1
|
Alexandru I, Davidescu L, Motofelea AC, Ciocarlie T, Motofelea N, Costachescu D, Marc MS, Suppini N, Șovrea AS, Coșeriu RL, Bondor DA, Bobeică LG, Crintea A. Emerging Nanomedicine Approaches in Targeted Lung Cancer Treatment. Int J Mol Sci 2024; 25:11235. [PMID: 39457017 PMCID: PMC11508987 DOI: 10.3390/ijms252011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is characterized by its aggressive nature and poor prognosis. As traditional chemotherapy has the disadvantage of non-specificity, nanomedicine offers innovative approaches for targeted therapy, particularly through the development of nanoparticles that can deliver therapeutic agents directly to cancer cells, minimizing systemic toxicity and enhancing treatment efficacy. VEGF and VEGFR are shown to be responsible for activating different signaling cascades, which will ultimately enhance tumor development, angiogenesis, and metastasis. By inhibiting VEGF and VEGFR signaling pathways, these nanotherapeutics can effectively disrupt tumor angiogenesis and proliferation. This review highlights recent advancements in nanoparticle design, including lipid-based, polymeric, and inorganic nanoparticles, and their clinical implications in improving lung cancer outcomes, exploring the role of nanomedicine in lung cancer diagnoses and treatment.
Collapse
Affiliation(s)
- Isaic Alexandru
- Department X of General Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Lavinia Davidescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Tudor Ciocarlie
- Department VII Internal Medicine II, Discipline of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Nadica Motofelea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Dan Costachescu
- Radiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Steluta Marc
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Noemi Suppini
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Alina Simona Șovrea
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Răzvan-Lucian Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mures, Romania;
| | - Daniela-Andreea Bondor
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Laura-Gabriela Bobeică
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Andreea Crintea
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| |
Collapse
|
2
|
Uba AI. Computer-Aided Design of VEGFR-2 Inhibitors as Anticancer Agents: A Review. J Mol Recognit 2024:e3104. [PMID: 39389566 DOI: 10.1002/jmr.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| |
Collapse
|
3
|
Yin Z, You B, Bai Y, Zhao Y, Liao S, Sun Y, Wu Y. Natural Compounds Derived from Plants on Prevention and Treatment of Renal Cell Carcinoma: A Literature Review. Adv Biol (Weinh) 2024; 8:e2300025. [PMID: 37607316 DOI: 10.1002/adbi.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Renal cell carcinoma (RCC) accounts for roughly 85% of all malignant kidney cancer. Therapeutic options for RCC have expanded rapidly over the past decade. Targeted therapy and immunotherapy have ushered in a new era of the treatment of RCC, which has facilitated the outcomes of RCC. However, the related adverse effects and drug resistance remain an urgent issue. Natural compounds are optional strategies to reduce mobility. Natural compounds are favored by clinicians and researchers due to their good tolerance and low economic burden. Many studies have explored the anti-RCC activity of natural products and revealed relevant mechanisms. In this article, the chemoprevention and therapeutic potential of natural compounds is reviewed and the mechanisms regarding natural compounds are explored.
Collapse
Affiliation(s)
- Zhenjie Yin
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Bingyong You
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yuanyuan Bai
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yu Zhao
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Shangfan Liao
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, 365001, P. R. China
| |
Collapse
|
4
|
Zhang F, Cui J, Zhang Y, Yan M, Wu X, Liu X, Yan D, Zhang Z, Han T, Tan H, Wang D, Tang BZ. Regulating Aggregation-Induced Emission Luminogen for Multimodal Imaging-Navigated Synergistic Therapy Involving Anti-Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302713. [PMID: 39206553 PMCID: PMC11515900 DOI: 10.1002/advs.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2024] [Indexed: 09/04/2024]
Abstract
As a new avenue for cancer research, phototheranostics has shown inexhaustible and vigorous vitality as it permits real-time diagnosis and concurrent in situ therapy upon non-invasive light-initiation. However, construction of an advanced material, allowing prominent phototheranostic outputs and synchronously surmounting the inherent deficiency of phototheranostics, would be an appealing yet significantly challenging task. Herein, an aggregation-induced emission (AIE)-active luminogen (namely DBD-TM) featured by intensive electron donor-acceptor strength and twisted architecture with finely modulated intramolecular motion, is tactfully designed and prepared. DBD-TM simultaneously possessed fluorescence emission in the second near-infrared (NIR-II) region and high-efficiency photothermal conversion. By integrating DBD-TM with anti-angiogenic agent sorafenib, a versatile nanomaterial is smoothly fabricated and utilized for trimodal imaging-navigated synergistic therapy involving photothermal therapy and anti-angiogenesis toward cancer. This advanced approach is capable of affording accurate tumor diagnosis, complete tumor elimination, and largely restrained tumor recurrence, evidently denoting a prominent theranostic formula beyond phototheranostics. This study will offer a blueprint for exploiting a new generation of cancer theranostics.
Collapse
Affiliation(s)
- Fei Zhang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyHubei437000China
| | - Jie Cui
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Yao Zhang
- School of Health Service and ManagementShanxi University of Chinese Medicine121 University StreetJinzhongShanxi030619China
| | - Miao Yan
- Department of ChemistryXinzhou Normal UniversityXinzhouShanxi034000China
| | - Xiaoxiao Wu
- Xianning Public Inspection and Testing CenterXianningHubei437000China
| | - Xue Liu
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Dingyuan Yan
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Zhijun Zhang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Ting Han
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH)Shenzhen Children's HospitalShenzhen518034China
| | - Dong Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
5
|
Pannucci P, Van Daele M, Cooper SL, Wragg ES, March J, Groenen M, Hill SJ, Woolard J. Role of endothelin ET A receptors in the hypertension induced by the VEGFR-2 kinase inhibitors axitinib and lenvatinib in conscious freely-moving rats. Biochem Pharmacol 2024; 228:116007. [PMID: 38145828 DOI: 10.1016/j.bcp.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.
Collapse
Affiliation(s)
- Patrizia Pannucci
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Marieke Van Daele
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Edward S Wragg
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marleen Groenen
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
6
|
Zhu J, Qiu X, Jin X, Nie X, Ou S, Wu G, Shen J, Zhang R. ZNF468-mediated epigenetic upregulation of VEGF-C facilitates lymphangiogenesis and lymphatic metastasis in ESCC via PI3K/Akt and ERK1/2 signaling pathways. Cell Oncol (Dordr) 2024; 47:1927-1942. [PMID: 39141315 DOI: 10.1007/s13402-024-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Dysfunctional lymphangiogenesis is pivotal for various pathological processes including tumor lymph node metastasis which is a crucial cause of therapeutic failure for ESCC. In this study, we aim to elucidate the molecular mechanisms and clinical relevance of Zinc-finger protein ZNF468 in lymphangiogenesis and lymphatic metastasis in ESCC. METHODS Immunohistochemistry, Western blot, Kaplan-Meier plotter analysis and Gene Set Enrichment Analysis were preformed to detect the association of ZNF468 with lymphangiogenesis and poor prognosis in ESCC patients. Foot-pads lymph node metastasis model, tube formation assay, 3D-culture assay and invasion assay were preformed to verify the effect of ZNF468 on lymphangiogenesis and lymph node metastasis. CUT&Tag analysis, immunoprecipitation and mass spectrometry analysis and ChIP-PCR assay were preformed to study the molecular mechanisms of ZNF468 in lymphangiogenesis. RESULTS We found that ectopic expression of ZNF468 was correlated with higher microlymphatic vessel density in ESCC tissues, leading to poorer prognosis of ESCC patients. ZNF468 enhanced the capacity of lymphangiogenesis and promoted lymphatic metastasis in ESCC both in vitro and in vivo. However, silencing ZNF468 reversed these phenotypes in ESCC. Mechanically, we demonstrated that ZNF468 recruits the histone modification factors (PRMT1/HAT1) to increase the levels of H4R2me2a and H3K9ac, which then leads to the recruitment of the transcription initiation complex on the VEGF-C promoter, ultimately promoting the upregulation of VEGF-C transcription. Strikingly, the promoting effect of lymphatic metastasis induced by ZNF468 in ESCC was abrogated by targeting PRMT1 using Arginine methyltransferase inhibitor-1 or silencing VEGF-C. Furthermore, we found that the activation of PI3K/AKT and ERK1/2 signaling is required for ZNF468-medicated lymphatic metastasis in ESCC. Importantly, the clinical relevance between ZNF468 and VEGF-C were confirmed not only in ESCC samples and but also in multiple cancer types. CONCLUSION Our results identified a precise mechanism underlying ZNF468-induced epigenetic upregulation of VEGF-C in facilitating lymphangiogenesis and lymph node metastasis of ESCC, which might provide a novel prognostic biomarker and potential therapeutic for ESCC patients.
Collapse
Affiliation(s)
- Jinrong Zhu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Jin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengming Ou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
7
|
Hamed SF, Hassan NA, Shouman SA, Tohamy TA, Fakhry H, Radwan E. Down regulation of C1q tumor necrosis factor-related protein 6 is associated with increased risk of breast cancer. Arch Biochem Biophys 2024; 757:110039. [PMID: 38750921 DOI: 10.1016/j.abb.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
C1q tumor necrosis factor-related protein 6 (CTRP6), a member of the C1q tumor necrosis factor-related protein (CTRP) family, is reported to be associated with the progression of different malignancies, however, its expression levels and role in breast cancer (BC) are yet unknown. In this study, we investigated the levels of circulating CTRP6 in BC patients and evaluated its role as a potential diagnostic biomarker in BC patients. Then we investigated the effect of recombinant CTRP6 on cellular viability in MCF-7 cells along with its effects on the expression of inflammatory cytokines, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) in addition to the expression of vascular endothelial growth factor (VEGF) as a marker of angiogenesis. Our results showed decreased expression of circulating CTRP6 in BC patients with an inverse correlation between CTRP6 and IL-6, TNF-α and VEGF levels. Besides, Receiver operating characteristic (ROC) curve showed that the assessment of CTRP6 levels could be used to predict BC. Moreover, treatment of MCF-7 cells with recombinant CTRP6 protein reduced cellular viability and decreased IL-6, TNF-α and VEGF expression. In conclusion, these results provide new insights into the role of CTRP6 in BC pathogenesis and suggest its potential use as a novel diagnostic biomarker of BC.
Collapse
Affiliation(s)
- Samia F Hamed
- Cancer Biology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nivin A Hassan
- Cancer Biology Department (Pharmacology and Experimental Oncology), South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Samia A Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Hussein Fakhry
- Surgical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Eman Radwan
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Biochemistry Department, Sphinx University, New Assiut City, Assiut, Egypt.
| |
Collapse
|
8
|
Cheng J, Liu H, Shen Y, Ding J, He H, Mao S, Chen L, Zhang C, Zhou J. Deubiquitinase UCHL1 stabilizes KDM4B to augment VEGF signaling and confer bevacizumab resistance in clear cell renal cell carcinoma. Transl Oncol 2024; 45:101987. [PMID: 38743986 PMCID: PMC11109002 DOI: 10.1016/j.tranon.2024.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Bevacizumab resistance poses barriers to targeted therapy in clear cell renal cell carcinoma (ccRCC). Whether there exist epigenetic targets that modulate bevacizumab sensitivity in ccRCC remains indefinite. The focus of this study is to explore the role of UCHL1 in ccRCC. METHODS Both in vitro and in vivo experiments were utilized to investigate the roles of UCHL1 in ccRCC. In vivo ubiquitination assays were performed to validate the posttranslational modification of KDM4B by UCHL1. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to explore KDM4B/VEGFA epigenetic regulations. RESULTS UCHL1 was increased in ccRCC and associated with unfavorable survival outcomes in patients. UCHL1 was required for ccRCC growth and migration. Mechanistically, the wild-type UCHL1, but not C90A mutant, mediated the deubiquitination of KDM4B and thereby stabilized its proteins. KDM4B was up-regulated in ccRCC and potentiated cell growth. UCHL1 depended on KDM4B to augment ccRCC malignancies. Targeting UCHL1 suppressed tumor growth, colony formation, and migration abilities, which could be rescued by KDM4B. Furthermore, KDM4B was directly bound to the promoter region of VEGFA, abolishing repressive H3K9me3 modifications. KDM4B coordinated with HIF2α to activate VEGFA transcriptional levels. UCHL1-KDM4B axis governs VEGFA levels to sustain the angiogenesis phenotypes. Finally, a specific small-molecule inhibitor (6RK73) targeting UCHL1 remarkably inhibited ccRCC progression and further sensitized ccRCC to bevacizumab treatment. CONCLUSION Overall, this study defined an epigenetic mechanism of UCHL1/KDM4B in activating VEGF signaling. The UCHL1-KDM4B axis represents a novel target for treating ccRCC and improving the efficacy of anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Jie Cheng
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Hanqing Liu
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yan Shen
- Research Centre for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China
| | - Jiawei Ding
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Mao
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Chuanjie Zhang
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jian Zhou
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Xuhui Central Hospital, Shanghai 200031, China.
| |
Collapse
|
9
|
Wang D, Liu X, Hong W, Xiao T, Xu Y, Fang X, Tang H, Zheng Q, Meng X. Muscone abrogates breast cancer progression through tumor angiogenic suppression via VEGF/PI3K/Akt/MAPK signaling pathways. Cancer Cell Int 2024; 24:214. [PMID: 38898449 PMCID: PMC11188526 DOI: 10.1186/s12935-024-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Angiogenesis strongly reflects poor breast cancer outcome and an important contributor to breast cancer (BC) metastasis; therefore, anti-angiogenic intervention is a potential tool for cancer treatment. However, currently used antibodies against vascular endothelial growth factor A (VEGFA) or inhibitors that target the VEGFA receptor are not effective due to weak penetration and low efficiency. Herein, we assessed the anti-BC angiogenic role of muscone, a natural bioactive musk constituent, and explored possible anti-cancer mechanisms of this compound. METHODS CCK-8, EdU, scratch and Transwell assessments were employed to detect the muscone-mediated regulation of breast cancer (BC) and human umbilical vein endothelial cells (HUVECs) proliferation and migration. Tube formation, matrigel plug assay and zebrafish assay were employed for assessment of regulation of tumor angiogenesis by muscone. In vivo xenograft mouse model was constructed to compare microvessel density (MVD), vascular leakage, vascular maturation and function in muscone-treated or untreated mice. RNA sequencing was performed for gene screening, and Western blot verified the effect of the VEGFA-VEGFR2 pathway on BC angiogenic inhibition by muscone. RESULTS Based on our findings, muscone suppressed BC progression via tumor angiogenic inhibition in cellular and animal models. Functionally, muscone inhibited BC cell proliferation and migration as well as tumor cell-conditioned medium-based endothelial cell proliferation and migration. Muscone exhibited a strong suppressive influence on tumor vasculature in cellular and animal models. It abrogated tumor cell growth in a xenograft BC mouse model and minimized tumor microvessel density and hypoxia, and increased vascular wall cell coverage and perfusion. Regarding the mechanism of action, we found that muscone suppressed phosphorylation of members of the VEGF/PI3K/Akt/MAPK axis, and it worked synergistically with a VEGFR2 inhibitor, an Akt inhibitor, and a MAPK inhibitor to further inhibit tube formation. CONCLUSION Overall, our results demonstrate that muscone may proficiently suppress tumor angiogenesis via modulation of the VEGF/PI3K/Akt/MAPK axis, facilitating its candidacy as a natural small molecule drug for BC treatment.
Collapse
Affiliation(s)
- Danhong Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhen Liu
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Weimin Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Tianzheng Xiao
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Yadan Xu
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiang Fang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
- College of Clinical Medicine, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongchao Tang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Qinghui Zheng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| | - Xuli Meng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
10
|
Chen Z, Zhang X. The role of metabolic reprogramming in kidney cancer. Front Oncol 2024; 14:1402351. [PMID: 38884097 PMCID: PMC11176489 DOI: 10.3389/fonc.2024.1402351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Metabolic reprogramming is a cellular process in which cells modify their metabolic patterns to meet energy requirements, promote proliferation, and enhance resistance to external stressors. This process also introduces new functionalities to the cells. The 'Warburg effect' is a well-studied example of metabolic reprogramming observed during tumorigenesis. Recent studies have shown that kidney cells undergo various forms of metabolic reprogramming following injury. Moreover, metabolic reprogramming plays a crucial role in the progression, prognosis, and treatment of kidney cancer. This review offers a comprehensive examination of renal cancer, metabolic reprogramming, and its implications in kidney cancer. It also discusses recent advancements in the diagnosis and treatment of renal cancer.
Collapse
Affiliation(s)
- Ziyi Chen
- The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Tan C, Li Y, Wang K, Lin Y, Chen Y, Zheng X. Causal roles and clinical utility of cardiovascular proteins in colorectal cancer risk: a multi-modal study integrating mendelian randomization, expression profiling, and survival analysis. BMC Med Genomics 2024; 17:138. [PMID: 38778378 PMCID: PMC11110250 DOI: 10.1186/s12920-024-01909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE This comprehensive investigation delved into the intricate causal interplay existing between cardiovascular-related plasma proteins and the susceptibility to colorectal cancer, leveraging the robust framework of Mendelian randomization, and employed expression profiling and survival analysis to unravel the latent clinical worth embedded within pertinent gene expressions. METHODS Protein quantitative trait loci (pQTLs) of 85 cardiovascular proteins were employed as instrumental variables to investigate the causal relationship between proteins and CRC risk using a Mendelian randomization approach. Causal inferences were graded as strong, intermediate or weak based on statistical checks. Drug-target MR examined VEGF receptors for their potential as therapeutic targets for colorectal cancer. Differential expression analysis, diagnostic ROC curves, and survival analyses were performed for identified proteins using RNA-seq data from The Cancer Genome Atlas (TCGA) colorectal cancer cohort. RESULTS Using cis-pQTLs, LOX-1, VEGF-A and OPG were associated with increased CRC risk (strong evidence), while PTX3, TNF-R2 and MMP-7 were protective (strong evidence). Pan-pQTL analysis found MMP-10 increased risk (intermediate evidence) and ADM increased risk (weak evidence). Drug-target MR found VEGF R1 may be promising therapeutic targets. Differential expression analysis revealed seven genes encoding the identified proteins were dysregulated in tumors. ROC analysis showed five gene expression had high diagnostic accuracy. KM analysis showed four genes had prognostic value. CONCLUSIONS This large-scale MR study implicates several cardiovascular proteins in CRC susceptibility and progression. Findings highlight roles for VEGF signaling and extracellular matrix regulation. Results nominate specific proteins as potential diagnostic biomarkers or therapeutic targets warranting further investigation.
Collapse
Affiliation(s)
- Chenlei Tan
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Yanhua Li
- General Practice Department at the Second Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, P. R. China.
| | - Kexin Wang
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Ying Lin
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Yu Chen
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| | - Xuebao Zheng
- The Second School of Clinical Medicine of Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, P. R. China
| |
Collapse
|
12
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Roskoski R. Combination immune checkpoint and targeted protein kinase inhibitors for the treatment of renal cell carcinomas. Pharmacol Res 2024; 203:107181. [PMID: 38614375 DOI: 10.1016/j.phrs.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Kidney cancers comprise about 3% of all new malignancies in the United States. Renal cell carcinomas (RCCs) are the most common type of renal malignancy making up about 85% of kidney cancer cases. Signs and symptoms of renal cell carcinomas can result from local tumor growth, paraneoplastic syndromes, or distant metastases. The classic triad of presentation with flank pain, hematuria, and a palpable abdominal mass occurs in fewer than 10% of patients. Most diagnoses result from incidental imaging findings (ultrasonography or abdominal CT imaging) performed for another reason. Localized disease is treated by partial nephrectomy, total nephrectomy, or ablation (tumor destruction with heat or cold). When the tumors have metastasized, systemic therapy with protein-tyrosine kinase antagonists including sorafenib, sunitinib, pazopanib, and tivozanib that target vascular endothelial, platelet-derived, fibroblast, hepatocyte, and stem cell factor growth factor receptors (VEGFR, PDGFR, FGFR, MET, and Kit) were prescribed after 2005. The monoclonal antibody immune checkpoint inhibitor nivolumab (targeting programed cell death protein 1, PD1) was approved for the treatment of RCCs in 2015. It is usually used now in combination with ipilimumab (targeting CTLA-4) or cabozantinib (a multikinase blocker). Other combination therapies include pembrolizumab (targeting PD1) and axitinib (a VEGFR and PDGFR blocker) or lenvatinib (a multikinase inhibitor). Since the KEYNOTE-426 clinical trial, the use of immune checkpoint inhibitors in combination with protein-tyrosine kinase inhibitors is now the standard of care for most patients with metastatic renal cell carcinomas and monotherapies are used only in those individuals who cannot receive or tolerate immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
14
|
Shao X, Yao L, Fu J, He M, Zhang P. Differential expression and clinical significance of IGF2BP3 in peritoneal dialysate of patients with varying duration of peritoneal dialysis. Clin Transl Sci 2024; 17:e13774. [PMID: 38561910 PMCID: PMC10985221 DOI: 10.1111/cts.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
This study aims to investigate the differential expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) in the peritoneal dialysate among patients with different durations of peritoneal dialysis and its association with the angiogenic marker vascular* endothelial growth factor (VEGF), the fibronectin (FN), and various clinical indicators. A cohort of 122 peritoneal dialysis patients was categorized into short-term (≤1 year, n = 33), mid-term (>1 and ≤5 years, n = 55), and long-term (>5 years, n = 34) groups based on dialysis duration. We utilized enzyme-linked immunosorbent assay (ELISA) and western blot assays to quantify the levels of IGF2BP3, VEGF, and FN in the dialysate. Our findings showed a progressive increase in IGF2BP3 levels with the duration of PD, with the long-term group exhibiting significantly higher levels than both the short-term and mid-term groups (p < 0.001). A positive correlation between IGF2BP3 and VEGF (r = 0.386, p = 0.013), as well as between IGF2BP3 and FN (r = 0.340, p = 0.030), was observed. IGF2BP3 levels also correlated positively with serum creatinine, calcium, and phosphorus levels. In vitro analysis further confirmed that IGF2BP3 expression is enhanced in human peritoneal mesothelial cells under high-glucose conditions (p < 0.05). The study highlights the potential of IGF2BP3 in PD effluent as a biomarker for monitoring PF progression, with its expression significantly correlated with the duration of PD (Pearson r = 0.897, p < 0.001). In conclusion, our results underscore a correlation between elevated IGF2BP3 levels and PD duration, suggesting the clinical significance of IGF2BP3 as a biomarker for PF progression.
Collapse
Affiliation(s)
- Xiaoqi Shao
- Department of NephropathyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ling Yao
- Department of NephropathyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jiao Fu
- Department of NephropathyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Mengmeng He
- Department of NephropathyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Pei Zhang
- Department of NephropathyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
15
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
16
|
Ma K, Pham T, Wang J, O-Sullivan I, DiCamillo A, Du S, Mwale F, Farooqui Z, Votta-Velis G, Bruce B, van Wijnen AJ, Liu Y, Im HJ. Nanoparticle-based inhibition of vascular endothelial growth factor receptors alleviates osteoarthritis pain and cartilage damage. SCIENCE ADVANCES 2024; 10:eadi5501. [PMID: 38354243 PMCID: PMC10866538 DOI: 10.1126/sciadv.adi5501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Osteoarthritis (OA) is characterized by cartilage damage, inflammation, and pain. Vascular endothelial growth factor receptors (VEGFRs) have been associated with OA severity, suggesting that inhibitors targeting these receptors alleviate pain (via VEGFR1) or cartilage degeneration (via VEGFR2). We have developed a nanoparticle-based formulation of pazopanib (Votrient), an FDA-approved anticancer drug that targets both VEGFR1 and VEGFR2 (Nano-PAZII). We demonstrate that a single intraarticular injection of Nano-PAZII can effectively reduce joint pain for a prolonged time without substantial side effects in two different preclinical OA rodent models involving either surgical (upon partial medial meniscectomy) or nonsurgical induction (with monoiodoacetate). The injection of Nano-PAZII blocks VEGFR1 and relieves OA pain by suppressing sensory neuronal ingrowth into the knee synovium and neuronal plasticity in the dorsal root ganglia and spinal cord. Simultaneously, the inhibition of VEGFR2 reduces cartilage degeneration. These findings provide a mechanism-based disease-modifying drug strategy that addresses both pain symptoms and cartilage loss in OA.
Collapse
Affiliation(s)
- Kaige Ma
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tiep Pham
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Jun Wang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - InSug O-Sullivan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amy DiCamillo
- Melior Discovery Inc., 869 Springdale Drive 500, Exton, PA 19341, USA
| | - Shiyu Du
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Fackson Mwale
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, Canada
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gina Votta-Velis
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Benjamin Bruce
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL 60612, USA
| | - Andre J. van Wijnen
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Ying Liu
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hee-Jeong Im
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL 60612, USA
| |
Collapse
|
17
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
18
|
Senrung A, Tripathi T, Aggarwal N, Janjua D, Chhokar A, Yadav J, Chaudhary A, Thakur K, Singh T, Bharti AC. Anti-angiogenic Potential of Trans-chalcone in an In Vivo Chick Chorioallantoic Membrane Model: An ATP Antagonist to VEGFR with Predicted Blood-brain Barrier Permeability. Cardiovasc Hematol Agents Med Chem 2024; 22:187-211. [PMID: 37936455 DOI: 10.2174/0118715257250417231019102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored. METHODS We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane. RESULTS Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of > 0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity < -6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski's rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression. CONCLUSION The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
19
|
Roskoski R. Cost in the United States of FDA-approved small molecule protein kinase inhibitors used in the treatment of neoplastic and non-neoplastic diseases. Pharmacol Res 2024; 199:107036. [PMID: 38096958 DOI: 10.1016/j.phrs.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs worldwide. The FDA has approved 80 small molecule protein kinase inhibitors with 77 drugs orally bioavailable. The data indicate that 69 of these medicinals are approved for the management of neoplasms including solid tumors such as breast and lung cancer as well as non-solid tumors such as leukemia. Moreover, the remaining 11 drugs target non-neoplastic diseases including psoriasis, rheumatoid arthritis, and ulcerative colitis. The cost of drugs was obtained from www.pharmacychecker.com using the FDA label to determine the dosage and number of tablets required per day. This methodology excludes any private or governmental insurance coverage, which would cover the entire cost or more likely a fraction of the stated price. The average monthly cost for the treatment of neoplastic diseases was $17,900 with a price of $44,000 for futibatinib (used to treat cholangiocarcinomas with FGFR2 fusions) and minimum of $5100 for binimetinib (melanoma). The average monthly cost for the treatment of non-neoplastic diseases was $6800 with a maximum of $17,000 for belumosudil (graft vs. host disease) and a minimum of $200 for netarsudil eye drops (glaucoma). There is a negative correlation of the cost of the drugs and the incidence of the targeted disease. Many of these agents are or were designated as orphan drugs meaning that there are fewer than 200,000 potential patients in the United States.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
20
|
Luque C, de la Cabeza Fernández M, Fuentes-Rios D, Cepero A, Contreras-Cáceres R, Doña M, Perazzoli G, Lozano-Chamizo L, Filice M, Marciello M, Gonzalez-Rumayor V, López-Romero JM, Cabeza L, Melguizo C, Prados J. Improved antitumor activity through a tyramidyl maslinic acid derivative. Design and validation as drug-loaded electrospun polymeric nanofibers. Eur J Pharm Biopharm 2023; 193:241-253. [PMID: 37972906 DOI: 10.1016/j.ejpb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - María de la Cabeza Fernández
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - David Fuentes-Rios
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | | | - Manuel Doña
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Atrys Health, E-28001 Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| |
Collapse
|
21
|
Zhang B, Gu J, Wang Y, Guo L, Xie J, Yang M. TNF-α stimulated exosome derived from fibroblast-like synoviocytes isolated from rheumatoid arthritis patients promotes HUVEC migration, invasion and angiogenesis by targeting the miR-200a-3p/KLF6/VEGFA axis. Autoimmunity 2023; 56:2282939. [PMID: 37975481 DOI: 10.1080/08916934.2023.2282939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The pathogenesis of rheumatoid arthritis (RA) is heavily impacted by the inflammation and activation of fibroblast-like synoviocytes (FLS). The objective of this investigation is to clarify the involvement of exosomes derived from FLS stimulated by tumour necrosis factor α (TNF-α) in angiogenesis and the underlying mechanisms. FLS cells were obtained from synovial fluid of RA patients and exosomes were obtained from FLS cell supernatant with TNF-α stimulation by ultracentrifugation. Exosomes were subsequently analysed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. The functional effects of exosomes with TNF-α stimulation on human umbilical vein endothelial cells (HUVEC) migration, invasion, and angiogenesis was evaluated using wound scratch healing test, transwell invasion assay, and tube formation assay. DNA nanoball-seq (DNBSEQ) sequencing platform was utilised to analysis different expression miRNA from exosomes, miRNA and mRNA from HUVEC. The expression level of miR-200a-3p was determined through quantitative real-time polymerase chain reaction (qRT-PCR). The quantification of KLF6 and VEGFA expression levels were performed by qRT-PCR and western blot analysis. The validation of the association between miR-200a-3p and KLF6 was established through a fluorescence enzyme reporting assay. In comparison to exosome induced by PBS, exosome induced by TNF-α exhibited a substantial exacerbation of invasion, migration, and angiogenesis in HUVEC. 4 miRNAs in exosomes and HUVEC cells, namely miR-1246, miR-200a-3p, miR-30a-3p, and miR-99b-3p was obtained. MiR-200a-3p maintained high consistency with the sequencing results. We obtained 5 gene symbols, and KLF6 was chose for further investigation. The expression of miR-200a-3p in exosomes induced by TNF-α and in HUVEC treated with these exosomes demonstrated a significantly increase. Additionally, HUVEC cells displayed a notable decrease in KLF6 expression and a significant elevation in VEGFA expression. This was further confirmed by the fluorescence enzyme report assay, which provided evidence of the direct targeting of KLF6 by miR-200a-3p. Exosomes induced by TNF-α have the ability to enhance the migration, invasion, and angiogenesis of HUVEC cells via the miR-200a-3p/KLF6/VEGFA axis.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Juanfang Gu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Linfeng Guo
- Zhejiang Chinese Medicine University and Jiaxing university Master degree cultivation base, Jiaxing, Zhejiang, China
| | | | - Mingfeng Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
22
|
Beeraka NM, Zhang J, Mandal S, Vikram P. R. H, Liu J, B. M. N, Zhao D, Vishwanath P, B. M. G, Fan R. Screening fructosamine-3-kinase (FN3K) inhibitors, a deglycating enzyme of oncogenic Nrf2: Human FN3K homology modelling, docking and molecular dynamics simulations. PLoS One 2023; 18:e0283705. [PMID: 37910519 PMCID: PMC10619859 DOI: 10.1371/journal.pone.0283705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/14/2023] [Indexed: 11/03/2023] Open
Abstract
Fructosamine-3-kinase (FN3K) is involved in the deglycation of Nrf2, a significant regulator of oxidative stress in cancer cells. However, the intricate functional aspects of FN3K and Nrf2 in breast cancers have not been explored vividly. The objectives of this study are to design the human FN3K protein using homology modeling followed by the screening of several anticancer molecules and examining their efficacy to modulate FN3K activity, Nrf2-mediated antioxidant signalling. Methods pertinent to homology modeling, virtual screening, molecular docking, molecular dynamics simulations, assessment of ADME properties, cytotoxicity assays for anticancer molecules of natural/synthetic origin in breast cancer cells (BT-474, T-47D), and Western blotting were used in this study. The screened anticancer molecules including kinase inhibitors of natural and synthetic origin interacted with the 3-dimensional structure of the catalytic domain in human FN3K protein designed through homology modeling by significant CDOCKER interaction energies. Subsequently, gefitinib, sorafenib, neratinib, tamoxifen citrate, and cyclosporine A enhanced the expression of FN3K in BT-474 cell lines with simultaneous alteration in Nrf2-driven antioxidant signalling. Oxaliplatin significantly downregulated FN3K expression and modulated Nrf2-driven antioxidant signalling when compared to cisplatin and other anticancer drugs. Hence, the study concluded the potential implications of existing anticancer drugs to modulate FN3K activity in breast cancers.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram P. R.
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Namitha B. M.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Prashanth Vishwanath
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Gurupadayya B. M.
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Ismail MMF, Shawer TZ, Ibrahim RS, Abusaif MS, Kamal MM, Allam RM, Ammar YA. Novel quinoxaline-3-propanamides as VGFR-2 inhibitors and apoptosis inducers. RSC Adv 2023; 13:31908-31924. [PMID: 37915441 PMCID: PMC10616755 DOI: 10.1039/d3ra05066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 is a vital target for therapeutic mediation in various types of cancer. This study was aimed at exploring the cytotoxic activity of seventeen novel quinoxaline-3-propanamides against colon cancer (HCT-116) and breast cancer (MCF-7) using MTT assay. Results revealed that compounds 8, 9, and 14 elicited higher cytotoxicity than the reference drugs, doxorubicin (DOX) and sorafenib. Interestingly, they are more selective for HCT-116 (SI 11.98-19.97) and MCF-7 (SI 12.44-23.87) compared to DOX (SI HCT-116 0.72 and MCF-7 0.9). These compounds effectively reduced vascular endothelial growth factor receptor-2; among them, compound 14 displayed similar VEGFR-2 inhibitory activity to sorafenib (IC50 0.076 M). The ability of 14 to inhibit angiogenesis was demonstrated by a reduction in VEGF-A level compared to control. Furthermore, it induced a significant increase in the percentage of cells at pre-G1 phase by almost 1.38 folds (which could be indicative of apoptosis) and an increase in G2/M by 3.59 folds compared to the control experiment. A flow cytometry assay revealed that compound 14 triggered apoptosis via the programmed cell death and necrotic pathways. Besides, it caused a remarkable increase in apoptotic markers, i.e., caspase-3 p53 and BAX. When compared to the control, significant increase in the expression levels of caspase-3 from 47.88 to 423.10 and p53 from 22.19 to 345.83 pg per ml in MCF-7 cells. As well, it increased the proapoptotic protein BAX by 4.3 times while lowering the antiapoptotic marker BCL2 by 0.45 fold. Docking studies further supported the mechanism, where compound 14 showed good binding to the essential amino acids in the active site of VEGFR-2. Pharmacokinetic properties showed the privilege of these hits over sunitinib: they are not substrates of P-gp protein; this suggests that they have less chance to efflux out of the cell, committing maximum effect; and in addition, they do not allow permeation to the BBB.
Collapse
Affiliation(s)
- Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Taghreed Z Shawer
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Rabab S Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| | - Mostafa S Abusaif
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| | - Mona M Kamal
- Department of Pharmacology, Faculty of Pharmacy (Girls), 11754 Al-Azhar University Cairo Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre 12622 Dokki Cairo Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
24
|
Roskoski R. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacol Res 2023; 194:106847. [PMID: 37454916 DOI: 10.1016/j.phrs.2023.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Owing to genetic alterations and overexpression, the dysregulation of protein kinases plays a significant role in the pathogenesis of many autoimmune and neoplastic disorders and protein kinase antagonists have become an important drug target. Although the efficacy of imatinib in the treatment of chronic myelogenous leukemia in the United States in 2001 was the main driver of protein kinase inhibitor drug discovery, this was preceded by the approval of fasudil (a ROCK antagonist) in Japan in 1995 for the treatment of cerebral vasospasm. There are 21 small molecule protein kinase inhibitors that are approved in China, Japan, Europe, and South Korea that are not approved in the United Sates and 75 FDA-approved inhibitors in the United States. Of the 21 agents, eleven target receptor protein-tyrosine kinases, eight inhibit nonreceptor protein-tyrosine kinases, and two block protein-serine/threonine kinases. All 21 drugs are orally bioavailable or topically effective. Of the non-FDA approved drugs, sixteen are prescribed for the treatment of neoplastic diseases, three are directed toward inflammatory disorders, one is used for glaucoma, and fasudil is used in the management of vasospasm. The leading targets of kinase inhibitors approved by both international regulatory agencies and by the FDA are members of the EGFR family, the VEGFR family, and the JAK family. One-third of the 21 internationally approved drugs are not compliant with Lipinski's rule of five for orally bioavailable drugs. The rule of five relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791-8717, United States.
| |
Collapse
|
25
|
Sun X, Xie Z, Lei X, Huang S, Tang G, Wang Z. Research and development of N, N'-diarylureas as anti-tumor agents. RSC Med Chem 2023; 14:1209-1226. [PMID: 37484562 PMCID: PMC10357950 DOI: 10.1039/d3md00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor neovascularization provides abundant nutrients for the occurrence and development of tumors, and is also an important factor in tumor invasion and metastasis, which has attracted extensive attention in anti-tumor therapy. Sorafenib is a clinically approved multi-targeted anti-tumor drug that targets vascular endothelial growth factor receptor (VEGFR) and inhibits the formation of tumor angiogenesis, thereby achieving the purpose of suppressing tumor growth. Since the approval of sorafenib, N,N'-diarylureas have received extensive attention as the key pharmacophore in its chemical structure. And a series of N,N'-diarylureas were designed and synthesized to screen a new generation of anti-tumor drug candidates through chemical modification and structural optimization. Moreover, the rational design of targeted drugs is beneficial to reduce toxic side effects and drug resistance and improve the curative effect. Here, this article reviews the research progress in the design, classification, structure-activity relationship (SAR) and biological activity of N,N'-diarylureas, in order to provide some prospective routes for the development of clinically effective anti-tumor drugs.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Sheng Huang
- Jiuzhitang Co., Ltd Changsha Hunan 410007 China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China Hengyang 421001 Hunan China
| |
Collapse
|
26
|
Lai CP, Chen YS, Ying TH, Kao CY, Chiou HL, Kao SH, Hsieh YH. Melatonin acts synergistically with pazopanib against renal cell carcinoma cells through p38 mitogen-activated protein kinase-mediated mitochondrial and autophagic apoptosis. Kidney Res Clin Pract 2023; 42:487-500. [PMID: 37165617 PMCID: PMC10407642 DOI: 10.23876/j.krcp.22.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mounting evidence indicates that melatonin has possible activity against different tumors. Pazopanib is an anticancer drug used to treat renal cell carcinoma (RCC). This study tested the anticancer activity of melatonin combined with pazopanib on RCC cells and explored the underlying mechanistic pathways of its action. METHODS The 786-O and A-498 human RCC cell lines were used as cell models. Cell viability and tumorigenesis were detected with the MTT and colony formation assays, respectively. Apoptosis and autophagy were assessed using TUNEL, annexin V/propidium iodide, and acridine orange staining with flow cytometry. The expression of cellular signaling proteins was investigated with western blotting. The in vivo growth of tumors derived from RCC cells was evaluated using a xenograft mouse model. RESULTS Together, melatonin and pazopanib reduced cell viability and colony formation and promoted the apoptosis of RCC cells. Furthermore, the combination of melatonin and pazopanib triggered more mitochondrial, caspase-mediated, and LC3-II-mediated autophagic apoptosis than melatonin or pazopanib alone. The combination also induced higher activation of the p38 mitogen-activated protein kinase (p38MAPK) in the promotion of autophagy and apoptosis by RCC cells than melatonin or pazopanib alone. Finally, tumor xenograft experiments confirmed that melatonin and pazopanib cooperatively inhibited RCC growth in vivo and predicted a possible interaction between melatonin/pazopanib and LC3-II. CONCLUSION The combination of melatonin and pazopanib inhibits the growth of RCC cells by inducing p38MAPK-mediated mitochondrial and autophagic apoptosis. Therefore, melatonin might be a potential adjuvant that could act synergistically with pazopanib for RCC treatment.
Collapse
Affiliation(s)
- Chien-Pin Lai
- Division of Nephrology, Department of Medicine, Chung-Kang Branch, Cheng Ching General Hospital, Taichung City, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, College of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ling Chiou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
27
|
Lai Y, Wu W, Liang X, Zhong F, An L, Chang Z, Cai C, He Z, Wu W. Connexin43 is associated with the progression of clear cell renal carcinoma and is regulated by tangeretin to sygergize with tyrosine kinase inhibitors. Transl Oncol 2023; 35:101712. [PMID: 37354638 DOI: 10.1016/j.tranon.2023.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The roles of Connexin43 (Cx43) in clear cell renal cell carcinoma (ccRCC) microenviroment remains to be poorly defined. METHODS The expression profile, prognosis and immune analysis of Cx43 in various cancers, particularly in ccRCC were performed using TCGA database, and various biological function assays were applied to explore the physiological role of Cx43 and tangeretin in ccRCC. Western blot were applied to examine the protein expression and Kunming mice were used to evaluate preliminary safety or anti-tumor activity of tangeretin and sunitinib. RESULTS Compared with the normal group, higher expression levels of Cx43 in ccRCC, and distinct associations between Cx43 expression and ccRCC prognosis or immune infiltration, were found. Notably, the expression of Cx43 was found to be highly correlated with that of receptor tyrosine kinases (RTKs), particularly with VEGFR1, VEGFR2 and VEGFR3. The expression of Cx43 and EGFR was also found to be higher in ccRCC than that in the para-cancerous specimens. Knocking down Cx43 expression decreased RCC cell viability, cell migration, p-EGFR, MMP-9 and survivin expression. Using 14 Chinese medicine monomers, tangeretin was screened and found to inhibit tumor cell viability and Cx43 expression. Tangeretin also enhanced the sensitivity of RCC cells to tyrosine kinase inhibitors (TKIs) sunitinib and sorafenib. However, the same concentration of tangeretin exerted a less prominent effect on normal renal cell viability. CONCLUSIONS Cx43 is strongly associated with RTK expression and ccRCC progression, while tangeretin can inhibit RCC cell malignancy by inhibiting Cx43 expression and enhance the sensitivity of RCC cells to TKIs.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China; Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Weizhou Wu
- Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Xiongfa Liang
- Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Fangling Zhong
- Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Lingyue An
- Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Zhenglin Chang
- Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Chao Cai
- Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China.
| | - Wenqi Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China; Department of Urology, Guangdong Key Laboratory of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, P.R. China.
| |
Collapse
|
28
|
Zhu H, Wang X, Lu S, Ou K. Metabolic reprogramming of clear cell renal cell carcinoma. Front Endocrinol (Lausanne) 2023; 14:1195500. [PMID: 37347113 PMCID: PMC10280292 DOI: 10.3389/fendo.2023.1195500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignancy that exhibits metabolic reprogramming as a result of genetic mutations. This reprogramming accommodates the energy and anabolic needs of the cancer cells, leading to changes in glucose, lipid, and bio-oxidative metabolism, and in some cases, the amino acid metabolism. Recent evidence suggests that ccRCC may be classified as a metabolic disease. The metabolic alterations provide potential targets for novel therapeutic interventions or biomarkers for monitoring tumor growth and prognosis. This literature review summarized recent discoveries of metabolic alterations in ccRCC, including changes in glucose, lipid, and amino acid metabolism. The development of metabolic drugs targeting these metabolic pathways was also discussed, such as HIF-2α inhibitors, fatty acid synthase (FAS) inhibitors, glutaminase (GLS) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, and arginine depletion. Future trends in drug development are proposed, including the use of combination therapies and personalized medicine approaches. In conclusion, this review provides a comprehensive overview of the metabolic alterations in ccRCC and highlights the potential for developing new treatments for this disease.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shihao Lu
- Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Kongbo Ou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
29
|
Moradi-Gharibvand N, Hashemibeni B. The Effect of Stem Cells and Vascular Endothelial Growth Factor on Cancer Angiogenesis. Adv Biomed Res 2023; 12:124. [PMID: 37434939 PMCID: PMC10331557 DOI: 10.4103/abr.abr_378_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 07/13/2023] Open
Abstract
The formation of new vessels from pre-existing vessels is known as angiogenesis. The process is controlled by stimuli and inhibitors. Angiogenesis starts as a result of the unbalance of these factors, where balance has a tendency toward the stimulus. One of the most important factors promoting angiogenesis is the vascular endothelial growth factor (VEGF). In addition to being involved in vascular regeneration in normal tissues, VEGF also takes part in tumor tissue angiogenesis. These factors affect endothelial cells (ECs) directly as well as differentiate tumor cells from endothelial cells and play an active role in tumor tissue angiogenesis. Angiogenesis partakes in the growth and proliferation of tumor tissue. Because anti-angiogenic treatment is favorable in existing cancer therapies, the potential benefits should be considered. One of these new therapies is cell therapy using mesenchymal stem cells (MSCs). Research on MSCs remains controversial because much of the earlier research on MSCs has shown their effectiveness, but more recent research has identified harmful effects of these cells. This article reviews the role of stem cells and their secretions in the angiogenesis of tumor tissues.
Collapse
Affiliation(s)
- Nahid Moradi-Gharibvand
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Chen Q, Chen Z, Li F, Zha H, He W, Jiang F, Wei J, Xu J, Li R, Cai L, Liu X. Discovery of highly potent and selective VEGFR2 kinase inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2023; 257:115456. [PMID: 37216810 DOI: 10.1016/j.ejmech.2023.115456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Synovial angiogenesis is essential for the development of rheumatoid arthritis (RA). Human vascular endothelial growth factor receptor 2 tyrosine kinase (VEGFR2) is a direct target gene that is notably elevated in RA synovium. Herein, we report the identification of indazole derivatives as a novel class of potent VEGFR2 inhibitors. The most potent compound, compound 25, displayed single-digit nanomolar potency against VEGFR2 in biochemical assays and achieved good selectivity for other protein kinases in the kinome. In addition, compound 25 dose-dependently inhibited the phosphorylation of VEGFR2 in Human Umbilical Vein Endothelial Cells (HUVECs) and showed an anti-angiogenic effect, as evidenced by the inhibition of capillary-like tube formation in vitro. Moreover, compound 25 reduced the severity and development of adjuvant-induced arthritis in rats by inhibiting synovial VEGFR2 phosphorylation and angiogenesis. Overall, these findings provide evidence that compound 25 is a leading potential drug candidate for anti-arthritic and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Qingling Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Zhuoying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Feilong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Haoyu Zha
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Wei He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Fei Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jiamu Wei
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jiajia Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, PR China.
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| |
Collapse
|
31
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
32
|
Lu H, Ye Q, Zheng C, Fan L, Xia X. Efficacy and safety analysis of TACE + sunitinib vs. sunitinib in the treatment of unresectable advanced renal cell carcinoma: a retrospective study. BMC Cancer 2023; 23:270. [PMID: 36964538 PMCID: PMC10037847 DOI: 10.1186/s12885-023-10754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Since renal cell carcinoma(RCC) is insensitive to conventional chemoradiotherapy, molecularly targeted drugs are commonly used treatments for unresectable advanced RCC. The aim of this study was to explore the efficacy and safety of TACE + sunitinib vs. sunitinib in the treatment of unresectable advanced RCC. METHODS This study included 98 patients with unresectable advanced RCC who were treated in Union Hospital from January 2015 to December 2018, and they met the criteria. They were divided into two groups: TACE + Sunitinib group (N = 47) and Sunitinib group (N = 51). We conducted a retrospective study to analyze the efficacy and safety of the two groups of patients. RESULTS (1)TACE + Sunitinib group: 4 patients (8.5%) achieved CR, 27 patients (57.5%) achieved PR, 9 patients (19.1%) achieved SD, and 7 patients (14.9%) achieved PD. Sunitinib group, 0 patients (0%) achieved CR, 20 patients (39.2%) achieved PR, 14 patients (27.5%) achieved SD, and 17 patients (33.3%) achieved PD. (P = 0.017) (2)ORR: TACE + sunitinib group, 66.0%; sunitinib group, 39.2%. (P = 0.009) (3)DCR: TACE + sunitinib group, 85.1%; sunitinib group, 66.7%. (P = 0.038) (4) In the TACE + sunitinib group, mPFS was 15.6 months, mOS was 35.0 months; in the sunitinib group, the mPFS was 10.9 months, mOS was 25.7 months. (P < 0.001) (5) The incidence of abdominal pain, fever, and vomiting was higher in the TACE + sunitinib group than in the sunitinib group (abdominal pain: 55.3% vs. 13.7%; fever: 61.7% vs. 7.8%; vomiting: 40.4% vs. 19.6%; P < 0.05). The technical success rate of TACE in TACE + Sunitinib group is 100%. CONCLUSIONS The TACE + sunitinib group had higher ORR and DCR, longer OS and PFS than the sunitinib alone group. TACE combined with sunitinib can play a complementary role and is a safe and effective treatment for advanced RCC.
Collapse
Affiliation(s)
- Haohao Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Ye
- Huazhong University of Science and Technology Hospital, Luoyu Road #1037, Wuhan, 430071, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Li Fan
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
| | - Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
33
|
Roskoski R. Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol Res 2023; 189:106642. [PMID: 36754102 DOI: 10.1016/j.phrs.2022.106642] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 02/09/2023]
Abstract
Psoriasis is a heterogeneous, inflammatory, autoimmune skin disease that affects up to 2% of the world's population. There are many treatment modalities including topical medicines, ultraviolet light therapy, monoclonal antibodies, and several oral medications. Cytokines play a central role in the pathogenesis of this disorder including TNF-α, (tumor necrosis factor-α) IL-17A (interleukin-17A), IL-17F, IL-22, and IL-23. Cytokine signaling involves transduction mediated by the JAK-STAT pathway. There are four JAKS (JAK1/2/3 and TYK2) and six STATS (signal transducer and activators of transcription). Janus kinases contain an inactive JH2 domain that is aminoterminal to the active JH1 domain. Under basal conditions, the JH2 domain inhibits the activity of the JH1 domain. Deucravacitinib is an orally effective N-trideuteromethyl-pyridazine derivative that targets and stabilizes the TYK2 JH2 domain and thereby blocks TYK2 JH1 activity. Seven other JAK inhibitors, which target the JAK family JH1 domain, are prescribed for the treatment of neoplastic and other inflammatory diseases. The use of deuterium in the trimethylamide decreases the rate of demethylation and slows the production of a metabolite that is active against a variety of targets in addition to TYK2. A second unique aspect in the development of deucravacitinib is the targeting of a pseudokinase domain. Deucravacitinib is rather specific for TYK2 and its toxic effects are much less than those of the other FDA-approved JAK inhibitors. The successful development of deucravacitinib may stimulate the development of additional pseudokinase ligands for the JAK family and for other kinase families as well.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
34
|
Wang Y, Peng M, Zhong Y, Xiong W, Zhu L, Jin X. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis. Oncogene 2023; 42:952-966. [PMID: 36732658 DOI: 10.1038/s41388-023-02613-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Despite the promise of targeted tyrosine kinase inhibitors (TKIs), such as sunitinib, in the extension of survival time in patients with clear cell renal cell carcinoma (ccRCC) progression or metastasis, the patients eventually succumb to inevitable drug resistance. Protein degradation executed by the ubiquitin-dependent proteasome system played an important role in determining the sensitivity of ccRCC to sunitinib. Here, we applied the bioinformatic analysis to identify that E3 ligase RBCK1 was elevated in the sunitinib-resistant renal cancer cell lines or patient specimens. The subsequent in vitro or in vivo studies demonstrated that RBCK1 contributed to decreasing the sensitivity of ccRCC to sunitinib. Then, we showed that inhibition of RBCK1 inactivated the AKT and MAPK signaling pathways, which might be one of the main reasons why RBCK1 induces sunitinib resistance in ccRCC cells. Mechanistically, our results indicated that RBCK1 promotes the degradation of ANKRD35 and that ANKRD35 destabilizes MITD1 by binding with SUMO2 in ccRCC cells. In addition, we showed that the RBCK1-ANKRD35-MITD1-ANXA1 axis regulates the phosphorylation of AKT and ERK and contributes to the dysregulation of sunitinib in ccRCC cells. Therefore, we identified a novel mechanism for regulating the sensitivity of sunitinib in ccRCC. Therefore, we elucidated a novel mechanism by which RBCK1 regulates sunitinib sensitivity in ccRCC.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
35
|
Zhang Y, Neng L, Sharma K, Hou Z, Johnson A, Song J, Dabdoub A, Shi X. Pericytes control vascular stability and auditory spiral ganglion neuron survival. eLife 2023; 12:e83486. [PMID: 36719173 PMCID: PMC9940910 DOI: 10.7554/elife.83486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The inner ear has a rich population of pericytes, a multi-functional mural cell essential for sensory hair cell heath and normal hearing. However, the mechanics of how pericytes contribute to the homeostasis of the auditory vascular-neuronal complex in the spiral ganglion are not yet known. In this study, using an inducible and conditional pericyte depletion mouse (PDGFRB-CreERT2; ROSA26iDTR) model, we demonstrate, for the first time, that pericyte depletion causes loss of vascular volume and spiral ganglion neurons (SGNs) and adversely affects hearing sensitivity. Using an in vitro trans-well co-culture system, we show pericytes markedly promote neurite and vascular branch growth in neonatal SGN explants and adult SGNs. The pericyte-controlled neural growth is strongly mediated by pericyte-released exosomes containing vascular endothelial growth factor-A (VEGF-A). Treatment of neonatal SGN explants or adult SGNs with pericyte-derived exosomes significantly enhances angiogenesis, SGN survival, and neurite growth, all of which were inhibited by a selective blocker of VEGF receptor 2 (Flk1). Our study demonstrates that pericytes in the adult ear are critical for vascular stability and SGN health. Cross-talk between pericytes and SGNs via exosomes is essential for neuronal and vascular health and normal hearing.
Collapse
Affiliation(s)
- Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Lingling Neng
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Anatasiya Johnson
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| | - Junha Song
- Life Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research InstituteTorontoCanada
- Department of Otolaryngology-Head & Neck Surgery, University of TorontoTorontoCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
36
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
37
|
Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol Res 2023; 187:106552. [PMID: 36403719 DOI: 10.1016/j.phrs.2022.106552] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 72 FDA-approved therapeutic agents that target about two dozen different protein kinases and three of these drugs were approved in 2022. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), sixteen block nonreceptor protein-tyrosine kinases, and 40 target receptor protein-tyrosine kinases. The data indicate that 62 of these drugs are prescribed for the treatment of neoplasms (57 against solid tumors including breast, lung, and colon, ten against nonsolid tumors such as leukemia, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Four drugs (abrocitinib, baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, psoriatic arthritis, rheumatoid arthritis, Crohn disease, and ulcerative colitis). Of the 72 approved drugs, eighteen are used in the treatment of multiple diseases. The following three drugs received FDA approval in 2022 for the treatment of these specified diseases: abrocitinib (atopic dermatitis), futibatinib (cholangiocarcinomas), pacritinib (myelofibrosis). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 72 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.
Collapse
|
38
|
Ji C, Li J, Mei J, Su W, Dai H, Li F, Liu P. Advanced Nanomaterials for the Diagnosis and Treatment of Renal Cell Carcinoma. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chen Ji
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyang Mei
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Weiran Su
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Huili Dai
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200032 China
- Central Laboratory Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- Micro-Nano Research and Diagnosis Center RenJi Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
39
|
Ginsenoside Rg1 Inhibits High Glucose-Induced Proliferation, Migration, and Angiogenesis in Retinal Endothelial Cells by Regulating the lncRNA SNHG7/miR-2116-5p/SIRT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:6184631. [PMID: 36510610 PMCID: PMC9741534 DOI: 10.1155/2022/6184631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022]
Abstract
Background Diabetic retinopathy (DR), including retinal angiogenesis and endothelial cell proliferation and migration, is a serious complication in diabetic patients. It has been reported that ginsenoside Rg1 can prevent retinal damage. However, the mechanism by which Rg1 prevents retinal damage is unknown. Therefore, the aim of the present study was to investigate the mechanism by which Rg1 inhibits high glucose-induced complications through the regulation of the lncRNA SNHG7/miR-2116-5p/SIRT3 axis. Methods Under high glucose (HG) conditions, human retinal endothelial cells (HRECs) were cultured to simulate a DR environment, and Rg1 was added after 48 h. Negative control (NC), miR-2116-5p mimic, si-SNHG7, pc-DNA SIRT3, and miR-2116-5p inhibitor were transfected into HRECs, and CCK-8 assay was used to detect the cell viability. Angiogenesis and transwell assays were used to evaluate angiogenesis and cell migration, respectively. qRT-PCR and Western blot were used to detect the expression of related genes and proteins. Luciferase reporter assays and bioinformatics were used to analyze the target binding sites of miR-2116-5p to lncRNA SNHG7 and SIRT3. Results The proliferation, migration and angiogenesis of HRECs were induced by HG. As expected, HG upregulated miR-2116-5p and VEGF expression but downregulated lncRNA SNHG7 and SIRT3 expression. Importantly, Rg1 inhibited HG-induced HREC proliferation, migration, and angiogenesis by upregulating the lncRNA SNHG7, and miR-2116-5p had a target regulatory relationship with both lncRNA SNHG7 and SIRT3. Conclusion Rg1 inhibits HG-induced proliferation, migration, angiogenesis, and VEGF expression in retinal endothelial cells through the lncRNA SNG7/miR-2116-5p/SIRT3 axis. This finding provides theoretical evidence for the clinical application of Rg1 in DR.
Collapse
|
40
|
Wang J, Huang D, Yang W, Song Q, Jia Y, Chen P, Cheng Y. The efficacy and safety of Apatinib in the treatment of advanced non-small cell lung cancer: A retrospective trial. Front Oncol 2022; 12:1030798. [PMID: 36505785 PMCID: PMC9727187 DOI: 10.3389/fonc.2022.1030798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background As a potent inhibitor of the vascular endothelial growth factor (VEGF) signaling pathway, Apatinib has been used in antitumor treatment for some time. The study aimed to research the therapeutic effects and toxicity of Apatinib in the treatment of advanced non-small cell lung cancer (NSCLC). Methods We retrospectively analyzed 128 NSCLC patients treated with Apatinib in Qilu Hospital of Shandong University. Response Evaluation Criteria in Solid Tumors (RECIST) criteria was adopted to evaluate the treatment effect, and Common Terminology Criteria for Adverse Events (CTCAE) version 4.0 was conducted to determine the Adverse Events (AEs). Cox proportional hazard model and Kaplan-Meier function were applied to evaluate the progression-free survival (PFS) and overall survival (OS). Results Among 128 NSCLC patients, partial response (PR) were observed in 15 patients, stable disease (SD) in 66 patients and progressive disease (PD) in 47 patients. The objective response rate (ORR) and disease control rate (DCR) accounted for 11.7% and 63.3% respectively. The median PFS (mPFS) and median OS (mOS) were 4.4 months and 17.2 months. Common side effects of Apatinib were hypertension (n=48), proteinuria (n=35), and hand-foot syndrome (HFS) (n=30), all of the side effects were controllable. No significant difference was observed in efficacy and AEs between the higher dose group (Apatinib>500mg/d) and the lower dose group (Apatinib=500mg/d). Conclusions The study suggested that Apatinib with a lower dose (=500mg/d) has good efficacy and safety in the treatment of advanced NSCLC after first-line chemotherapy.
Collapse
|
41
|
Kim JH, Jeong JH. Structure-Activity Relationship Studies Based on 3D-QSAR CoMFA/CoMSIA for Thieno-Pyrimidine Derivatives as Triple Negative Breast Cancer Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227974. [PMID: 36432075 PMCID: PMC9698756 DOI: 10.3390/molecules27227974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined as a kind of breast cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). This cancer accounts for 10-15% of all breast cancers and has the features of high invasiveness and metastatic potential. The treatment regimens are still lacking and need to develop novel inhibitors for therapeutic strategies. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses, based on a series of forty-seven thieno-pyrimidine derivatives, were performed to identify the key structural features for the inhibitory biological activities. The established comparative molecular field analysis (CoMFA) presented a leave-one-out cross-validated correlation coefficient q2 of 0.818 and a determination coefficient r2 of 0.917. In comparative molecular similarity indices analysis (CoMSIA), a q2 of 0.801 and an r2 of 0.897 were exhibited. The predictive capability of these models was confirmed by using external validation and was further validated by the progressive scrambling stability test. From these results of validation, the models were determined to be statistically reliable and robust. This study could provide valuable information for further optimization and design of novel inhibitors against metastatic breast cancer.
Collapse
|
42
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
43
|
Llorens de los Ríos MC, Lanza PA, Barbieri CL, González ML, Chabán MF, Soria G, Vera DMA, Carpinella MC, Joray MB. The thiophene α-terthienylmethanol isolated from Tagetes minuta inhibits angiogenesis by targeting protein kinase C isozymes α and β2. Front Pharmacol 2022; 13:1007790. [PMID: 36313304 PMCID: PMC9597362 DOI: 10.3389/fphar.2022.1007790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Tumor angiogenesis is considered as a crucial pathologic feature of cancer with a key role in multidrug resistance (MDR). Adverse effects of the currently available drugs and the development of resistance to these remain as the hardest obstacles to defeat. Objetive: This work explores flora from Argentina as a source of new chemical entities with antiangiogenic activity. Methods: Tube formation assay using bovine aortic endothelial cells (BAECs) was the experiment of choice to assess antiangiogenic activity. The effect of the pure compound in cell invasiveness was investigated through the trans-well migration assay. The inhibitory effect of the pure compound on VEGFR-2 and PKC isozymes α and β2 activation was studied by molecular and massive dynamic simulations. Cytotoxicity on peripheral blood mononuclear cells and erythrocyte cells was evaluated by means of MTT and hemolysis assay, respectively. In silico prediction of pharmacological properties (ADME) and evaluation of drug-likeness features were performed using the SwissADME online tool. Results: Among the plants screened, T. minuta, showed an outstanding effect with an IC50 of 33.6 ± 3.4 μg/ml. Bio-guided isolation yielded the terthiophene α-terthienylmethanol as its active metabolite. This compound inhibited VEGF-induced tube formation with an IC50 of 2.7 ± 0.4 μM and significantly impaired the invasiveness of bovine aortic endothelial cells (BAECs) as well as of the highly aggressive breast cancer cells, MDA-MB-231, when tested at 10 μM. Direct VEGFR-2 and PKC inhibition were both explored by means of massive molecular dynamics simulations. The results obtained validated the inhibitory effect on protein kinase C (PKC) isozymes α and β2 as the main mechanism underlying its antiangiogenic activity. α-terthienylmethanol showed no evidence of toxicity against peripheral blood mononuclear and erythrocyte cells. Conclusion: These findings support this thiophene as a promising antiangiogenic phytochemical to fight against several types of cancer mainly those with MDR phenotype.
Collapse
Affiliation(s)
| | - Priscila A. Lanza
- Department of Chemistry and Biochemistry, QUIAMM–INBIOTEC–CONICET, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Cecilia L. Barbieri
- Department of Chemistry and Biochemistry, QUIAMM–INBIOTEC–CONICET, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María L. González
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Macarena Funes Chabán
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Gastón Soria
- CIBICI CONICET and Department of Clinical Biochemistry, Faculty of Chemical Science, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - D. Mariano A. Vera
- Department of Chemistry and Biochemistry, QUIAMM–INBIOTEC–CONICET, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- *Correspondence: D. Mariano A. Vera, ; María C. Carpinella, ; Mariana B. Joray,
| | - María C. Carpinella
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
- *Correspondence: D. Mariano A. Vera, ; María C. Carpinella, ; Mariana B. Joray,
| | - Mariana B. Joray
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, School of Chemistry, Universidad Católica de Córdoba, Córdoba, Argentina
- *Correspondence: D. Mariano A. Vera, ; María C. Carpinella, ; Mariana B. Joray,
| |
Collapse
|
44
|
L-Lysine Ameliorates Diabetic Nephropathy in Rats with Streptozotocin-Induced Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4547312. [PMID: 36132073 PMCID: PMC9484891 DOI: 10.1155/2022/4547312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Introduction Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. Uncontrolled hyperglycemia and subsequent production of glycation end-products activate the paths which lead to diabetic nephropathy. The aim of this study was to assess the effects of L-lysine on antioxidant capacity, biochemical factors, kidney function, HSP70 level, and the expression of the TGFβ, VEGF, and RAGE genes in rats with streptozocin-induced diabetes mellitus. Methods Thirty-two male Wistar rats were randomly allocated to four eight-rat groups, namely, a healthy group, a diabetic group treated with vehicle (DM + vehicle), a diabetic group treated with L-lysine (DM + Lys), and a healthy group treated with L-lysine (healthy + Lys). Rats in the DM + Lys and the healthy + Lys groups were treated with L-lysine 0.15%. The levels of fasting blood glucose, insulin, HbA1C, advanced glycation end-products (AGEs), lipid profile, serum creatinine, blood urea nitrogen, glomerular filtration rate, urine microalbumin, oxidative stress parameters, kidney histology and morphology, and TGFβ, VEGF, and RAGE gene expressions were assessed. Findings. An eight-week treatment with L-lysine significantly reduced the levels of fasting blood glucose, AGEs, kidney function parameters, oxidative stress parameters, lipid profile, and the TGFβ, VEGF, and RAGE gene expression and significantly increased the levels of serum insulin and tissue HSP70. Conclusion Treatment with L-lysine seems to slow down the progression of diabetic nephropathy.
Collapse
|
45
|
VEGF-A promotes the motility of human melanoma cells through the VEGFR1-PI3K/Akt signaling pathway. In Vitro Cell Dev Biol Anim 2022; 58:758-770. [PMID: 35997849 PMCID: PMC9550759 DOI: 10.1007/s11626-022-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Vascular endothelial growth factor A (VEGF-A) and its receptors (VEGFR1 and R2) play important roles in the progression of malignant melanoma through tumor angiogenesis. However, it is not clear whether the VEGF-A/VEGFR1 signaling pathway is involved in the proliferation and migration of melanoma cells. Thus, the effect of VEGF-A on cell migration was investigated in human melanoma cell lines. Of several splicing variants of VEGF-A, VEGF165 is the most abundant and responsible for VEGF-A biological potency. VEGF165 facilitated the migration of melanoma cells in both a chemotactic and chemokinetic manner, but cell proliferation was not affected by VEGF165. VEGF165 also induced the phosphorylation of Akt. In addition, VEGF165-induced cell migration was inhibited significantly by VEGFR1/2 or a VEGFR1-neutralizing antibody. Furthermore, the downregulation of VEGFR1 via the transfection of VEGFR1-targeting antisense oligonucleotides suppressed VEGF165-induced cell migration. Moreover, wortmannin, an inhibitor of phosphatidylinositol-3 kinase (PI3K) in the PI3K/Akt pathway, suppressed VEGF165-induced Akt phosphorylation and VEGF165-induced cell migration. These findings suggest that the motility of melanoma cells is regulated by signals mediated through the PI3K/Akt kinase pathway with the activation of VEGFR1 tyrosine kinase by VEGF165. Thus, the downregulation of signaling via VEGF-A/VEGFR1 might be an effective therapeutic approach that could prevent the progression of malignant melanoma.
Collapse
|
46
|
Roskoski R. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 2022; 183:106362. [PMID: 35878738 DOI: 10.1016/j.phrs.2022.106362] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742, United States.
| |
Collapse
|
47
|
Li Y, Chen C, Liu HL, Li CG, Zhang ZF, Wang CL. Pazopanib restricts small cell lung cancer proliferation via reactive oxygen species-mediated endoplasmic reticulum stress. Thorac Cancer 2022; 13:2421-2428. [PMID: 35866204 PMCID: PMC9436657 DOI: 10.1111/1759-7714.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pazopanib is an approved multitarget anticancer agent for soft tissue sarcoma (STS) and renal cell carcinoma (RCC), which is also under clinical investigation for other malignancies, including small cell lung cancer (SCLC). However, the potential anti‐SCLC mechanisms of pazopanib remain unclear. Methods Cell viability was evaluated by CCK‐8, apoptotic cell detection was conducted using annexin V/PI staining followed by flow cytometry, and Western blot analysis was used to detect the apoptotic‐related molecules and ER‐stress pathway effectors. The intracellular reactive oxygen species (ROS) level was determined by DCFH‐HA staining followed by flow cytometry. An NCI‐H446 xenograft model was established to evaluate pazopanib on tumor suppression in vivo. Immunohistochemistry (IHC) was used to assess the proliferative activity of xenograft in NCI‐H446 cell‐bearing NOD‐SCID mice. Results Pazopanib dose‐ and time‐dependently inhibited SCLC cell proliferation induced significant apoptosis in SCLC cell lines, increased cleaved‐caspase3 and Bax, and decreased Bcl‐2. Moreover, the PERK‐related ER‐stress pathway was potently activated by pazopanib treatment, inhibiting ER‐stress by salubrinal significantly reversing pazopanib‐mediated apoptosis in SCLC cell lines. Furthermore, pazopanib‐induced intracellular ROS levels increased, while inhibiting ROS by NAC significantly reversed pazopanib‐induced apoptosis in SCLC cells. In addition, pazopanib significantly suppressed NCI‐H446 xenograft growth and decreased Ki67 positive cells in the tumor. Conclusion Our findings indicate that pazopanib induces SCLC cell apoptosis through the ER‐stress process via upregulation of ROS levels. Further investigation of relevant biomarkers to accurately select patients for benefit from pazopanib should be further investigated.
Collapse
Affiliation(s)
- Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Hai-Lin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
48
|
Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J Hematol Oncol 2022; 15:89. [PMID: 35799213 PMCID: PMC9263050 DOI: 10.1186/s13045-022-01310-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are a family of receptor protein tyrosine kinases that play an important role in the regulation of tumor-induced angiogenesis. Currently, VEGFR inhibitors have been widely used in the treatment of various tumors. However, current VEGFR inhibitors are limited to a certain extent due to limited clinical efficacy and potential toxicity, which hinder their clinical application. Thus, the development of new strategies to improve the clinical outcomes and minimize the toxic effects of VEGFR inhibitors is required. Given the synergistic effect of VEGFR and other therapies in tumor development and progression, VEGFR dual-target inhibitors are becoming an attractive approach due to their favorable pharmacodynamics, low toxicity, and anti-resistant effects. This perspective provides an overview of the development of VEGFR dual-target inhibitors from multiple aspects, including rational target combinations, drug discovery strategies, structure–activity relationships and future directions.
Collapse
|
49
|
Cao P, Wu JY, Zhang JD, Sun ZJ, Zheng X, Yu BZ, Cao HY, Zhang FL, Gao ZH, Wang W. A promising Prognostic risk model for advanced renal cell carcinoma (RCC) with immune-related genes. BMC Cancer 2022; 22:691. [PMID: 35739510 PMCID: PMC9229885 DOI: 10.1186/s12885-022-09755-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/10/2022] [Indexed: 12/09/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a third most common tumor of the urinary system. Nowadays, Immunotherapy is a hot topic in the treatment of solid tumors, especially for those tumors with pre-activated immune state. Methods In this study, we downloaded genomic and clinical data of RCC samples from The Cancer Genome Atlas (TCGA) database. Four immune-related genetic signatures were used to predict the prognosis of RCC by Cox regression analysis. Then we established a prognostic risk model consisting of the genes most related to prognosis from four signatures to value prognosis of the RCC samples via Kaplan–Meier (KM) survival analysis. An independent data from International Cancer Genome Consortium (ICGC) database were used to test the predictive stability of the model. Furthermore, we performed landscape analysis to assess the difference of gene mutant in the RCC samples from TCGA. Finally, we explored the correlation between the selected genes and the level of tumor immune infiltration via Tumor Immune Estimation Resource (TIMER) platform. Results We used four genetic signatures to construct prognostic risk models respectively and found that each of the models could divide the RCC samples into high- and low-risk groups with significantly different prognosis, especially in advanced RCC. A comprehensive prognostic risk model was constructed by 8 candidate genes from four signatures (HLA-B, HLA-A, HLA-DRA, IDO1, TAGAP, CIITA, PRF1 and CD8B) dividing the advanced RCC samples from TCGA database into high-risk and low-risk groups with a significant difference in cancer-specific survival (CSS). The stability of the model was verified by independent data from ICGC database. And the classification efficiency of the model was stable for the samples from different subgroups. Landscape analysis showed that mutation ratios of some genes were different between two risk groups. In addition, the expression levels of the selected genes were significantly correlated with the infiltration degree of immune cells in the advanced RCC. Conclusions Sum up, eight immune-related genes were screened in our study to construct prognostic risk model with great predictive value for the prognosis of advanced RCC, and the genes were associated with infiltrating immune cells in tumors which have potential to conduct personalized treatment for advanced RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09755-2.
Collapse
Affiliation(s)
- Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ji-Yue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian-Dong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ze-Jia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiang Zheng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bao-Zhong Yu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao-Yuan Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fei-Long Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zi-Hao Gao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Iacovelli R, Arduini D, Ciccarese C, Pierconti F, Strusi A, Piro G, Carbone C, Foschi N, Daniele G, Tortora G. Targeting hypoxia-inducible factor pathways in sporadic and Von Hippel-Lindau syndrome-related kidney cancers. Crit Rev Oncol Hematol 2022; 176:103750. [PMID: 35728738 DOI: 10.1016/j.critrevonc.2022.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 10/18/2022] Open
Abstract
Hereditary and sporadic renal cell carcinomas (RCCs) are often associated with Von Hippel-Lindau (VHL)-gene inactivation. Patients with VHL disease have an increased risk of RCC, leading to bilateral nephrectomy and dialysis. In patients with advanced RCC, no standard second-lines are available after progression to immune checkpoint inhibitors (ICIs), and new agents are required to manage progression. HIFs have emerged as a promising target for metastatic RCC patients who have progressed to ICI-based combinations, as well as for those with RCC and VHL syndrome where the goal is to delay surgery and/or and preserve kidney function and avoid dialysis. This review describes the available evidence supporting the use of the small-molecule HIF-2 alpha inhibitor, belzutifan (MK-6482), as well as other new anti-HIF molecules that have demonstrated significant efficacy in VHL disease-related RCCs as well as for sporadic RCC that has progressed after the use of ICI-based combinations.
Collapse
Affiliation(s)
- Roberto Iacovelli
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Arduini
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Chiara Ciccarese
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesco Pierconti
- Unit of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Strusi
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Geny Piro
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Nazario Foschi
- Department of Urology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|