1
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
La C, Li M, Wang Z, Liu T, Zeng Q, Sun P, Ren Z, Ye C, Liu Q, Wang Y. Isolation and anti-neuroinflammation activity of sesquiterpenoids from Artemisia argyi: computational simulation and experimental verification. BMC Complement Med Ther 2024; 24:264. [PMID: 38992644 PMCID: PMC11238432 DOI: 10.1186/s12906-024-04578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Artemisia argyi is a traditional herbal medicine belonging to the genus Artemisia that plays an important role in suppressing inflammation. However, the chemical constituents and underlying mechanisms of its therapeutic potential in neuroinflammation are still incompletely understood, and warrant further investigation. METHODS Several column chromatography were employed to isolate and purify chemical constituents from Artemisia argyi, and modern spectroscopy techniques were used to elucidate their chemical structures. The screening of monomeric compounds with nitric oxide inhibition led to the identification of the most effective bioactive compound, which was subsequently confirmed for its anti-inflammatory capability through qRT‒PCR. Predictions of compound-target interactions were made using the PharmMapper webserver and the TargetNet database, and an integrative protein-protein interaction network was constructed by intersecting the predicted targets with neuroinflammation-related targets. Topological analysis was performed to identify core targets, and molecular docking and molecular dynamics simulations were utilized to validate the findings. The result of the molecular simulations was experimentally validated through drug affinity responsive target stability (DARTS) and Western blot experiments. RESULTS Seventeen sesquiterpenoids, including fifteen known sesquiterpenoids and two newly discovered guaiane-type sesquiterpenoids (argyinolide S and argyinolide T) were isolated from Artemisia argyi. Bioactivity screening revealed that argyinolide S (AS) possessed the most potent anti-inflammatory activity. However, argyinolide T (AT) showed weak anti-inflammatory activity, so AS was the target compound for further study. AS may regulate neuroinflammation through its modulation of eleven core targets: protein kinase B 1 (AKT1), epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein Kinase (FYN), Janus Kinase (JAK) 1, mitogen-activated protein (MAP) Kinase 1,8 and 14, matrix metalloproteinase 9 (MMP9), ras-related C3 botulinum toxin substrate 1 (RAC1), nuclear factor kappa-B p65 (RELA), and retinoid X receptor alpha (RXRA). Molecular dynamics simulations and DARTS experiments confirmed the stable binding of AS to JAK1, and Western blot experiments demonstrated the ability of AS to inhibit the phosphorylation of downstream Signal transducer and activator of transcription 3 (STAT3) mediated by JAK1. CONCLUSIONS The sesquiterpenoid compounds isolated from Artemisia argyi, exhibit significant inhibitory effects on inflammation in C57BL/6 murine microglia cells (BV-2). Among these compounds, AS, a newly discovered guaiane-type sesquiterpenoid in Artemisia argyi, has been demonstrated to effectively inhibit the occurrence of neuroinflammation by targeting JAK1.
Collapse
Affiliation(s)
- Caiwenjie La
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Menghe Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Zexu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Tao Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Qiongzhen Zeng
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Cuifang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| | - Qiuying Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China.
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China.
| |
Collapse
|
3
|
Gao X, Ma Q, Zhang X, Wang X, Wang N, Cui Y, Li S, Ma S, Wang H, Zhang K. The reference genome sequence of Artemisia argyi provides insights into secondary metabolism biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1406592. [PMID: 39006964 PMCID: PMC11239399 DOI: 10.3389/fpls.2024.1406592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Artemisia argyi, a perennial herb of the genus Artemisia in the family Asteraceae, holds significant importance in Chinese traditional medicine, referred to as "Aicao". Here, we report a high-quality reference genome of Artemisia argyi L. cv. beiai, with a genome size up to 4.15 Gb and a contig N50 of 508.96 Kb, produced with third-generation Nanopore sequencing technology. We predicted 147,248 protein-coding genes, with approximately 68.86% of the assembled sequences comprising repetitive elements, primarily long terminal repeat retrotransposons(LTRs). Comparative genomics analysis shows that A. argyi has the highest number of specific gene families with 5121, and much more families with four or more members than the other 6 plant species, which is consistent with its more expanded gene families and fewer contracted gene families. Furthermore, through transcriptome sequencing of A. argyi in response to exogenous MeJA treatment, we have elucidated acquired regulatory insights into MeJA's impact on the phenylpropanoid, flavonoid, and terpenoid biosynthesis pathways of A. argyi. The whole-genome information obtained in this study serves as a valuable resource for delving deeper into the cultivation and molecular breeding of A. argyi. Moreover, it holds promise for enhancing genome assemblies across other members of the Asteraceae family. The identification of key genes establishes a solid groundwork for developing new varieties of Artemisia with elevated concentrations of active compounds.
Collapse
Affiliation(s)
- Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xiaomeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xingyun Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuyan Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hong Wang
- Henan Artemisia Argyi Medical Research Center, Anyang, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
4
|
Xu X, Fukuda T, Takai J, Morii S, Sun Y, Liu J, Ohno S, Isaji T, Yamaguchi Y, Nakano M, Moriguchi T, Gu J. Exogenous l-fucose attenuates neuroinflammation induced by lipopolysaccharide. J Biol Chem 2024; 300:105513. [PMID: 38042483 PMCID: PMC10772726 DOI: 10.1016/j.jbc.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Collapse
Affiliation(s)
- Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
6
|
Kim YB, Cho HJ, Yi YS. Anti-inflammatory role of Artemisia argyi methanol extract by targeting the caspase-11 non-canonical inflammasome in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116231. [PMID: 36754190 DOI: 10.1016/j.jep.2023.116231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi possesses pharmacological activities against various immunopathological conditions associated with inflammation. AIM OF THE STUDY This study explored the inhibitory role of Artemisia argyi methanol extract (Aa-ME) in inflammatory responses and the underlying mechanism in macrophages. MATERIALS AND METHODS Caspase-11 non-canonical inflammasome was activated in J774A.1 macrophage by Pam3CSK4 treatment and lipopolysaccharide (LPS) transfection. Aa-ME-mediated in vitro anti-inflammatory action was examined using MTT assay, lactate dehydrogenase (LDH) activity assay, enzyme-linked immunosorbent assay (ELISA), nitric oxide (NO) generation assay, and quantitative real-time polymerase chain reaction (qPCR). Aa-ME-mediated in vivo anti-inflammatory action was examined in LPS-stimulated lethal septic mice. RESULTS Aa-ME inhibited caspase-11 non-canonical inflammasome-stimulated pyroptosis and the secretion of IL-1β and IL-18 in J774A.1 macrophages. Aa-ME also inhibited NO generation by downregulating inducible NO synthase (iNOS) expression in LPS-primed and caspase-11 non-canonical inflammasome-triggered J774A.1 cells. The mechanism study revealed Aa-ME suppressed the auto-proteolytic activation of caspase-11 and gasdermin D (GSDMD) in J774A.1 cells and also interfered with caspase-11-mediated direct recognition of LPS. Moreover, Aa-ME alleviated LPS-induced lethal sepsis in mice by increasing their survival rate without significant toxicity. CONCLUSION These results suggest a novel mechanism by which Aa-ME alleviates inflammatory responses by deactivating caspase-11 non-canonical inflammasome in macrophages.
Collapse
Affiliation(s)
- Young Bin Kim
- Department of Life Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| | - Hui-Jin Cho
- Department of Life Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| | - Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
7
|
Wang YF, Zheng Y, Feng Y, Chen H, Dai SX, Wang Y, Xu M. Comparative Analysis of Active Ingredients and Potential Bioactivities of Essential Oils from Artemisia argyi and A. verlotorum. Molecules 2023; 28:molecules28093927. [PMID: 37175336 PMCID: PMC10180244 DOI: 10.3390/molecules28093927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Artemisia argyi H. Lév. and Vaniot is a variety of Chinese mugwort widely cultured in central China. A. verlotorum Lamotte, another variety of Chinese mugwort, has been used in the southern region of China since ancient times. Despite their similar uses in traditional medicine, little is known about the differences in their active ingredients and potential benefits. Herein, the chemical compositions of the essential oils (EOs) from both varieties were analyzed using chromatography-mass spectrometry (GC-MS). A series of databases, such as the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), SuperPred database and R tool, were applied to build a networking of the EOs. Our results revealed significant differences in the chemical compositions of the two Artemisia EOs. However, we found that they shared similar ingredient-target-pathway networking with diverse bioactivities, such as neuroprotective, anti-cancer and anti-inflammatory. Furthermore, our protein connection networking analysis showed that transcription factor p65 (RELA), phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) and mitogen-activated protein kinase 1 (MAPK1) are crucial for the biological activity of Artemisia EOs. Our findings provided evidence for the use of A. verlotorum as Chinese mugwort in southern China.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| |
Collapse
|
8
|
Kumari A, Srivastava A, Jagdale P, Ayanur A, Khanna VK. Lambda-cyhalothrin enhances inflammation in nigrostriatal region in rats: Regulatory role of NF-κβ and JAK-STAT signaling. Neurotoxicology 2023; 96:101-117. [PMID: 37060950 DOI: 10.1016/j.neuro.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The risk to develop neurobehavioural abnormalities in humans on exposure to lambda-cyhalothrin (LCT) - a type II synthetic pyrethroid has enhanced significantly due to its extensive uses in agriculture, homes, veterinary practices and public health programs. Earlier, we found that the brain dopaminergic system is vulnerable to LCT and affects motor functions in rats. In continuation to this, the present study is focused to unravel the role of neuroinflammation in LCT-induced neurotoxicity in substantia nigra and corpus striatum in rats. Increase in the mRNA expression of proinflammatory cytokines (TNF- α, IL-1β, IL-6) and iNOS whereas decrease in anti-inflammatory cytokine (IL-10) was distinct both in substantia nigra and corpus striatum of rats treated with LCT (0.5, 1.0, 3.0 mg/kg body weight, p.o, for 45 days) as compared to control rats. Further, LCT-treated rats exhibited increased levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the glial marker proteins both in substantia nigra and corpus striatum as compared to controls. Exposure of rats to LCT also caused alterations in the levels of heat shock protein 60 (HSP60) and mRNA expression of toll-like receptors (TLR2 and TLR4) in the substantia nigra and corpus striatum. An increase in the phosphorylation of key proteins involved in NF-kβ (P65, Iκβ, IKKα, IKKβ) and JAK/STAT (STAT1, STAT3) signaling and alteration in the protein levels of JAK1 and JAK2 was prominent in LCT-treated rats. Histological studies revealed damage of dopaminergic neurons and reactive gliosis as evidenced by the presence of darkly stained pyknotic neurons and decrease in Nissl substance and an increase in infiltration of immune cells both in substantia nigra and corpus striatum of LCT-treated rats. Presence of reactive microglia and astrocytes in LCT-treated rats was also distinct in ultrastructural studies. The results exhibit that LCT may damage dopaminergic neurons in the substantia nigra and corpus striatum by inducing inflammation as a result of stimulation of neuroglial cells involving activation of NF-κβ and JAK/STAT signaling.
Collapse
Affiliation(s)
- Anima Kumari
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anugya Srivastava
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
9
|
Han Y, Park HJ, Hong MK, Shin MR, Roh SS, Kwon EY. Artemisiae argyi Water Extract Alleviates Obesity-Induced Metabolic Disorder. Curr Issues Mol Biol 2022; 44:6158-6171. [PMID: 36547081 PMCID: PMC9776687 DOI: 10.3390/cimb44120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Artemisiae argyi is a well-known traditional herbal medicine used in East Asia. Although the antibacterial and anti-inflammatory effects of A. argyi have been reported, its efficacy in improving obesity has not been yet evaluated. In this study, mice were fed a normal diet (AIN-93), a high-fat diet (HFD, 60% of kcal from fat), and an HFD with 0.1% of A. argyi water extract for 16 weeks. The body weight and body fat in A. argyi-fed mice significantly decreased via upregulation of the mRNA expression of fatty acid oxidation-related genes, with a simultaneous decrease in plasma lipid content and leptin levels. A. argyi water extract also ameliorated hepatic steatosis by restricting lipogenesis via lowering the activities of fatty acid synthase and phosphatidic acid phosphatase. Consistently, hepatic histological analysis indicated that A. argyi water extract decreased hepatic lipid accumulation in accordance with the hepatic H, E and Oil Red O-stained area. Additionally, A. argyi ameliorated the impaired glucose homeostasis by increasing the mRNA expression of AMP-activated kinase and glycolysis-related genes. In conclusion, our results indicate that A. argyi can be used to treat obesity-related metabolic conditions.
Collapse
Affiliation(s)
- Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Raydel Research Institute, 76, Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Hae-Jin Park
- Bio Convergence Testing Center, Daegu Haany University, 1 Haanydaero, Gyeongsan-si 38610, Republic of Korea
| | - Min-Kyeong Hong
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 64 Gil, 136, sinsincheondo-ro, Suseong-gu, Daegu 42158, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, 64 Gil, 136, sinsincheondo-ro, Suseong-gu, Daegu 42158, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Liu X, Zhang X, Chen J, Song D, Zhang C, Chen R, Xu R, Jiang W, Li L. Chrysophanol facilitates long-term neurological recovery through limiting microglia-mediated neuroinflammation after ischemic stroke in mice. Int Immunopharmacol 2022; 112:109220. [PMID: 36095949 DOI: 10.1016/j.intimp.2022.109220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inflammation plays an important role in ischemic brain injury and affects brain recovery and neuroplasticity. Chrysophanol (CHR), has attracted attention for its protective effects through immunomodulatory and anti-inflammatory properties. However, the effect of CHR for brain recovery and neuroplasticity is not clear. The current study aimed to investigate the effect of CHR in the chronic phase of stroke in mice, and to elucidate the underlying mechanisms. METHODS C57BL/6 mice were subjected to treatment with Vehicle or CHR immediately through intraperitoneal injection daily for 14 d after distal middle cerebral artery occlusion (dMCAO). Neurological deficits were monitored up to 28 days after stroke. Nissl and Golgi stain, neural plasticity, and microglia-associated inflammatory cytokines were detected. Primary cortical neuron and BV2 microglia cell lines were employed to explore the underlying mechanism in vitro. RESULTS Compared with Vehicle group, CHR mitigated the histological damage, facilitated the neural plasticity and improved the neurological function up to 4 weeks after stroke. In vitro, CHR promoted the complexity of neurons and the spine density by modulating microglial polarization and reducing the expression of microglia-associated inflammatory cytokines, especially IL-6. In vivo, microglia activation and inflammatory cytokines were significantly increased after dMCAO and downregulated by CHR. Further investigation showed STAT3 is the major downstream effector of IL-6 signaling. CONCLUSIONS CHR ameliorated microenvironment for neural plasticity and exhibited neuroprotection via arresting microglia toward pro-inflammatory phenotype and downregulation of the expressions of pro-inflammatory cytokines, especially of IL-6. IL-6-STAT3 signaling might be CHR's therapeutic target for neuroinflammatory responses after stroke.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China.
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| | - Degang Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, First Hospital of Qinhuangdao, Hebei 066000, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| | - Renhao Xu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| | - Wei Jiang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| | - Li Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
11
|
Wu J, Zhang J, Xie Q, He X, Guo Z, Zheng B, Wang S, Yang Q, Du C. Bergaptol Alleviates LPS-Induced Neuroinflammation, Neurological Damage and Cognitive Impairment via Regulating the JAK2/STAT3/p65 Pathway. J Inflamm Res 2022; 15:6199-6211. [PMID: 36386582 PMCID: PMC9656435 DOI: 10.2147/jir.s383853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Neuroinflammation is considered a critical pathological process in various central nervous system (CNS) diseases and is closely related to neuronal death and dysfunction. Bergaptol is a natural 5-hydroxyfurocoumarin found in lemon, bergamot and other plants. Some studies have confirmed its anti-cancer, anti-inflammatory and anti-atherogenic functions, indicating that it may have significant medicinal value. In this study, we investigated the potential effect of Bergaptol in vitro and in vivo neuroinflammatory models. Methods Mice were injected with LPS (40 μg/kg) into the hippocampal CA1 region and then injected intraperitoneally with Bergaptol (10, 20 and 40 mg/kg) once a day for two weeks. In addition, to verify the effect of Bergaptol on BV2 cells, Bergaptol with different concentrations (5, 10 and 20 μg/mL) was firstly incubated for 1 hour, then LPS with a concentration of 1 μg/mL was added and incubated for 23 hours. Results Bergaptol treatment significantly improved the cognitive impairment induced by LPS. In addition, Bergaptol significantly inhibited the reduction of dendritic spines and the mRNA level of inflammatory factors (TNF-α, IL-6 and IL-1β) in hippocampal induced by LPS. In vitro, Bergaptol inhibited the production of TNF-α, IL-6 and IL-1β from LPS-treated BV-2 cells. In addition, Bergaptol treatment significantly reduced the phosphorylation levels of JAK2, STAT3 and p65 in LPS-stimulated BV-2 cells. Conclusion In conclusion, our results suggest that Bergaptol alleviates LPS-induced neuroinflammation, neurological damage and cognitive impairment by regulating the JAK2/STAT3/P65 pathway, suggesting that Bergaptol is a promising neuroprotective agent.
Collapse
Affiliation(s)
- Jianbing Wu
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Jie Zhang
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Qiangli Xie
- Department of Cardiovascular Medicine, Chengdu Qingbaijiang District People’s Hospital, Chengdu, 610300, People’s Republic of China
| | - Xiaohuan He
- Department of the Fifth Dispatched Outpatient, The General Hospital of Western Theater Command, Chengdu, 610083, People’s Republic of China
| | - Zhangchao Guo
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Bo Zheng
- Department of Neurology, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
| | - Sisong Wang
- Department of Neurosurgery, the Chengdu 363 Affiliated Hospital of Southwest Medical University, Chengdu, 610041, People’s Republic of China
| | - Qiumei Yang
- Department of Geriatrics, Luzhou People’s Hospital, Luzhou, 646000, People’s Republic of China
| | - Chunfu Du
- Department of Neurosurgery, Ya’an People’s Hospital, Ya’an, 625000, People’s Republic of China
- Correspondence: Chunfu Du, Department of Neurosurgery, Ya’an People’s Hospital, 358 Chenghou Road, Ya’an, Sichuan, 625000, People’s Republic of China, Tel +86-835-2862065, Email
| |
Collapse
|
12
|
Sailike B, Omarova Z, Jenis J, Adilbayev A, Akbay B, Askarova S, Jin WL, Tokay T. Neuroprotective and anti-epileptic potentials of genus Artemisia L. Front Pharmacol 2022; 13:1021501. [DOI: 10.3389/fphar.2022.1021501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The Genus Artemisia L. is one of the largest genera in the Asteraceae family growing wild over in Europe, North America, and Central Asia and has been widely used in folk medicine for the treatment of various ailments. Phytochemical and psychopharmacological studies indicated that the genus Artemisia extracts contain various antioxidant and anti-inflammatory compounds and possess antioxidant, anti-inflammatory, antimicrobial, antimalarial, and antitumor activity. Recently, increasing experimental studies demonstrated that many Artemisia extracts offer a great antiepileptic potential, which was attributed to their bioactive components via various mechanisms of action. However, detailed literature on the antiepileptic properties of the genus Artemisia and its mechanism of action is segregated. In this review, we tried to gather the detailed neuroprotective and antiepileptic properties of the genus Artemisia and its possible underlying mechanisms. In this respect, 63 articles were identified in the PubMed and Google scholars databases, from which 18 studies were examined based on the pharmacological use of the genus Artemisia species in epilepsy. The genus Artemisia extracts have been reported to possess antioxidant, anti-inflammatory, neurotransmitter-modulating, anti-apoptotic, anticonvulsant, and pro-cognitive properties by modulating oxidative stress caused by mitochondrial ROS production and an imbalance of antioxidant enzymes, by protecting mitochondrial membrane potential required for ATP production, by upregulating GABA-A receptor and nACh receptor activities, and by interfering with various anti-inflammatory and anti-apoptotic signaling pathways, such as mitochondrial apoptosis pathway, ERK/CREB/Bcl-2 pathway and Nrf2 pathway. This review provides detailed information about some species of the genus Artemisia as potential antiepileptic agents. Hence, we recommend further investigations on the purification and identification of the most biological effective compounds of Artemisia and the mechanisms of their action to cure epilepsy and other neurological diseases.
Collapse
|
13
|
Wu LK, Agarwal S, Kuo CH, Kung YL, Day CH, Lin PY, Lin SZ, Hsieh DJY, Huang CY, Chiang CY. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154250. [PMID: 35752074 DOI: 10.1016/j.phymed.2022.154250] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder involving the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cellular clearance mechanisms, including the autophagy-lysosome pathway, are commonly affected in the pathogenesis of PD. The lysosomal Ca2+ channel mucolipin TRP channel 1 (TRPML1) is one of the most important proteins involved in the regulation of autophagy. Artemisia argyi Lev. et Vant., is a traditional Chinese herb, that has diverse therapeutic properties and is used to treat patients with skin diseases and oral ulcers. However, the neuroprotective effects of A. argyi are not explored yet. HYPOTHESIS This study aims is to investigate the neuroprotective effects of A. argyi in promoting the TRPML1-mediated autophagy/mitophagy-enhancing effect METHODS: In this study, we used 1-methyl-4-phenyl-pyridinium (MPP+)-induced PD model established in an SH-SY5Y human neuroblastoma cell line as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice. MTT assay was conducted to measure the cell viability and further MitoSoX and DCFDA assay were used to measure the ROS. Western blot analysis was used to access levels of TRPML1, p-DRP1 (ser616), p-AKT, PI3K, and β-catenin, Additionally, IF and IHC analysis to investigate the expression of TRPML1, LC3B, β-catenin, TH+, α-synuclein. Mitotracker stain was used to check mitophagy levels and a lysosomal intracellular activity kit was used to measure the lysosomal dysfunction. Behavioral studies were conducted by rotarod and grip strength experiments to check motor functions. RESULTS In our in vitro study, A. argyi rescued the MPP+-induced loss of cell viability and reduced the accumulation of mitochondrial and total reactive oxygen species (ROS). Subsequently, it increased the expression of TRPML1 protein, thereby inducing autophagy, which facilitated the clearance of toxic accumulation of α-synuclein. Furthermore, A. argyi played a neuroprotective role by activating the PI3K/AKT/β-catenin cell survival pathway. MPP+-mediated mitochondrial damage was overcome by upregulation of mitophagy and downregulation of the mitochondrial fission regulator p-DRP1 (ser616) in SH-SY5Y cells. In the in vivo study, A. argyi ameliorated impaired motor function and rescued TH+ neurons in the SNpc region. Similar to the results of the in vitro study, TRPML1, LC3B, and β-catenin expression was enhanced in the SNpc region in the A. argyi-treated mice brain. CONCLUSION Thus, our results first demonstrate that A. argyi can exert neuroprotective effects by stimulating TRPML1 and rescuing neuronal cells by boosting autophagy/mitophagy and upregulating a survival pathway, suggesting that A. argyi can further be exploited to slow the progression of PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- 1-Methyl-4-phenylpyridinium/toxicity
- Animals
- Artemisia
- Autophagy
- Dopaminergic Neurons
- Humans
- Mice
- Mice, Inbred C57BL
- Mitophagy
- Neuroblastoma/drug therapy
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Plant Extracts/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Transient Receptor Potential Channels/metabolism
- alpha-Synuclein/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Li-Kung Wu
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Surbhi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yen-Lun Kung
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Pi-Yu Lin
- Buddhist Tzu Chi Charity Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
| | - Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
| |
Collapse
|
14
|
Liu X, Tian W, Zhou M, Xu Q, Feng J, Yang R, He S, Wang G, Lin T, Chen H. Bisabolane-type sesquiterpenes from Vernonia amygdalina: Absolute configuration and anti-inflammatory activity. PHYTOCHEMISTRY 2022; 201:113283. [PMID: 35738434 DOI: 10.1016/j.phytochem.2022.113283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The phytochemical assessment of Vernonia amygdalina resulted in the isolation and identification of seven undescribed bisabolane-type sesquiterpenes designated amygdanoids A-G and one known analogue. This is the first report of this type of sesquiterpene from V. amygdalina. Their structures, including the absolute configurations, were elucidated by comprehensive analysis with HRESIMS, 1D and 2D NMR, quantum chemical calculations of NMR and electronic circular dichroism (ECD), modified Mosher's method, and the in situ dimolybdenum CD method. The anti-inflammatory activity of the isolates was evaluated. All the isolated compounds clearly inhibited the production of NO and the expression of the iNOS protein. Secretion of the COX-2 protein was constrained by amygdanoids A-F. Further investigation suggested that amygdanoids E exhibited anti-inflammatory activity by suppressing the expression of iNOS and COX-2 as well as the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China.
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Qiannan Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Jie Feng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Renjing Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Shoulun He
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
15
|
Chen J, Chen F, Peng S, Ou Y, He B, Li Y, Lin Q. Effects of Artemisia argyi Powder on Egg Quality, Antioxidant Capacity, and Intestinal Development of Roman Laying Hens. Front Physiol 2022; 13:902568. [PMID: 36091402 PMCID: PMC9453390 DOI: 10.3389/fphys.2022.902568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the effect of dietary supplementation with Artemisia argyi (A. argyi) on egg quality, serum biochemical, antioxidant capacity, and intestinal development in Roman laying hens. A total of 432 (34-week-old) Roman hens were randomly divided into control group and three experimental groups. The control group was fed a basal diet, and the experimental group was fed a basal diet with 1%, 2%, and 3% A. argyi powder, respectively. The results showed that dietary supplementation of 2% A. argyi to the diet increased egg weight and egg white weight, and the daturic acid (C17:0), stearic acid (C18:0), eicosadienoic acid (C20:2), docosahexaenoic acid (C22:6n-3), α-linolenic acid (C18:3n-3), linoleic acid (C18:2n-6c), and polyunsaturated fatty acid (PUFA) in egg yolk. Meanwhile, the addition of 1∼3% A. argyi decreased serum urea. Moreover, dietary supplementation of 1% A. argyi promoted the antioxidative capacity of the hens by increasing hepatic T-SOD and CAT activities, as well as GSH-Px content. However, the addition of 3% A. argyi to the diet significantly increased the content of malondialdehyde in serum and liver and destroyed the intestinal morphology by increasing duodenal crypt depth. In conclusion, the addition level of A. argyi promoting egg quality and antioxidant capacity was at 2% and 1%, respectively.
Collapse
Affiliation(s)
- Jiayi Chen
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Fengming Chen
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Simin Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yangjiang Ou
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Binsheng He
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- *Correspondence: Binsheng He, ; Yinghui Li, ; Qian Lin,
| | - Yinghui Li
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Binsheng He, ; Yinghui Li, ; Qian Lin,
| | - Qian Lin
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Binsheng He, ; Yinghui Li, ; Qian Lin,
| |
Collapse
|
16
|
Pang HQ, Zhou P, Meng XW, Yang H, Li Y, Xing XD, Wang HY, Yan FR, Li P, Gao W. An image-based fingerprint-efficacy screening strategy for uncovering active compounds with interactive effects in Yindan Xinnaotong soft capsule. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153911. [PMID: 35026505 DOI: 10.1016/j.phymed.2021.153911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Yindan Xinnaotong soft capsule (YDXNT) is a clinically effective herbal prescription used for the treatment of cardiovascular and cerebrovascular diseases. Since Chinese medicines (CMs) exert their effects via a "multiple-components and multiple-targets" mode, discovery of the active compounds with interactive effects may contribute to reveal their mechanisms of action. PURPOSE This study aimed to establish an image-based fingerprint-efficacy screening strategy to identify active compounds with interaction effects from CM prescription, using YDXNT to inhibit microglia-mediated neuroinflammation as an instance. METHODS A multi-component random content-oriented chemical library of YDXNT was constructed by uniform design, and their chemical fingerprint was profiled by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Then the neuroinflammation activities of chemical library members of YDXNT were determined by image-based dual phenotypic quantification. Subsequently, fingerprint-efficacy correlation and random forest analysis were applied to predict the potentially active compounds with interactive effects. Finally, the interactive effects among the active compounds were confirmed by quantitative polymerase chain reaction (qPCR) and apoptosis analysis, and network pharmacology was applied to explore the possible mechanisms. RESULTS Image-based fingerprint-efficacy correlation analysis revealed that six tanshinones (TNs) and four flavonoids (FAs) were potential anti-neuroinflammatory compounds. The inter-family of TNs and FAs possessed obvious interactive effects (combination index ≤ 0.825). Moreover, the combination of scutellarein and tanshinone I (2:1, w/w) was discovered as the possible interactive combinatorial components, which, comparing with individual scutellarein or tanshinone I, shown more powerful effects on anti-inflammatory and anti-apoptotic effects in lipopolysaccharide (LPS)-induced BV2 cells. Network pharmacology showed that the active compounds might suppress microglia-mediated neuroinflammation via multiple targets in the T cell receptor, Jak-STAT, and Toll-like receptor signaling pathways. CONCLUSION The image-based fingerprint-efficacy strategy simplifies the screening process of efficacious component combinations in CMs for complex diseases, which also offers a promising approach to explore the integrative therapeutic mechanisms of CMs.
Collapse
Affiliation(s)
- Han-Qing Pang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Ping Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Meng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Xu-Dong Xing
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Hui-Ying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Fang-Rong Yan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
17
|
Lim HS, Sohn E, Kim YJ, Kim BY, Kim JH, Jeong SJ. Ethanol Extract of Elaeagnus glabra f. oxyphylla Branches Alleviates the Inflammatory Response Through Suppression of Cyclin D3/Cyclin-Dependent Kinase 11p58 Coupled to Lipopolysaccharide-Activated BV-2 Microglia. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a pivotal role in the pathogenesis of neurodegenerative diseases and is characterized by microglial dysregulation. Here, we explored the beneficial effects of a leaf extract of Elaeagnus glabra f. oxyphylla (EGFO), a native medicinal plant to Korea, South China, Japan, and Taiwan, on neuroinflammation using lipopolysaccharide (LPS)-stimulated BV-2 microglia. Levels of the inflammatory mediators were determined by enzyme-linked immunosorbent assays and reverse transcription–polymerase chain reaction. The phospho levels of mitogen-activated protein kinases, which are key kinase molecules in the inflammatory signaling pathway in microglia, were analyzed by Western blotting. Treatment with EGFO significantly suppressed the LPS-mediated induction of nitric oxide and prostaglandin E2. Consistently, EGFO treatment in LPS-stimulated BV-2 cells markedly reduced the inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. The best concentration of EGFO that could reduce TNF-α and IL-6 was 100 μg/mL. EGFO relatively reduced the messenger RNA expression of TNF-α and IL-6 by 0.36 and 0.32-fold ratio, respectively, compared to LPS treatment. Moreover, EGFO markedly reduced the phospho levels of p38 and the c-jun N-terminal kinase. Furthermore, antibody microarray and immunoblotting data revealed that the pharmacological mechanisms driving the antineuroinflammatory action of EGFO involve prevention of the cyclin D3/cyclin-dependent kinase 11p58 (CDK11p58) interaction. In conclusion, our results demonstrate that EGFO alleviates the inflammatory response through the suppression of cyclin D3/CDK11p58 coupling in LPS-activated BV-2 microglia. We propose the potential of EGFO as a novel drug candidate for neurodegenerative diseases by targeting neuroinflammation.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Eunjin Sohn
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Bu-Yeo Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | | | - Soo-Jin Jeong
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
18
|
Li X, Kang J, Lv H, Liu R, Chen J, Zhang Y, Zhang Y, Yu G, Zhang X, Ning B. CircPrkcsh, a circular RNA, contributes to the polarization of microglia towards the M1 phenotype induced by spinal cord injury and acts via the JNK/p38 MAPK pathway. FASEB J 2021; 35:e22014. [PMID: 34751973 DOI: 10.1096/fj.202100993r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a complex pathological change that includes primary SCI and gradually evolves into secondary SCI. Accumulating evidence demonstrates that circular RNAs (circRNAs) are involved in the pathology of a variety of neurological diseases and injuries. However, the characteristics and function of circRNAs in SCI have yet to be elucidated. Although previous research demonstrated that circPrkcsh induces astrocytes to produce inflammatory factors and chemokines, the precise function and mechanism of circPrkcsh in microglia after SCI remains unknown. In this study, we constructed a mouse model of SCI by applying a SCI impactor. Quantitative Real-time PCR and Fluorescence in situ hybridization analysis revealed that circPrkcsh was upregulated in the microglia of SCI mice when compared to sham-operated mice. Gain- or loss-of-function experiments and in vivo assays further indicated that circPrkcsh promotes microglia M1 polarization both in vivo and in vitro. Furthermore, bioinformatics analysis, dual-luciferase assays, and RNA immunoprecipitation assays, confirmed that circPrkcsh serves as a competing endogenous RNA (ceRNA) to promote the expression of MEKK1 mRNA by sponging miR-488. Double knockout rescue experiments further showed that circPrkcsh regulates the MEKK1/JNK/p38 MAPK pathway via miR-488. Our research provides a better understanding of the mechanism of circPrkcsh in SCI and demonstrates that the circPrkcsh/miR-488/Mekk1 axis is a promising regulatory method for the treatment of SCI.
Collapse
Affiliation(s)
- Xinyu Li
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jianning Kang
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Hong Lv
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ronghan Liu
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jianan Chen
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yining Zhang
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Guilian Yu
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xiaodi Zhang
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Bin Ning
- Cheeloo College of Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Hu L, Yang X, Yin J, Rong X, Huang X, Yu P, He Z, Liu Y. Combination of AgNPs and Domiphen is Antimicrobial Against Biofilms of Common Pathogens. Int J Nanomedicine 2021; 16:7181-7194. [PMID: 34712048 PMCID: PMC8547768 DOI: 10.2147/ijn.s334133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose The aim was to evaluate the antimicrobial potential of AgNPs synthesized with Artemisia argyi leaf extract and investigate the antimicrobial synergistic effects of AgNPs combined with domiphen and provide an efficient and broad-spectrum combination drug strategy. Methods AgNPs synthesized with Artemisia argyi leaf extract were studied using UV–vis spectroscopy, FTIR spectroscopy and particle size analysis. Then, Artemisia argyi leaf extract-synthesized AgNPs and domiphen were tested against Acinetobacter baumannii (ATCC 19606), Staphylococcus aureus (ATCC 6538), Escherichia coli (8099) and Candida albicans (ATCC 10231), respectively. Then, we explore synergistic antimicrobial effect and synergistic anti-biofilm effect through combined drug susceptibility test and combined drug minimum biofilm eradication concentration (MBEC50) test. Results Characteristic absorption bands of AgNPs were found near 430 nm in the UV–vis spectrum. Particle size analysis results revealed that the average particle size of Artemisia argyi leaf extract-synthesized AgNPs was 77.6 nm. Artemisia argyi leaf extract-synthesized AgNPs showed high antimicrobial activity against the above four strains. Minimum inhibitory concentration (MIC) of Artemisia argyi leaf extract-synthesized AgNPs against strains was 1 μg/mL for Acinetobacter baumannii, 2 μg/mL for Staphylococcus aureus, Escherichia coli and Candida albicans. MBEC50 of Artemisia argyi leaf extract-synthesized AgNPs against strains was 2 μg/mL for Acinetobacter baumannii, 4 μg/mL for Staphylococcus aureus, 1/2 μg/mL for Escherichia coli and 2 μg/mL for Candida albicans. The combination of Artemisia argyi leaf extract-synthesized AgNPs and domiphen has synergistic antimicrobial effect and synergistic anti-biofilm effect. Fractional inhibitory concentration (FIC) was ≤0.5. Conclusion Artemisia argyi leaf extract-synthesized AgNPs had antimicrobial activity against the above four strains. The combination of Artemisia argyi leaf extract-synthesized AgNPs and domiphen has synergistic antimicrobial effects to reduce the dosage of each antimicrobial drugs. Artemisia argyi leaf extract-synthesized AgNPs and domiphen have synergistic anti-biofilm effects.
Collapse
Affiliation(s)
- Longhao Hu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jing Yin
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xuan Rong
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xinlei Huang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Zhiqiang He
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
20
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
21
|
Liu H, Hu X, Jiang R, Cai J, Lin Q, Fan Z, Zhao P, Wang S, Zou C, Du W, Dong Z, Liu Y. CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021; 44:1345-1358. [PMID: 33528726 PMCID: PMC8285337 DOI: 10.1007/s10753-021-01420-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Xiangnan Hu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianghui Cai
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Lin
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiguo Fan
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Pan Zhao
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Song Wang
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Chunqiao Zou
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New zone, Chongqing, 401121, China
| | - Weimin Du
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yingju Liu
- Department of Pharmacology, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Meng QG, Zhao SN, Sun ZH, Shan GZ, Meng QG. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C19H14F4O2, monoclinic, P21/c (no. 14), a = 11.8614(10) Å, b = 7.9148(6) Å, c = 16.7999(16) Å, β = 99.150(9)°, V = 1557.1(2) Å3, Z = 4, R
gt
(F) = 0.0446, wR
ref
(F
2) = 0.1150, T = 100 K.
Collapse
Affiliation(s)
- Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Sheng-Nan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Zhong-Hao Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , 100050 , P. R. China
| | - Guang-Zhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , 100050 , P. R. China
| | - Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| |
Collapse
|
23
|
Xu Y, Wei H, Gao J. Natural Terpenoids as Neuroinflammatory Inhibitors in LPS-stimulated BV-2 Microglia. Mini Rev Med Chem 2021; 21:520-534. [PMID: 31198113 DOI: 10.2174/1389557519666190611124539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is a typical feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Microglia, the resident immune cells of the brain, readily become activated in response to an infection or an injury. Uncontrolled and overactivated microglia can release pro-inflammatory and cytotoxic factors and are the major culprits in neuroinflammation. Hence, research on novel neuroinflammatory inhibitors is of paramount importance for the treatment of neurodegenerative diseases. Bacterial lipopolysaccharide, widely used in the studies of brain inflammation, initiates several major cellular activities that critically contribute to the pathogenesis of neuroinflammation. This review will highlight the progress on terpenoids, an important and structurally diverse group of natural compounds, as neuroinflammatory inhibitors in lipopolysaccharidestimulated BV-2 microglial cells over the last 20 years.
Collapse
Affiliation(s)
- Yuanzhen Xu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Zhang XF, Meng QG. Crystal structure of ( E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2 H)-one, C 17H 14FNO 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C17H14FNO2, monoclinic, P21/c (no. 14), a = 14.0279(13) Å, b = 7.0527(5) Å, c = 14.4150(16) Å, β = 113.165(12)°, V = 1311.2(2) Å3, Z = 4, Rgt
(F) = 0.0524, wRref
(F
2) = 0.1358, T = 100 K.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P. R. China
| | - Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P. R. China
| |
Collapse
|
25
|
Li C, Yang MC, Hong PP, Zhao XF, Wang JX. Metabolomic Profiles in the Intestine of Shrimp Infected by White Spot Syndrome Virus and Antiviral Function of the Metabolite Linoleic Acid in Shrimp. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2075-2087. [PMID: 33863791 DOI: 10.4049/jimmunol.2001318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022]
Abstract
White spot syndrome virus (WSSV) is a threatening pathogenic virus in shrimp culture, and at present, no effective strategy can prevent and control the disease. Intestinal flora and its metabolites are important for the resistance of shrimp to lethal pathogenic viruses. However, the changes of metabolites in the shrimp intestines after WSSV infection remain unclear. We established an artificial oral infection method to infect shrimp with WSSV and analyzed the metabolites in intestinal content of shrimp by HPLC and tandem mass spectrometry. A total of 78 different metabolites and five different metabolic pathways were identified. Among them, we found that the content of linoleic acid, an unsaturated fatty acid, increased significantly after WSSV infection, indicating that linoleic acid might be involved in antiviral immunity in shrimp. Further study showed that, after oral administration of linoleic acid, WSSV proliferation decreased evidently in the shrimp, and survival rate of the shrimp increased significantly. Mechanical analysis showed that linoleic acid directly bound to WSSV virions and inhibited the viral replication. Linoleic acid also promoted the expression of antimicrobial peptides and IFN-like gene Vago5 by activating the ERK-NF-κB signaling pathway. Our results indicated that WSSV infection caused metabolomic transformation of intestinal microbiota and that the metabolite linoleic acid participated in the immune response against WSSV in shrimp.
Collapse
Affiliation(s)
- Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China; and
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Subedi L, Gaire BP, Kim SY, Parveen A. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy. Int J Mol Sci 2021; 22:ijms22094771. [PMID: 33946349 PMCID: PMC8124914 DOI: 10.3390/ijms22094771] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.
Collapse
|
27
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
28
|
Fan L, Zhou L. Anti-IL-23 exerted protective effects on cerebral ischemia-reperfusion injury through JAK2/STAT3 signaling pathway. Mol Biol Rep 2021; 48:3475-3484. [PMID: 33904141 DOI: 10.1007/s11033-021-06339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
Ischemia-reperfusion frequently occurs in ischemic cerebral vascular disease, during which the inflammatory signaling plays essential roles. The aim of this study was to discover the efficacy of the antibody to a key immune cytokine IL-23 (anti-IL-23) for the therapy of cerebral ischemia-reperfusion injury. We established the cerebral ischemia-reperfusion injury model by middle cerebral artery occlusion (MCAO). Anti-IL-23 injection attenuated lesions indicated by histology study. RT-PCR and Western blot were employed to detect the mRNA and protein expression of JAK2 and STAT3 after anti-IL-23 treatment. ELISA was utilized to measure the levels of MDA (malondialdehyde) and superoxide dismutase (SOD). Moreover, curcumin and IL-6 were implicated in the endogenous intervention of IL-23 signaling in vivo. Our data demonstrated that the treatment of anti-IL-23 might transcriptionally activate the classic immune pathway in the brain. Anti-IL-23 augmented phosphorylation levels of both JAK2 and STAT3, suggesting the amplification signaling of JAK/STAT after exogenous IL-23 intervention. Anti-IL-23 reduced ROS molecules of STAT downstream in the serum and brain. It also alleviated the injury by bringing down levels of MDA and SOD in the serum. JAK2 inhibitor could abolish the effect of anti-IL-23 whereas JAK3 ameliorated the injury. The combination of anti-IL-23 and JAK3i could reduce infarct volume more effectively. In summary, this study indicated that anti-IL-23 had protective effects against cerebral ischemia-reperfusion injury by targeting the immune specific JAK2-STAT3 in JAK/STAT pathway.
Collapse
Affiliation(s)
- Lichao Fan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing, 100043, China
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing, 100043, China.
| |
Collapse
|
29
|
Sun Y, Zhou YQ, Liu YK, Zhang HQ, Hou GG, Meng QG, Hou Y. Potential anti-neuroinflammatory NF-кB inhibitors based on 3,4-dihydronaphthalen-1(2 H)-one derivatives. J Enzyme Inhib Med Chem 2021; 35:1631-1640. [PMID: 32781863 PMCID: PMC7470122 DOI: 10.1080/14756366.2020.1804899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor kappa B (NF-кB) inhibition represents a new therapeutic strategy for the treatment of neuroinflammatory diseases. In this study, a series of 3,4-dihydronaphthalen-1(2H)-one (DHN; 6a-n, 7a-c) derivatives were synthesised and characterised by NMR and HRMS. We assessed the toxicity and anti-neuroinflammatory properties of these compounds and found that 6m showed the greatest anti-neuroinflammatory properties, with relatively low toxicity. Specifically, 6m significantly reduced reactive oxygen species production, down-regulated the expression of NOD-like receptor pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1 and prevented lipopolysaccharide-stimulated BV2 microglia cells polarisation towards an M1 phenotype. Furthermore, 6m significantly decreased IκBα and NF-кB p65 phosphorylation, thus inhibiting the NF-кB signalling pathway. This suggests that 6m may be explored as a functional anti-neuroinflammatory agent for the treatment of inflammatory diseases in the central nervous system, such as multiple sclerosis, traumatic brain injury, stroke and spinal cord injury.
Collapse
Affiliation(s)
- Yue Sun
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Yan-Qiu Zhou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| | - Yin-Kai Liu
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Hong-Qin Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| | - Gui-Ge Hou
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Qing-Guo Meng
- School of Pharmacy, Yantai University, Yantai, P. R. China
| | - Yun Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, P. R. China
| |
Collapse
|
30
|
Li C, Cui ZH, Li Z, Gao L, Zhang CY, Li DX, Zhang ZM, Huang XZ. Determination of Mineral Elements in Nanyang Mugwort (Artemisia argyi) Leaves Harvested from Different Crops by Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma Atomic Emission Spectrometry. Chem Pharm Bull (Tokyo) 2021; 69:411-413. [PMID: 33518581 DOI: 10.1248/cpb.c20-00875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to high need for medical purposes, multiple harvests of mugwort (Artemisia argyi) have been extensively applied in China for the increase of mugwort yield recently. However, the investigation on the mineral elements in different crops, which are significantly related to mugwort growth and the clinical efficacy of this medicinal herb, has not been conducted. This study provided an analytical method and quality evaluation for mineral elements in Nanyang mugwort leaves harvested from three different crops. The contents of 35 mineral elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). ANOVA, principal component analysis and factor analysis were applied to evaluate the results. Four principal components were identified and their comprehensive evaluation function was as follows: F = 0.7008Fl + 0.1236F2 + 0.0936F3 + 0.0321F4. The comprehensive scores of the mugwort leaves from different crops were ranked as follows: 3rd crop > 2nd crop ≈ 1st crop. These findings can provide a reference for the quality control and clinical use of mugwort leaves, and a guidance of differential nourishing strategies for different crops.
Collapse
Affiliation(s)
- Chao Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Zhan-Hu Cui
- College of Agriculture, Fujian Agriculture and Forestry University
| | - Zhe Li
- Tang-ai Ecological Agriculture Development Limited Liability Company
| | - Li Gao
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Chao-Yun Zhang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Dan-Xia Li
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Zhong-Ming Zhang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| | - Xian-Zhang Huang
- Henan Province Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology
| |
Collapse
|
31
|
Zhong Y, Yin B, Ye Y, Dekhel OYAT, Xiong X, Jian Z, Gu L. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol 2021; 341:113690. [PMID: 33798563 DOI: 10.1016/j.expneurol.2021.113690] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, a well-conserved and basic intracellular signaling cascade, is mostly inactivated under basal conditions, although it can be phosphorylated under extracellular stimulation; in addition, it can influence the transcription and expression of multiple genes involved in biological processes such as cellular growth, metabolism, differentiation, degradation and angiogenesis. The inflammatory response, apoptosis, oxidative stress and angiogenesis are the main factors involved in the pathogenesis of ischemic stroke. Numerous studies have confirmed that the JAK2/STAT3 axis can be activated rapidly by ischemic stress, which is closely related to the regulation of these important pathological processes. However, different opinions on the specific role of this signaling pathway remain. In this paper, we review and summarize previous studies on the JAK2/STAT3 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omar Y A T Dekhel
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
Song Y, Shan B, Zeng S, Zhang J, Jin C, Liao Z, Wang T, Zeng Q, He H, Wei F, Ai Z, Su D. Raw and wine processed Schisandra chinensis attenuate anxiety like behavior via modulating gut microbiota and lipid metabolism pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113426. [PMID: 33007392 DOI: 10.1016/j.jep.2020.113426] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, the fruit of Schisandra chinensis (Turcz.) Baill (SC) is used to treat various nervous system diseases, such as dysphoria, anxiety, insomnia and many dreams. It is worthy to be noted that wine processed Schisandra chinensis (WSC) has been applied in clinic for thousands of years. AIM OF STUDY This study aimed to investigate the possible mechanism and related metabolism of SC and WSC ameliorating anxiety behavior through modulating gut microbiota. MATERIALS AND METHODS The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for the quality control of chemical components in SC and WSC. Chronic unpredictable stress procedure (CUSP)-induced anxiety rats were administrated with SC and WSC via gavage for five weeks. An untargeted UPLC/LTQ-Orbitrap MS metabolomic analysis of plasma was conducted to understand the effects of long-term intake of WSC and SC extracts on anxious rats. 16S rRNA microbial sequencing technology was applied to investigate gut microbiota structure. Expression of GPR81, TNF-α, S1PR2 as well as molecules in cAMP pathway was assayed by immunohistochemistry staining, RT-qPCR, or Western blot, respectively. RESULTS 12 compounds were identified using UPLC-QTOF-MS technology, all of which are lignans. Results demonstrate that the amounts of 6-O-Benzoylgomisin O, Schisandrin, Gomisin D, Schizandrin A, Gomisin T, Schizandrin B, Schisandrin C were higher in wine-processed samples than in raw samples. Furthermore, both SC and WSC significantly ameliorated anxiety- and depression-like behavior and lipid metabolism dysfunction and attenuated hippocampal neuritis in anxiety rats. After WSC treatment, the structure and composition of gut microbiota in anxiety rats changed significantly, and gut microbiota derivatives lactate level was significantly lower in the plasma and feces. WSC treatment help restore gut microbial ecosystem dysbiosis and reverse the changes in Lachnospiraceae, Lactobacillus, Alloprevotella, and Bacteroidales in anxiety rat. In addition, the expression of liver GPR81 was decreased, and the molecules in cAMP pathway were increased in SC and WSC-treated anxiety rat. CONCLUSION Raw and wine processed Schisandra chinensis treatment improved anxiety- and depression-like behavior through modulating gut microbiota derivatives in association with GPR81 receptor-mediated lipid metabolism pathway. And WSC has more exhibition than SC.
Collapse
Affiliation(s)
- Yonggui Song
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Baixi Shan
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China; State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Sufen Zeng
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Chen Jin
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Zhou Liao
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Tingting Wang
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Qiang Zeng
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Hongwei He
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Fengqin Wei
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, PR China
| | - Zhifu Ai
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China.
| | - Dan Su
- Laboratory Animal Science and Technology Center, College of Pharmacy, College of Science and Technology, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China.
| |
Collapse
|
33
|
CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation 2021. [PMID: 33528726 DOI: 10.1007/s10753-021-01420-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Excessive microglial activation-mediated neuroinflammation is closely involved in the pathogenesis of several neurological diseases. CQMUH-011, as a novel adamantane sulfonamide compound, has been shown anti-inflammatory properties in activated macrophages (RAW264.7). However, the role of CQMUH-011 in microglial activation-induced neuroinflammation and neuroprotective properties has yet to be elucidated. In the present study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-stimulated primary microglia in vitro and transient middle cerebral artery occlusion (t-MCAO)-induced acute cerebral ischemia/reperfusion (I/R) injury in vivo. The results demonstrated that CQMUH-011 significantly suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β by LPS-stimulated primary microglia. In addition, CQMUH-011 inhibited the proliferation of activated microglia by arresting the cell cycle at the G1/S phase accompanied by downregulating the expression of cell cycle regulatory proteins such as proliferating cell nuclear antigen (PCNA) and cyclin D1. CQMUH-011 was seen to induce apoptosis in activated microglia by regulating the expression of Bax and Bcl-2. Furthermore, CQMUH-011 markedly attenuated the protein expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) as well as the phosphorylation levels of nuclear factor-kappa (NF-κB) subunit p65, inhibitory kappa B-alpha (IκBα), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and p38 kinases. In vivo, CQMUH-011 administration significantly improved neurological function and infarct volume, and ameliorated the inflammatory cytokines and microglia amount around the injury site of mice. In conclusion, these results suggested that CQMUH-011 has a notable anti-inflammatory effect and protects mice from I/R injure. Thus, CQMUH-011 may be a candidate drug for the treatment of cerebral ischemia patients.
Collapse
|
34
|
Luan MZ, Wang HY, Zhang M, Song J, Hou GG, Zhao FL, Meng QG. Crystal structure of ( E)-2-(3,5-bis(trifluoromethyl)benzylidene)-7-methoxy-3,4-dihydronaphthalen- 1(2 H)-one, C 20H 14F 6O 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C
20
H
14
F
6
O
2
${\text{C}}_{20}{\text{H}}_{14}{\text{F}}_{6}{\text{O}}_{2}$
, monoclinic, P21/c (no. 14), a = 14.791(2) Å, b = 8.5303(9) Å, c = 15.531(3) Å, β = 115.474(19)°, V = 1769.1(5) Å3, Z = 4,
R
g
t
${R}_{gt}$
(F) = 0.0574,
w
R
ref
$w\,{R}_{\text{ref}}$
(F
2) = 0.1451, T = 100 K.
CCDC no.: 2016723
Collapse
Affiliation(s)
- Ming-Zhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , PR China
| | - Hui-yun Wang
- College of Pharmacy, Jining Medical University , Rizhao , 276826, PR China
| | - Mei Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , PR China
| | - Jia Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , PR China
| | - Gui-Ge Hou
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University , Yantai , 264003, PR China
| | - Feng-Lan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , PR China
| | - Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , PR China
| |
Collapse
|
35
|
Liu B, Zhang G, Cui S, Du G. Inhibition of RNF6 alleviates traumatic brain injury by suppressing STAT3 signaling in rats. Brain Behav 2020; 10:e01847. [PMID: 32955171 PMCID: PMC7749554 DOI: 10.1002/brb3.1847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) has ranked as one of the leading causes of disability and death in the world. The neuroinflammation mediated by signal transducer and activator of transcription 3 (STAT3) signaling during the progression of TBI leads to long-term neurodegeneration. Ring finger protein 6 (RNF-6) is an E3 ubiquitin ligase and can regulate the activity of STAT3 signaling pathway by targeting its inhibitors. However, the mechanism underlying this process in TBI remains poorly understood. METHODS In this research, cortical impact injury was used to construct the TBI rat model. Western blot assay was performed to evaluate the protein levels of RNF6, Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1), and STAT3/pSTAT3. QRT-PCR assay was performed to assess the RNA levels of RNF6 and other cytokines. The neural function of TBI rats was estimated by modified Neurological Severity Scores test. RESULTS The expression of RNF-6 was up-regulated in the brain tissues of TBI rats. Down-regulation of RNF6 alleviated the symptoms and improved the neural recovery postinjury in TBI rats. Inhibition of RNF6 suppressed the cerebral inflammation by up-regulating the protein level of SHP-1 and down-regulating the phosphorylation level of STAT3. CONCLUSION Inhibition of RNF6 alleviated TBI by suppressing the STAT3 signaling in TBI rats.
Collapse
Affiliation(s)
- Bin Liu
- Department of Neurosurgery Six, Cangzhou Central Hospital, Cangzhou, China
| | - Gang Zhang
- Department of Neurosurgery Six, Cangzhou Central Hospital, Cangzhou, China
| | - Shukun Cui
- Department of Neurosurgery Six, Cangzhou Central Hospital, Cangzhou, China
| | - Guoliang Du
- Department of Neurosurgery Six, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
36
|
Hao T, Yang Y, Li N, Mi Y, Zhang G, Song J, Liang Y, Xiao J, Zhou D, He D, Hou Y. Inflammatory mechanism of cerebral ischemia-reperfusion injury with treatment of stepharine in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153353. [PMID: 33007731 DOI: 10.1016/j.phymed.2020.153353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Increasing evidence has shown that microglia-induced neuroinflammation is involved in the pathogenesis of ischemic stroke. Stepharine, one of the alkaloids extracted from Stephania japonica (Thunb.) Miers, exhibited strong inhibitory effect on microglial overactivation. However, it is not known whether it has the potential to prevent ischemic stroke. METHODS The neuroprotective and anti-neuroinflammatory effects of stepharine were investigated in vivo and in vitro, using a rat model of middle cerebral artery occlusion (MCAO) and lipopolysaccharide (LPS)-stimulated BV-2 cells, respectively. RESULTS In vivo, stepharine (500 μg/kg) suppressed neurological deficits scores, brain water content and cerebral infarct volume induced by MCAO. Moreover, stepharine (500 μg/kg) inhibited NeuN+ cells loss and Iba-1+ cells increase in the MCAO ischemic cortex. In vitro, stepharine (10, 30 μM) substantially inhibited nitric oxide release as well as the mRNA and protein expression of pro-inflammatory mediators [inducible nitric oxide synthase, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β] in LPS-activated BV-2 cells. LPS-induced increase of TLR4 expression, IκBα phosphorylation, and NF-κB p65 nuclear translocation was inhibited by stepharine (10, 30 μM). Molecular docking analysis showed that stepharine directly interacted with TLR4. SPR assay further confirmed that stepharine could bind to the TLR4/MD2 complex. Meanwhile, stepharine exhibited neuroprotective effects on SH-SY5Y cells cultured with LPS-treated conditioned medium. CONCLUSION Our study demonstrated for the first time that stepharine improved the outcomes in MCAO rats, reduced neuronal loss, and suppressed microglial overactivation via the inhibition of TLR4/NF-κB pathway. These results suggest that stepharine might be a potential therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tingyu Hao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Yanqiu Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Guijie Zhang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Junyu Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yusheng Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiao Xiao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Dakuo He
- College of Information Science and Engineering, Northeastern University, Shenyang, China; State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
37
|
Zhang XF, Wang HY, Song J, Liang LH, Xu YR, Zhao FL, Meng QG. Crystal structure of (3 E,5 E)-3,5-bis-4-methoxy-3-(trifluoromethyl)benzylidene)-1-methylpiperidin-4-one, C 24H 21F 6NO 3. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
C24H21F6NO3, monoclinic, P21/c (no. 14), a = 16.6493(9) Å, b = 15.3005(8) Å, c = 8.8554(5) Å, β = 99.746(6)°, V = 2223.3(2) Å3, Z = 4, R
gt
(F) = 0.0444, wR
ref
(F
2) = 0.1094, T = 100 K.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Hui-yun Wang
- College of Pharmacy , Jining Medical University , Rizhao , 276826 , P. R. China
| | - Jia Song
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Lun-Hai Liang
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Yang-Rong Xu
- Laboratory of Computer-Aided Drug Design and Discovery , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , P. R. China
| | - Feng-Lan Zhao
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Qing-Guo Meng
- School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| |
Collapse
|
38
|
Natural sesquiterpenoid oligomers: A chemical perspective. Eur J Med Chem 2020; 203:112622. [DOI: 10.1016/j.ejmech.2020.112622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 06/23/2020] [Indexed: 01/21/2023]
|
39
|
Zhang P, Sun D, Shi B, Faucitano L, Guo X, Li T, Xu Y, Yan S. Dietary supplementation with Artemisia argyi extract on inflammatory mediators and antioxidant capacity in broilers challenged with lipopolysaccharide. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1816506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pengfei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Center Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dengsheng Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Luigi Faucitano
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tiyu Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
40
|
Han M, Cao Y, Xue H, Chu X, Li T, Xin D, Yuan L, Ke H, Li G, Wang Z. Neuroprotective Effect of Mesenchymal Stromal Cell-Derived Extracellular Vesicles Against Cerebral Ischemia-Reperfusion-Induced Neural Functional Injury: A Pivotal Role for AMPK and JAK2/STAT3/NF-κB Signaling Pathway Modulation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2865-2876. [PMID: 32764885 PMCID: PMC7381771 DOI: 10.2147/dddt.s248892] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Introduction Cerebral ischemia-reperfusion injury (CIRI) is the main factor that leads to poor prognosis of cerebral ischemia. Apoptosis has been shown to occur during the process of CIRI. Extracellular vesicles derived from mesenchymal stromal cells (MSCs-EVs) have shown broad potential for treating brain dysfunction and eliciting neuroprotective effects after stroke through neurogenesis and angiogenesis. However, the mechanism of action of extracellular vesicles during CIRI is not well known. Methods A middle cerebral artery occlusion (MCAO) model was induced by the modified Longa method, and MSCs-EVs were injected via the tail vein. Results Our results showed that MSCs-EVs significantly alleviated neurological deficits, reduced the volume of cerebral infarction and brain water content, improved pathological lesions in cortical brain tissue, and attenuated neuronal apoptosis in the cortex at 24 h and 48 h after MCAO in rats. Western blotting analysis showed that MSCs-EVs significantly upregulated p-AMPK and downregulated p-JAK2, p-STAT3 and p-NF-κB. In addition, an AMPK pathway blocker reversed the effect of MSCs-EVs on brain damage. Conclusion These results indicate that MSCs-EVs protected MCAO-injured rats, possibly by regulating the AMPK and JAK2/STAT3/NF-κB signaling pathways. This study supports the use of MSCs-EVs as a potential treatment strategy for MCAO in the future.
Collapse
Affiliation(s)
- Min Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China.,Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China.,Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong Province 250022, People's Republic of China
| | - Ying Cao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lin Yuan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
41
|
Zhang L, Nie X, Chang J, Wang F, Lü J. Nitric Oxide Production Inhibitory Eudesmane‐Type Sesquiterpenoids from
Artemisia argyi. Chem Biodivers 2020; 17:e2000238. [DOI: 10.1002/cbdv.202000238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lai‐Bin Zhang
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Xiao‐Na Nie
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Jia‐Jing Chang
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Feng‐Long Wang
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| | - Jie‐Li Lü
- School of PharmacyXinxiang Medical University Xinxiang 453003 P. R. China
| |
Collapse
|
42
|
Anti-Apoptotic and Antioxidant Effects of 3- Epi-Iso -Seco-Tanapartholide Isolated from Artemisia Argyi Against Iodixanol-Induced Kidney Epithelial Cell Death. Biomolecules 2020; 10:biom10060867. [PMID: 32517090 PMCID: PMC7356648 DOI: 10.3390/biom10060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Iodixanol is a non-ionic iso-osmolar contrast agent, but it is a risk factor for kidney damage and increases morbidity and mortality. In this study, we investigated the effect of 9 sesquiterpenes isolated from mugwort (Artemisia argyi) in contrast agent-induced cytotoxicity in LLC-PK1 cells. Cells were exposed to nine sesquiterpene compounds for 2 h, followed by incubation with iodixanol for 3 h. Cell viability was assessed using the Ez-Cytox assay. The level of reactive oxygen species was measured using 2′,7′-dichlorodihydrofluorescein diacetate staining. Apoptotic cell death was detected using annexin V/PI staining. In addition, immunofluorescence staining and western blotting were performed using antibodies against proteins related to apoptosis, oxidative stress, and MAPK pathways. The most effective 3-epi-iso-seco-tanapartholide (compound 8) among the 9 sesquiterpene compounds protected LLC-PK1 cells from iodixanol-induced cytotoxicity, oxidative stress, and apoptotic cell death. Pretreatment with compound 8 reversed iodixanol-induced increases in the expression of JNK, ERK, p38, Bax, caspase-3, and caspase-9. It also reversed the iodixanol-induced decrease in Bcl-2 expression. Furthermore, pretreatment with compound 8 caused nuclear translocation of Nrf2 and upregulated HO-1 via the Nrf2 pathway in iodixanol-treated LLC-PK1 cells. Thus, we demonstrated here that compound 8 isolated from A. argyi has the potential to effectively prevent iodixanol-induced kidney epithelial cell death via the caspase-3/MAPK pathways and HO-1 via the Nrf2 pathway.
Collapse
|
43
|
Zimmermann-Klemd AM, Reinhardt JK, Morath A, Schamel WW, Steinberger P, Leitner J, Huber R, Hamburger M, Gründemann C. Immunosuppressive Activity of Artemisia argyi Extract and Isolated Compounds. Front Pharmacol 2020; 11:402. [PMID: 32322200 PMCID: PMC7157444 DOI: 10.3389/fphar.2020.00402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
The need for novel drugs for the treatment of autoimmune diseases is high, since available pharmaceuticals often have substantial side effects and limited efficacy. Natural products are a good starting point in the development of immunosuppressive leads. Since enhanced T cell proliferation is a common feature of autoimmune diseases, we investigated the T cell proliferation inhibitory potential of an extract library of plants used in traditional Chinese medicine. Using a newly established cell-based screening platform, an ethyl acetate extract of Artemisia argyi H.Lév. & Vaniot (Asteraceae, A. argyi) was found to suppress the proliferation of human primary T lymphocytes in vitro in an IL-2-dependent manner. Flow cytometry- and ELISA-based techniques further demonstrated that the A. argyi extract reduced the activation and function of T cells. Transcription factor analysis and flow cytometric calcium influx investigations indicated that the immunomodulatory effect was based on specific modification of T cell signaling in a non-cytotoxic manner which is mediated via the NFAT pathway and a non-sequestrant inhibition of the calcium influx. A series of guaianolide and seco-guaianolide sesquiterpene lactones, as well as a flavonoid, were identified in a previous study as the bioactive compounds in the A. argyi extract. The effects of these bioactive compounds were compared to those of the crude extract. The tested sesquiterpene lactones act via the transcription factor NFAT and NF-κB, thereby exhibiting their immunosuppressive potential, but have an overall effect on T cell biology on a more-downstream level than the crude A. argyi extract.
Collapse
Affiliation(s)
- Amy M. Zimmermann-Klemd
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob K. Reinhardt
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Anna Morath
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Roman Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
44
|
Ye X, Tian W, Wang G, Zhang X, Zhou M, Zeng D, Liu X, Yao X, Zhang Y, Chen H. Phenolic Glycosides from the Roots of Ficus hirta Vahl. and Their Antineuroinflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4196-4204. [PMID: 32167773 DOI: 10.1021/acs.jafc.9b07876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ficus hirta Vahl. (Wuzhimaotao) is an edible functional food used for the soup cooking and health products. Seven undescribed phenolic glycosides (1-7), along with 20 analogues, were isolated from the roots of Ficus hirta. Their structures were determined by comprehensive spectroscopic methods (UV, IR, HRESIMS, and NMR), while the absolute configuration of 1 was established by comparison of the experimental and calculated ECD data. The antineuroinflammatory effects of all the compounds were examined by Western blot. Compounds 1 and 11 attenuated the phosphorylation of AKT, JNK, and ERK1/2. In addition, compound 11 inhibited the NF-κB p65 phosphorylation. Our results indicated that compounds 1 and 11 decreased the occurrence of neuroinflammation in BV2 microglia cells, which might be regulated by inhibiting the activity of proteins in NF-κB, MAPK (JNK and ERK1/2), or AKT signaling pathways. Thus, 1 and 11 might exhibit antineuroinflammatory activities and show promise in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansheng Ye
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dequan Zeng
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xinsheng Yao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, People's Republic of China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
45
|
Hong Q, Yang Y, Wang Z, Xu L, Yan Z. Longxuetongluo capsule alleviates lipopolysaccharide-induced neuroinflammation by regulating multiple signaling pathways in BV2 microglia cells. J Chin Med Assoc 2020; 83:255-265. [PMID: 32134862 DOI: 10.1097/jcma.0000000000000258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Longxuetongluo capsule (LTC), derived from the total phenolic compounds of Chinese dragon's blood, is now used in the treatment of ischemic stroke in convalescence. The aim of this study is to explore the neuroprotective effect of LTC from the perspective of neuroinflammation. METHODS Cell viability and lactate dehydrogenase (LDH) release were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and LDH assay kit. Proinflammatory mediators and cytokines production including Nitric Oxide (NO), prostaglandin E2, (PGE2), interleukin (IL-β), IL-6, and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA) assay. In addition, western blot was used to detect the expression of inflammatory proteins associated with the mitogen-activated protein kinases (MAPKs), janus kinase/signal transducer and activator of tranions (JAK/STAT), nuclear transcription factor κB (NF-κB), and nuclear factor erythroid-2-related actor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathways. Moreover, immunofluorescence assay and electrophoretic mobility shift assays (EMSA) were performed to determine the Nrf2 translocation and the binding-DNA activity of NF-κB, respectively. RESULTS LTC at 0.5 to 2 μg/mL significantly increased cell viability and decreased LDH, NO, PGE2, IL-1β, IL-6, and TNF-α production in oxygen-glucose deprivation/reoxygenation (OGD/R) and lipopolysaccharide (LPS)-induced BV2 microglia cells. Meanwhile, LTC not only decreased the protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) but also down-regulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and up-regulated HO-1 expression via nuclear translocation of Nrf2. LTC can significantly inhibit the phosphorylation of JAK1/STAT3 and reduce the translocation of NF-κB from cytosol to nucleus as well as the binding-DNA activity. PC12 cell pretreated with LTC-condition medium (CM) significantly alleviated LPS-induced neurotoxicity and increased PC12 cell viability in a dose-dependent manner. CONCLUSION The present study showed that LTC exhibited a strong antineuroinflammatory activity and neuroprotective effects on LPS-stimulated BV2 microglial cells and PC12 cells.
Collapse
Affiliation(s)
- Qian Hong
- The 71st Group Army Hospital of CPLA Army (Affiliated Huaihai Hospital of Xuzhou Medical University), Xuzhou, China
| | | | | | | | | |
Collapse
|
46
|
Zhang L, Yan YM, Wang SX, Ren Z, Cheng YX. Three new sesquiterpenoids with cytotoxic activity from Artemisia argyi. Nat Prod Res 2019; 35:893-899. [PMID: 31264475 DOI: 10.1080/14786419.2019.1610754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new eudesmane sesquiterpenoid, artemisargin A (1), two new guaianolide sesquiterpenoids, artemisargins B (2) and C (3), along with three known sesquiterpenoids (4-6), were isolated from the leaves of Artemisia argyi. Their structures were determined by extensive spectroscopic methods and electronic circular dichroism calculations. Biological evaluation showed that 1 could inhibit the growth of cancer cells, especially in BGC-823 cells with an IC50 value of 49.87 μM.
Collapse
Affiliation(s)
- Li Zhang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yong-Ming Yan
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Shao-Xiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
47
|
Borgonetti V, Governa P, Montopoli M, Biagi M. Cannabis sativa L. Constituents and Their Role in Neuroinflammation. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180703130525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interest in Cannabis sativa L. phytocomplex as a medicinal tool is a recently-emerging topic. Neurodegenerative diseases represent a promising field of application for cannabis and its preparations, as most of this pathologic conditions relies on an inflammatory etiology. Several cannabis constituents display anti-inflammatory effects targeting multiple pathways. In this review, a comprehensive overview of the available literature on C. sativa constituents activities in neuroinflammation is given. On the basis that the anti-inflammatory activity of cannabis is not attributable to only a single constituent, we discuss the possible advantages of administering the whole phytocomplex in order to fully exploit the “entourage effect” in neuroinflammatory-related conditions.
Collapse
Affiliation(s)
| | | | | | - Marco Biagi
- SIFITLab, Via Laterina 8, 53100 Siena, Italy
| |
Collapse
|
48
|
Lin FL, Yen JL, Kuo YC, Kang JJ, Cheng YW, Huang WJ, Hsiao G. HADC8 Inhibitor WK2-16 Therapeutically Targets Lipopolysaccharide-Induced Mouse Model of Neuroinflammation and Microglial Activation. Int J Mol Sci 2019; 20:ijms20020410. [PMID: 30669368 PMCID: PMC6359084 DOI: 10.3390/ijms20020410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Glial activation and neuroinflammatory processes play important roles in the pathogenesis of brain abscess and neurodegenerative diseases. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which contribute to the exacerbation of neuronal cell death. The inhibition of glial activation has been shown to alleviate neurodegenerative conditions. The present study was to investigate the specific HDAC8 inhibitor WK2-16, especially its effects on the neuroinflammatory responses through glial inactivation. WK2-16 significantly reduced the gelatinolytic activity of MMP-9, and expression of COX-2/iNOS proteins in striatal lipopolysaccharide (LPS)-induced neuroinflammation in C57BL/6 mice. The treatment of WK2-16 markedly improved neurobehavioral deficits. Immunofluorescent staining revealed that WK2-16 reduced LPS-stimulated astrogliosis and microglial activation in situ. Consistently, cellular studies revealed that WK2-16 significantly suppressed LPS-induced mouse microglia BV-2 cell proliferation. WK2-16 was proven to concentration-dependently induce the levels of acetylated SMC3 in microglial BV-2 cells. It also reduced the expression of COX-2/iNOS proteins and TNF-α production in LPS-activated microglial BV-2 cells. The signaling studies demonstrated that WK2-16 markedly inhibited LPS-activated STAT-1/-3 and Akt activation, but not NF-κB or MAPK signaling. In summary, the HDAC8 inhibitor WK2-16 exhibited neuroprotective effects through its anti-neuroinflammation and glial inactivation properties, especially in microglia in vitro and in vivo.
Collapse
Affiliation(s)
- Fan-Li Lin
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112-21, Taiwan.
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Yu-Cheng Kuo
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Jaw-Jou Kang
- School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112-21, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110-31, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110-31, Taiwan.
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110-31, Taiwan.
| |
Collapse
|
49
|
Song X, Wen X, He J, Zhao H, Li S, Wang M. Phytochemical components and biological activities of Artemisia argyi. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
50
|
Delavatine A, an unusual isoquinoline alkaloid exerts anti-inflammation on LPS-induced proinflammatory cytokines production by suppressing NF-κB activation in BV-2 microglia. Biochem Biophys Res Commun 2018; 502:202-208. [DOI: 10.1016/j.bbrc.2018.05.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
|