1
|
Liu C, Yu X, Zhang M, Wang S, Ni J, Yuan X, Han H. Antioxidant and Hepatoprotective Effect of Rosa davurica Pall Seed Oil on CCl 4-Induced Acute Liver Injury in Mice. J Med Food 2024; 27:636-650. [PMID: 38722249 DOI: 10.1089/jmf.2024.k.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Caiyan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaojin Yu
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Wang
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiating Ni
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- Department of Medicinal Chemistry, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Drăgoi CM, Nicolae AC, Ungurianu A, Margină DM, Grădinaru D, Dumitrescu IB. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024; 13:138. [PMID: 38247830 PMCID: PMC10814043 DOI: 10.3390/cells13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A multitude of physiological processes, human behavioral patterns, and social interactions are intricately governed by the complex interplay between external circumstances and endogenous circadian rhythms. This multidimensional regulatory framework is susceptible to disruptions, and in contemporary society, there is a prevalent occurrence of misalignments between the circadian system and environmental cues, a phenomenon frequently associated with adverse health consequences. The onset of most prevalent current chronic diseases is intimately connected with alterations in human lifestyle practices under various facets, including the following: reduced physical activity, the exposure to artificial light, also acknowledged as light pollution, sedentary behavior coupled with consuming energy-dense nutriments, irregular eating frameworks, disruptions in sleep patterns (inadequate quality and duration), engagement in shift work, and the phenomenon known as social jetlag. The rapid evolution of contemporary life and domestic routines has significantly outpaced the rate of genetic adaptation. Consequently, the underlying circadian rhythms are exposed to multiple shifts, thereby elevating the susceptibility to disease predisposition. This comprehensive review endeavors to synthesize existing empirical evidence that substantiates the conceptual integration of the circadian clock, biochemical molecular homeostasis, oxidative stress, and the stimuli imparted by physical exercise, sleep, and nutrition.
Collapse
Affiliation(s)
- Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Alina Crenguţa Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Ion-Bogdan Dumitrescu
- Department of Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
3
|
Patouna A, Sevdalis P, Papanikolaou K, Kourti M, Skaperda Z, Jamurtas AZ, Kouretas D. Evaluation of the effects of a honey‑based gel on blood redox biomarkers and the physiological profile of healthy adults: A pilot study. Biomed Rep 2023; 18:32. [PMID: 37034574 PMCID: PMC10074021 DOI: 10.3892/br.2023.1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 04/11/2023] Open
Abstract
Honey is a natural product derived from the insect Apis mellifera. Approximately 200 different compounds are included, making it a complex mixture with antimicrobial, antioxidant, and antidiabetic activity. Flavonoids and phenolic acids contained in honey are associated with its antioxidant capacity via mechanisms such as hydrogen donation and metallic ion chelation, although the exact antioxidant mechanism remains unknown. The aim of the present study was to: i) Estimate the antioxidant activity of a natural honey-based gel, commercially available under the trade name of 'Bear Strength honey gel' and to ii) assess the physiological and redox adjustments obtained after its consumption in healthy adult participants. For this purpose, 20 healthy participants (10 men and 10 women) included in their habitual diet 70 g of the honey-based gel for 14 days in a row. Pre- and post-consumption, physiological [weight, height, body mass index, body fat, waist-to-hip ratio, resting heart rate and blood pressure (BP)] and hematological (complete blood count) data were evaluated, along with the levels of five redox biomarkers: Glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), protein carbonyls (PCARBS) and thiobarbituric reactive substances (TBARS). The results revealed that the honey-based gel decreased the diastolic and mean arterial BP, especially in women, without affecting the rest of the physiological and hematological variables. Regarding the changes observed in antioxidant status variables, GSH was increased both in the total and women's group, while TAC was increased in all groups post-consumption. No changes were detected in the levels of CAT. Regarding oxidative stress, a decrease in the levels of TBARS in the total and women's group, was observed. PCARBS levels were decreased post-consumption only in the women's group. In conclusion, the present study demonstrated the potential positive effects of a honey-based gel on BP and redox status of healthy adults in a sex-specific manner.
Collapse
Affiliation(s)
- Anastasia Patouna
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Panagiotis Sevdalis
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | | | - Maria Kourti
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
- Correspondence to: Professor Demetrios Kouretas, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
4
|
Capsicum baccatum Red Pepper Prevents Cardiometabolic Risk in Rats Fed with an Ultra-Processed Diet. Metabolites 2023; 13:metabo13030385. [PMID: 36984825 PMCID: PMC10052057 DOI: 10.3390/metabo13030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Metabolic syndrome is a serious health condition reaching epidemic proportions worldwide and is closely linked to an increased risk of cardiovascular problems. The lack of appropriate treatment paves the way for developing new therapeutic agents as a high priority in the current research. In this study, we evaluated the protective effects of Capsicum baccatum red pepper on metabolic syndrome scenarios induced by an ultra-processed diet in rats. After four months, the ultra-processed diet increased central obesity, triglycerides, total cholesterol, LDL-cholesterol plasma levels, and impaired glucose tolerance. The oral administration of C. baccatum concomitantly with the ultra-processed diet avoided the accumulation of adipose tissue in the visceral region, reduced the total cholesterol and LDL fraction, and improved glucose homeostasis, factors commonly associated with metabolic syndrome. The data presented herein reveal an important preventive action of C. baccatum in developing metabolic disorders among animals fed a hypercaloric diet, significantly reducing their cardiometabolic risk. Allied with the absence of toxic effects after chronic use, our study suggests C. baccatum red pepper as a secure and enriched source of bioactive compounds promising to protect against pathological processes associated with metabolic syndrome.
Collapse
|
5
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
6
|
Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023; 28:molecules28041533. [PMID: 36838522 PMCID: PMC9966428 DOI: 10.3390/molecules28041533] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The Vaccinium L. (Ericaceae) genus consists of a globally widespread and diverse genus of around 4250 species, of which the most valuable is the Vaccinioidae subfamily. The current review focuses on the distribution, history, bioactive compounds, and health-related effects of three species: cranberry, blueberry, and huckleberry. Several studies highlight that the consumption of Vaccinium spp. presents numerous beneficial health-related outcomes, including antioxidant, antimicrobial, anti-inflammatory, and protective effects against diabetes, obesity, cancer, neurodegenerative diseases and cardiovascular disorders. These plants' prevalence and commercial value have enhanced in the past several years; thus, the generated by-products have also increased. Consequently, the identified phenolic compounds found in the discarded leaves of these plants are also presented, and their impact on health and economic value is discussed. The main bioactive compounds identified in this genus belong to anthocyanins (cyanidin, malvidin, and delphinidin), flavonoids (quercetin, isoquercetin, and astragalin), phenolic acids (gallic, p-Coumaric, cinnamic, syringic, ferulic, and caffeic acids), and iridoids.
Collapse
|
7
|
Mirahmad M, Mohseni S, Tabatabaei-Malazy O, Esmaeili F, Alatab S, Bahramsoltani R, Ejtahed HS, Qulami H, Bitarafan Z, Arjmand B, Nazeri E. Antioxidative hypoglycemic herbal medicines with in vivo and in vitro activity against C-reactive protein; a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154615. [PMID: 36610136 DOI: 10.1016/j.phymed.2022.154615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Inflammation is a double-edged sword in the pathophysiology of chronic diseases, such as type 2 diabetes mellitus (T2DM). The global rise in the prevalence of T2DM in one hand, and poor disease control with currently-available treatments on the other hand, along with an increased tendency towards the use of natural products make scientists seek herbal medicines for the management of diabetes and its complications by reducing C-reactive protein (CRP) as an inflammatory marker. PURPOSE To systematically review the literature to identify the efficacy of various medicinal plants with antioxidative and anti-inflammatory properties considering their effect on CRP in animal models of T2DM. STUDY DESIGN systematic review. METHODS Electronic databases including PubMed, Scopus, Web of Science and Cochran Library were searched using the search terms "herbal medicine", "diabetes", "c-reactive protein", "antioxidants" till August 2021. The quality of evidence was assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE's) tool. The study protocol was registered in PROSPERO with an ID number CRD42020207190. A manual search to detect any articles not found in the databases was also made. The identified studies were then critically reviewed and relevant data were extracted and summarized. RESULTS Among total of 9904 primarily-retrieved articles, twenty-three experimental studies were finally included. Our data indicated that numerous herbal medicines, compared to placebo or hypoglycemic medications, are effective in treatment of diabetes and its complications through decreasing CRP concentrations and oxidative stresses levels. Medicinal plants including Psidium guajava L., Punica granatum L., Ginkgo biloba L., Punica granatum L., Dianthus superbusn L.. Moreover, Eichhornia crassipes (Mart.) Solms, Curcuma longa L., Azadirachta indica A. Juss., Morus alba L., and Ficus racemosa L. demonstrated potential neuroprotective effects in animal models of diabetes. CONCLUSION Hypoglycemic medicinal plants discussed in this review seem to be promising regulators of CRP, and oxidative stress. Thus, these plants are suitable candidates for management of diabetes' complications. Nevertheless, further high-quality in vivo studies and clinical trials are required to confirm these effects.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sudabeh Alatab
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Husseyn Qulami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bitarafan
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, As 1433, Norway
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Cerebrolysin Alleviating Effect on Glutamate-Mediated Neuroinflammation Via Glutamate Transporters and Oxidative Stress. J Mol Neurosci 2022; 72:2292-2302. [PMID: 36333611 DOI: 10.1007/s12031-022-02078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Glutamate, one of the most important excitatory neurotransmitters, acts as a signal transducer in peripheral tissues and endocrine cells. Excessive glutamate secretion has been shown to cause excitotoxicity and neurodegenerative disease. Cerebrolysin is a mixture of enzymatically treated peptides derived from pig brain including neurotrophic factors, like brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF). The present study investigated the protective effects of cerebrolysin on glutamate transporters (EAAT 1, EAAT 2) and cytokines (IL-1β and IL-10) activity in glutamate-mediated neurotoxicity. Primary cortex neuron culture was exposed to glutamate and successively treated with various cerebrolysin concentrations for 24 and 48 h. Our data showed that cerebrolysin primarily protects neurons by decreasing glutamate concentration in the synaptic cleft. In addition, Cerebrolysin can decrease oxidative stress and neuron cell damage by increasing antioxidant activity and decreasing inflammation cytokine levels.
Collapse
|
9
|
Balakrishnan A, Sillanpää M, Jacob MM, Vo DVN. Metformin as an emerging concern in wastewater: Occurrence, analysis and treatment methods. ENVIRONMENTAL RESEARCH 2022; 213:113613. [PMID: 35697083 DOI: 10.1016/j.envres.2022.113613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 05/20/2023]
Abstract
Metformin is a wonder drug used as an anti-hypoglycemic medication; it is also used as a cancer suppression medicament. Metformin is a first line of drug choice used by doctors for patients with type 2 diabetes. It is used worldwide where the drug's application varies from an anti-hypoglycemic medication to cancer oppression and as a weight loss treatment drug. Due to its wide range of usage, metformin and its byproducts are found in waste water and receiving aquatic environment. This leads to the accumulation of metformin in living beings and the environment where excess concentration levels can lead to ailments such as lactic acidosis or vitamin B12 deficiency. This drug could become of future water treatment concerns with its tons of production per year and vast usage. As a result of continuous occurrence of metformin has demanded the need of implementing and adopting different strategies to save the aquatic systems and the exposure to metformin. This review discuss the various methods for the elimination of metformin from wastewater. Along with that, the properties, occurrence, and health and environmental impacts of metformin are addressed. The different analytical methods for the detection of metformin are also explained. The main findings are discussed with respect to the management of metformin as an emerging contaminants and the major recommendations are discussed to understand the major research gaps.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Norrebrogade 44, 8000 Aarhus C, Denmark
| | - Meenu Mariam Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Adesse D, Gladulich L, Alvarez-Rosa L, Siqueira M, Marcos AC, Heider M, Motta CS, Torices S, Toborek M, Stipursky J. Role of aging in Blood-Brain Barrier dysfunction and susceptibility to SARS-CoV-2 infection: impacts on neurological symptoms of COVID-19. Fluids Barriers CNS 2022; 19:63. [PMID: 35982454 PMCID: PMC9386676 DOI: 10.1186/s12987-022-00357-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
COVID-19, which is caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), has resulted in devastating morbidity and mortality worldwide due to lethal pneumonia and respiratory distress. In addition, the central nervous system (CNS) is well documented to be a target of SARS-CoV-2, and studies detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients. The blood-brain barrier (BBB) was suggested to be the major route of SARS-CoV-2 infection of the brain. Functionally, the BBB is created by an interactome between endothelial cells, pericytes, astrocytes, microglia, and neurons, which form the neurovascular units (NVU). However, at present, the interactions of SARS-CoV-2 with the NVU and the outcomes of this process are largely unknown. Moreover, age was described as one of the most prominent risk factors for hospitalization and deaths, along with other comorbidities such as diabetes and co-infections. This review will discuss the impact of SARS-CoV-2 on the NVU, the expression profile of SARS-CoV-2 receptors in the different cell types of the CNS and the possible role of aging in the neurological outcomes of COVID-19. A special emphasis will be placed on mitochondrial functions because dysfunctional mitochondria are also a strong inducer of inflammatory reactions and the "cytokine storm" associated with SARS-CoV-2 infection. Finally, we will discuss possible drug therapies to treat neural endothelial function in aged patients, and, thus, alleviate the neurological symptoms associated with COVID-19.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Luis Gladulich
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Siqueira
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anne Caroline Marcos
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marialice Heider
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caroline Soares Motta
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Pavilhão Carlos Chagas, sala 307b, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Joice Stipursky
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Ungurianu A, Zanfirescu A, Grădinaru D, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R, Margină D. Interleukins and redox impairment in type 2 diabetes mellitus: mini-review and pilot study. Curr Med Res Opin 2022; 38:511-522. [PMID: 35067142 DOI: 10.1080/03007995.2022.2033049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) represents a leading cause of morbidity and premature mortality, low-grade inflammation being acknowledged as a key contributor to its development and progression. A tailored therapeutic approach, based on sensitive and specific biomarkers, could allow a more accurate analysis of disease susceptibility/prognostic and of the response to treatment. OBJECTIVES This mini-review and pilot study had two main goals: (1) reviewing the most recent literature encompassing the use of interleukins as inflammatory markers influenced by the redox imbalances in T2DM and (2) assessing parameters that conjunctly evaluate the redox impairment and inflammatory burden of T2DM patients, taking into consideration smoking status, as such group-specific biomarkers are scarcely reported in literature. METHODS Firstly, PubMed database was surveyed to select and review the relevant studies employing interleukins as T2DM biomarkers and to assess if studies using combined inflammatory-redox indices were reported. Then, routine biochemical parameters were assessed in a pilot study -T2DM patients with 3 subgroups: non-smokers, smokers and ex-smokers, were compared to a control group of non-diabetic, apparently healthy non-smokers. Protein (AOPPs, AGEs), lipid/HDL (Amplex Red-based method) oxidative damage and inflammatory status (CRP, IL-1β, IL-6, IL-10) biomarkers were assessed. Cytokine ratios and 2 oxidative-inflammatory status indices were developed (IH1 and IH2) and evaluated. RESULTS We observed significant differences in terms of serum redox and inflammatory status (AOPPs, AGEs, CRP, CRP/HDL, CRP/IL-6, IL-10/IL-6, IH1) between T2DM patients compared to control and, moreover, between the subgroups formed considering smoking status (CRP, CRP/HDL, IH1). Glycemic control strongly influenced inflammatory status biomarkers: glycemia was positively correlated with the inflammatory parameters (CRP/IL-10) and inversely with the anti-inflammatory ones (IL-10, IL-10/IL-1β ratio). CONCLUSIONS Several of the assessed parameters may possess prognostic value for diabetics, especially when comparing subgroups with a different smoking history and could prove useful in clinical practice for assessing disease progress and therapeutic efficacy.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Zanfirescu
- Department of Pharmacology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Rucsandra Dănciulescu Miulescu
- N. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
- Department of Department of Endocrinology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
12
|
Grădinaru D, Margină D, Ungurianu A, Nițulescu G, Pena CM, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R. Zinc status, insulin resistance and glycoxidative stress in elderly subjects with type 2 diabetes mellitus. Exp Ther Med 2021; 22:1393. [PMID: 34650641 DOI: 10.3892/etm.2021.10829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 11/06/2022] Open
Abstract
Zinc deficiencies have been reported in numerous pathologies, such as diabetes mellitus, but also in the physiological process of ageing. Similarly, the end products of glycoxidation processes, advanced glycation end products (AGEs), are damaging compounds, a myriad of reports linking them to the development and progression of several age-associated chronic diseases. The aim of the present study was to analyze the relationships between zinc status, glycoxidative stress and insulin resistance (IR) in elderly subjects with type 2 diabetes mellitus (T2DM). A group of 52 non-smoking subjects (9 men and 43 women, aged 65-83 years) were enrolled in this cross-sectional study: 27 patients with T2DM, and 25 apparently healthy control subjects. Serum zinc (Zn) levels were assessed using a commercial kit based on an end-point colorimetric method, and serum AGEs were evaluated with a fluorimetric analytic procedure. The calculated glucose-to-zinc ratio (Gly/Zn), insulin-to-zinc ratio (Ins/Zn) and insulin-zinc resistance index (HOMA-IR/Zn) were further used to study the associations between serum Zn levels, secretory function of β-pancreatic cells and AGEs. T2DM patients presented significantly higher serum insulin and Zn levels, as compared to the controls. We found a significant inverse correlation between Zn and AGEs, and a strong positive correlation between AGEs and the Gly/Zn ratio, suggesting that both Zn and AGEs are biomarkers that could reflect the persistence of hyperglycemia. We identified new surrogate biomarkers useful for the assessment of glycemic control with great potential for the development of preventive and therapeutic strategies for elderly diabetics, based on the evaluation of serum Zn levels.
Collapse
Affiliation(s)
- Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Georgiana Nițulescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Cătălina Monica Pena
- Biology of Aging Department, 'Ana Aslan' National Institute of Gerontology and Geriatrics, 011241 Bucharest, Romania
| | - Constantin Ionescu-Tîrgoviște
- Clinical Department, 'Nicolae Paulescu' Institute of Diabetes, Metabolic and Nutrition Diseases, 020475 Bucharest, Romania
| | - Rucsandra Dănciulescu Miulescu
- Clinical Department, 'Nicolae Paulescu' Institute of Diabetes, Metabolic and Nutrition Diseases, 020475 Bucharest, Romania
| |
Collapse
|
13
|
Evaluation of Bioactive Metabolites and Antioxidant-Rich Extracts of Amaranths with Possible Role in Pancreatic Lipase Interaction: In Silico and In Vitro Studies. Metabolites 2021; 11:metabo11100676. [PMID: 34677391 PMCID: PMC8539516 DOI: 10.3390/metabo11100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Fat/carbohydrate-rich diet consumption or elevated secretion of pancreatic lipase (PL) in pancreatic injury results in increased fat digestion and storage. Several metabolites in plant-based diets can help achieve the requirements of nutrition and fitness together. Presently, nutritional metabolites from Amaranthus tricolor, A. viridis, and Achyranthes aspera were assessed and predicted for daily intake. The volatile-metabolite profiling of their extracts using GC-MS revealed various antioxidant and bioactive components. The implication of these specialized components and antioxidant-rich extracts (EC50 free radical scavenging: 34.1 ± 1.5 to 166.3 ± 14.2 µg/mL; FRAP values: 12.1 ± 1.0 to 34.0 ± 2.0 µg Trolox Equivalent/mg) in lipolysis regulation by means of interaction with PL was checked by in silico docking (Betahistine and vitamins: ΔGbind -2.3 to -4.4 kcal/mol) and in vitro fluorescence quenching. Out of the various compounds and extracts tested, Betahistine, ATRA and AVLA showed better quenching the PL fluorescence. The identification of potential extracts as source of functional components contributing to nutrition and fat regulation can be improved through such study.
Collapse
|
14
|
Saravanakumar K, Park S, Mariadoss AVA, Sathiyaseelan A, Veeraraghavan VP, Kim S, Wang MH. Chemical composition, antioxidant, and anti-diabetic activities of ethyl acetate fraction of Stachys riederi var. japonica (Miq.) in streptozotocin-induced type 2 diabetic mice. Food Chem Toxicol 2021; 155:112374. [PMID: 34186120 DOI: 10.1016/j.fct.2021.112374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023]
Abstract
This work analysed the chemical composition, antioxidant, and enzyme inhibitory activities of solvent extract (SJ-ME) and fractions (SJ-HF, SJ-EAF, and SJ-MF) of the Stachys riederi var. japonica (Miq.) (SJ). Furthermore, the effect of SJ-EAF in STZ induced type 2 diabetic mice was examined. Among the samples, SJ-EAF exhibited a lower IC50 concentration of 64.2 ± 0.48 μg/mL for DPPH and 82.6 ± 0.09 μg/mL for ABTS+. The SJ-EAF concentration of 2.89 ± 0.03 μg and 2.27 ± 0.98 μg was equivalent to 1 μg of acarbose mediated enzyme inhibitory effect against α-amylase and α -glucosidase, respectively. The SJ-EAF did not show cytotoxicity (<80%) to NIH3T3 nor HepG2 cells but enhanced the glucose uptake in the IR-HepG2. LC-MS/MS of SJ-EAF showed the presence of a total of 16 compounds. Among the identified compounds, rosmarinic acid, caffeic acid, oleanolic acid, and ursolic acid showed high catalytic activity of α-amylase and α-glucosidase. The treatments of SJ-EAF restored the level of blood glucose, body weight, insulin, HDL and mRNA level of IRS1, GLUT2, GLUT4 and Akt whereas it reduced the excess elevation of total cholesterol, total triglycerides, LDL, AST, ALT, ALP, BUN, and creatinine in STZ induced diabetic mice. Overall, the present study concluded that the SJ-EAF exhibited promising antidiabetic activity.
Collapse
MESH Headings
- Animals
- Antioxidants/chemistry
- Antioxidants/metabolism
- Antioxidants/therapeutic use
- Antioxidants/toxicity
- Cell Line, Tumor
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression/drug effects
- Humans
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/therapeutic use
- Hypoglycemic Agents/toxicity
- Male
- Mice, Inbred ICR
- Molecular Docking Simulation
- Plant Extracts/chemistry
- Plant Extracts/metabolism
- Plant Extracts/therapeutic use
- Plant Extracts/toxicity
- Protein Binding
- Stachys/chemistry
- Streptozocin
- alpha-Amylases/metabolism
- alpha-Glucosidases/metabolism
- Mice
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | | | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - SeongJung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University. Samcheok-si, 24949, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Giordano R, Saii Z, Fredsgaard M, Hulkko LSS, Poulsen TBG, Thomsen ME, Henneberg N, Zucolotto SM, Arendt-Nielsen L, Papenbrock J, Thomsen MH, Stensballe A. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021; 26:3140. [PMID: 34073962 PMCID: PMC8197292 DOI: 10.3390/molecules26113140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Zeinab Saii
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Malthe Fredsgaard
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Laura Sini Sofia Hulkko
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Thomas Bouet Guldbæk Poulsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Nanna Henneberg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Silvana Maria Zucolotto
- Center of Health Sciences, Department of Pharmaceutical Science, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040–970 Florianópolis, Brazil;
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany;
| | - Mette Hedegaard Thomsen
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| |
Collapse
|
16
|
Ungurianu A, Zanfirescu A, Nițulescu G, Margină D. Vitamin E beyond Its Antioxidant Label. Antioxidants (Basel) 2021; 10:634. [PMID: 33919211 PMCID: PMC8143145 DOI: 10.3390/antiox10050634] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Georgiana Nițulescu
- Department Pharmaceutical Technology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
17
|
Muto NA, Hamoy M, Rodrigues Lucas DC, Teixeira BB, Santos Almeida AF, de Castro Navegantes T, de Sousa Ferreira de Sá VS, de Moraes BP, do Vale Medeiros JP, Dos Santos YA, da Rocha CQ, de Mello VJ, Rogez H. Myorelaxation, respiratory depression and electrocardiographic changes caused by the administration of extract of açai ( Euterpe oleracea Mart.) stone in rats. Toxicol Rep 2021; 8:829-838. [PMID: 33868963 PMCID: PMC8044785 DOI: 10.1016/j.toxrep.2021.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/01/2022] Open
Abstract
The biological and pharmacological properties of natural polyphenols of the extract of Euterpe oleracea stone (EEOS) are associated with the central nervous system (CNS). To investigate the sedative and myorelaxant activity of EEOS in vivo, this study aimed to present the myorelaxant and sedative effects of EEOS in Wistar rats using spontaneous locomotor activity and motor electrophysiology. A total of 108 animals were used in the following experiments: a) behavioral tests (n = 27); b) electromyographic recordings of skeletal muscle (n = 27); c) respiratory muscle activity recordings (n = 27); d) cardiac muscle activity recordings (n = 27). The behavioral characteristics were measured according to the latency time of onset, the transient loss of posture reflex and maximum muscle relaxation. Electrodes were implanted in the gastrocnemius muscle and in the tenth intercostal space for electromyographic (EMG) signal capture to record muscle contraction, and in the D2 lead for electrocardiogram acquisition. After using the 300 mg/kg dose of EEOS intraperitoneally, a myorelaxant activity exhibited a lower frequency of contractility with an amplitude pattern of low and short duration at gastrocnemius muscle and intercostal muscle, which clearly describes a myorelaxant activity and changes in cardiac activity. The present report is so far the first study to demonstrate the myorelaxant activity of this extract, indicating an alternative route for açai stone valorization and its application in pharmaceutical fields.
Collapse
Key Words
- ACB, abdominal-costal breathing
- CNS, Central Nervous System
- DMACA, p-dimethylaminocinnamaldehyde
- DZP, diazepam
- ECG
- EEOS, extract of E. oleracea stone
- EMG
- EMG, electromyographic
- EMGs, electromyographs
- ESI-IT-MS, Electrospray ionization Ion-Trap Mass spectrometry
- Euterpe oleracea
- GABAA, γ-aminobutyric acid type A
- HPLC, High Performance Liquid Chromatography
- Myorelaxant
- RC, Respiratory Control
- RD, respiratory depression
- RPR, Rhythmic and Profound Respiration
- Sedative
- mg CAE/g DE, milligrams of catechin equivalents per gram of dried extract
- mg CE/g DE, milligrams of cyanidin equivalents per gram of dried extract
- mg GAE/g DE, milligrams of gallic acid equivalents per gram of dried extract
- mg MRE/g DE, miligrams of myricetin-3-O-α-l-rhamnopyranoside equivalents per gram of dried extract
Collapse
Affiliation(s)
- Nilton Akio Muto
- UFPA & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Belém, Pará, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, ICB-UFPA, Brazil
| | | | - Bruno Brito Teixeira
- UFPA & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | - Hervé Rogez
- UFPA & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Belém, Pará, Brazil
| |
Collapse
|
18
|
Skaperda Z, Tekos F, Makri S, Angelakis C, Vassi E, Vardakas P, Patouna A, Terizi K, Kyriazi D, Kouretas D. A novel combined bioactivity / chemoactivity holistic approach for the evaluation of dietary supplements. Food Chem Toxicol 2021; 152:112159. [PMID: 33789120 DOI: 10.1016/j.fct.2021.112159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that the excessive generation of free radicals in the human body plays a major role in the pathophysiology and development of various diseases, closely associated with oxidative damage. In this frame, the consumption of antioxidant nutrients through food or dietary supplements may prevent from the harmful effects of free radicals on human cells. This work proposes a holistic approach consisting of distinct methodologies, suitable to evaluate the antioxidant and chemoprotective activity of three novel dietary supplements, each one containing active substances with complementary properties. In the first step, this approach includes in vitro studies to evaluate the antioxidant activity of the dietary supplements by measuring the parameters of free radical scavenging capacity, of reducing power activity, as well as, their ability to protect biomolecules from oxidation. Furthermore, the evaluation of their antimutagenic and antigenotoxic effects is also presented. SubsequentlySub, the specific effects of the dietary supplements were examined in three cancer cell lines (HepG2, HeLa, MKN45), by measuring redox biomarkers such as glutathione, reactive oxygen species and thiobarbituric acid reactive substances, using flow cytometry and spectrophotometry. Our results indicate that all the dietary supplements exhibit high antioxidant, antimutagenic, antigenotoxic and lipid protective activity. The most prominent result is their capability to induce oxidative damage on cancer cells via the critical decrease of the levels of their intracellular glutathione, as well as the increase of ROS and lipid peroxidation levels after the administration of non-cytotoxic concentrations. We suggest that the proposed methodology could constitute a valuable tool for the characterization of dietary supplements based on their chemical and functional properties.
Collapse
Affiliation(s)
- Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Sotiria Makri
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Christos Angelakis
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Eleni Vassi
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Anastasia Patouna
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Kallirroi Terizi
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Despina Kyriazi
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece.
| |
Collapse
|
19
|
Xia W, Hu S, Wang M, Xu F, Han L, Peng D. Exploration of the potential mechanism of the Tao Hong Si Wu Decoction for the treatment of postpartum blood stasis based on network pharmacology and in vivo experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113641. [PMID: 33271240 DOI: 10.1016/j.jep.2020.113641] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tao Hong Si Wu Decoction (THSWD) is a traditional prescription for blood management in traditional Chinese medicine, THSWD consists of Paeoniae Radix Alba (Paeonia lactiflora Pall.), Rehmanniae Radix Praeparata (Rehmannia glutinosa (Gaertn.) DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Conioselinum anthriscoides 'Chuanxiong'), Persicae Seman (Prunus persica (L.) Batsch) and Carthami Flos (Carthamus tinctorius L.) at a weight ratio of 3: 4: 3: 2: 3: 2. THSWD is a commonly used prescription in the treatment of postpartum blood stasis disease. AIM OF THE STUDY To explore the potential mechanism of THSWD for the treatment of postpartum blood stasis using network pharmacology and experimental research. MATERIALS AND METHODS We extracted the active ingredients and targets in THSWD from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and constructed a herbs-ingredients-targets-disease-network, devised a protein-protein interaction (PPI) network, performed GO enrichment analysis, and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to discover potential treatment mechanisms. A postpartum blood stasis model was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS The results showed that 69 potential active ingredients and 207 THSWD target genes for the treatment of postpartum blood stasis disease were obtained after ADME filtering analysis. The targets were enriched in multiple gene functions and different signaling pathways. By exploring various different signaling pathways, it was found that mitochondrial regulation of oxidative stress plays a potentially important role in the treatment of postpartum blood stasis with THSWD. Compared to model group, THSWD alleviated mitochondrial damage, decreased levels of oxidative stress in the rat model of postpartum blood stasis and reduced apoptosis in uterine cells. CONCLUSION The therapeutic effect of THSWD on postpartum blood stasis is likely related to mitochondrial regulation of oxidative stress, which paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Wenwen Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shoushan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengmeng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
20
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
21
|
Lyons G, Dean G, Tongaiaba R, Halavatau S, Nakabuta K, Lonalona M, Susumu G. Macro- and Micronutrients from Traditional Food Plants Could Improve Nutrition and Reduce Non-Communicable Diseases of Islanders on Atolls in the South Pacific. PLANTS 2020; 9:plants9080942. [PMID: 32722347 PMCID: PMC7464995 DOI: 10.3390/plants9080942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Pacific Islanders have paid dearly for abandoning traditional diets, with diabetes and other non-communicable diseases (NCD) widespread. Starchy root crops like sweet potato, taro, and cassava are difficult to grow on the potassium-deficient soils of atolls, and high energy, low nutrient imported foods and drinks are popular. Nutritious, leafy food plants adapted to alkaline, salty, coral soils could form part of a food system strategy to reduce NCD rates. This project targeted four atolls south of Tarawa, Kiribati, and was later extended to Tuvalu. Mineral levels in diverse, local leafy food plants were compared to reveal genotype–environment interactions. Food plants varied in ability to accumulate minerals in leaves and in tolerance of mineral-deficient soils. Awareness activities which included agriculture, health, and education officers targeted atoll communities. Agriculture staff grew planting material in nurseries and provided it to farmers. Rejuvenation of abandoned giant swamp taro pits to form diversified nutritious food gardens was encouraged. Factsheets promoted the most suitable species from 24 analyzed, with multiple samples of each. These included Cnidoscolus aconitifolius (chaya), Pseuderanthemum whartonianum (ofenga), Polyscias scutellaria (hedge panax), and Portulaca oleracea (purslane). The promoted plants have been shown in other studies to have anti-NCD effects. Inclusion of the findings in school curricula and practical application in the form of demonstration school food gardens, as well as increased uptake by farmers, are needed. Further research is needed on bioavailability of minerals in plants containing phytates and tannins.
Collapse
Affiliation(s)
- Graham Lyons
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
- Correspondence: ; Tel.: +61-8-83136533
| | - Geoff Dean
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, Tasmania 7250, Australia;
| | - Routan Tongaiaba
- Agriculture and Livestock Division, Ministry of Environment, Lands and Agriculture Development, Tanaea, South Tarawa, Kiribati; (R.T.); (K.N.)
| | | | - Kabuati Nakabuta
- Agriculture and Livestock Division, Ministry of Environment, Lands and Agriculture Development, Tanaea, South Tarawa, Kiribati; (R.T.); (K.N.)
| | - Matio Lonalona
- Department of Agriculture, Ministry of Natural Resources, Energy and Environment, Vaiaku, Funafuti, Tuvalu;
| | - Gibson Susumu
- Gibson Susumu: Sustainable Agriculture Programme, The Pacific Community (SPC), Suva, Fiji;
| |
Collapse
|
22
|
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA, Tsatsakis A. Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Mol Med Rep 2020; 22:9-19. [PMID: 32377709 PMCID: PMC7248467 DOI: 10.3892/mmr.2020.11127] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are a group of viruses that cause infections in the human respiratory tract, which can be characterized clinically from mild to fatal. The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is the virus responsible. The global spread of COVID‑19 can be described as the worst pandemic in humanity in the last century. To date, COVID‑19 has infected more than 3,000,000 people worldwide and killed more than 200,000 people. All age groups can be infected from the virus, but more serious symptoms that can possibly result in death are observed in older people and those with underlying medical conditions such as cardiovascular and pulmonary disease. Novel data report more severe symptoms and even a negative prognosis for the obese patients. A growing body of evidence connects obesity with COVID‑19 and a number of mechanisms from immune system activity attenuation to chronic inflammation are implicated. Lipid peroxidation creates reactive lipid aldehydes which in a patient with metabolic disorder and COVID‑19 will affect its prognosis. Finally, pregnancy‑associated obesity needs to be studied further in connection to COVID‑19 as this infection could pose high risk both to pregnant women and the fetus.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Denisa Margină
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, 020956 Bucharest, Romania
| | | | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Miriana Stan
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, 020956 Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|
23
|
The Radioprotective Effect of Procaine and Procaine-Derived Product Gerovital H3 in Lymphocytes from Young and Aged Individuals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3580934. [PMID: 32685092 PMCID: PMC7334788 DOI: 10.1155/2020/3580934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Ionizing radiation induces genomic instability in living organisms, and several studies reported an ageing-dependent radiosensitivity. Chemical compounds, such as scavengers, radioprotectors, and modifiers, contribute to reducing the radiation-associated toxicity. These compounds are often antioxidants, and therefore, in order to be effective, they must be present before or during exposure to radiation. However, not all antioxidants provide radioprotection. In this study, we investigated the effects of procaine and of a procaine-based product Gerovital H3 (GH3) on the formation of endogenous and X-ray-induced DNA strand breaks in peripheral blood mononuclear cells (PBMCs) isolated from young and elderly individuals. Interestingly, GH3 showed the strongest radioprotective effects in PBMCs from young subjects, while procaine reduced the endogenous amount of DNA strand breaks more pronounced in aged individuals. Both procaine and GH3 inhibited lipid peroxidation, but procaine was more effective in inhibiting mitochondria free radicals' generation, while GH3 showed a higher antioxidant action on macrophage-induced low-density lipoprotein oxidation. Our findings provide new insights into the mechanisms underlying the distinct effects of procaine and GH3 on DNA damage.
Collapse
|
24
|
Nasi A, McArdle S, Gaudernack G, Westman G, Melief C, Rockberg J, Arens R, Kouretas D, Sjölin J, Mangsbo S. Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicol Rep 2020; 7:768-771. [PMID: 32632359 PMCID: PMC7301821 DOI: 10.1016/j.toxrep.2020.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023] Open
Abstract
During the current COVID-19 pandemic, a need for evaluation of already available drugs for treatment of the disease is crucial. Hereby, based on literature review from the current pandemic and previous outbreaks with corona viruses we analyze the impact of the virus infection on cell stress responses and redox balance. High levels of mortality are noticed in elderly individuals infected with SARS-CoV2 and during the previous SARS-CoV1 outbreak. Elderly individuals maintain a chronic low level of inflammation which is associated with oxidative stress and inflammatory cytokine production, a condition that increases the severity of viral infections in this population. Coronavirus infections can lead to alterations of redox balance in infected cells through modulation of NAD + biosynthesis, PARP function along with altering proteasome and mitochondrial function in the cell thereby leading to enhanced cell stress responses which further exacerbate inflammation. ROS production can increase IL-6 production and lipid peroxidation resulting in cell damage. Therefore, early treatment with anti-oxidants such as NAC during COVID-19 can be a way to bypass the excessive inflammation and cell damage that lead to severe infection, thus early NAC as intervention should be evaluated in a clinical trial setting.
Collapse
Affiliation(s)
- Aikaterini Nasi
- Ultimovacs AB, Uppsala Sweden
- Dept Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Stephanie McArdle
- Stephanie McArdle, Nottingham Trenton University, The John van Geest Cancer Research Centre, Nottingham, UK
| | | | - Gabriel Westman
- Dept Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Cornelis Melief
- Leiden University Medical Center, Leiden, the Netherlands
- ISA Pharmaceuticals, Leiden, the Netherlands
| | | | - Ramon Arens
- Leiden University Medical Center, Leiden, the Netherlands
| | - Demetrios Kouretas
- Dept Biochemistry-Biotechnology, University of Thessaly, Larissa, Greece
| | - Jan Sjölin
- Dept Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala Sweden
- Dept Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
26
|
Nguyen NH, Pham QT, Luong TNH, Le HK, Vo VG. Potential Antidiabetic Activity of Extracts and Isolated Compound from Adenosma bracteosum (Bonati). Biomolecules 2020; 10:biom10020201. [PMID: 32013271 PMCID: PMC7072461 DOI: 10.3390/biom10020201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosma bracteosum Bonati. (A. bracteosum) has been used in traditional and modern medicine in Vietnam for curing hepatitis. In this study, ethanol and aqueous extracts of A. bracteosum were evaluated for their α-glucosidase inhibitory activities and anti-hyperglycemic effects on glucose loaded hyperglycemic and streptozotocin (STZ) induced diabetic mice. The α-glucosidase inhibition of the extracts was evaluated by colorimetric assays, and the anti-diabetic activity was tested on a STZ-induced diabetic mice model. The ethanol and aqueous extracts showed a significant α-glucosidase inhibitory activity, which was more effective than acarbose at the same concentration. In the STZ-induced diabetic mice, both extracts showed a strong anti-hyperglycemic activity, with the group receiving 50 mg/kg of ethanol extract and the group receiving 50 mg/kg of aqueous extract presenting 64.42% and 57.69% reductions, respectively, in the blood glucose levels when compared with the diabetic control group, on day 21 (p > 0.05). Isoscutellarein-8-O-β-D-glucopyranoside (IG) was identified from the ethanol extract, which showed a strong inhibitory activity against α-glucosidase, with a ten times higher potency compared with the positive control acarbose. The anti-hyperglycemic effect of IG was effectively similar to the standard drug, glibenclamide, at the same dose of 10 mg/kg (p > 0.05). These results indicated that A. bracteosum has a great antidiabetic potential.
Collapse
Affiliation(s)
- Ngoc Hong Nguyen
- CirTech Institute, HCMC University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam
- Correspondence: (N.H.N.); (V.G.V.); Tel.: +84-8-35120790 (N.H.N.)
| | - Quang Thang Pham
- Institute of Applied Science, HCMC University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.); (H.K.L.)
| | - Thi Ngoc Han Luong
- Institute of Applied Science, HCMC University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.); (H.K.L.)
| | - Hoang Khai Le
- Institute of Applied Science, HCMC University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.); (H.K.L.)
| | - Van Giau Vo
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Correspondence: (N.H.N.); (V.G.V.); Tel.: +84-8-35120790 (N.H.N.)
| |
Collapse
|
27
|
Aditi P, Srivastava S, Pandey H, Tripathi YB. Toxicity profile of honey and ghee, when taken together in equal ratio. Toxicol Rep 2020; 7:624-636. [PMID: 32455119 PMCID: PMC7235625 DOI: 10.1016/j.toxrep.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Abstract
Honey and ghee in equal ratio has always been found as an incompatible diet, if taken for long duration: mention in Charak Samhita. This has been proven by many biochemical parameters including liver function test, renal function test, oxidative stress tests, incretin hormones, DPP-4 enzyme activity as well as some protein modification test like amadori test, albumin cobalt binding assay and advanced glycation end product formation test. The liver tissue morphology alternation and inflammatory cell infiltration has been validated through H&E and immunohistochemistry.
Honey and ghee are an essential component of our diet. They play an important role like anti-inflammatory, antioxidative, antimicrobial, etc. It is written in Charak Samhita that an equal mixture of honey and ghee turn into a harmful component for health. This study was designed to explore the mechanism of toxicity through the biochemical and histological parameters in Charles foster rats (24 rats were used). We have divided these rats into four groups (n = 6) - normal, honey (0.7 ml/100 g bw), ghee (0.7 ml/100 g bw), and honey + ghee (1:1) (1.5 ml/100 g bw). Treatment was given orally for 60 days. All rats were sacrificed on 61 days. Biochemical parameters like liver function test, kidney function test, Oxidative stress, Glycemic, and some protein modification parameters were done in blood plasma. We found weight loss, hair loss, red patches on ear, and increased liver function test, oxidative stress, Amadori product formation, advanced glycation end-product formation, dipeptidyl protease (DPP-4) and decreased incretins (glucagon-like peptide-1(GLP-1) and gastric inhibitory polypeptide (GIP)) in honey + ghee group. H&E and immunohistochemistry results showed mild inflammation in liver tissue but no changes in the kidney, intestine and, pancreas. Thus it concluded that the increased formation of Amadori product, DPP-4 activity and low incretins (GLP-1, GIP) activity resulting high postprandial hyperglycemic response could be collectively responsible for oxidative stress-mediated toxicity of honey and ghee in the equal mixture.
Collapse
|