1
|
Qi MH, Zhang HY, Hou YY, Nguepi Tsopmejio IS, Liu W, Chang WG, Chen C, Wang Z, Li W. Ginseng-derived GABAFG ameliorates type 2 diabetes mellitus by modulating autophagy-lysosome pathway and gut microbiota. J Adv Res 2025:S2090-1232(25)00003-7. [PMID: 39761869 DOI: 10.1016/j.jare.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Hyperglycemia and hyperlipidemia are the hallmarks of type 2 diabetes mellitus (T2DM). T2DM is a systemic metabolic disease caused by insulin resistance and malfunctioning pancreatic β-cells. Although ginseng (the roots of Panax ginseng C.A. Meyer) can be used to treat T2DM, the underlying mechanism is unclear. OBJECTIVES To assess the role and mechanism of, γ-aminobutyric acid-fructosyl-glucose (GABAFG), a maillard reaction product of ginseng, in T2DM treatment. METHODS The metabolism of GABAFG in serum and tissues was analyzed via ultra-high performance liquid chromatography-Q exactive-mass spectrometry (UHPLC-QE-MS). The molecular mechanisms of GABAFG in pancreatic β-cells (in vivo and in vitro) were investigated via Western blotting, qPCR and immunofluorescence. In addition, the results were validated via high-throughput sequencing and serum metabolomics. RESULTS GABAFG alleviated the elevation of blood glucose and blood lipids in HFD/STZ-induced T2DM mice. Also, GABAFG reduced the insulin resistance-associated IRS-1 signaling axis in pancreatic β-cells in vitro. Mechanistically, GABAFG targeted the nuclear translocation of TFEB inhibited apoptosis of pancreatic β-cells by enhancing autophagolysosome function. In addition, GABAFG remodeled the gut microbiota. Specifically, GABAFG increased Akkermansia, decreased Romboutsia abundance, and decreased serum glycerophospholipid metabolism, thus alleviating T2DM-induced dyslipidemia. CONCLUSION This is the first study to assess the pharmacological effects of ginseng-derived GABAFG in T2DM. Therefore, this study provides a new theoretical basis for understanding ginseng effect in metabolic diseases.
Collapse
Affiliation(s)
- Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hai-Yan Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yun-Yi Hou
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ivan Steve Nguepi Tsopmejio
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Wen-Guang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Chen Chen
- SBMS, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Jiang YN, Gao Y, Min CY, Guo YK, Xu R, Shen LT, Qian WL, Li Y, Yang ZG. Assessing coronary artery stenosis exacerbated impact on left ventricular function and deformation in metabolic syndrome patients by 3.0 T cardiac magnetic resonance imaging. Cardiovasc Diabetol 2024; 23:414. [PMID: 39558352 PMCID: PMC11575079 DOI: 10.1186/s12933-024-02492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) and coronary artery stenosis (CAS) independently increase the risk of cardiovascular events, while the impact of CAS on left ventricular (LV) function and deformation in MetS patients remains unclear. This study investigates how varying degrees of CAS exacerbate LV function and myocardial deformation in MetS patients. METHODS One hundred thirty-one MetS patients who underwent CMR examinations were divided into two groups: the MetS(CAS-) group (n = 47) and the MetS(CAS+) group (n = 84). The MetS(CAS+) group was divided into MetS with non-obstructive CAS(NOCAS+) (n = 30) and MetS with obstructive CAS(OCAS+) group (n = 54). Additionally, 48 age- and sex-matched subjects were included as a control group. LV functional and deformation parameters were measured and compared among subgroups. The determinants of decreased LV global peak strains in all MetS patients were identified using linear regression. The receiver operating characteristic (ROC) curve and logistic regression model (LRM) evaluated the diagnostic accuracy of the degree of CAS for identifying impaired LV strain. RESULTS Compared to MetS(CAS-), MetS(NOCAS+) showed a significantly increased LV mass index (p < 0.05). Global longitudinal peak strain was decreased gradually from MetS(CAS-) through MetS(NOCAS+) to MetS(OCAS+) (- 13.02 ± 2.32% vs. - 10.34 ± 4.05% vs. - 7.55 ± 4.48%, p < 0.05). MetS(OCAS+) groups showed significantly decreased LV global peak strain (GPS), PSSR and PDSR in radial and circumferential directions compared with MetS(NOCAS+) (all p < 0.05). The degree of CAS was independently associated with impaired global radial peak strain (GRPS) (β = - 0.289, p < 0.001) and global longitudinal peak strain (GLPS) (β = 0.254, p = 0.004) in MetS patients. The ROC analysis showed that the degree of CAS can predict impaired GRPS (AUC = 0.730) and impaired GLPS (AUC = 0.685). CONCLUSION Besides traditional biochemical indicators, incorporating CAS assessment and CMR assessment of the LV into routine evaluations ensures a more holistic approach to managing MetS patients. Timely intervention of CAS is crucial for improving cardiovascular outcomes in this high-risk population.
Collapse
Affiliation(s)
- Yi-Ning Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Mayo-Montor CI, Vidal-Limon A, Loyola-Vargas VM, Carmona-Hernández O, Barreda-Castillo JM, Monribot-Villanueva JL, Guerrero-Analco JA. Targeting Hypoglycemic Natural Products from the Cloud Forest Plants Using Chemotaxonomic Computer-Assisted Selection. Int J Mol Sci 2024; 25:10881. [PMID: 39456663 PMCID: PMC11507857 DOI: 10.3390/ijms252010881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening was conducted to identify molecules with potential hypoglycemic activity. From the most promising botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular targets was evaluated using ensemble molecular docking. This strategy led to the identification of twelve plants (in four botanical families) with hypoglycemic activity. Sida rhombifolia (Malvaceae) stood out for its DPP-IV selective inhibition versus S. glabra. A comparison of chemical profiles led to the annotation of twenty-seven metabolites over-accumulated in S. rhombifolia compared to S. glabra, among which acanthoside D and cis-tiliroside were noteworthy for their potential selective inhibition due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow used in this study presents a novel targeting strategy for identifying novel bioactive natural sources, which can complement the conventional selection criteria used in Natural Product Chemistry.
Collapse
Affiliation(s)
- Cecilia I. Mayo-Montor
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | | | | | - José Martín Barreda-Castillo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - Juan L. Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| |
Collapse
|
4
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
5
|
Min CY, Gao Y, Jiang YN, Guo YK, Shi K, Yang ZG, Li Y. The additive effect of metabolic syndrome on left ventricular impairment in patients with obstructive coronary artery disease assessed by 3.0 T cardiac magnetic resonance feature tracking. Cardiovasc Diabetol 2024; 23:133. [PMID: 38654269 PMCID: PMC11040951 DOI: 10.1186/s12933-024-02225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) can increase the risk of morbidity and mortality of cardiovascular disease and obstructive coronary artery disease (OCAD), which usually have a poor prognosis. This study aimed to explore the impact of MetS on left ventricular (LV) deformation and function in OCAD patients and investigate the independent factors of impaired LV function and deformation. MATERIALS AND METHODS A total of 121 patients with OCAD and 52 sex- and age-matched controls who underwent cardiac magnetic resonance scanning were enrolled in the study. All OCAD patients were divided into two groups: OCAD with MetS [OCAD(MetS+), n = 83] and OCAD without MetS [OCAD(MetS-), n = 38]. LV functional and global strain parameters were measured and compared among the three groups. Multivariable linear regression analyses were constructed to investigate the independent factors of LV impairment in OCAD patients. Logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed to test the prediction efficiency of MetS for LV impairment. RESULTS From controls to the OCAD(MetS-) group to the OCAD(MetS+) group, LV mass (LVM) increased, and LV global function index (LVGFI) and LV global longitudinal peak strain (GLPS) decreased (all p < 0.05). Compared with the OCAD(MetS-) group, the LV GLPS declined significantly (p = 0.027), the LVM increased (p = 0.006), and the LVGFI decreased (p = 0.043) in the OCAD(MetS+) group. After adjustment for covariates in OCAD patients, MetS was an independent factor of decreased LV GLPS (β = - 0.211, p = 0.002) and increased LVM (β = 0.221, p = 0.003). The logistic multivariable regression analysis and ROC analysis showed that combined MetS improved the efficiency of predicting LV GLPS reduction (AUC = 0.88) and LVM (AUC = 0.89) increase. CONCLUSIONS MetS aggravated the damage of LV deformation and function in OCAD patients and was independently associated with LV deformation and impaired LV strain. Additionally, MetS increased the prediction efficiency of increased LVM and decreased LV GLPS. Early detection and intervention of MetS in patients with OCAD is of great significance.
Collapse
Affiliation(s)
- Chen-Yan Min
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yi-Ning Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Xie H, Gao L, Fan F, Gong Y, Zhang Y. Research Progress and Clinical Value of Subendocardial Viability Ratio. J Am Heart Assoc 2024; 13:e032614. [PMID: 38471822 PMCID: PMC11009993 DOI: 10.1161/jaha.123.032614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, with ischemic heart disease being a major contributor, either through coronary atherosclerotic plaque-related major vascular disease or coronary microvascular dysfunction. Obstruction of coronary blood flow impairs myocardial perfusion, which may lead to acute myocardial infarction in severe cases. The subendocardial viability ratio, also known as the Buckberg index, is a valuable tool for evaluation of myocardial perfusion because it reflects the balance between myocardial oxygen supply and oxygen demand. The subendocardial viability ratio can effectively evaluate the function of the coronary microcirculation and is associated with arterial stiffness. This ratio also has potential value in predicting adverse cardiovascular events and mortality in various populations. Moreover, the subendocardial viability ratio has demonstrated clinical significance in a range of diseases, including hypertension, aortic stenosis, peripheral arterial disease, chronic kidney disease, diabetes, and rheumatoid arthritis. This review summarizes the applications of the subendocardial viability ratio, its particular progress in the relevant research, and its clinical significance in cardiovascular diseases.
Collapse
Affiliation(s)
- Haotai Xie
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Lan Gao
- Department of CardiologyPeking University First HospitalBeijingChina
- Institute of Cardiovascular DiseasePeking University First HospitalBeijingChina
| | - Fangfang Fan
- Department of CardiologyPeking University First HospitalBeijingChina
- Institute of Cardiovascular DiseasePeking University First HospitalBeijingChina
| | - Yanjun Gong
- Department of CardiologyPeking University First HospitalBeijingChina
- Institute of Cardiovascular DiseasePeking University First HospitalBeijingChina
| | - Yan Zhang
- Department of CardiologyPeking University First HospitalBeijingChina
- Institute of Cardiovascular DiseasePeking University First HospitalBeijingChina
| |
Collapse
|
7
|
Geng X, Zhang X, Li X, Zhong C, Hou M. Triglyceride-glucose Index as a Valuable Marker to Predict Severity of Coronary Artery Disease: A Retrospective Cohort Study. Clin Appl Thromb Hemost 2024; 30:10760296241234320. [PMID: 38444211 PMCID: PMC10916460 DOI: 10.1177/10760296241234320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND AND AIMS The diagnostic standard of coronary artery disease (CAD) is coronary angiography (CAG). Since CAG is an invasive procedure underscores the need for identifying non-invasive, effective, and innovative biomarkers. Our study aimed to retrospectively analyze hematological markers for predicting the severity of CAD. METHODS AND RESULTS Case data were collected from 195 CAD patients admitted to the hospital for CAG. According to Gensini score, patients were divided into mild, moderate, and severe CAD groups. Blood indexes and predictive efficacy of the triglyceride-glucose (TyG) index were retrospectively analyzed. Among 195 CAD patients, 81 had mild CAD, 60 had moderate CAD, and 54 had severe CAD. Sex, fast blood glucose (FBG), TyG index, and high-sensitivity C-reactive protein (hs-CRP) significantly differed among the three groups. The TyG index demonstrated higher values in patients with moderate (9.07[8.62-9.44]) and severe (8.98[8.46-9.45]) CAD compared to those with mild CAD (8.75[8.49-9.14]). The AUC of the TyG index was 0.615 (95% confidence interval (CI): 0.536-0.694, P =.004), with a cut-off value of 8.997, specificity of 0.704, and sensitivity of 0.535. Logistics analysis showed the risk of moderate and severe CAD with an odds ratio (OR) value of 2.595 (95% CI: 1.199-5.619, adjusted P = .016) following regrouping by the TyG index optimal cut-off value of 8.997. The TyG index combined with FBG and hs-CRP had an elevated AUC value, significantly higher than other combinations (P = .011 and 0.02, respectively). CONCLUSIONS The severity of CAD is positively correlated with an increased TyG index value. A combination of TyG, FBG, and hs-CRP has demonstrated improved diagnostic efficiency, suggesting its potential as a novel indicator for predicting and diagnosing CAD progression.
Collapse
Affiliation(s)
- Xu Geng
- Department of Clinical Laboratory, Chest Hospital, Tianjin University, Tianjin, China
| | - Xi Zhang
- Department of Clinical Laboratory, Chest Hospital, Tianjin University, Tianjin, China
- Department of Clinical Laboratory, Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - XiaoWei Li
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - ChunTing Zhong
- Peking University Shenzhen Hospital, Shenzhen Peking University -The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Min Hou
- Department of Clinical Laboratory, Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Zdravkovic M, Popadic V, Klasnja S, Klasnja A, Ivankovic T, Lasica R, Lovic D, Gostiljac D, Vasiljevic Z. Coronary Microvascular Dysfunction and Hypertension: A Bond More Important than We Think. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2149. [PMID: 38138252 PMCID: PMC10744540 DOI: 10.3390/medicina59122149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a clinical entity linked with various risk factors that significantly affect cardiac morbidity and mortality. Hypertension, one of the most important, causes both functional and structural alterations in the microvasculature, promoting the occurrence and progression of microvascular angina. Endothelial dysfunction and capillary rarefaction play the most significant role in the development of CMD among patients with hypertension. CMD is also related to several hypertension-induced morphological and functional changes in the myocardium in the subclinical and early clinical stages, including left ventricular hypertrophy, interstitial myocardial fibrosis, and diastolic dysfunction. This indicates the fact that CMD, especially if associated with hypertension, is a subclinical marker of end-organ damage and heart failure, particularly that with preserved ejection fraction. This is why it is important to search for microvascular angina in every patient with hypertension and chest pain not associated with obstructive coronary artery disease. Several highly sensitive and specific non-invasive and invasive diagnostic modalities have been developed to evaluate the presence and severity of CMD and also to investigate and guide the treatment of additional complications that can affect further prognosis. This comprehensive review provides insight into the main pathophysiological mechanisms of CMD in hypertensive patients, offering an integrated diagnostic approach as well as an overview of currently available therapeutical modalities.
Collapse
Affiliation(s)
- Marija Zdravkovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| | - Viseslav Popadic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Slobodan Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Andrea Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Tatjana Ivankovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Cardiology, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Dragan Lovic
- Clinic for Internal Diseases Inter Medica, 18000 Nis, Serbia;
- School of Medicine, Singidunum University, 18000 Nis, Serbia
| | - Drasko Gostiljac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Zorana Vasiljevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| |
Collapse
|
9
|
Huneif MA, Fahad S, Abdulwahab A, Alqahtani SM, Mahnashi MH, Nawaz A, Hussain F, Sadiq A. Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. PLANTS (BASEL, SWITZERLAND) 2023; 12:3591. [PMID: 37896054 PMCID: PMC10609873 DOI: 10.3390/plants12203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Diabetes mellitus (DM) is a metabolic complication and can pose a serious challenge to human health. DM is the main cause of many life-threatening diseases. Researchers of natural products have been continuously engaged in treating vital diseases in an economical and efficient way. In this research, we extensively used phytosteroids from Notholirion thomsonianum (Royle) Stapf for the treatment of DM. The structures of phytosteroids NtSt01 and NtSt02 were confirmed with gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. Through in vitro studies including α-glucosidase, α-amylase, and DPPH assays, compound NtSt01 was found to be comparatively potent. An elevated dose of compound NtSt01 was also found to be safe in an experimental study on rats. With a dose of 1.0 mg/kg of NtSt01, the effect on blood glucose levels in rats was observed to be 519 ± 3.98, 413 ± 1.87, 325 ± 1.62, 219 ± 2.87, and 116 ± 1.33 mg/dL on the 1st, 7th, 14th, 21st, and 28th, days, respectively. The in vivo results were compared with those of glibenclamide, which reduced the blood glucose level to 107 ± 2.33 mg/dL on the 28th day. On the 28th day of NtSt01 administration, the average weights of the rats and vital organs (liver, kidney, pancreas, and heart) remained healthy, with a slight increase. The biochemical parameters of the blood, i.e., serum creatinine, blood urea, serum bilirubin, SGPT (or ALT), and serum alkaline phosphatase, of rats treated with NtSt01 remained in the normal ranges. Similarly, the serum cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels also remained within the standard ranges. It is obvious from our overall results that the phytosteroids (specifically NtSt01) had an efficient therapeutic effect on the blood glucose level, protection of vital organs, and blood biochemistry.
Collapse
Affiliation(s)
- Mohammad A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan;
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Seham M. Alqahtani
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi 23561, KP, Pakistan;
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| |
Collapse
|
10
|
Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z, Fan Y, Wang Y, Wang X, Mao J. Coronary microvascular dysfunction and cardiovascular disease: Pathogenesis, associations and treatment strategies. Biomed Pharmacother 2023; 164:115011. [PMID: 37321056 DOI: 10.1016/j.biopha.2023.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is a high-risk factor for a variety of cardiovascular events. Due to its complex aetiology and concealability, knowledge of the pathophysiological mechanism of CMD is still limited at present, which greatly restricts its clinical diagnosis and treatment. Studies have shown that CMD is closely related to a variety of cardiovascular diseases, can aggravate the occurrence and development of cardiovascular diseases, and is closely related to a poor prognosis in patients with cardiovascular diseases. Improving coronary microvascular remodelling and increasing myocardial perfusion might be promising strategies for the treatment of cardiovascular diseases. In this paper, the pathogenesis and functional assessment of CMD are reviewed first, along with the relationship of CMD with cardiovascular diseases. Then, the latest strategies for the treatment of CMD and cardiovascular diseases are summarized. Finally, urgent scientific problems in CMD and cardiovascular diseases are highlighted and future research directions are proposed to provide prospective insights for the prevention and treatment of CMD and cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Shaoling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
11
|
Cabrera JT, Si R, Tsuji-Hosokawa A, Cai H, Yuan JXJ, Dillmann WH, Makino A. Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice. Diab Vasc Dis Res 2023; 20:14791641231173630. [PMID: 37186669 PMCID: PMC10196148 DOI: 10.1177/14791641231173630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Sustained hyperglycemia results in excess protein O-GlcNAcylation, leading to vascular complications in diabetes. This study aims to investigate the role of O-GlcNAcylation in the progression of coronary microvascular disease (CMD) in inducible type 2 diabetic (T2D) mice generated by a high-fat diet with a single injection of low-dose streptozotocin. Inducible T2D mice exhibited an increase in protein O-GlcNAcylation in cardiac endothelial cells (CECs) and decreases in coronary flow velocity reserve (CFVR, an indicator of coronary microvascular function) and capillary density accompanied by increased endothelial apoptosis in the heart. Endothelial-specific O-GlcNAcase (OGA) overexpression significantly lowered protein O-GlcNAcylation in CECs, increased CFVR and capillary density, and decreased endothelial apoptosis in T2D mice. OGA overexpression also improved cardiac contractility in T2D mice. OGA gene transduction augmented angiogenic capacity in high-glucose treated CECs. PCR array analysis revealed that seven out of 92 genes show significant differences among control, T2D, and T2D + OGA mice, and Sp1 might be a great target for future study, the level of which was significantly increased by OGA in T2D mice. Our data suggest that reducing protein O-GlcNAcylation in CECs has a beneficial effect on coronary microvascular function, and OGA is a promising therapeutic target for CMD in diabetic patients.
Collapse
Affiliation(s)
- Jody Tori Cabrera
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Rui Si
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
- Department of Cardiology, Xijing
Hospital, Fourth Military Medical
University, Shaanxi, China
| | | | - Hua Cai
- Department of Anesthesiology, University of California, Los
Angeles, Los Angeles, CA, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Ayako Makino
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Chen Y, Liu Y, Cong L, Liu A, Song X, Liu W, Hua R, Shen Q, Shao Y, Xue Y, Yao Q, Zhang Y. Sleeve gastrectomy improved microvascular phenotypes from obesity cohort, detected with optical coherence tomography angiography. J Diabetes 2023; 15:313-324. [PMID: 36872300 PMCID: PMC10101840 DOI: 10.1111/1753-0407.13374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
AIMS To examine how metabolic status is associated with microvascular phenotype and to identify variables associated with vascular remodeling after bariatric surgery, using noninvasive optical coherence tomography angiography (OCTA). METHODS The study included 136 obese subjects scheduled for bariatric surgery and 52 normal-weight controls. Patients with obesity were divided into metabolically healthy obesity (MHO) and metabolic syndrome (MetS) groups according to the diagnosis criteria of the Chinese Diabetes Society. Retinal microvascular parameters were measured by OCTA, including superficial capillary plexus (SCP) and deep capillary plexus (DCP) vessel densities. Follow-ups were performed at the baseline and 6 months after bariatric surgery. RESULTS Fovea SCP, average DCP, fovea DCP, parafovea DCP, and perifovea DCP vessel densities were significantly lower in the MetS group, compared to controls (19.91% vs. 22.49%, 51.60% vs. 54.20%, 36.64% vs. 39.14%, 56.24% vs. 57.65% and 52.59% vs. 55.58%, respectively, all p < .05). Parafovea SCP, average DCP, parafovea DCP, and perifovea DCP vessel densities significantly improved in patients with obesity 6 months after surgery, compared to baseline (54.21% vs. 52.97%, 54.43% vs. 50.95%, 58.29% vs. 55.54% and 55.76% vs. 51.82%, respectively, all p < .05). Multivariable analyses showed that baseline blood pressure and insulin were independent predictors of vessel density changes 6 months after surgery. CONCLUSIONS Retinal microvascular impairment occurred mainly in MetS rather than MHO patients. Retinal microvascular phenotype improved 6 months after bariatric surgery and baseline blood pressure and insulin status may be key determinants. OCTA may be a reliable method to evaluate the microvascular complications associated with obesity.
Collapse
Affiliation(s)
- Yaying Chen
- Department of OphthalmologyHuadong Hospital, Fudan UniversityShanghaiChina
- Department of OphthalmologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yanyang Liu
- Center for Obesity and Metabolic SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Lin Cong
- Department of OphthalmologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ailin Liu
- Department of UltrasoundHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiangyuan Song
- Department of OphthalmologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Wenting Liu
- Department of OphthalmologyHuadong Hospital, Fudan UniversityShanghaiChina
| | - Rong Hua
- Center for Obesity and Metabolic SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qiwei Shen
- Center for Obesity and Metabolic SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yikai Shao
- Center for Obesity and Metabolic SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yiwen Xue
- Department of OphthalmologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qiyuan Yao
- Center for Obesity and Metabolic SurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yuyan Zhang
- Department of OphthalmologyHuadong Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Zhu K, Wang MY, Li HF, Dong ZL, Li WW, Liu C, Zhang L, Jiang S, Shang EX, Qian DW, Duan JA. Investigation of the Material Basis of Xiexin Tang to Alleviate Type 2 Diabetes Mellitus Based on Spectrum-Effect Analysis by UPLC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123691. [PMID: 37011544 DOI: 10.1016/j.jchromb.2023.123691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Xiexin Tang (XXT) is a classic prescription for treating diabetes in clinical practices for thousands of years in China, which has been also proved by a large number of modern pharmacological studies. However, due to its complex composition, the bioactive ingredients of XXT is still unclear. In present researches, spectrum-effect relationship analysis is widely used to explore the material basis of traditional medical herbs, so this method was adopted in this study. Firstly, the extract of XXT was separated and enriched into 5 fractions by macroporous adsorption resin. Then, UPLC-Q-TOF/MS method was used for qualitative identification of components in each eluting part, and efficacy of each fraction was assessed by the T2DM rat model. Based on grey relational analysis and pearson bivariate correlation analysis, it was found that the components such as berberine, gallic acid, catechin, epicatechin, acteoside, berberastine and 1-O-galloyl-β-D-glucose might be the main effective basis of XXT to improve T2DM.
Collapse
|
14
|
Bartlett CW, Bossenbroek J, Ueyama Y, McCallinhart P, Peters OA, Santillan DA, Santillan MK, Trask AJ, Ray WC. Invasive or More Direct Measurements Can Provide an Objective Early-Stopping Ceiling for Training Deep Neural Networks on Non-invasive or Less-Direct Biomedical Data. SN COMPUTER SCIENCE 2023; 4:161. [PMID: 36647373 PMCID: PMC9836982 DOI: 10.1007/s42979-022-01553-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Early stopping is an extremely common tool to minimize overfitting, which would otherwise be a cause of poor generalization of the model to novel data. However, early stopping is a heuristic that, while effective, primarily relies on ad hoc parameters and metrics. Optimizing when to stop remains a challenge. In this paper, we suggest that for some biomedical applications, a natural dichotomy of invasive/non-invasive measurements, or more generally proximal vs distal measurements of a biological system can be exploited to provide objective advice on early stopping. We discuss the conditions where invasive measurements of a biological process should provide better predictions than non-invasive measurements, or at best offer parity. Hence, if data from an invasive measurement are available locally, or from the literature, that information can be leveraged to know with high certainty whether a model of non-invasive data is overfitted. We present paired invasive/non-invasive cardiac and coronary artery measurements from two mouse strains, one of which spontaneously develops type 2 diabetes, posed as a classification problem. Examination of the various stopping rules shows that generalization is reduced with more training epochs and commonly applied stopping rules give widely different generalization error estimates. The use of an empirically derived training ceiling is demonstrated to be helpful as added information to leverage early stopping in order to reduce overfitting.
Collapse
Affiliation(s)
- Christopher W. Bartlett
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Jamie Bossenbroek
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
- Department of Computer Science and Engineering, The Ohio State University College of Engineering, Columbus, OH USA
| | - Yukie Ueyama
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Patricia McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Olivia A. Peters
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA USA
| | - Donna A. Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA USA
| | - Mark K. Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA USA
| | - Aaron J. Trask
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - William C. Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
- The Interdisciplinary Graduate Program in Biophysics, The Ohio State University Graduate School, Columbus, OH USA
| |
Collapse
|
15
|
Chen D, Liu Y, Liu P, Zhou Y, Jiang L, Yuan C, Huang M. Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition. Drug Deliv 2022; 29:1824-1835. [PMID: 35674505 PMCID: PMC9186361 DOI: 10.1080/10717544.2022.2083726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Thrombosis occurs in both macrovasculature and microvasculature, causing various cardio-cerebral vascular diseases. The lack of effective and safe antithrombotic drugs leads to a public health crisis. Mounting evidence suggests that protein disulfide isomerase (PDI) plays a critical role in the initial stage of thrombus formation, motivating the research of the feasibility of PDI inhibitors as novel anti-thrombotics. Rutin, one of the most potent PDI inhibitors, was reported to suppress platelet aggregation and thrombosis in animal models, but further studies and clinical translation were restricted due to its low aqueous solubility and oral bioavailability. In this work, we fabricated rutin-loaded lipid-based nano-formulation (NanoR) and characterized their physical-chemical properties, release profiles, pharmacokinetic process, and pharmacodynamic function against thrombosis in macrovessels and microvessels. NanoR provided increased solubility and dissolution of rutin to achieve earlier Tmax and higher Cmax than the sodium salt of rutin (NaR) after oral gavage. Ex vivo studies demonstrated that NanoR significantly inhibited thrombin generation and clot formation in the plasma of mice. Importantly, such effect was reversed by exogenous recombinant PDI, demonstrating the specificity of the NanoR. In direct current-induced arterial thrombosis model and ferric chloride-induced microvascular thrombosis model, NanoR exhibited greatly enhanced antithrombotic activity compared with NaR. NanoR also showed good safety performance according to tail bleeding assay, global coagulation tests, and histological analysis. Overall, our current results indicated that NanoR offers a promising antithrombotic treatment with potential for clinical translation.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yurong Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Peiwen Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yang Zhou
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Longguang Jiang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Mingdong Huang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| |
Collapse
|
16
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
17
|
Yang Z, Lin S, Liu Y, Ren Q, Ge Z, Wang C, Bi Y, Wang X, Mao J. Traditional chinese medicine in coronary microvascular disease. Front Pharmacol 2022; 13:929159. [PMID: 36003524 PMCID: PMC9393228 DOI: 10.3389/fphar.2022.929159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary microvascular disease (CMVD) is common in patients with cardiovascular risk factors and is associated with an increased risk of adverse cardiovascular events. Although the study of CMVD in modern medicine is ongoing, there is still no effective treatment for it. Traditional Chinese medicine (TCM) has some clinical advantages based on syndrome differentiation and individualized treatment. In this review, we review the clinical significance, pathogenesis, and current treatments of CMVD and systematically summarize the clinical efficacy and potential action mechanisms of TCM for CMVD. In addition, the scientific problems that need to be solved urgently and the research strategy of TCM for CMVD are described. CMVD has great clinical significance, but there are still many gaps in the related research. This review aims to attract the attention of clinicians to CMVD and promote research on CMVD in TCM.
Collapse
Affiliation(s)
- Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuan Ren
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao Ge
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ci Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingfei Bi
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochem Cell Biol 2022; 158:485-496. [PMID: 35849202 PMCID: PMC9630201 DOI: 10.1007/s00418-022-02138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world’s population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.
Collapse
|
19
|
Bossenbroek J, Ueyama Y, McCallinhart PE, Bartlett CW, Ray WC, Trask AJ. Improvement of automated analysis of coronary Doppler echocardiograms. Sci Rep 2022; 12:7490. [PMID: 35523823 PMCID: PMC9076637 DOI: 10.1038/s41598-022-11402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Coronary artery disease is the leading cause of heart disease, and while it can be assessed through transthoracic Doppler echocardiography (TTDE) by observing changes in coronary flow, manual analysis of TTDE is time consuming and subject to bias. In a previous study, a program was created to automatically analyze coronary flow patterns by parsing Doppler videos into a single continuous image, binarizing and separating the image into cardiac cycles, and extracting data values from each of these cycles. The program significantly reduced variability and time to complete TTDE analysis, but some obstacles such as interfering noise and varying video sizes left room to increase the program's accuracy. The goal of this current study was to refine the existing automation algorithm and heuristics by (1) moving the program to a Python environment, (2) increasing the program's ability to handle challenging cases and video variations, and (3) removing unrepresentative cardiac cycles from the final data set. With this improved analysis, examiners can use the automatic program to easily and accurately identify the early signs of serious heart diseases.
Collapse
Affiliation(s)
- Jamie Bossenbroek
- Department of Computer Science and Engineering, The Ohio State University College of Engineering, Columbus, OH, USA
- Battelle Center for Mathematical Medicine, Columbus, OH, USA
| | - Yukie Ueyama
- Center for Cardiovascular Research and The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research and The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher W Bartlett
- Battelle Center for Mathematical Medicine, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - William C Ray
- Battelle Center for Mathematical Medicine, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Aaron J Trask
- Center for Cardiovascular Research and The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
20
|
Berlanga-Acosta J, Fernández-Mayola M, Mendoza-Marí Y, García-Ojalvo A, Martinez-Jimenez I, Rodriguez-Rodriguez N, Playford RJ, Reyes-Acosta O, Lopez-Marín L, Guillén-Nieto G. Intralesional Infiltrations of Arteriosclerotic Tissue Cells-Free Filtrate Reproduce Vascular Pathology in Healthy Recipient Rats. Int J Mol Sci 2022; 23:1511. [PMID: 35163435 PMCID: PMC8835913 DOI: 10.3390/ijms23031511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Maday Fernández-Mayola
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Yssel Mendoza-Marí
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Ariana García-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Indira Martinez-Jimenez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Nadia Rodriguez-Rodriguez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Raymond J. Playford
- School of Biomedical Sciences, University of West London, St Marys Rd, Ealing, London W5 5RF, UK;
| | - Osvaldo Reyes-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Laura Lopez-Marín
- Department of Pathology, Institute for Arteriosclerosis Research, Institute of Nephrology “Dr. Abelardo Buch”, Calle 26 y Línea del Ferrocarril, Vedado, Havana 10400, Cuba;
| | - Gerardo Guillén-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| |
Collapse
|
21
|
Mechanism of the switch from NO to H 2O 2 in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol 2022; 117:2. [PMID: 35024970 PMCID: PMC8886611 DOI: 10.1007/s00395-022-00910-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.
Collapse
|
22
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
23
|
Jing FY, Zhou YZ, Wang HY, Yin XL, Zhang YQ. Enhancing antioxidant and anti-hyperglycaemic functions of gingko biloba L. seeds using thermal detoxification. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Xiao F, Zhang W, He YN, Yang J, Liu X, Wang L, Zhang J, Dai H. Impaired perfusion in the myocardial microcirculation in asymptomatic patients with Stages 1-4 chronic kidney disease with intrarenal arterial lesions. Nephrol Dial Transplant 2021; 36:2066-2075. [PMID: 33877359 DOI: 10.1093/ndt/gfaa245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Even mild renal disease is a powerful cardiovascular risk factor. However, the association between these pathophysiologic processes (especially in the early asymptomatic stage) is not known. METHODS We recruited 243 asymptomatic patients with Stages 1-4 chronic kidney disease (CKD) without obstructive coronary artery disease (CAD). We distinguished different degrees of severity of intrarenal arterial lesions (IALs) according to the Oxford classification. Myocardial microcirculation perfusion was measured using single-photon emission computed tomography (SPECT). Summed scores of 17 stress and rest image segments produced the summed stress score (SSS) and summed rest score (SRS), respectively. The summed difference score (SDS) was calculated as the difference between the SSS and SRS. Coronary microvascular disease (CMD) was defined as abnormal SPECT (SSS ≥4 or SDS ≥2) in the absence of obstructive CAD. RESULTS Participants showed a stepwise increase in CMD severity with IAL aggravation. SSS of no/mild/moderate/severe IALs was 1.64 ± 1.08, 2.56 ± 1.35, 4.42 ± 2.17 and 6.48 ± 3.52, respectively (P < 0.05 for all). SDS of no/mild/moderate/severe IALs was 1.29 ± 0.49, 1.75 ± 0.56, 3.06 ± 1.12 and 4.16 ± 1.85, respectively (P < 0.05 for all). The percentage of subclinical CMD in CKD patients with IALs was significantly higher than in those without IALs (69.57% versus 14.71%; P = 0.01). Multiple regression analysis showed that renal arteriolar hyalinization (odds ratio = 1.578, P = 0.009) was associated independently with subclinical CMD. CONCLUSIONS We demonstrated, for the first time, that impaired perfusion in the myocardial microcirculation in asymptomatic patients with Stages 1-4 CKD with IALs. Renal arteriolar hyalinization may be a useful marker of CMD in CKD.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Weiwei Zhang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ya-Ni He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Yang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinghong Liu
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ling Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianguo Zhang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Huanzi Dai
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Yin J, Wang S, Liu Y, Chen J, Li D, Xu T. Coronary microvascular dysfunction pathophysiology in COVID-19. Microcirculation 2021; 28:e12718. [PMID: 34013612 PMCID: PMC8236988 DOI: 10.1111/micc.12718] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Recently, accumulating evidence has highlighted the role of endothelial dysfunction in COVID-19 progression. Coronary microvascular dysfunction (CMD) plays a pivotal role in cardiovascular disease (CVD) and CVD-related risk factors (eg, age, gender, hypertension, diabetes mellitus, and obesity). Equally, these are also risk factors for COVID-19. The purpose of this review was to explore CMD pathophysiology in COVID-19, based on recent evidence. COVID-19 mechanisms were reviewed in terms of imbalanced renin-angiotensin-aldosterone-systems (RAAS), systemic inflammation and immune responses, endothelial dysfunction, and coagulatory disorders. Based on these mechanisms, we addressed CMD pathophysiology within the context of COVID-19, from five perspectives. The first was the disarrangement of local RAAS and Kallikrein-kinin-systems attributable to SARS-Cov-2 entry, and the concomitant decrease in coronary microvascular endothelial angiotensin I converting enzyme 2 (ACE2) levels. The second was related to coronary microvascular obstruction, induced by COVID-19-associated systemic hyper-inflammation and pro-thrombotic state. The third was focused on how pneumonia/acute respiratory distress syndrome (ARDS)-related systemic hypoxia elicited oxidative stress in coronary microvessels and cardiac sympathetic nerve activation. Fourthly, we discussed how autonomic nerve dysfunction mediated by COVID-19-associated mental, physical, or physiological factors could elicit changes in coronary blood flow, resulting in CMD in COVID-19 patients. Finally, we analyzed reciprocity between the coronary microvascular endothelium and perivascular cellular structures due to viremia, SARS-CoV-2 dissemination, and systemic inflammation. These mechanisms may function either consecutively or intermittently, finally culminating in CMD-mediated cardiovascular symptoms in COVID-19 patients. However, the underlying molecular pathogenesis remains to be clarified.
Collapse
Affiliation(s)
- Jie Yin
- Institute of Cardiovascular Disease ResearchXuzhou Medical UniversityXuzhouChina
| | - Shaoshen Wang
- Department of CardiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yang Liu
- Institute of Cardiovascular Disease ResearchXuzhou Medical UniversityXuzhouChina
| | - Junhong Chen
- Department of CardiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Dongye Li
- Institute of Cardiovascular Disease ResearchXuzhou Medical UniversityXuzhouChina
| | - Tongda Xu
- Department of CardiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
26
|
Carabelli A, Canu M, de Fondaumière M, Debiossat M, Leenhardt J, Broisat A, Ghezzi C, Vanzetto G, Fagret D, Barone-Rochette G, Riou LM. Noninvasive assessment of coronary microvascular dysfunction using SPECT myocardial perfusion imaging and myocardial perfusion entropy quantification in a rodent model of type 2 diabetes. Eur J Nucl Med Mol Imaging 2021; 49:809-820. [PMID: 34417856 DOI: 10.1007/s00259-021-05511-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Coronary microvascular dysfunction (CMVD) plays a major role in the occurrence of cardiovascular events (CVE). We recently suggested the clinical potential of myocardial perfusion entropy (MPE) quantification from SPECT myocardial perfusion images (MPI) for the prognosis of CVE occurrence. We hypothesized that the quantification of MPE from SPECT MPI would allow the assessment of CMVD-related MPE variations in a preclinical model of type 2 diabetes (T2D) including treatment with the anti-diabetic incretin liraglutide (LIR). METHODS Optimal conditions for the preclinical quantification of MPE using 201Tl SPECT MPI were determined in rats with a T2D-like condition induced by a high-fat diet and streptozotocin injection (feasibility study, n = 43). Using such conditions, echocardiography and post-mortem LV capillary density evaluation were then used in order to assess the effect of LIR and the ability of MPE to assess CMVD (therapeutic study, n = 39). RESULTS The feasibility study identified dobutamine stress and acute NO synthase and cyclooxygenase inhibition as optimal conditions for the quantification of MPE, with significant increases in MPE being observed in T2D animals (P < 0.01 vs controls). In the therapeutic study, T2D rats were hyperglycemic (5.5 ± 0.5 vs 1.1 ± 0.3 g/L for controls, P < 0.001) and had a significantly lower left ventricular ejection fraction (LVEF) (65 ± 4% vs 74 ± 9%, P < 0.01) and LV capillary density (2400 ± 300 vs 2800 ± 600 mm-3, P < 0.05). LIR partially restored glycemia (3.9 ± 0.6 g/L, P < 0.05 vs controls and T2D), totally prevented LVEF impairment (72 ± 7%, P = NS vs CTL), with no significant effect on capillary density. MPE was significantly increased in T2D rats (7.6 ± 0.5 vs 7.1 ± 0.5, P < 0.05), with no significant improvement in T2D-LIR rats (7.4 ± 0.4, P = NS vs controls and T2D). CONCLUSION MPE quantification allowed the preclinical noninvasive assessment of CMVD. Both MPE and capillary density quantification suggested that LIR did not improve T2D-induced CMVD. The relevance of MPE for CMVD assessment warrants further clinical investigation.
Collapse
Affiliation(s)
- Adrien Carabelli
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000, Grenoble, France.,UMR UGA-INSERM U1039 Radiopharmaceutiques Biocliniques, Faculté de Médecine La Tronche, Isere, France
| | - Marjorie Canu
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000, Grenoble, France
| | | | | | - Julien Leenhardt
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000, Grenoble, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France
| | | | - Gérald Vanzetto
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000, Grenoble, France
| | - Daniel Fagret
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000, Grenoble, France
| | | | - Laurent M Riou
- UMR UGA-INSERM U1039 Radiopharmaceutiques Biocliniques, Faculté de Médecine La Tronche, Isere, France. .,Univ. Grenoble Alpes, INSERM, LRB, 38000, Grenoble, France.
| |
Collapse
|
27
|
Lima TRD, Silva DAS, Giehl MWC, D'Orsi E, González-Chica DA. Clusters of Cardiometabolic Risk Factors and Their Association with Atherosclerosis and Chronic Inflammation among Adults and Elderly in Florianópolis, Southern Brazil. Arq Bras Cardiol 2021; 117:39-48. [PMID: 34320066 PMCID: PMC8294721 DOI: 10.36660/abc.20200230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022] Open
Abstract
Fundamento O aumento significativo de doenças cardiovasculares em países em desenvolvimento alerta sobre seu impacto em populações carentes. Objetivo Identificar a relação de agrupamentos de componentes da síndrome metabólica (SM) com aterosclerose e inflamação crônica em adultos e idosos. Métodos Análise transversal usando dados de dois estudos populacionais de tipo coorte realizados em Florianópolis, sul do Brasil (EpiFloripa Adult Cohort Study, n = 862, 39,9±11,5 anos; EpiFloripa Aging Cohort Study, n = 1197, 69,7±7,1 anos). Pressão arterial (PA), circunferência da cintura (CC), e níveis plasmáticos de lipídio e glicose foram analisados como fatores individuais ou como agrupamentos de componentes da SM (como número de componentes presentes em um indivíduo ou como combinações). Os desfechos incluíram espessura intima-media carotídea (EIMC), placas ateroscleróticas, e níveis de proteína C reativa (CRP). Regressão linear múltipla e regressão logística, ajustadas quanto aos fatores de confusão, foram usadas para análise. O nível de significância adotado foi de 5%. Resultados Indivíduos com PA e CC elevadas, dislipidemia e hiperglicemia (61,5%) apresentaram maiores valores de EIMC e PCR que aqueles que não apresentaram componentes de SM. CC elevada foi um determinante comum de inflamação sistêmica, ao passo que a coexistência de PA elevada e CC elevada (agrupamentos de dois ou três fatores) associou-se com maior EIMC (β entre +3,2 e +6,1 x 10-2 mm; p < 0,05) e PCR (EXPβ entre 2,18 e 2,77; p < 0,05). Conclusão A coexistência de PA e CC elevadas associou-se com maiores valores de EIMC e níveis de PCR. A obesidade central, isolada ou em combinação com outros fatores de risco, teve efeito sobre a inflamação sistêmica.
Collapse
Affiliation(s)
| | | | | | - Eleonora D'Orsi
- Universidade Federal de Santa Catarina, Florianópolis, SC - Brasil
| | | |
Collapse
|
28
|
Berlanga-Acosta J, Fernández-Mayola M, Mendoza-Marí Y, García-Ojalvo A, Playford RJ, Guillen-Nieto G. Intralesional Infiltrations of Cell-Free Filtrates Derived from Human Diabetic Tissues Delay the Healing Process and Recreate Diabetes Histopathological Changes in Healthy Rats. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:617741. [PMID: 36994347 PMCID: PMC10012095 DOI: 10.3389/fcdhc.2021.617741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Lower limb ulcers in type-2 diabetic patients are a frequent complication that tributes to amputation and reduces survival. We hypothesized that diabetic healing impairment and other histopathologic hallmarks are mediated by a T2DM-induced tissue priming/metabolic memory that can be transferred from humans to healthy recipient animals and consequently reproduce diabetic donor’s phenotypes. We examined the effect of human T2DM tissue homogenates injected into non-diabetic rat excisional wounds. Fresh granulation tissue, popliteal artery, and peroneal nerve of patients with T2DM were obtained following amputation. Post-mammoplasty granulation and post-traumatic amputation-tissue of normal subjects acted as controls. The homogenates were intralesionally injected for 6–7 days into rats’ excisional thickness wounds. Infiltration with the different homogenates caused impaired wound closure, inflammation, nerve degeneration, and arterial thickening (all P < 0.01 vs relevant control) resembling histopathology of diabetic donor tissues. Control materials caused marginal inflammation only. Infiltration with glycated bovine albumin provoked inflammation and wound healing delay but did not induce arterial thickening. The reproduction of human diabetic traits in healthy recipient animals through a tissue homogenate support the notion on the existence of tissue metabolic memory-associated and transmissible factors, involved in the pathogenesis of diabetic complications. These may have futuristic clinical implications for medical interventions.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
- *Correspondence: Jorge Berlanga-Acosta,
| | - Maday Fernández-Mayola
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Yssel Mendoza-Marí
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Ariana García-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Raymond J. Playford
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Gerardo Guillen-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Playa, Cuba
| |
Collapse
|
29
|
Adaptive constrained constructive optimisation for complex vascularisation processes. Sci Rep 2021; 11:6180. [PMID: 33731776 PMCID: PMC7969782 DOI: 10.1038/s41598-021-85434-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mimicking angiogenetic processes in vascular territories acquires importance in the analysis of the multi-scale circulatory cascade and the coupling between blood flow and cell function. The present work extends, in several aspects, the Constrained Constructive Optimisation (CCO) algorithm to tackle complex automatic vascularisation tasks. The main extensions are based on the integration of adaptive optimisation criteria and multi-staged space-filling strategies which enhance the modelling capabilities of CCO for specific vascular architectures. Moreover, this vascular outgrowth can be performed either from scratch or from an existing network of vessels. Hence, the vascular territory is defined as a partition of vascular, avascular and carriage domains (the last one contains vessels but not terminals) allowing one to model complex vascular domains. In turn, the multi-staged space-filling approach allows one to delineate a sequence of biologically-inspired stages during the vascularisation process by exploiting different constraints, optimisation strategies and domain partitions stage by stage, improving the consistency with the architectural hierarchy observed in anatomical structures. With these features, the aDaptive CCO (DCCO) algorithm proposed here aims at improving the modelled network anatomy. The capabilities of the DCCO algorithm are assessed with a number of anatomically realistic scenarios.
Collapse
|
30
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
31
|
Sinha A, Rahman H, Perera D. Coronary microvascular disease: current concepts of pathophysiology, diagnosis and management. Cardiovasc Endocrinol Metab 2021; 10:22-30. [PMID: 33634252 PMCID: PMC7901821 DOI: 10.1097/xce.0000000000000223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Coronary microvascular disease (CMD) is present in 30% of patients with angina and is associated with increased morbidity and mortality. We now have an improved understanding of the pathophysiology of CMD and the invasive and noninvasive tests that can be used to make the diagnosis. Recent studies have shown that management of CMD guided by physiological testing yields better results than empirical treatment. Despite major advances in diagnosing and stratifying this condition, therapeutic strategies remain limited and poorly defined. This review article discusses recent advances in understanding the pathophysiology of CMD, the modalities that are available to diagnose it clinically, current management options and a look at what is in store for the future.
Collapse
Affiliation(s)
- Aish Sinha
- The BHF Centre of Excellence and the NIHR Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Haseeb Rahman
- The BHF Centre of Excellence and the NIHR Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Divaka Perera
- The BHF Centre of Excellence and the NIHR Biomedical Research Centre at the School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| |
Collapse
|
32
|
Dalan R, Boehm BO. The implications of COVID-19 infection on the endothelium: A metabolic vascular perspective. Diabetes Metab Res Rev 2021; 37:e3402. [PMID: 32871617 DOI: 10.1002/dmrr.3402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Bernhard O Boehm
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Early Clinical Results of the Tolerability, Safety, and Efficacy of Autologous Platelet-Rich Plasma Administration in Erectile Dysfunction. Sex Med 2021; 9:100313. [PMID: 33529814 PMCID: PMC8072172 DOI: 10.1016/j.esxm.2020.100313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Platelet-rich plasma (PRP) is useful in the treatment of different conditions and diseases as it contains concentrated levels of many growth factors. Aim The aim of this study was to investigate the effectiveness of autologous PRP application in the treatment of erectile dysfunction (ED) in patients with metabolic syndrome. Methods In this prospective study conducted in June 2019, 31 patients with ED were included. The International Index of Erectile Function–Erectile Function domain (IIEF-EF) questionnaires were used to evaluate erectile function (EF). After administering the intracavernous autologous PRP 3 times with an interval of 15 days, IIEF-EFs were evaluated 1, 3, and 6 months later. Main Outcome Measure IIEF in the 1st, 3rd, and 6th months and adverse events. Results While the mean IIEF-EF was 18 before the application, the mean IIEF-EF was 20 in the first, third, and sixth months after the procedure (P < .001). However, even though IIEF-EF values increased numerically, median value remained within the mild-moderate classification (scores between 17 and 21). Postprocedure sexual satisfaction scores were significantly higher than preprocedure values (8 vs 6, respectively; P = .002). In the first follow-up of a patient after the 3rd injection, a 4-mm diameter fibrotic plaque was observed on the ventral side in the middle of the penis shaft. Conclusion In conclusion, our findings suggest that larger studies as well as placebo-controlled studies are needed to add PRP to the treatment protocol in ED. T Taş,Çakıroğlu, E Arda, et al. Early Clinical Results of the Tolerability, Safety, and Efficacy of Autologous Platelet-Rich Plasma Administration in Erectile Dysfunction. Sex Med 2021;9:100313.
Collapse
|
34
|
Tan Q, Chen M, Hao J, Wei K. Impact of Hyperinsulinemia on Long-Term Clinical Outcomes of Percutaneous Coronary Intervention in Patients without Diabetes Who Have Acute Myocardial Syndrome. Diabetes Metab Syndr Obes 2021; 14:3949-3957. [PMID: 34522113 PMCID: PMC8434865 DOI: 10.2147/dmso.s318852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Hyperinsulinemia plays a key role in the development of cardiovascular impairment in patients with metabolic syndrome. The aim of this study was to evaluate the influence of hyperinsulinemia on long-term clinical outcomes of percutaneous coronary intervention (PCI) in patients without diabetes mellitus who have acute myocardial syndrome (ACS). METHODS Between March 2016 and January 2019, we enrolled 468 patients with ACS and without diabetes mellitus who received primary PCI. Patients were divided into a low-insulin group (n = 157), medium-insulin group (n = 154), and high-insulin group (n = 157) according to tertiles of fasting insulin level. The primary endpoint was major adverse cardiac events (MACE; all-cause death, non-fatal myocardial infarction, target vessel revascularization [TVR]) at 24 months. The secondary endpoint was angina hospitalization. RESULTS Patients in the high-insulin group had an unfavorable prognosis, with a higher rate of MACE (34.39%) than the low-insulin group (22.29%) and medium-insulin group (23.37%) at 24 months (P < 0.05). This difference was mainly driven by the increase in TVR. The high-insulin group also had a higher rate of angina hospitalization than the low-insulin group. Cox proportional hazards regression showed that high-insulin level (hazard ratio [HR] 1.870, 95% confidence interval [CI] 1.202-2.909), small-vessel lesion (HR 1.713, 95% CI 1.111-2.642), bifurcation lesion (HR 3.394, 95% CI 2.033-5.067), SYNTAX score (HR 1.084, 95% CI 1.039-1.130), and stent length (HR 1.017, 95% CI 1.002-1.032) increased the incidence of MACE in patients with ACS and without diabetes who underwent PCI. CONCLUSION Hyperinsulinemia might be a valid predictor of clinical outcomes in patients with ACS undergoing PCI.
Collapse
Affiliation(s)
- Qiang Tan
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
- Correspondence: Qiang Tan Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, No. 258 of Wenhua Road, Qinhuangdao, Hebei Province, 066000, People’s Republic of China Email
| | - Ming Chen
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| | - Jia Hao
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| | - Kun Wei
- Department of Cardiology, Qinhuangdao First Hospital, Hebei Medical University, Qinhuangdao, Hebei Province, People’s Republic of China
| |
Collapse
|
35
|
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol 2020; 41:683-700. [DOI: 10.1002/jat.4121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
36
|
Network Pharmacology-Based Strategy Reveals the Effects of Hedysarum multijugum Maxim.- Radix Salviae Compound on Oxidative Capacity and Cardiomyocyte Apoptosis in Rats with Diabetic Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8260703. [PMID: 33134388 PMCID: PMC7591987 DOI: 10.1155/2020/8260703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Objective To explore the effects of the Hedysarum multijugum Maxim.-Radix Salviae compound (Huangqi-Danshen Compound (HDC)) on oxidative capacity and cardiomyocyte apoptosis in rats with diabetic cardiomyopathy by a network pharmacology-based strategy. Methods Traditional Chinese Medicine (TCM)@Taiwan, TCM Systems Pharmacology Database and Analysis Platform (TCMSP), TCM Integrated Database (TCMID), and High-Performance Liquid Chromatography (HPLC) technology were used to obtain and screen HDC's active components, and the PharmMapper database was used to predict HDC human target protein targets. The DCM genes were collected from the GeneCards and OMIM databases, and the network was constructed and analyzed by Cytoscape 3.7.1 and the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Finally, HDC was used to intervene in diabetic cardiomyopathy (DCM) model rats, and important biological processes and signaling pathways were verified using techniques such as immunohistochemistry. Results A total of 176 of HDC's active components and 442 potential targets were obtained. The results of network analysis show that HDC can regulate DCM-related biological processes (such as negative regulation of the apoptotic process, response to hypoxia, the steroid hormone-mediated signaling pathway, cellular iron ion homeostasis, and positive regulation of phosphatidylinositol 3-kinase signaling) and signaling pathways (such as the HIF-1 signaling pathway, the estrogen signaling pathway, insulin resistance, the PPAR signaling pathway, the VEGF signaling pathway, and the PI3K-Akt signaling pathway). Animal experiments show that HDC can reduce fasting plasma glucose (FPG), HbA1c, and malondialdehyde (MDA) and increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) (P < 0.05). The results of immunohistochemistry showed that HDC can regulate the protein expression of apoptosis-related signaling pathways in DCM rats (P < 0.05). Conclusion It was initially revealed that HDC improves DCM through its antiapoptotic and anti-inflammatory effects. HDC may play a therapeutic role by improving cardiomyocyte apoptosis in DCM rats.
Collapse
|
37
|
Lyu F, Wu D, Wei C, Wu A. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sci 2020; 254:117771. [DOI: 10.1016/j.lfs.2020.117771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
|
38
|
Frisbee JC, Halvorson BD, Lewis MT, Wiseman RW. Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease. Exp Physiol 2020; 105:1431-1439. [PMID: 32045062 DOI: 10.1113/ep087871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the topic of this review? Altered perfusion distribution at skeletal muscle arteriolar bifurcations and how this is modified by development of chronic metabolic disease. What advances does it highlight? The outcome created is a distribution of erythrocytes in the distal microcirculation that is characterized by increased spatial heterogeneity and reduced flexibility such that mass transport/exchange within the network is impaired, with limited ability to respond to imposed challenges. This advances our understanding of how altered vascular structure and function with metabolic disease impairs perfusion to skeletal muscle at a level of resolution that would not be identified through bulk flow responses. ABSTRACT This review is based on the presentation 'Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease', given at the Symposium 'Understanding Complex Behaviours in the Microcirculation: from Blood Flow to Oxygenation' during the Annual Meeting of the Physiological Society at the Aberdeen Exhibition and Conference Centre in Aberdeen, UK in July 2019. The past years of dedicated investigation on linkages between vascular (dys)function under conditions of elevated cardiovascular disease risk and tissue/organ performance have produced results and insights that frequently suffer from limited correlation and causation. Reaching out from this challenge, it was proposed that this may reflect a 'level of resolution' argument and that altered haemodynamic behaviour in vascular networks could be a stronger predictor of functional outcomes than higher resolution measures. Using this approach, we have determined that an attractor that describes the spatial and temporal shift in perfusion distribution at successive arteriolar bifurcations within the skeletal muscle is a strong predictor of functional outcomes within animals and provides novel insight into fundamental mechanistic contributors to altered patterns of intra-muscular perfusion. This article focuses on the applicability and utility of the attractor in models of cardiovascular and metabolic disease risk of increasing severity. We will also discuss the utility of the attractor in terms of understanding the effectiveness of aggressive interventions for reversing established vasculopathy and perfusion impairments.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
39
|
Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R, Lai N, Wang Z, Yuan JXJ, Wang J, Makino A. Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. Br J Pharmacol 2020; 177:314-327. [PMID: 31503328 DOI: 10.1111/bph.14864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Chloroquine is a traditional medicine to treat malaria. There is increasing evidence that chloroquine not only induces phagocytosis but regulates vascular tone. Few reports investigating the effect of chloroquine on vascular responsiveness of coronary arteries have been made. In this study, we examined how chloroquine affected endothelium-dependent relaxation in coronary arteries under normal and diabetic conditions. EXPERIMENTAL APPROACH We isolated coronary arteries from mice and examined endothelium-dependent relaxation (EDR). Human coronary endothelial cells and mouse coronary endothelial cells isolated from control and diabetic mouse (TALLYHO/Jng [TH] mice, a spontaneous type 2 diabetic mouse model) were used for the molecular biological or cytosolic NO and Ca2+ measurements. KEY RESULTS Chloroquine inhibited endothelium-derived NO-dependent relaxation but had negligible effect on endothelium-derived hyperpolarization (EDH)-dependent relaxation in coronary arteries of control mice. Chloroquine significantly decreased NO production in control human coronary endothelial cells partly by phosphorylating eNOSThr495 (an inhibitory phosphorylation site of eNOS) and attenuating the rise of cytosolic Ca2+ concentration after stimulation. EDR was significantly inhibited in diabetic mice in comparison to control mice. Interestingly, chloroquine enhanced EDR in diabetic coronary arteries by, specifically, increasing EDH-dependent relaxation due partly to its augmenting effect on gap junction activity in diabetic mouse coronary endothelial cells. CONCLUSIONS AND IMPLICATIONS These data indicate that chloroquine affects vascular relaxation differently under normal and diabetic conditions. Therefore, the patients' health condition such as coronary macrovascular or microvascular disease, with or without diabetes, must be taken account into the consideration when selecting chloroquine for the treatment of malaria.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Conor Willson
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Makiko Watanabe
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Rui Si
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Ning Lai
- Department of Medicine, University of California, San Diego, La Jolla, California.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyi Wang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jian Wang
- Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|
40
|
Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 2020; 152:104629. [PMID: 31918019 DOI: 10.1016/j.phrs.2020.104629] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus type 2 (T2DM) is a metabolic disorder develops due to the overproduction of free radicals where oxidative stress could contribute it. Possible factors are defective insulin signals, glucose oxidation, and degradation of glycated proteins as well as alteration in glutathione metabolism which induced hyperglycemia. Previous studies revealed a link between T2DM with oxidative stress, inflammation and insulin resistance which are assumed to be regulated by numerous cellular networks such as NF-κB, PI3K/Akt, MAPK, GSK3 and PPARγ. Flavonoids are ubiquitously present in the nature and classified according to their chemical structures for example, flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones. Flavonoids indicate poor bioavailability which could be improved by employing various nano-delivery systems against the occurrences of T2DM. These bioactive compounds exert versatile anti-diabetic activities via modulating targeted cellular signaling networks, thereby, improving glucose metabolism, α -glycosidase, and glucose transport or aldose reductase by carbohydrate metabolic pathway in pancreatic β-cells, hepatocytes, adipocytes and skeletal myofibres. Moreover, anti-diabetic properties of flavonoids also encounter diabetic related complications. This review article has designed to shed light on the anti-diabetic potential of flavonoids, contribution of oxidative stress, evidence of efficacy in clinical, cellular and animal studies and nano-delivery approaches to enhance their therapeutic efficacy. This article might give some new insights for therapeutic intervention against T2DM in near future.
Collapse
|
41
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Xiao LL, Lin CS, Chen S, Liu Y, Fu BM, Yan WW. Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel. Biomech Model Mechanobiol 2019; 19:159-171. [PMID: 31297646 DOI: 10.1007/s10237-019-01202-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 07/06/2019] [Indexed: 11/25/2022]
Abstract
In order to figure out whether red blood cell (RBC) aggregation is beneficial or deleterious for the blood flow through a stenosis, fluid mechanics of a microvascular stenosis was examined through simulating the dynamics of deformable red blood cells suspended in plasma using dissipative particle dynamics. The spatial variation in time-averaged cell-free layer (CFL) thickness and velocity profiles indicated that the blood flow exhibits asymmetry along the flow direction. The RBC accumulation occurs upstream the stenosis, leading to a thinner CFL and reduced flow velocity. Therefore, the emergence of stenosis produces an increased blood flow resistance. In addition, an enhanced Fahraeus-Lindqvist effect was observed in the presence of the stenosis. Finally, the effect of RBC aggregation combined with decreased stenosis on the blood flow was investigated. The findings showed that when the RBC clusters pass through the stenosis with a throat comparable to the RBC core in diameter, the blood flow resistance decreases with increasing intercellular interaction strength. But if the RBC core is larger and even several times than the throat, the blood flow resistance increases largely under strong RBC aggregation, which may contribute to the mechanism of the microthrombus formation.
Collapse
Affiliation(s)
- L L Xiao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China.
| | - C S Lin
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - S Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - Y Liu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - B M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - W W Yan
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, China
| |
Collapse
|
43
|
Farag AGA, Badr EA, Eltorgoman AMA, Assar MF, Elshafey EN, Tayel NR, Aboutaleb HE. Role of 11β HSD 1, rs12086634, and rs846910 single-nucleotide polymorphisms in metabolic-related skin diseases: a clinical, biochemical, and genetic study. Clin Cosmet Investig Dermatol 2019; 12:91-102. [PMID: 30774405 PMCID: PMC6350638 DOI: 10.2147/ccid.s193156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background 11β HSD1 generates cortisol from cortisone. 11β HSD1 single-nucleotide polymorphism (SNP) was associated with metabolic syndrome (MeTS). Although the relation of acne vulgaris (AV) and skin tags (STs) with MeTS has been reported, the relationship between 11β HSD 1 SNP and cortisol activity in those patients has not studied till now. Aims To investigate, two 11β-HSD1 SNPs (rs846910 and rs12086634), serum lipid profile and cortisol levels in patients with AV and STs in an Egyptian population. Patients and methods This case–control study was performed on 50 patients having STs and 50 complaining of AV and 50 sex- and age-matched controls. We searched for serum lipid profile, cortisol levels, and 11β-HSD1 rs846910 and rs12086634 SNPs using real time-PCR. Results Compared to controls,11β-HSD1 rs846910 GA genotype carriers had significantly higher risks for developing AV and STs by 3.4- and 4.9-fold, respectively, and its A allele increases these risks by 3.1 and 4.4 times, respectively. Also, 11β-HSD1 rs12086634 TG genotype increases the risk of AV by 3.2-fold, as well as STs by 3.5-fold, and its G allele increases the risk of AV by 3.2-fold and STs by 7-fold. In AV and ST patients, rs846910 GA genotype demonstrated significant associations with elevated body mass index (BMI), and cholesterol, low density lipoprotein (LDL), cortisol, and decreased high density lipoprotein serum levels, respectively. However, rs12086634 GG genotype was significantly associated with increased BMI, cholesterol, and LDL serum levels in patients with AV and STs, in addition to the number of STs and serum cortisol levels in ST patients. Conclusion 11β-HSD1 rs846910 and rs12086634 gene polymorphisms may contribute to AV and STs pathogenesis, that may be mediated through enhancing the enzymatic activity (increasing cortisol levels). AV and STs are associated with obesity and atherogenic lipid profile. Diagnosis of AV and STs may play a role in early detection of the MeTS.
Collapse
Affiliation(s)
- Azza Gaber Antar Farag
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt,
| | - Eman Ae Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | | | - Mohamed Fa Assar
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Eman N Elshafey
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt, .,Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Nermin Reda Tayel
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering Biotechnology Research Institute, Sadat City, Egypt
| | - Hossam Ea Aboutaleb
- Department of Chemistry, Biochemistry Division, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| |
Collapse
|
44
|
Altered Purinergic Receptor Sensitivity in Type 2 Diabetes-Associated Endothelial Dysfunction and Up₄A-Mediated Vascular Contraction. Int J Mol Sci 2018; 19:ijms19123942. [PMID: 30544633 PMCID: PMC6320923 DOI: 10.3390/ijms19123942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Purinergic signaling may be altered in diabetes accounting for endothelial dysfunction. Uridine adenosine tetraphosphate (Up4A), a novel dinucleotide substance, regulates vascular function via both purinergic P1 and P2 receptors (PR). Up4A enhances vascular contraction in isolated arteries of diabetic rats likely through P2R. However, the precise involvement of PRs in endothelial dysfunction and the vasoconstrictor response to Up4A in diabetes has not been fully elucidated. We tested whether inhibition of PRs improved endothelial function and attenuated Up4A-mediated vascular contraction using both aortas and mesenteric arteries of type 2 diabetic (T2D) Goto Kakizaki (GK) rats vs. control Wistar (WT) rats. Endothelium-dependent (EDR) but not endothelium-independent relaxation was significantly impaired in both aortas and mesenteric arteries from GK vs. WT rats. Non-selective inhibition of P1R or P2R significantly improved EDR in aortas but not mesenteric arteries from GK rats. Inhibition of A1R, P2X7R, or P2Y6R significantly improved EDR in aortas. Vasoconstrictor response to Up4A was enhanced in aortas but not mesenteric arteries of GK vs. WT rats via involvement of A1R and P2X7R but not P2Y6R. Depletion of major endothelial component nitric oxide enhanced Up4A-induced aortic contraction to a similar extent between WT and GK rats. No significant differences in protein levels of A1R, P2X7R, and P2Y6R in aortas from GK and WT rats were observed. These data suggest that altered PR sensitivity accounts for endothelial dysfunction in aortas in diabetes. Modulating PRs may represent a potential therapy for improving endothelial function.
Collapse
|
45
|
MacKenzie NE, Kowalchuk C, Agarwal SM, Costa-Dookhan KA, Caravaggio F, Gerretsen P, Chintoh A, Remington GJ, Taylor VH, Müeller DJ, Graff-Guerrero A, Hahn MK. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front Psychiatry 2018; 9:622. [PMID: 30568606 PMCID: PMC6290646 DOI: 10.3389/fpsyt.2018.00622] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Cognitive impairment is a core symptom domain of schizophrenia. The effect of antipsychotics, the cornerstone of treatment in schizophrenia, on this domain is not fully clear. There is some evidence suggesting that antipsychotics may partially improve cognitive function, and that this improvement may vary depending on the specific cognitive domain. However, this research is confounded by various factors, such as age, duration/stage of illness, medication adherence, and extrapyramidal side effects that complicate the relationship between antipsychotics and cognitive improvement. Furthermore, antipsychotics-particularly the second generation, or "atypical" antipsychotics-can induce serious metabolic side effects, such as obesity, dyslipidemia and type 2 diabetes, illnesses which themselves have been linked to impairments in cognition. Thus, the inter-relationships between cognition and metabolic side effects are complex, and this review aims to examine them in the context of schizophrenia and antipsychotic treatment. The review also speculates on potential mechanisms underlying cognitive functioning and metabolic risk in schizophrenia. We conclude that the available literature examining the inter-section of antipsychotics, cognition, and metabolic effects in schizophrenia is sparse, but suggests a relationship between metabolic comorbidity and worse cognitive function in patients with schizophrenia. Further research is required to determine if there is a causal connection between the well-recognized metabolic adverse effects of antipsychotics and cognitive deficits over the course of the illness of schizophrenia, as well as, to determine underlying mechanisms. In addition, findings from this review highlight the importance of monitoring metabolic disturbances in parallel with cognition, as well as, the importance of interventions to minimize metabolic abnormalities for both physical and cognitive health.
Collapse
Affiliation(s)
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kenya A. Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Araba Chintoh
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary J. Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Valerie H. Taylor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Women's College Hospital, Toronto, ON, Canada
| | - Daniel J. Müeller
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Yang M, Zhang Y, Ren J. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome. Front Cardiovasc Med 2018; 5:38. [PMID: 29774216 PMCID: PMC5943591 DOI: 10.3389/fcvm.2018.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, United States
| |
Collapse
|
47
|
12/15 lipoxygenase: A crucial enzyme in diverse types of cell death. Neurochem Int 2018; 118:34-41. [PMID: 29627380 DOI: 10.1016/j.neuint.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
The 12/15-lipoxygenase (12/15-LOX) enzymes react with polyunsaturated fatty acids producing active lipid metabolites that are involved in plethora of human diseases including neurological disorders. A great many of elegant studies over the last decades have contributed to unraveling the mechanism how 12/15-lipoxygenase play a role in these diseases. And the way it works is mainly through apoptosis. However, recent years have found that the way 12/15-lipoxygenase works is also related to autophagy and ferroptosis, a newly defined type of cell death by Stockwell's lab in 2012. Figuring out how 12/15-lipoxygenase participate in these modes of cell death is of vital importance to understand its role in disease. The review aims to give a sight on our current knowledge on the role of this enzyme in apoptosis, autophagy and ferroptosis. And the relevant diseases that 12/15-lipoxygenase may be involved.
Collapse
|
48
|
Samiei N, Bayat M, Firouzi A, Dehghani F, Parsaee M, Rahimi S, Ahmadi S, Pourmojib M, Ghaemmaghami Z, Rezaei Y, Peighambari MM. Subclinical systolic and diastolic dysfunctions in patients with metabolic syndrome and angiographically normal coronary arteries: An echocardiographic study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2018; 46:195-201. [PMID: 29210085 DOI: 10.1002/jcu.22568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/16/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The metabolic syndrome (MetS), as a combination of cardiovascular risk factors, is associated with subclinical cardiovascular diseases. We sought to evaluate the subclinical myocardial dysfunctions using echocardiography in patients with normal coronary arteries. MATERIALS AND METHODS In this cross-sectional study, we assessed 50 consecutive patients with angiographically-proven normal coronary arteries and a left ventricular (LV) ejection fraction (EF) ≥55%. The diagnosis of MetS was based on the National Cholesterol Education Program/Adult Treatment Panel III criteria. All patients were examined using conventional and two-dimensional speckle tracking echocardiography for evaluating the myocardial functions. RESULTS The patients' mean age was 52.3 ± 8.3 years with 32 females (64%). LV EF, mass index, and full volume were comparable between groups. The LV myocardial performance index (0.40 ± 0.13 vs. 0.32 ± 0.10; P = .027), global longitudinal strain (GLS, -15.8 ± 4.5 vs. -19.7 ± 2.1; P < .001), and global circumferential strain (-17.9 ± 6.1 vs. -21.5 ± 3.3; P = .014) were different between patients with or without MetS, respectively. The GLS discriminated patients with MetS (area under the curve = 0.837, sensitivity 80%, specificity 88%, P < .001). CONCLUSIONS In MetS without coronary artery disease, echocardiography demonstrated subclinical systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Niloufar Samiei
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bayat
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Ata Firouzi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Dehghani
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Parsaee
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Somayyeh Ahmadi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourmojib
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghaemmaghami
- Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Rezaei
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Peighambari
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
50
|
Stefanadi EC, Dimitrakakis G, Antoniou CK, Challoumas D, Punjabi N, Dimitrakaki IA, Punjabi S, Stefanadis CI. Metabolic syndrome and the skin: a more than superficial association. Reviewing the association between skin diseases and metabolic syndrome and a clinical decision algorithm for high risk patients. Diabetol Metab Syndr 2018; 10:9. [PMID: 29483947 PMCID: PMC5822485 DOI: 10.1186/s13098-018-0311-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/12/2018] [Indexed: 02/08/2023] Open
Abstract
There is ongoing scientific interest regarding comorbidities associated with the metabolic syndrome (MeTS). MeTS comprises a combination of parameters that predispose individuals to the development of type 2 diabetes and cardiovascular disease (CVD). Three or more of the following criteria are necessary: fasting glucose > 110 mg/dl (5.6 mmol/l), hypertriglyceridemia > 150 mg/dl (1.7 mmol/l), HDL levels < 40 mg/dl (men)/< 50 mg/dl (women), blood pressure > 130/85 mmHg, waist circumference (values for Mediterranean populations > 94 cm (men)/> 89 cm (women). In this review we attempted to summarize relevant data by searching dermatological literature regarding associations between various skin conditions and MeTS. A multitude of studies was retrieved and a further goal of the present article is to present plausible mechanistic connections. The severity of skin conditions like psoriasis has been linked with MeTS. Parameters of MeTS like insulin resistance are present in patients with early onset androgenic alopecia, hidradenitis suppurativa acne and rosacea. Since MeTS can lead to CVD and type 2 diabetes early detection of patients would be very important. Also therapeutic intervention on MeTS could lead to improvement on the severity of skin conditions. This reciprocal relationship between skin diseases and MeTS in our opinion holds great interest for further investigation.
Collapse
Affiliation(s)
- Ellie C. Stefanadi
- Dermatology Department, Athens Medical Centre, Athens, Greece
- National and Kapodistrian University of Athens and Athens Medical Center, Papadiamantopoulou 20, Ilisia, Athens, Greece
| | | | | | | | | | | | - Sangeeta Punjabi
- Dermatology Department, Northwick Park and Middlesex Hospitals, London, UK
| | | |
Collapse
|