network pharmacology. Finally, the protein-compound complexes obtained from the molecular docking analysis were simulated using molecular dynamics (MD) simulations. RESULTS The network pharmacological results showed that quercetin, kaempferol, and stigmasterol are the main active compounds in JPYF II granules, and AKT1, IL-6, and TNF are key target proteins. The PI3K/AKT signaling pathway is a potential pathway through which the JPYF II granules affect COPD. The results of the molecular docking analysis suggested that quercetin, kaempferol, and stigmasterol have a good binding affinity with AKT1, IL-6, and TNF. The MD simulation results showed that TNF has a good binding affinity with the compounds. CONCLUSIONS This study identified the effective compounds, targets, and related underlying molecular mechanisms of JPYF II granules in the treatment of COPD through network pharmacology, molecular docking, and MD simulation techniques, which provides a reference for subsequent research on the treatment of COPD.
Collapse
Affiliation(s)
- Liyuan Pang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yongjuan Zhao
- Department of Pulmonary and Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Yang Xu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Kim SW, Jee W, Park SM, Park YR, Bae H, Na YC, Lee HG, Kwon S, Jang HJ. Anti-inflammatory Effect of Symplocos prunifolia Extract in an In Vitro Model of Acute Pneumonia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024:10.1007/s11130-024-01231-5. [PMID: 39254770 DOI: 10.1007/s11130-024-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
Acute pneumonia is a respiratory disease characterized by inflammation within the lung tissue, exhibiting higher morbidity rates and mortality rates among immunocompromised children and older adults. Symplocos species have been traditionally used as herbal remedies for conditions like dysentery, skin ulcers, diarrhea, and dyspepsia. Contemporary research has employed various Symplocos species in the study of diverse diseases. However, the exact efficacy and mechanisms of action of Symplocos Prunifolia remain unknown. Therefore, this study investigated the anti-inflammatory mechanism of S. prunifolia extract (SPE) in A549 and RAW264.7 cells stimulated by lipopolysaccharide (LPS). SPE significantly reduced nitric oxide (NO) production and the protein expression levels of like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 cells. Furthermore, it reduced the protein expression levels of iNOS, COX-2 and the levels of pro-inflammatory cytokines in LPS-stimulated A549 cells. The mechanism underlying the anti-inflammatory effect of SPE was associated with the inhibition of LPS stimulated the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and Mitogen-activated protein kinase (MAPK) phosphorylation. Moreover, we confirmed that SPE decreased the nuclear translocation of nuclear factor-κB (NF-κB)/p65 stimulated by LPS. In conclusion, these results demonstrate that SPE alleviates inflammatory responses by deactivating the PI3K/Akt, MAPK, and NF-κB signaling pathways. Our findings suggest that SPE is a potential candidate for acute pneumonia prevention.
Collapse
Affiliation(s)
- Seok Woo Kim
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Mi Park
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ye-Rin Park
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hanbit Bae
- PanaCura Inc., 32, Soyanggang-ro, Chuncheon, 24232, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-Gu, Seoul, 03759, Republic of Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, 02447, Republic of Korea.
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
12
|
Cao X, Xiao N, Huang J, Li L, Zhong L, Zhang J, Wang F. Synergistic in vitro activity and mechanism of KBN lotion and miconazole nitrate against drug-resistant Candida albicans biofilms. Front Cell Infect Microbiol 2024; 14:1426791. [PMID: 39268490 PMCID: PMC11390680 DOI: 10.3389/fcimb.2024.1426791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background In the face of increasing antifungal resistance among Candida albicans biofilms, this study explores the efficacy of a combined treatment using Kangbainian lotion (KBN) and miconazole nitrate (MN) to address this challenge. Methods Using UPLC-Q-TOF/MS Analysis for Identification of Active Compounds in KBN Lotion; FICI for synergy evaluation, XTT and ROS assays for biofilm viability and oxidative stress, fluorescence and confocal laser scanning microscopy (CLSM) for structural and viability analysis, and real-time fluorescence for gene expression. Conclusion Our study indicates that the combined application of KBN and MN somewhat impacts the structural integrity of Candida albicans biofilms and affects the expression of several key genes involved in biofilm formation, including ALS1, ALS3, HWP1, HSP90, and CSH1. These preliminary findings suggest that there may be a synergistic effect between KBN and MN, potentially influencing not only the structural aspects of fungal biofilms but also involving the modulation of genetic pathways during their formation.
Collapse
Affiliation(s)
- Xiaoyu Cao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ni Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Chen J, Mou L, Wang L, Wu G, Dai X, Chen Q, Zhang J, Luo X, Xu F, Zhang M, Duan Y, Pang H, Wang Y, Cai Y, Tan Z. Mixed Bacillus subtilis and Lactiplantibacillus plantarum-fermented feed improves gut microbiota and immunity of Bamei piglet. Front Microbiol 2024; 15:1442373. [PMID: 39268530 PMCID: PMC11390403 DOI: 10.3389/fmicb.2024.1442373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Antibiotics are widely used in the breeding production of Bamei pigs, affecting the quality and safety of pork and causing enormous harm to human health, the environment, and public health. The use of probiotic fermented feed to replace antibiotic feed is one of the solutions, which has the potential to improve the intestinal microbiota, promote animal growth, and enhance immunity. The purpose of this study was to evaluate the effect of fermented feed with Lactiplantibacillus (L.) plantarum QP28-1a or Bacillus (B.) subtilis QB8a on feed, growth performance, gut microbiota, and immunity of weaned piglets. A total of 60 freshly weaned piglets from the Tibetan Plateau were randomly divided into five groups and fed basal feed, L. plantarum fermented feed, B. subtilis fermented feed, mixed fermented feed, and antibiotic fermented feed for 60 days, respectively. The results showed fermented feed supplemented with L. plantarum QP28-1a or B. subtilis QB8a significantly lowered the pH of the feed (P < 0.05), produced lactic acid and acetic acid, inhibited the growth of harmful bacteria in the feed, and reduced the feed conversion rate in the group fed mixed fermented feed (P < 0.05). The fermented feed increased the α-diversity and prominently altered the β-diversity of the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Lactobacillus and Turicibacter and decreasing the relative abundance of conditional pathogens such as Streptococcus and Clostridium, improving the intestinal microbiota of the Bamei piglets. Notably, the mixed fermented feed improved the immunity of Bamei piglets by modulating the production of pro-inflammatory cytokines, anti-inflammatory cytokines, and inflammatory-related signaling pathways. Spearman's correlation analysis revealed that the increased expression of immune-related cytokines may be associated with a significant enrichment of Lactobacillus, Prevotellaceae, Erysipelotrichaceae, and Ruminococcaceae in the gut. In conclusion, the probiotic fermented feed maintained an acidic environment conducive to suppressing pathogens, reduced the feed conversion ratio, optimized the intestinal microbiota, improved immunity, and alleviated intestinal inflammation that may be caused by weaning, demonstrating the excellent application prospects of L. plantarum QP28-1a and B. subtilis QB8a fermented feed in the feeding of Bamei piglets.
Collapse
Affiliation(s)
- Jun Chen
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Liyu Mou
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Ximei Dai
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Qiufang Chen
- Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Huzhou, China
| | - Miao Zhang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaoke Duan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huili Pang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yimin Cai
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Mao J, Gao Z, Wang X, Yao D, Lin M, Chen L. Integrated transcriptome and targeted metabolome analyses provide insights into flavonoid biosynthesis in kiwifruit (Actinidia chinensis). Sci Rep 2024; 14:19417. [PMID: 39169238 PMCID: PMC11339322 DOI: 10.1038/s41598-024-70600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
So far, a variety of metabolite components of kiwifruit have been elucidated. However, the identification and analysis of flavonoids in different tissues of kiwifruit are rarely carried out. In this study, we performed transcriptome and metabolome analyses of roots (Gkf_R), stems (Gkf_T), leaves (Gkf_L), and fruits (Gkf_F) to provide insights into the differential accumulation and regulation mechanisms of flavonoids in kiwifruit. Results showed that a total of 301 flavonoids were identified, in four tissues with different accumulation trends, and a large proportion of flavonoids had high accumulation in Gkf_L and Gkf_R. A total of 84 genes have been identified involved in the flavonoid biosynthesis pathway, and the expression levels of five LAR, two DFR, and one HCT were significantly correlated with the accumulation of 16 flavonoids and co-localized in the flavonoid biosynthesis pathway. In addition, a total of 2362 transcription factor genes were identified, mainly MYBs, bHLHs, ERFs, bZIPs and WRKYs, among which the expression level of bHLH74, RAP2.3L/4L/10L, MYB1R1, and WRKY33 were significantly correlated with 25, 56, 43, and 24 kinds of flavonoids. Our research will enrich the metabolomic data and provide useful information for the directed genetic improvement and application in the pharmaceutical industry of kiwifruit.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Zhu Gao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaoling Wang
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China.
| | - Dongliang Yao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an, China
| |
Collapse
|
15
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
16
|
Ajisebiola BS, Toromade AA, Oladele JO, Mustapha ARK, Fagbenro OS, Adeyi AO. Echis ocellatus venom-induced sperm functional deficits, pro-apoptotic and inflammatory activities in male reproductive organs in rats: antagonistic role of kaempferol. BMC Pharmacol Toxicol 2024; 25:46. [PMID: 39123263 PMCID: PMC11311923 DOI: 10.1186/s40360-024-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Echis ocellatus envenoming is potentially toxic initiating clinical damages on male reproductive system. Kaempferol is a therapeutic agent with neutralizing potentials on snake venom toxins. This study investigated the antagonistic effect of kaempferol on E. ocellatus venom (EoV)-induced reproductive toxicities. METHODS Fifty adult male rats were sorted at random into five groups of ten rats for this study. The control rats were allotted to group 1, while rats in groups 2-5 were injected with 0.22 mg/kg bw (LD50) of EoV intraperitoneally. Rats in group 2 were not treated while groups 3-5 rats were treated with serum antivenom (0.2 ml), and 4 and 8 mg/kg bw of kaempferol post envenoming, respectively. RESULTS EoV actuated reproductive toxicity, significantly decreased sperm parameters, and enhanced inflammatory, oxidative stress, and apoptotic biomarkers in reproductive organs of untreated envenomed rats. However, treatment with kaempferol alleviated the venom-induced reproductive disorders with a dose dependent effect. Kaempferol significantly increased the testicular weight, organo-somatic index, sperm parameters, and normalized the levels of serum luteinizing hormone, testosterone, and follicle stimulating hormone. Kaempferol ameliorated testicular and epididymal oxidative stress as evidenced by significant decrease in malondialdehyde (MDA) levels, enhancement of reduced glutathione (GSH) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The inflammatory biomarkers; nitric oxide (NO) levels and myeloperoxidase activity (MPO), and apoptotic biomarkers; caspase 3 and caspase 9 activities were substantially suppressed in the testis and epididymis of envenomed rats treated with kaempferol. CONCLUSION Results revealed kaempferol as a potential remedial agent against reproductive toxicity that could manifest post-viper envenoming.
Collapse
Affiliation(s)
| | | | | | | | - Olukunle Silas Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Akindele Oluwatosin Adeyi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, Lisińska W, Rysz J, Franczyk B. The Role of Antioxidants in the Therapy of Cardiovascular Diseases-A Literature Review. Nutrients 2024; 16:2587. [PMID: 39203723 PMCID: PMC11357572 DOI: 10.3390/nu16162587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Antioxidants are endogenous and exogenous substances with the ability to inhibit oxidation processes by interacting with reactive oxygen species (ROS). ROS, in turn, are small, highly reactive substances capable of oxidizing a wide range of molecules in the human body, including nucleic acids, proteins, lipids, carbohydrates, and even small inorganic compounds. The overproduction of ROS leads to oxidative stress, which constitutes a significant factor contributing to the development of disease, not only markedly diminishing the quality of life but also representing the most common cause of death in developed countries, namely, cardiovascular disease (CVD). The aim of this review is to demonstrate the effect of selected antioxidants, such as coenzyme Q10 (CoQ10), flavonoids, carotenoids, and resveratrol, as well as to introduce new antioxidant therapies utilizing miRNA and nanoparticles, in reducing the incidence and progression of CVD. In addition, new antioxidant therapies in the context of the aforementioned diseases will be considered. This review emphasizes the pleiotropic effects and benefits stemming from the presence of the mentioned substances in the organism, leading to an overall reduction in cardiovascular risk, including coronary heart disease, dyslipidaemia, hypertension, atherosclerosis, and myocardial hypertrophy.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| |
Collapse
|
18
|
Lin X, Bao M, Zhang X, Qirula S, Jiao C, Zhang D, Han J. Study on the bioactive ingredients and mechanism of Huangqi against diabetic retinopathy based on network pharmacology and experimental verification. J Chin Med Assoc 2024; 87:789-798. [PMID: 38780966 DOI: 10.1097/jcma.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most well-known microvascular complications of diabetes mellitus. As a traditional Chinese medicine, Huangqi (HQ), has been used for treating DR for a long time. However, its anti-DR active ingredients and mechanism are still unknown. Therefore, we designed this study to explore the active components and mechanism of HQ against DR via network pharmacology analysis. METHODS The ingredients of HQ, and potential targets of HQ and DR were obtained from public databases. We used the protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway enrichment, and Gene Ontology (GO) analysis to identify core targets and pathways of HQ against DR. Finally, molecular docking and vitro experiments were applied to validate our results. RESULTS A total of 34 potential targets of HQ against DR were obtained. Based on PPI network, VEGFA, PTGS2, Interleukin-6 (IL-6), and CCL2 were considered as core targets. GO analysis involved 692 biological processes, 21 cellular components, and 35 molecular functions. KEGG enrichment analysis manifested that the anti-DR effect of HQ was mainly mediated via the AGE-RAGE signaling pathway in diabetic complications. The molecular docking results indicated that kaempferol had higher affinity with CCL2, IL-6, VEGFA, and PTGS2. The vitro experiments showed that the mRNA expressions of CCL2, IL-6, VEGFA, and PTGS2 in ARPE-19 cells were differentially decreased after kaempferol treatment. CONCLUSION This study preliminarily unveiled that the therapeutic efficacy of HQ against DR might be attributed to the reduced expression of CCL2, IL-6, VEGFA, and PTGS2.
Collapse
Affiliation(s)
- Xiaohui Lin
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
20
|
Kaur S, Mendonca P, Soliman KFA. The Anticancer Effects and Therapeutic Potential of Kaempferol in Triple-Negative Breast Cancer. Nutrients 2024; 16:2392. [PMID: 39125273 PMCID: PMC11314279 DOI: 10.3390/nu16152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging to treat with standardized hormonal therapy. Kaempferol is a natural flavonoid with antioxidant, anti-inflammatory, neuroprotective, and anticancer effects. Besides anti-tumorigenic, antiproliferative, and apoptotic effects, kaempferol protects non-cancerous cells. Kaempferol showed anti-breast cancer effects by inducing DNA damage and increasing caspase 3, caspase 9, and pAMT expression, modifying ROS production by Nrf2 modulation, inducing apoptosis by increasing cleaved PARP and Bax and downregulating Bcl-2 expression, inducing cell cycle arrest at the G2/M phase; inhibiting immune evasion by modulating the JAK-STAT3 pathway; and inhibiting the angiogenic and metastatic potential of tumors by downregulating MMP-3 and MMP-9 levels. Kaempferol holds promise for boosting the efficacy of anticancer agents, complementing their effects, or reversing developed chemoresistance. Exploring novel TNBC molecular targets with kaempferol could elucidate its mechanisms and identify strategies to overcome limitations for clinical application. This review summarizes the latest research on kaempferol's potential as an anti-TNBC agent, highlighting promising but underexplored molecular pathways and delivery challenges that warrant further investigation to achieve successful clinical translation.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
21
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
22
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
23
|
Wei J, Zhao X, Long F, Tian K, Wu L. Lianhua Qingwen exerts anti-liver cancer effects and synergistic efficacy with sorafenib through PI3K/AKT pathway: Integrating network pharmacology, molecular docking, and experimental validation. Gene 2024; 912:148383. [PMID: 38493972 DOI: 10.1016/j.gene.2024.148383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Liver cancer is one of the most lethal malignancies and sorafenib resistance is the main treatment obstacle for patients with advanced liver cancer. Developing drugs that sensitize liver cancer patients to sorafenib is of great importance. Lianhua Qingwen (LHQW), a sort of Traditional Chinese Medicine (TCM) approved by the Chinese Food and Drug Administration (CFDA), is reported to exert synergistic effects with oseltamivir against Influenza virus. However, whether LHQW could exhibit anti-liver cancer effects and enhance the efficacy of sorafenib against liver cancer have not been reported. In the present study, the potential anti-liver cancer effects of LHQW and its synergistic effects with sorafenib were investigated via applying network pharmacology, molecular docking, and in vitro experiments. An "ingredient-compound- target-liver cancer" network was constructed which included 12 ingredients, 164 compounds, and 402 targets. AKT1 was identified as the most hub gene and the PI3K/AKT pathway was revealed as the most enriched pathway. Subsequently, the molecular docking results showed that kaempferol, luteolin, and quercetin were screened as the top 3 compounds which showed the tightest binding to AKT1. Further, the in vitro experiments verified that LHQW significantly inhibited liver cancer cell proliferation and induced apoptosis. Western blot assays confirmed that LHQW could attenuate the PI3K/AKT pathway. Interestingly, LHQW showed a synergistic effect with sorafenib against liver cancer via reducing cell viability, inducing apoptosis, and down- regulating PI3K/AKT pathway. This study broadens the potential application of LHQW and provides insights for liver cancer treatment.
Collapse
Affiliation(s)
- Jinrui Wei
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Xuqi Zhao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 7 Guangxi 530004, China
| | - Fuli Long
- Department of Hepatology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Kunpeng Tian
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 7 Guangxi 530004, China; Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha 410007, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 7 Guangxi 530004, China.
| |
Collapse
|
24
|
Yu X, Ren Z, Wang Y, Yuan G, Hu J, Song L, Pan C, Feng K, Liu Y, Shao L, Zhang L, Wang J, Zhao J, Bao N, Sun Z. Kaempferol attenuates particle-induced osteogenic impairment by regulating ER stress via the IRE1α-XBP1s pathway. J Biol Chem 2024; 300:107394. [PMID: 38768813 PMCID: PMC11223082 DOI: 10.1016/j.jbc.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Periprosthetic osteolysis and subsequent aseptic loosening are the primary causes of failure following total joint arthroplasty. Wear particle-induced osteogenic impairment is recognized as an important contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress emerging as a pivotal underlying mechanism. Hence, searching for potential therapeutic targets and agents capable of modulating ER stress in osteoblasts is crucial for preventing aseptic loosening. Kaempferol (KAE), a natural flavonol compound, has shown promising osteoprotective effects and anti-ER stress properties in diverse diseases. However, the influence of KAE on ER stress-mediated osteogenic impairment induced by wear particles remains unclear. In this study, we observed that KAE effectively relieved TiAl6V4 particles-induced osteolysis by improving osteogenesis in a mouse calvarial model. Furthermore, we demonstrated that KAE could attenuate ER stress-mediated apoptosis in osteoblasts exposed to TiAl6V4 particles, both in vitro and in vivo. Mechanistically, our results revealed that KAE mitigated ER stress-mediated apoptosis by upregulating the IRE1α-XBP1s pathway while concurrently partially inhibiting the IRE1α-regulated RIDD and JNK activation. Collectively, our findings suggest that KAE is a prospective therapeutic agent for treating wear particle-induced osteolysis and highlight the IRE1α-XBP1s pathway as a potential therapeutic target for preventing aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuxiang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guodong Yuan
- Department of Orthopedics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianlun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kangkang Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yuqiao Liu
- Medical Information Data Bank, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Longgang Shao
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinjuan Wang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhongyang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, China.
| |
Collapse
|
25
|
Abdulaal WH, Omar UM, Zeyadi M, El-Agamy DS, Alhakamy NA, A. R. Almalki N, Asfour HZ, Al-Rabia MW, Alzain AA, Mohamed GA, Ibrahim SR. Protective effect of kaempferol glucoside against lipopolysaccharide-caused acute lung injury via targeting Nrf2/NF-κB/NLRP3/GSDMD: Integrating experimental and computational studies. Saudi Pharm J 2024; 32:102073. [PMID: 38681737 PMCID: PMC11046126 DOI: 10.1016/j.jsps.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
The current study explored the protective potential of kaempferol 3-sophoroside-7-glucoside (KSG) against acute lung injury (ALI). Pre-treatment with KSG effectively secured mice from ALI and showed similar efficaciousness to dexamethasone. KSG markedly increased the survival rate and alleviated lung pathological lesions induced by lipopolysaccharide (LPS). Furthermore, KSG attenuated differential and total cell counts in BALF (bronchoalveolar lavage fluid) and MPO (myeloperoxidase) activity. KSG counteracted the NF-κB (nuclear factor-κB) activation and significantly ameliorated the downstream inflammatory cytokine, TNF-α (tumor necrosis factor-α). Simultaneously, KSG suppressed the over-expression of NLRP3 (NOD-like receptor protein 3), caspase-1, and pro-inflammatory cytokine interleukin IL-1β (interleukine-1β) and prohibited the elevation of the pyroptotic parameter GSDMD-N (N-terminal domain of gasdermin D) induced by LPS challenge. In addition, KSG significantly enhanced Nrf2 (nuclear-factor erythroid-2-related factor) and HO-1 (heme-oxygenase-1) expression. Meanwhile, KSG mitigated lipid peroxidative markers (malondialdehyde, protein carbonyl and 4-hydroxynonenal) and boosted endogenous antioxidants (superoxide dismutase/reduced glutathione/catalase) in lung tissue. In silico analyses revealed that KSG disrupts Keap1-Nrf2 protein-protein interactions by binding to the KEAP1 domain, consequently activating Nrf2. Specifically, molecular docking demonstrated superior binding affinity of KSG to KEAP1 compared to the reference inhibitor, with docking scores of -9.576 and -6.633 Kcal/mol, respectively. Additionally, the MM-GBSA binding free energy of KSG (-67.25 Kcal/mol) surpassed that of the reference inhibitor (-56.36 Kcal/mol). Furthermore, MD simulation analysis revealed that the KSG-KEAP1 complex exhibits substantial and stable binding interactions with various amino acids over a duration of 100 ns. These findings showed the protective anti-inflammatory and anti-oxidative modulatory efficiencies of KSG that effectively counteracted LPS-induced ALI and encouraged future research and clinical applications of KSG as a protective strategy for ALI.
Collapse
Affiliation(s)
- Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nabil A. Alhakamy
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naif A. R. Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
26
|
Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, Joshi U, Bhandari D, Rogers HM, Bhattarai S, Sharma KR, Regmi BP, Parajuli N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr 2024; 12:3025-3045. [PMID: 38726403 PMCID: PMC11077226 DOI: 10.1002/fsn3.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.
Collapse
Affiliation(s)
- Dipa Aryal
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Soniya Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Nabin Kumar Thapa
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Pratiksha Chaudhary
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Sirjana Basaula
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Usha Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Damodar Bhandari
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Hannah M. Rogers
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | | | - Khaga Raj Sharma
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Bishnu P. Regmi
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| |
Collapse
|
27
|
Xue Y, Cai X, Wang Y, Ban L, Mei M, Chen S, Xu Q, Chen B, Liang S, Wang X. Utilizing network pharmacology and experimental validation to investigate the underlying mechanism of Denglao Qingguan decoction against HCoV-229E. Heliyon 2024; 10:e27829. [PMID: 38533054 PMCID: PMC10963236 DOI: 10.1016/j.heliyon.2024.e27829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Background Denglao Qingguan decoction (DLQGD) has been extensively utilized for the treatment of colds, demonstrating significant therapeutic efficacy. Human Coronavirus 229E (HCoV-229E) is considered a crucial etiological agent of influenza. However, the specific impact and underlying mechanisms of DLQGD on HCoV-229E remain poorly understood. Methods Active ingredients and targets information of DLQGD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), literature search, and Swiss ADEM database. The Genecard database was used to collect HCoV-229E related targets. We built an "ingredient-target network" through Cytoscape. Protein - Protein interaction (PPI) networks were mapped using the String database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were enriched using the DAVID database. Then, we used molecular docking techniques to verify the binding activity between the core compounds and the core gene targets. Finally, in vitro experiments were conducted to validate DLQGD's antiviral activity against HCoV-229E and assess its anti-inflammatory effects. Results In total, we identified 227 active components in DLQGD. 18 key targets involved in its activity against HCoV-229E. Notably, the core active ingredients including quercetin, luteolin, kaempferol, β-sitosterol, and apigenin, and the core therapeutic targets were CXCL8, RELA, MAPK14, NFKB1, and CXCL10, all associated with HCoV-229E. KEGG enrichment results included IL-17 signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and so on. The core active ingredients and the core therapeutic targets and Human Aminopeptidase N (ANPEP) all showed good binding activity by molecular docking verification. In vitro, DLQGD exhibited anti-HCoV-229E activity and anti-inflammatory effects. Conclusion Our study suggests that DLQGD has both effects of anti-HCoV-229E and anti-inflammatory. The core active ingredients (quercetin, luteolin, kaempferol, β-sitosterol, apigenin) and the core therapeutic targets (CXCL8, RELA, MAPK14, NFKB1, CXCL10) may play key roles in the pharmacological action of DLQGD against HCoV-229E.
Collapse
Affiliation(s)
- Yajing Xue
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Ban
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Manxue Mei
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuqi Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qihua Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Boqian Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Shuhua Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Mallepura Adinarayanaswamy Y, Padmanabhan D, Natarajan P, Palanisamy S. Metabolomic Profiling of Leptadenia reticulata: Unveiling Therapeutic Potential for Inflammatory Diseases through Network Pharmacology and Docking Studies. Pharmaceuticals (Basel) 2024; 17:423. [PMID: 38675385 PMCID: PMC11054655 DOI: 10.3390/ph17040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Medicinal plants have been utilized since ancient times for their therapeutic properties, offering potential solutions for various ailments, including epidemics. Among these, Leptadenia reticulata, a member of the Asclepiadaceae family, has been traditionally employed to address numerous conditions such as diarrhea, cancer, and fever. In this study, employing HR-LCMS/MS(Q-TOF) analysis, we identified 113 compounds from the methanolic extract of L. reticulata. Utilizing Lipinski's rule of five, we evaluated the drug-likeness of these compounds using SwissADME and ProTox II. SwissTarget Prediction facilitated the identification of potential inflammatory targets, and these targets were discerned through the Genecard, TTD, and CTD databases. A network pharmacology analysis unveiled hub proteins including CCR2, ICAM1, KIT, MPO, NOS2, and STAT3. Molecular docking studies identified various constituents of L. reticulata, exhibiting high binding affinity scores. Further investigations involving in vivo testing and genomic analyses of metabolite-encoding genes will be pivotal in developing efficacious natural-source drugs. Additionally, the potential of molecular dynamics simulations warrants exploration, offering insights into the dynamic behavior of protein-compound interactions and guiding the design of novel therapeutics.
Collapse
Affiliation(s)
- Yashaswini Mallepura Adinarayanaswamy
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; (Y.M.A.); (D.P.)
| | - Deepthi Padmanabhan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; (Y.M.A.); (D.P.)
| | | | - Senthilkumar Palanisamy
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; (Y.M.A.); (D.P.)
| |
Collapse
|
29
|
Pourhajibagher M, Bahador A. Bioinformatics analysis of photoexcited natural flavonoid glycosides as the inhibitors for oropharyngeal HPV oncoproteins. AMB Express 2024; 14:29. [PMID: 38466452 DOI: 10.1186/s13568-024-01684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
The presence of oropharyngeal human papillomavirus (HPV)-18 E6 and E7 oncoproteins is highly significant in the progression of oropharyngeal cancer. Natural flavonoid compounds have potential as photosensitizers for light-activated antimicrobial therapy against HPV-associated oropharyngeal cancer. This study evaluated five natural flavonoid glycosides including Fisetin, Kaempferol, Morin, Myricetin, and Quercetin as photosensitizers against HPV-18 E6 and E7 oncoproteins using computational methods. After obtaining the amino acid sequences of HPV-18 E6 and E7, various tools were used to predict and verify their properties. The PubChem database was then examined to identify potential natural flavonoid glycosides, followed by predictions of their drug-likeness and ADMET properties. Subsequently, molecular docking was conducted to enhance the screening accuracy and to gain insights into the interactions between the natural compounds and the active sites of HPV-18 E6 and E7 oncoproteins. The protein structures of E6 and E7 were predicted and validated to be reliable. The results of molecular docking demonstrated that Kaempferol exhibited the highest binding affinity to both E6 and E7. All compounds satisfied Lipinski's rules of drug-likeness, except Myricetin. They showed high absorption, distribution volume and similar ADMET profiles with no toxicity. In summary, natural flavonoid glycosides, especially Kaempferol, show potential as photosensitizers for antimicrobial photodynamic therapy against HPV-associated oropharyngeal cancer through inhibition of E6 and E7 oncoproteins. These findings provide insights into the development of novel therapeutic strategies based on antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
30
|
Hairil Anuar AH, Abd Ghafar SA, Hanafiah RM, Lim V, Mohd Pazli NFA. Critical Evaluation of Green Synthesized Silver Nanoparticles-Kaempferol for Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus. Int J Nanomedicine 2024; 19:1339-1350. [PMID: 38348172 PMCID: PMC10860521 DOI: 10.2147/ijn.s431499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol). Methods AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV-visible spectroscopy (UV-Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay. Results The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV-visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.
Collapse
Affiliation(s)
- Ariff Haikal Hairil Anuar
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| | - Siti Aisyah Abd Ghafar
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| | - Rohazila Mohamad Hanafiah
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Nur Farah Atiqah Mohd Pazli
- Department of Basic Sciences, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, 55100, Malaysia
| |
Collapse
|
31
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
32
|
Chen X, Wei M, Li GD, Sun QL, Fan JQ, Li JY, Yun CM, Liu DM, Shi H, Qu YQ. YuPingFeng (YPF) upregulates caveolin-1 (CAV1) to alleviate pulmonary fibrosis through the TGF-β1/Smad2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117357. [PMID: 37898439 DOI: 10.1016/j.jep.2023.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) is considered a valuable asset in China's medical tradition. YPF is a classic prescription that has been derived from the "Jiu Yuan Fang" formula and consists of three herbs: Huangqi (Astragalus membranaceus Bunge), Baizhu (Atractylodes rubra Dekker), and Fangfeng (Saposhnikovia divaricata (Turcz.) Schischk). This prescription is widely acclaimed for its exceptional pharmacological properties, including potent antioxidant effects, hormone regulation, and immune modulation effects. AIM OF THE STUDY Previous research provides evidence suggesting that YPF may have therapeutic effects on pulmonary fibrosis. Further exploration is essential to confirm its effectiveness and elucidate the fundamental processes. MATERIALS AND METHODS First, the active components and target genes of YPF were extracted from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Next, the GSE53845 dataset, which contains information on pulmonary fibrosis, was downloaded from the GEO database. Network informatics methods was then be utilized to identify target genes associated with pulmonary fibrosis. A YPF-based network of protein-protein interactions was constructed to pinpoint possible target genes for pulmonary fibrosis treatment. Additionally, an in vitro model of pulmonary fibrosis induced by bleomycin (BLM) was established to further investigate and validate the possible mechanisms underlying the effectiveness of YPF. RESULTS In this study, a total of 24 active ingredients of YPF, along with 178 target genes associated with the treatment, were identified. Additionally, 615 target genes related to pulmonary fibrosis were identified. Functional enrichment analysis revealed that 18 candidate genes (CGs) exhibited significant responses to tumor necrosis factor, NF-kB survival signaling, and positive regulation of apoptosis processes. Among these CGs, CAV1, VCAM1, and TP63 were identified as key target genes. Furthermore, cell experiments confirmed that the expression of CAV1 protein and RNA expression was increased in pulmonary fibrosis, but significantly decreased after treatment with YPF. Additionally, the expression of pSmad2, α-SMA, TGF-β1, and TNF-α was also decreased following YPF treatment. CONCLUSIONS Network pharmacology analysis revealed that YPF exhibits significant potential as a therapeutic intervention for pulmonary fibrosis by targeting various compounds and pathways. This study emphasizes that the efficacy of YPF in treating pulmonary fibrosis may be attributed to its ability to up-regulate CAV1 expression and inhibiting pulmonary fibrosis via modulation of the TGF-β1/Smad2 signaling pathway. These findings underscore the promising role of YPF and its ability to potentially alleviate pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Min Wei
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Guo-Dong Li
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Qi-Liang Sun
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Jia-Qi Fan
- Jining Medical University, 133 Hehua Rd, Jining, China
| | - Jun-Yi Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Chun-Mei Yun
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Dao-Ming Liu
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Hong Shi
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
33
|
Yu X, Wu Q, Ren Z, Chen B, Wang D, Yuan T, Ding H, Wang Y, Yuan G, Wang Y, Zhang L, Zhao J, Sun Z. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117019. [PMID: 37574017 DOI: 10.1016/j.jep.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wear particle-induced inflammatory osteoclast activation is a master contributor to periprosthetic osteolysis, which can cause pathological bone loss and destruction. Hence, inhibiting inflammation and osteoclastogenesis is an important strategy for preventing wear particle-induced osteolysis. To date, there are no FDA-approved non-surgical pharmacotherapies for arresting periprosthetic osteolysis. Kaempferol (KAE), a natural flavonol abundant in many traditional Chinese herbal medicines, has been shown to have protective effects against inflammatory bone diseases such as rheumatoid arthritis, but no previous study has evaluated the effects of KAE on wear particle-induced osteolysis. AIM OF THE STUDY The study aimed to investigate the effects of KAE on wear particle-induced inflammatory osteolysis and osteoclast activation, and further explore the underlying mechanisms. MATERIALS AND METHODS TiAl6V4 metal particles (TiPs) were retrieved from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was used to investigate the effects of KAE on wear particle-induced inflammatory osteolysis in vivo. Primary bone marrow-derived macrophages (BMMs) were used to explore the effects of KAE on osteoclast differentiation and bone-resorbing activity as well as the underlying mechanisms in vitro. RESULTS In the present study, we found that KAE alleviated wear particle-induced inflammatory bone loss in vivo and inhibited osteoclast differentiation and function in vitro. Furthermore, we revealed that KAE exerted anti-osteoclastogenic effects by downregulating JNK and p38-MAPK signaling as well as the downstream NFATc1 expression. CONCLUSIONS KAE is an alternative therapeutic agent for preventing and treating periprosthetic osteolysis and aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guodong Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
34
|
He X, Cui J, Li H, Zhou Y, Wu X, Jiang C, Xu Z, Wang R, Xiong L. Antipyretic effects of Xiangqin Jiere granules on febrile young rats revealed by combining pharmacodynamics, metabolomics, network pharmacology, molecular biology experiments and molecular docking strategies. J Biomol Struct Dyn 2024:1-18. [PMID: 38197809 DOI: 10.1080/07391102.2024.2301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Xiangqin Jiere granules (XQJRG) is a proprietary Chinese medicine treating children's colds and fevers, but its mechanism of action is unclear. The aim of this study was to explore the antipyretic mechanisms of XQJRG based on pharmacodynamics, non-targeted metabolomics, network pharmacology, molecular biology experiments, molecular docking, and molecular dynamics (MD) simulation. Firstly, the yeast-induced fever model was constructed in young rats to study antipyretic effect of XQJRG. Metabolomics and network pharmacology studies were performed to identify the key compounds, targets and pathways involved in the antipyretic of XQJRG. Subsequently, MetScape was used to jointly analyze targets from network pharmacology and metabolites from metabolomics. Finally, the key targets were validated by enzyme-linked immunosorbent assay (ELISA), and the affinity and stability of key ingredient and targets were evaluated by molecular docking and MD simulation. The animal experimental results showed that after XQJRG treatment, body temperature of febrile rats was significantly reduced, 13 metabolites were significantly modulated, and pathways of differential metabolite enrichment were mainly related to amino acid and lipid metabolism. Network pharmacology results indicated that quercetin and kaempferol were the key active components of XQJRG, TNF, AKT1, IL6, IL1B and PTGS2 were core targets. ELISA confirmed that XQJRG significantly reduced the plasma concentrations of IL-1β, IL-6, and TNF-α, and the hypothalamic concentrations of COX-2 and PGE2. Molecular docking demonstrated that the binding energies of kaempferol to the core targets were all below -5.0 kcal/mol. MD simulation results showed that the binding free energies of TNF-kaempferol, IL6-kaempferol, IL1B-kaempferol and PTGS2-kaempferol were -87.86 kcal/mol, -70.41 kcal/mol, -69.95 kcal/mol and -106.67 kcal/mol, respectively. In conclusion, XQJRG has antipyretic effects on yeast-induced fever in young rats, and its antipyretic mechanisms may be related to the inhibition of peripheral pyrogenic cytokines release by constituents such as kaempferol, the reduction of hypothalamic fever mediator production, and the amelioration of disturbances in amino acid and lipid metabolism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunrong Jiang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhichang Xu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
35
|
Lin H, Wang W, Peng M, Kong Y, Zhang X, Wei X, Shang H. Pharmacological properties of Polygonatum and its active ingredients for the prevention and treatment of cardiovascular diseases. Chin Med 2024; 19:1. [PMID: 38163901 PMCID: PMC10759625 DOI: 10.1186/s13020-023-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Despite continued advances in prevention and treatment strategies, cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and more effective therapeutic methods are urgently needed. Polygonatum is a traditional Chinese herbal medicine with a variety of pharmacological applications and biological activities, such as antioxidant activity, anti-inflammation, antibacterial effect, immune-enhancing effect, glucose regulation, lipid-lowering and anti-atherosclerotic effects, treatment of diabetes and anticancer effect. There has also been more and more evidence to support the cardioprotective effect of Polygonatum in recent years. However, up to now, there has been a lack of comprehensive studies on the active ingredients and their pharmacotoxicological effects related to cardiovascular diseases. Therefore, the main active components of Polygonatum (including Polysaccharides, Flavonoids, Saponins) and their biological activities were firstly reviewed in this paper. Furthermore, we summarized the pharmacological effects of Polygonatum's active components in preventing and treating CVDs, and its relevant toxicological investigations. Finally, we emphasize the potential of Polygonatum in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenhui Wang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mengqi Peng
- Weifang Medical University, Weifang, 261000, China
| | - Yifan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaowei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
36
|
Sharma V, Arora A, Bansal S, Semwal A, Sharma M, Aggarwal A. Role of bio-flavonols and their derivatives in improving mitochondrial dysfunctions associated with pancreatic tumorigenesis. Cell Biochem Funct 2024; 42:e3920. [PMID: 38269510 DOI: 10.1002/cbf.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Arora
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sakshi Bansal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ankita Semwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayank Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
37
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
38
|
Zhang J, Xue S, Chen H, Jiang H, Gao P, Lu L, Wang Q. Exploring the Mechanism of Si-miao-yong-an Decoction in the Treatment of Coronary Heart Disease based on Network Pharmacology and Experimental Verification. Comb Chem High Throughput Screen 2024; 27:57-68. [PMID: 37403397 DOI: 10.2174/1386207326666230703150803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND To investigate the active ingredients and the mechanisms of Si-miaoyong- an Decoction (SMYA) in the treatment of coronary heart disease (CHD) by using network pharmacology, molecular docking technology, and in vitro validation. METHODS Through the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Uniprot database, GeneCards database, and DAVID database, we explored the core compounds, core targets and signal pathways of the effective compounds of SMYA in the treatment of CHD. Molecular docking technology was applied to evaluate the interactions between active compounds and key targets. The hypoxia-reoxygenation H9C2 cell model was applied to carry out in vitro verification experiments. A total of 109 active ingredients and 242 potential targets were screened from SMYA. A total of 1491 CHD-related targets were retrieved through the Gene- Cards database and 155 overlapping CHD-related SMYA targets were obtained. PPI network topology analysis indicated that the core targets of SMYA in the treatment of CHD include interleukin- 6 (IL-6), tumor suppressor gene (TP53), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), phosphorylated protein kinase (AKT1) and mitogen-activated protein kinase (MAPK). KEGG enrichment analysis demonstrated that SMYA could regulate Pathways in cancer, phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway, hypoxiainducible factor-1(HIF-1) signaling pathway, VEGF signaling pathway, etc. Results: Molecular docking showed that quercetin had a significant binding activity with VEGFA and AKT1. In vitro studies verified that quercetin, the major effective component of SMYA, has a protective effect on the cell injury model of cardiomyocytes, partially by up-regulating expressions of phosphorylated AKT1 and VEGFA. CONCLUSION SMYA has multiple components and treats CHD by acting on multiple targets. Quercetin is one of its key ingredients and may protect against CHD by regulating AKT/VEGFA pathway.
Collapse
Affiliation(s)
- Jingmei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siming Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengrong Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China
| |
Collapse
|
39
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Chu T, Yu R, Gu Y, Wang Y, Chang H, Li Y, Li J, Bian Y. Kaempferol protects gut-vascular barrier from high glucose-induced disorder via NF-κB pathway. J Nutr Biochem 2024; 123:109496. [PMID: 37871766 DOI: 10.1016/j.jnutbio.2023.109496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Kaempferol is a natural edible flavonoid reported to treat high-fat diet-induced intestinal inflammation; however, the underlying molecular mechanisms remain unclear. This research aims to investigate the protective effect of kaempferol on the gut-vascular barrier (GVB) induced by high glucose and elucidate the underlying mechanism. Evans blue albumin efflux assay was used to test endothelial cell permeability. The results showed that kaempferol (50 μM) significantly reversed the high glucose-induced monolayer barrier permeability of rat intestinal microvascular endothelial cells (RIMVECs), while kaempferol significantly alleviated the high glucose-induced rarefication of the tight junction protein Claudin-5. Moreover, kaempferol also reduced high glucose-induced angiogenesis and cell migration via inhibiting the VEGFR2/p38 pathway. Kaempferol also protected against high glucose-induced overproduction of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 by inhibiting NF-κB p65 nuclear translocation. In addition, kaempferol had similar effects to the NF-κB inhibitor SN50 in reducing high glucose-induced ICAM-1 expression and endothelial barrier permeabilization. Our findings in part reveal the pathological mechanism of hyperglycemia-related gastrointestinal diseases and underlie the molecular mechanism of kaempferol in inhibiting bowel inflammation from a novel perspective.
Collapse
Affiliation(s)
- Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yinping Gu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Hongyuan Chang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China.
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, PR China.
| |
Collapse
|
41
|
Nazar N, Hussain AI, Rathore HA. Inter-Varietal Variation in Phenolic Profile, Antioxidant, Anti-Inflammatory and Analgesic Activities of Two Brassica rapa Varieties: Influence on Pro-Inflammatory Mediators. Molecules 2023; 29:117. [PMID: 38202700 PMCID: PMC10779636 DOI: 10.3390/molecules29010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024] Open
Abstract
The present research study aims to appraise the potential of polyphenol-rich extracts from two Brassica rapa varieties on antioxidant, anti-inflammatory and analgesic activities using carrageenan-induced paw edema model in rats. Methanol extracts of peels and pulps of Brassica rapa yellow root (BRYR) and Brassica rapa white root (BRWR) were prepared using the soxhlet extraction technique. All four extracts were analyzed by reversed-phase high-pressure liquid chromatography (RP-HPLC) for the polyphenols, and results showed that 10 phenolic acids and 4 flavonoids were detected. Gallic acid was the major phenolic acid (174.6-642.3 mg/100 g of dry plant material) while catechin was the major (34.45-358.5 mg/100 g of dry plant material) flavonoid detected in the extracts. The total phenolic contents (TPC) of BRYR peel, BRWR peel, BRYR pulp and BRWR pulp extracts were in the range of 1.21-5.01 mg/g of dry plant material, measured as GAE, whereas the total flavonoid contents (TFC) were found in the range of 0.90-3.95 mg/g of dry plant material, measured as QE. BRYR peel extract exhibited the best DPPH radical scavenging activity (IC50, 3.85 µg/mL) and reducing potential as compared with other extracts. The in vivo anti-inflammatory potential was assessed by carrageenan-induced rat paw edema, and the analgesic potential was investigated by a hot plate test. Suppression of biochemical inflammatory biomarkers including C-reactive protein (CRP), rheumatoid factor (RF) and tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) concentration were also determined. Results showed that BRYR peel extracts reduced paw edema and suppressed the production of TNF-α, IL-6, CRP and RF most significantly, followed by BRWR peel, BRYR pulp and BRWR pulp extracts. In addition, histopathology observation also supports the anti-inflammatory effect of peel extracts as being greater than that of root pulp extracts. Moreover, it was observed that the analgesic effect of the root-peel extracts was also more pronounced as compared with root-pulp extracts. It can be concluded that BRYR peel extract has higher phenolic contents and showed higher suppression of TNF-α, IL-6, CRP and RF, with strong antioxidant, anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- Nida Nazar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Abdullah Ijaz Hussain
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Hi-Tech Lab, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
42
|
Rosiak N, Tykarska E, Cielecka-Piontek J. The Study of Amorphous Kaempferol Dispersions Involving FT-IR Spectroscopy. Int J Mol Sci 2023; 24:17155. [PMID: 38138984 PMCID: PMC10742969 DOI: 10.3390/ijms242417155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Attenuated total reflection-Mid-Fourier transform-infrared (ATR-Mid-FT-IR) spectroscopy combined with principal component analysis (PCA) has been applied for the discrimination of amorphous solid dispersion (ASD) of kaempferol with different types of Eudragit (L100, L100-55, EPO). The ASD samples were prepared by ball milling. Training and test sets for PCA consisted of a pure compound, physical mixture, and incomplete/complete amorphous solid dispersion. The obtained results confirmed that the range 400-1700 cm-1 was the major contributor to the variance described by PC1 and PC2, which are the fingerprint region. The obtained PCA model selected fully amorphous samples as follows: five for KMP-EL100, two for KMP-EL100-55, and six for KMP-EPO (which was confirmed by the XRPD analysis). DSC analysis confirmed full miscibility of all ASDs (one glass transition temperature). FT-IR analysis confirmed the formation of hydrogen bonds between the -OH and/or -CH groups of KMP and the C=O group of Eudragits. Amorphization improved the solubility of kaempferol in pH 6.8, pH 5.5, and HCl 0.1 N.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
43
|
Su H, Liu Z, Zhang Z, Jing X, Meng L. Development of a Deep Eutectic Solvent-Assisted Kaempferol Hydrogel: A Promising Therapeutic Approach for Psoriasis-like Skin Inflammation. Mol Pharm 2023; 20:6319-6329. [PMID: 37904514 DOI: 10.1021/acs.molpharmaceut.3c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Psoriasis is an incurable inflammatory skin disease that is mediated by the immune system. Although kaempferol has been known for its anti-inflammatory, antioxidant, and anticancer properties, its therapeutic effectiveness is often limited due to its poor water solubility and low bioavailability. To address these challenges, we developed a promising kaempferol hydrogel (DK-pGEL) using Pluronic F127 and a deep eutectic solvent (DES) with varying concentrations of kaempferol. In this study, we first evaluated the rheological properties and viscosity of the DK-pGEL hydrogel. The G' of DK-pGEL (∼14 kPa) hydrogels was significantly lower than the control group (∼30 kPa) at 37 °C. The DK-pGEL hydrogel exhibited ideal fluidity and viscosity at 37 °C, as demonstrated by its shear-thinning behavior. Moreover, the DK-pGEL hydrogel showed controlled release characteristics with a drug release of 97.43 ± 5.37 μg/mL over 60 h. Furthermore, in vitro antioxidant experiments revealed that DK-pGEL exhibited significant radical scavenging ability against the DPPH-radical (96.27 ± 0.37%), ABTS-radical (98.11 ± 0.79%), hydroxyl-radical (66.36 ± 1.01%), and superoxide-radical (90.52 ± 0.79%) at a concentration of 250 μg/mL kaempferol. Additionally, DK-pGEL exhibited notable cellular antioxidant effects by inhibiting reactive oxygen species generation. Cell viability assays (CCK8) and live/dead cell assays were conducted to assess the cytotoxicity of DK-pGEL. The results showed that DK-pGEL could effectively inhibit HaCaT cell proliferation without causing significant cytotoxicity. To evaluate the therapeutic potential of DK-pGEL, an imiquimod (IMQ)-induced mouse model of psoriasis-like lesions was employed. Remarkably, the DK-pGEL hydrogel could significantly reduce the psoriasis area and severity index score, improve the histopathology induced by IMQ, and downregulate the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-17A) in the skin tissue. These findings demonstrate that the DES-assisted kaempferol hydrogel holds promise as a topical drug delivery system for psoriasis treatment.
Collapse
Affiliation(s)
- Huining Su
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhicheng Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zuoliang Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
44
|
Cao R, Cao C, Hu X, Du K, Zhang J, Li M, Li B, Lin H, Zhang A, Li Y, Wu L, Huang Y. Kaempferol attenuates carbon tetrachloride (CCl 4)-induced hepatic fibrosis by promoting ASIC1a degradation and suppression of the ASIC1a-mediated ERS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155125. [PMID: 37820466 DOI: 10.1016/j.phymed.2023.155125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Kaempferol is a flavonoid derived from the herb, Kaempferia galanga L., in addition to exhibiting a wide range of pharmacological properties, kaempferol is also an anti-inflammatory, anti-lipid metabolizing, and anti-oxidative stress agent. The underlying molecular mechanisms of its effects on vascular endothelial growth factor (VEGF) secretion and activation of hepatic stellate cells (HSCs) are yet unknown. Activated HSCs induces VEGF release and extracellular matrix (ECM) accumulation which are important factors in hepatic fibrosis. PURPOSE Our aim is to explore how kaempferol may affect hepatic fibrosis and the mechanisms behind its effects. METHODS The in vivo model was Sprague-Dawley rats induced with carbon tetrachloride (CCl4). Histological staining was used to observe histological features of the liver. The levels of (alanine aminotransferase) ALT and (aspartate aminotransferase) AST were detected by the corresponding kits. Platelet-derived growth factor (PDGF) was used to stimulate the HSC-T6 rat hepatic stellate cells. The mechanisms underlying this process were investigated using a variety of molecular approaches, including immunofluorescence, RT-qPCR, and western blotting. Moreover, intracellular Ca2+ were observed by laser confocal microscope. RESULTS It was found that kaempferol significantly reduced the expression of ASIC1a, VEGF, α-SMA and Collagen-I proteins in a model of CCl4-induced hepatic fibrosis in rats. In HSC-T6, kaempferol inhibits activation of HSCs by decreasing expression of ASIC1a, eIF2α, p-eIF2α and ATF-4. Laser confocal fluorescence showed that kaempferol inhibited Ca2+ influx and reduced Ca2+ concentration around the endoplasmic reticulum. Molecular docking and cellular thermal shift assay (CETSA) results further indicated that kaempferol interacted with ASIC1a. We found that kaempferol may promote the degradation of ASIC1a and inhibited ASIC1a- mediated upregulation of ERS. CONCLUSION The data from our in vivo experiments demonstrate that kaempferol effectively attenuates hepatic fibrosis. In vitro studies we further propose a novel mechanism of kaempferol against hepatic fibrosis which can interact with ASIC1a and promote ASIC1a degradation while inhibiting the activation and VEGF release of HSCs by suppressing the ASIC1a-eIF2α-ATF-4 signaling pathway.
Collapse
Affiliation(s)
- Rui Cao
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chun Cao
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Kang Du
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jingrong Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Mengxue Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Bowen Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yangyang Li
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
45
|
Xie Y, Lin Z, Zhang J, Chen Y, Huang J, Tang H, Chen J, Lei Y, Qian Z. Virtual screening combined with experimental verification reveals the potential mechanism of Fuzitang decoction against Gouty Arthritis. Heliyon 2023; 9:e22650. [PMID: 38058447 PMCID: PMC10696199 DOI: 10.1016/j.heliyon.2023.e22650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Background and Purpose: Fuzitang decoction (FZT), a classic prescription of traditional Chinese medicine (TCM), has excellent efficacy in treating gouty arthritis (GA). However, the underlying molecular mechanism remains obscure. In the present study, we aimed to explore the underlying mechanisms of FZT in treating GA by virtual screening combined with experimental verification. Methods In this study, the active components of FZT and their corresponding targets were screened from the TCMSP database and TargetNet database. Then, the potential targets of FZT against GA were retrieved from multiple databases to generate a network. Protein-protein interaction, herbal-component-target, Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were applied to identify potential targets and related signaling pathways. Furthermore, molecular docking simulation was applied to identify the interactions between the drug and targets. Finally, in vitro experiments were conducted to validate the potential targets and signaling pathways. Results In the present study, several crucial components, including kaempferol, luteolin, catechin, deoxyandrographolide, and perlolyrine in FZT, were obtained through network pharmacology, and several potential targets to treat GA were developed, such as PPARG, CYP3A4, PTGS2 (known as COX2), VEGFA, and CYP1A1. Experimental validation suggested that deoxyandrographolide significantly suppressed the expression of IL-1β, COX2, NLRP3 and IL-6 in inflammatory monocyte cells. Conclusions Our results identified a novel anti-inflammatory compound, deoxyandrographolide, which helps to explain the potential mechanism of FZT in treating GA and provides evidence to support FZT's clinical use.
Collapse
Affiliation(s)
- Yufeng Xie
- The Sixth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Zhongxiao Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Jianmei Zhang
- The Sixth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Yun Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Jianhao Huang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Hong Tang
- The Sixth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jieting Chen
- The Sixth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Ziliang Qian
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| |
Collapse
|
46
|
Oanh HT, Hoai Thu NT, Van Hanh N, Hoang MH, Minh Hien HT. Co-encapsulated astaxanthin and kaempferol nanoparticles: fabrication, characterization, and their potential synergistic effects on treating non-alcoholic fatty liver disease. RSC Adv 2023; 13:35127-35136. [PMID: 38046630 PMCID: PMC10691322 DOI: 10.1039/d3ra06537e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Astaxanthin and kaempferol, renowned natural compounds, possess potent antioxidant properties and exhibit remarkable biological activities. However, their poor water solubility, low stability, and limited bioavailability are the primary bottlenecks that restrict their utilization in pharmaceuticals and functional foods. To overcome these drawbacks, this study aims to fabricate astaxanthin/kaempferol co-encapsulated nanoparticles and investigate their synergistic effects on reducing the risk of stress oxidation, chronic inflammation, and lipid accumulation in RAW264.7 and HepG2 cells. The synthesized astaxanthin/kaempferol nanoparticles exhibited well-defined spherical morphology with an average particle diameter ranging from 74 to 120 nm. These nanoparticles demonstrated excellent stability with the remaining astaxanthin content ranging from 82.5% to 92.1% after 6 months of storage at 4 °C. Nanoastaxanthin/kaempferol displayed high dispersibility and stability in aqueous solutions, resulting in a significant enhancement of their bioactivity. In vitro assessments on cell lines revealed that nanoastaxanthin/kaempferol enhanced the inhibition of H2O2-induced oxidative stress in HepG2 and LPS-induced NO production in RAW264.7 compared to nanoastaxanthin. Additionally, these nanoparticles reduced the expression of genes involved in inflammation (iNOS, IL-6 and TNF-α). Moreover, hepatocytes treated with nanoastaxanthin/kaempferol showed a reduction in lipid content compared to those treated with nanoastaxanthin, through enhanced regulation of lipid metabolism-related genes. Overall, these findings suggest that the successful fabrication of co-encapsulated nanoparticles containing astaxanthin and kaempferol holds promising therapeutic potential in the treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ho Thi Oanh
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Ngo Thi Hoai Thu
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Nguyen Van Hanh
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Mai Ha Hoang
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| | - Hoang Thi Minh Hien
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay 10072 Hanoi Vietnam
| |
Collapse
|
47
|
Han X, Liang L, He C, Ren Q, Su J, Cao L, Zheng J. A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma. BMC Complement Med Ther 2023; 23:422. [PMID: 37990309 PMCID: PMC10664478 DOI: 10.1186/s12906-023-04213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aimed to explore the efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with ZiLongJin Tablet (ZLJT) in delaying acquired resistance in advanced EGFR-mutant lung adenocarcinoma (LUAD) patients. Furthermore, we employed network pharmacology and molecular docking techniques to investigate the underlying mechanisms. METHODS A retrospective comparative study was conducted on stage IIIc/IV LUAD patients treated with EGFR-TKIs alone or in combination with ZLJT at the Second Affiliated Hospital of the Air Force Medical University between January 1, 2017, and May 1, 2023. The study evaluated the onset of TKI resistance, adverse reaction rates, safety indicators (such as aspartate aminotransferase, alanine aminotransferase, and creatinine), and inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) to investigate the impact of EGFR-TKI combined with ZLJT on acquired resistance and prognostic indicators. Additionally, we utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, PubChem, UniProt, and Swiss Target Prediction databases to identify the active ingredients and targets of ZLJT. We obtained differentially expressed genes related to EGFR-TKI sensitivity and resistance from the Gene Expression Omnibus database using the GSE34228 dataset, which included sensitive (n = 26) and resistant (n = 26) PC9 cell lines. The "limma" package in R software was employed to detect DEGs. Based on this, we constructed a protein‒protein interaction network, performed gene ontology and KEGG enrichment analyses, and conducted pathway network analysis to elucidate the correlation between the active ingredients in ZLJT and signaling pathways. Finally, molecular docking was performed using AutoDockVina, PYMOL 2.2.0, and Discovery Studio Client v19.1.0 software to simulate spatial and energy matching during the recognition process between predicted targets and their corresponding compounds. RESULTS (1) A total of 89 patients were included, with 40 patients in the EGFR-TKI combined with ZLJT group (combination group) and 49 patients in the EGFR-TKI alone group (monotherapy group). The baseline characteristics of the two groups were comparable. There was a significant difference in the onset of resistance between the combination group and the monotherapy group (P < 0.01). Compared to the monotherapy group, the combination group showed a prolongation of 3.27 months in delayed acquired resistance. There was also a statistically significant difference in the onset of resistance to first-generation TKIs between the two groups (P < 0.05). (2) In terms of safety analysis, the incidence of adverse reactions related to EGFR-TKIs was 12.5% in the combination group and 14.3% in the monotherapy group, but this difference was not statistically significant (P > 0.05). There were no statistically significant differences in serum AST, ALT, CREA, TBIL, ALB and BUN levels between the two groups after medication (P > 0.05). (3) Regarding inflammatory markers, there were no statistically significant differences in the changes in neutrophil-to-lymphocyte Ratio(NLR) and Platelet-to-lymphocyte Ratio(PLR) values before and after treatment between the two groups (P > 0.05). (4) Network pharmacology analysis identified 112 active ingredients and 290 target genes for ZLJT. From the GEO database, 2035 differentially expressed genes related to resistant LUAD were selected, and 39 target genes were obtained by taking the intersection. A "ZLJT-compound-target-disease" network was successfully constructed using Cytoscape 3.7.0. GO enrichment analysis revealed that ZLJT mainly affected biological processes such as adenylate cyclase-modulating G protein-coupled receptor. In terms of cellular components, ZLJT was associated with the cell projection membrane. The molecular function primarily focused on protein heterodimerization activity. KEGG enrichment analysis indicated that ZLJT exerted its antitumor and anti-drug resistance effects through pathways such as the PI3K-Akt pathway. Molecular docking showed that luteolin had good binding activity with FOS (-9.8 kJ/mol), as did tanshinone IIA with FOS (-9.8 kJ/mol) and quercetin with FOS (-8.7 kJ/mol). CONCLUSION ZLJT has potential antitumor progression effects. For patients with EGFR gene-mutated non-small cell LUAD, combining ZLJT with EGFR-TKI treatment can delay the occurrence of acquired resistance. The underlying mechanisms may involve altering signal transduction pathways, blocking the tumor cell cycle, inhibiting tumor activity, enhancing cellular vitality, and improving the bioavailability of combination therapy. The combination of EGFR-TKI and ZLJT represents an effective approach for the treatment of tumors using both Chinese and Western medicine.
Collapse
Affiliation(s)
- Xue Han
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Lan Liang
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Chenming He
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Qinyou Ren
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Jialin Su
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Liang Cao
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| | - Jin Zheng
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| |
Collapse
|
48
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
49
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
50
|
Ebrahimi F, Ghazimoradi MM, Fatima G, Bahramsoltani R. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Heliyon 2023; 9:e21849. [PMID: 38028000 PMCID: PMC10663934 DOI: 10.1016/j.heliyon.2023.e21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis as a chronic inflammatory disorder is accompanied with oxidative stress which causes a high morbidity and mortality. Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and E-selectin, are amongst the most important contributors in atherosclerosis. In such cases, dietary interventions with functional foods containing natural antioxidant and anti-inflammatory constituents are of a great interest. Citrus fruits are rich sources of flavonoids as natural pigments with potent antioxidant and anti-inflammatory activities. This study aims to review current evidence regarding the role of citrus flavonoids in the management of atherosclerosis with a focus on their effect on adhesion molecules. Electronic databases including PubMed, Scopus, and Web of Science were searched with the names of adhesion molecules and flavonoids from inception until January 2023. The included articles highly support the beneficial effects of citrus flavonoids in preclinical models of atherosclerosis. Quercetin, naringin and naringenin, hesperidin and hesperetin, nobiletin, rutin, luteolin, apigenin, and kaempferol are the most common flavonoids in citrus fruits which could modulate adhesion molecules including ICAM-1, VCAM-1, E-selectin, and P-selectin. Additionally, markers of chronic inflammation such as interleukins, tumor necrosis factor-α, nuclear factor-κB, and nitric oxide signaling, as well as oxidative stress markers like superoxide dismutase and glutathione were all normalized upon administration of citrus flavonoids. Conclusively, this review confirms the modulatory role of flavonoids on adhesion molecules in atherosclerosis based on the preclinical evaluations. Thus, citrus fruits can be further studied in atherosclerotic patients regarding their activity in reducing adhesion molecules.
Collapse
Affiliation(s)
- Farnaz Ebrahimi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | | | - Ghizal Fatima
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|