1
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhang L, Jin G, Zhang W, Wang Q, Liang Y, Dong Q. CircRNA Arf3 suppresses glomerular mesangial cell proliferation and fibrosis in diabetic nephropathy via miR-107-3p/Tmbim6 axis. J Bioenerg Biomembr 2024; 56:543-552. [PMID: 39120858 PMCID: PMC11455692 DOI: 10.1007/s10863-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Diabetic nephropathy (DN) is one of microvascular complication associated with diabetes. Circular RNAs (circRNAs) have been shown to be involved in DN pathogenesis. Hence, this work aimed to explore the role and mechanism of circ_Arf3 in DN. Mouse mesangial cells (MCs) cultured in high glucose (HG) condition were used for functional analysis. Cell proliferation was determined using 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 assays. Western blotting was used to measure the levels of proliferation indicator PCNA and fibrosis-related proteins α-smooth muscle actin (α-SMA), collagen I (Col I), fibronectin (FN), and collagen IV (Col IV). The binding interaction between miR-107-3p and circ_Arf3 or Tmbim6 (transmembrane BAX inhibitor motif containing 6) was confirmed using dual-luciferase reporter and pull-down assays. Circ_Arf3 is a stable circRNA, and the expression of circ_Arf3 was decreased after HG treatment in MCs. Functionally, ectopic overexpression of circ_Arf3 protected against HG-induced proliferation and elevation of fibrosis-related proteins in MCs. Mechanistically, circ_Arf3 directly bound to miR-107-3p, and Tmbim6 was a target of miR-107-3p. Further rescue assay showed miR-107-3p reversed the protective action of circ_Arf3 on MCs function under HG condition. Moreover, inhibition of miR-107-3p suppressed HG-induced proliferation and fibrosis, which were attenuated by Tmbim6 knockdown in MCs. CircRNA Arf3 could suppress HG-evoked mesangial cell proliferation and fibrosis via miR-107-3p/Tmbim6 axis, indicating the potential involvement of this axis in DN progression.
Collapse
Affiliation(s)
- Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Gang Jin
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Yan Liang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| |
Collapse
|
3
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
4
|
Mao SY, Suo SK, Wang YM, Chi CF, Wang B. Systematical Investigation on Anti-Fatigue Function and Underlying Mechanism of High Fischer Ratio Oligopeptides from Antarctic Krill on Exercise-Induced Fatigue in Mice. Mar Drugs 2024; 22:322. [PMID: 39057431 PMCID: PMC11278274 DOI: 10.3390/md22070322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
High Fischer ratio oligopeptides (HFOs) have a variety of biological activities, but their mechanisms of action for anti-fatigue are less systematically studied at present. This study aimed to systematically evaluate the anti-fatigue efficacy of HFOs from Antarctic krill (HFOs-AK) and explore its mechanism of action through establishing the fatigue model of endurance swimming in mice. Therefore, according to the comparison with the endurance swimming model group, HFOs-AK were able to dose-dependently prolong the endurance swimming time, reduce the levels of the metabolites (lactic acid, blood urea nitrogen, and blood ammonia), increase the content of blood glucose, muscle glycogen, and liver glycogen, reduce lactate dehydrogenase and creatine kinase extravasation, and protect muscle tissue from damage in the endurance swimming mice. HFOs-AK were shown to enhance Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities and increase ATP content in muscle tissue. Meanwhile, HFOs-AK also showed significantly antioxidant ability by increasing the activities of superoxide dismutase and glutathione peroxidase in the liver and decreasing the level of malondialdehyde. Further studies showed that HFOs-AK could regulate the body's energy metabolism and thus exert its anti-fatigue effects by activating the AMPK signaling pathway and up-regulating the expression of p-AMPK and PGC-α proteins. Therefore, HFOs-AK can be used as an auxiliary functional dietary molecules to exert its good anti-fatigue activity and be applied to anti-fatigue functional foods.
Collapse
Affiliation(s)
- Sha-Yi Mao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| | - Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.M.); (S.-K.S.); (Y.-M.W.)
| |
Collapse
|
5
|
Luo X, Gong Y, Jiang Q, Wang Q, Li S, Liu L. Isoquercitrin promotes ferroptosis and oxidative stress in nasopharyngeal carcinoma via the AMPK/NF-κB pathway. J Biochem Mol Toxicol 2024; 38:e23542. [PMID: 37712196 DOI: 10.1002/jbt.23542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Isoquercitrin has been discovered with various biological properties, including anticancer, anti-inflammation, antioxidation, and neuroprotection. The aim of this study is to explore the efficacy of isoquercitrin in nasopharyngeal carcinoma (NPC) and to disclose its potential regulating mechanisms. CNE1 and HNE1 cells were treated with various concentrations of isoquercitrin. Ferrostatin-1 (Fer-1, a ferroptosis inhibitor) and alpha-lipoic acid (ALA, an activator of the AMP-activated protein kinase [AMPK] pathway) treatments were conducted to verify the effects of isoquercitrin, respectively. Cell viability, proliferation, reactive oxygen species (ROS) generation, and lipid peroxidation were determined, respectively. GPX4 expression and ferroptosis- and pathway-related protein expression were measured. A xenograft tumor model was constructed by subcutaneously inoculating CNE1 cells into the middle groin of each mouse. We found that the IC50 values of CNE1 and HNE1 cells were 392.45 and 411.38 μM, respectively. CNE1 and HNE1 viability and proliferation were both markedly reduced with the increasing concentration of isoquercitrin. ROS generation and lipid peroxidation were both enhanced with declined ferroptosis-related markers under isoquercitrin treatment. The nuclear factor kappa B (NF-κB) pathway, the AMPK pathway, and the interleukin (IL)-1β expression were all markedly suppressed by isoquercitrin. Moreover, isoquercitrin restrained the tumor growth and enhanced lipid peroxidation and ferroptosis in vivo. Interestingly, both Fer-1 and ALA treatments distinctly offset isoquercitrin-induced effects in vitro and in vivo. These findings indicated that isoquercitrin might enhance oxidative stress and ferroptosis in NPC via AMPK/NF-κB p65 inhibition.
Collapse
Affiliation(s)
- Xinggu Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yongqian Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Qin Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Songtao Li
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Lijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
6
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
7
|
Zhang T, Zhang D, Zhang Z, Tian J, An J, Zhang W, Ben Y. Alpha-lipoic acid activates AMPK to protect against oxidative stress and apoptosis in rats with diabetic peripheral neuropathy. Hormones (Athens) 2023; 22:95-105. [PMID: 36289188 DOI: 10.1007/s42000-022-00413-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To investigate the AMPK pathway-mediated effect of alpha-lipoic acid (ALA) on the dorsal root ganglia (DRGs) of rats with diabetic peripheral neuropathy (DPN) and to attempt to elucidate the underlying mechanism. METHODS Sprague-Dawley rats (n = 15) were randomly divided into three groups. The control group was fed a standard diet, and the other groups were fed a high-carbohydrate/high-fat diet. Diabetes was established by a single streptozotocin (STZ) (30 mg/kg) injection, and control rats were injected with an equal volume of citrate buffer. ALA (60 mg/kg/day) was administered for 12 weeks. The nerve conduction velocity (NCV) of the sciatic nerve was measured. Glutathione (GSH) and malondialdehyde (MDA) concentrations in serum were measured with the thiobarbituric acid method and biochemistry. Pathological changes in the rat DRGs were observed. AMPK, phospho-AMPK (p-AMPK), nuclear factor erythroid-2-related factor 2 (Nrf2), phospho-nuclear factor erythroid-2-related factor 2 (p-Nrf2), heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), Forkhead box O3 (FoxO3a), phospho-Forkhead box O3 (p-FoxO3a), and Bcl-2 interacting mediator of cell death (Bim) expression levels were assessed by immunohistochemistry and western blotting. RESULTS ALA improved the motor NCV (MNCV) and sensory NCV (SNCV) of rats with DPN and reduced their mechanical pain threshold. ALA increased serum GSH concentrations and decreased serum MDA concentrations. Additionally, AMPK was activated by ALA. Nrf2, p-Nrf2, HO-1, and NQO1 expression was upregulated, while FoxO3a, p-FoxO3a, and Bim expression was downregulated. ALA reduced oxidative stress and apoptosis in DRG. CONCLUSION ALA alleviates DPN and improves peripheral nerve function. ALA reduces oxidative stress by activating Nrf2 through AMPK and inhibits FoxO3a and Bim thereby reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Tianya Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Dong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Zhihong Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jiaxin Tian
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jingwen An
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Wang Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ying Ben
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Kim AH, Kolesnikova M, Ngo WK, Tsang SH. Effects of medications on hypoxia-inducible factor in the retina: A review. Clin Exp Ophthalmol 2023; 51:205-216. [PMID: 36594241 DOI: 10.1111/ceo.14161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Hypoxia-inducible factor (HIF) plays a critical role in the mechanisms that allow cells to adapt to various oxygen levels in the environment. Specifically, HIF-1⍺ has shown to be widely involved in cellular repair, survival, and energy metabolism. HIF-1⍺ has also been found in increased levels in cancer cells, highlighting the importance of balance in the hypoxic response. Promoting HIF-1⍺ activity as a potential therapy for degenerative diseases and inhibiting HIF-1⍺ as a therapy for pathologies with overactive cell proliferation are actively being explored. Digoxin and metformin, HIF-1⍺ inhibitors, and deferoxamine and ⍺-ketoglutarate analogues, HIF-1⍺ activators, are being studied for application in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, these same medications have retinal toxicities that must be assessed before implementation of therapeutic care. Herein, we highlight the duality of therapeutic and toxic potential of HIF-1⍺ that must be carefully assessed prior to its clinical application in retinal disorders.
Collapse
Affiliation(s)
- Angela H Kim
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Masha Kolesnikova
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Wei Kiong Ngo
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,Departments of Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, New York, USA.,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Chemotherapy-Induced Peripheral Neuropathy. Handb Exp Pharmacol 2023; 277:299-337. [PMID: 36253554 DOI: 10.1007/164_2022_609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many common anti-cancer agents that can lead to dose reduction or treatment discontinuation, which decrease chemotherapy efficacy. Long-term CIPN can interfere with activities of daily living and diminish the quality of life. The mechanism of CIPN is not yet fully understood, and biomarkers are needed to identify patients at high risk and potential treatment targets. Metabolomics can capture the complex behavioral and pathophysiological processes involved in CIPN. This chapter is to review the CIPN metabolomics studies to find metabolic pathways potentially involved in CIPN. These potential CIPN metabolites are then investigated to determine whether there is evidence from studies of other neuropathy etiologies such as diabetic neuropathy and Leber hereditary optic neuropathy to support the importance of these pathways in peripheral neuropathy. Six potential biomarkers and their putative mechanisms in peripheral neuropathy were reviewed. Among these biomarkers, histidine and phenylalanine have clear roles in neurotransmission or neuroinflammation in peripheral neuropathy. Further research is needed to discover and validate CIPN metabolomics biomarkers in large clinical studies.
Collapse
|
10
|
Yang Z, Lian W, Waiho K, Zhu L, Chen A, Cheng Y, Wang Y. Effects of copper exposure on lipid metabolism and SREBP pathway in the Chinese mitten crab Eriocheir sinensis. CHEMOSPHERE 2022; 308:136556. [PMID: 36155024 DOI: 10.1016/j.chemosphere.2022.136556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is not only a common metal pollutant in the aquatic environment but also an essential trace element for aquatic organisms such as the Chinese mitten crab (Eriocheir sinensis). Cu is known to regulate lipid metabolism yet exert toxic effects if ingested in excess. However, the molecular regulatory roles of Cu in the lipid metabolism of crabs remains unclear. Thus, this study investigated the potential regulatory mechanism of Cu onto lipid metabolism of E. sinensis following acute Cu exposure. Crabs were exposed to environmental concentration of Cu (50 μg/L) for 96 h, and the expression of sterol regulatory element binding protein (SREBP) was knocked down by RNA interference (RNAi) to test its effect on Cu exposure. The results showed that RNAi significantly attenuated the Cu exposure-induced increase in lipid synthesis and triglycerides (TG) hydrolysis, while significantly inhibited the Cu exposure-induced decrease in fatty acid β-oxidation, suggesting that SREBP is involved in Cu-induced lipid metabolism. Subsequent analyses of the transcriptome results further revealed potential responsive genes of SREBP that were linked to lipid metabolism and immune regulation. Moreover, Cu may affect lipid metabolism through the TOR-SREBP pathway in E. sinensis. This work provides a reference for exploring the effects of Cu on lipid metabolism disorders in crustaceans.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wan Lian
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
11
|
Zhu R, Lei Y, Shi F, Tian Q, Zhou X. Arginine Reduces Glycation in γ 2 Subunit of AMPK and Pathologies in Alzheimer's Disease Model Mice. Cells 2022; 11:3520. [PMID: 36359916 PMCID: PMC9655994 DOI: 10.3390/cells11213520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2023] Open
Abstract
UNLABELLED The metabolism disorders are a common convergence of Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). The characteristics of AD are senile plaques and neurofibrillary tangles (NFTs) composed by deposits of amyloid-β (Aβ) and phosphorylated tau, respectively. Advanced glycation end-products (AGEs) are a stable modification of proteins by non-enzymatic reactions, which could result in the protein dysfunction. AGEs are associated with some disease developments, such as diabetes mellitus and AD, but the effects of the glycated γ2 subunit of AMPK on its activity and the roles in AD onset are unknown. METHODS We studied the effect of glycated γ2 subunit of AMPK on its activity in N2a cells. In 3 × Tg mice, we administrated L-arginine once every two days for 45 days and evaluated the glycation level of γ2 subunit and function of AMPK and alternation of pathologies. RESULTS The glycation level of γ2 subunit was significantly elevated in 3 × Tg mice as compared with control mice, meanwhile, the level of pT172-AMPK was obviously lower in 3 × Tg mice than that in control mice. Moreover, we found that arginine protects the γ2 subunit of AMPK from glycation, preserves AMPK function, and improves pathologies and cognitive deficits in 3 × Tg mice. CONCLUSIONS Arginine treatment decreases glycated γ2 subunit of AMPK and increases p-AMPK levels in 3 × Tg mice, suggesting that reduced glycation of the γ2 subunit could ameliorate AMPK function and become a new target for AD therapy in the future.
Collapse
Affiliation(s)
| | | | | | - Qing Tian
- Key Laboratory of Neurological Disease of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinwen Zhou
- Key Laboratory of Neurological Disease of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Yong Z, Ruiqi W, Yanan Y, Ning M, Zhi Z, Yinfeng T, Lin D, Yiying L, Weiying L, Chongming W, Xiaopo Z. Laurolitsine ameliorates type 2 diabetes by regulating the hepatic LKB1-AMPK pathway and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154423. [PMID: 36075181 DOI: 10.1016/j.phymed.2022.154423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is a highly prevalent chronic metabolic disease. Effective antidiabetic drugs are needed to improve and expand the available treatments. Using the ob/ob diabetic mouse model, we previously demonstrated that the alkaloid-rich extract from Litsea glutinosa bark (CG) has potent antidiabetic effects and that laurolitsine (LL) is the richest alkaloid in CG. PURPOSE We conducted a systematic investigation of the antidiabetic effects and potential mechanisms of LL in vitro and in vivo. METHODS The antidiabetic effects of LL and its mechanisms of action were explored in HL-7702 hepatocytes in vitro and in db/db mice in vivo by a series of experiments, including cellular toxicity analysis, glucose consumption analysis, serum/liver biochemical analysis, pathological examinations, Western blots, RNA-seq analysis, and gut microbiota analysis. RESULTS LL stimulated glucose consumption and activated AMP-activated protein kinase (AMPK) without inducing lactic acid production or cytotoxicity in vitro. LL had potent antidiabetic effects with hypoglycemic activity in vivo. It improved insulin resistance, glucose tolerance and lipid metabolism; protected liver, renal and pancreatic functions; and promoted weight loss in db/db mice. Transcriptomic analysis suggested that the antidiabetic effects of LL involved the regulation of mitochondrial oxidative phosphorylation. We further demonstrated that LL effectively activated the hepatic liver kinase B1 (LKB1)/AMPK pathway by regulating the ADP/ATP ratio. Simultaneously, LL significantly modulated the gut microbial community, specifically decreasing the abundances of Mucispirillum schaedleri and Anaerotruncus_sp_G3_2012, which might also contribute to its antidiabetic effects. CONCLUSION These results suggest that LL is a promising antidiabetic drug candidate that may improve glucolipid metabolism via modulation of the hepatic LKB1/AMPK pathway and the gut microbiota.
Collapse
Affiliation(s)
- Zhang Yong
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China
| | - Wang Ruiqi
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No.3 Xueyuan Road, Chengxi Town, Haikou City, Hainan Province 571199, China
| | - Yang Yanan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100193, China
| | - Ma Ning
- Reproductive Medical Center, Hainan Woman and Children's Medical Center, Haikou 570206, China
| | - Zhou Zhi
- Reproductive Medical Center, Hainan Woman and Children's Medical Center, Haikou 570206, China
| | - Tan Yinfeng
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No.3 Xueyuan Road, Chengxi Town, Haikou City, Hainan Province 571199, China
| | - Dong Lin
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No.3 Xueyuan Road, Chengxi Town, Haikou City, Hainan Province 571199, China
| | - Li Yiying
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No.3 Xueyuan Road, Chengxi Town, Haikou City, Hainan Province 571199, China
| | - Lu Weiying
- Reproductive Medical Center, Hainan Woman and Children's Medical Center, Haikou 570206, China
| | - Wu Chongming
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhang Xiaopo
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No.3 Xueyuan Road, Chengxi Town, Haikou City, Hainan Province 571199, China.
| |
Collapse
|
13
|
Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT, Wang Y. Glycyrrhizic Acid and Its Derivatives: Promising Candidates for the Management of Type 2 Diabetes Mellitus and Its Complications. Int J Mol Sci 2022; 23:10988. [PMID: 36232291 PMCID: PMC9569462 DOI: 10.3390/ijms231910988] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in β-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
14
|
Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharm Res 2022; 45:475-493. [PMID: 35767208 PMCID: PMC9325846 DOI: 10.1007/s12272-022-01391-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers’ count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1β), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA’s beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.
Collapse
|
15
|
Abdelkader NF, Elbaset MA, Moustafa PE, Ibrahim SM. Empagliflozin mitigates type 2 diabetes-associated peripheral neuropathy: a glucose-independent effect through AMPK signaling. Arch Pharm Res 2022. [PMID: 35767208 DOI: 10.1007/s12272-022-01391-5/figures/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Diabetic peripheral neuropathy (DPN) represents a severe microvascular condition that dramatically affects diabetic patients despite adequate glycemic control, resulting in high morbidity. Thus, recently, anti-diabetic drugs that possess glucose-independent mechanisms attracted attention. This work aims to explore the potentiality of the selective sodium-glucose cotransporter-2 inhibitor, empagliflozin (EMPA), to ameliorate streptozotocin-induced DPN in rats with insight into its precise signaling mechanism. Rats were allocated into four groups, where control animals received vehicle daily for 2 weeks. In the remaining groups, DPN was elicited by single intraperitoneal injections of freshly prepared streptozotocin and nicotinamide (52.5 and 50 mg/kg, respectively). Then EMPA (3 mg/kg/p.o.) was given to two groups either alone or accompanied with the AMPK inhibitor dorsomorphin (0.2 mg/kg/i.p.). Despite the non-significant anti-hyperglycemic effect, EMPA improved sciatic nerve histopathological alterations, scoring, myelination, nerve fibers' count, and nerve conduction velocity. Moreover, EMPA alleviated responses to different nociceptive stimuli along with improved motor coordination. EMPA modulated ATP/AMP ratio, upregulated p-AMPK while reducing p-p38 MAPK expression, p-ERK1/2 and consequently p-NF-κB p65 as well as its downstream mediators (TNF-α and IL-1β), besides enhancing SOD activity and lowering MDA content. Moreover, EMPA downregulated mTOR and stimulated ULK1 as well as beclin-1. Likewise, EMPA reduced miR-21 that enhanced RECK, reducing MMP-2 and -9 contents. EMPA's beneficial effects were almost abolished by dorsomorphin administration. In conclusion, EMPA displayed a protective effect against DPN independently from its anti-hyperglycemic effect, probably via modulating the AMPK pathway to modulate oxidative and inflammatory burden, extracellular matrix remodeling, and autophagy.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Marawan A Elbaset
- Medical Research and Clinical Studies Institute, Pharmacology, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Medical Research and Clinical Studies Institute, Pharmacology, National Research Centre, Giza, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
16
|
Jiang Y, Luo H, Zhao Z, Feng L. Estrogen Facilitates the Healing of Diabetic Wounds via Ameliorating the Function of Bone Marrow Mesenchymal Stem Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We inted to elucidate the impacts of estrogen on the bone marrow-originated endothelial progenitor cells (BM-EPC) and mesenchymal stem cells (BM-MSC) as well as on diabetic wound healing. The skin injury models were established using the diabetic mice (db+/db+) and non-diabetic vector
mice and then treated with estrogen-based or placebo-based cream. On the 5th day following injury, BM cells were collected for quantification of EPCs and MSCs and colony-forming units along with analysis of wound healing rate and densities of blood vessels and scars following whole-body perfusion.
EPCs were identified through staining of VEGFR1 and CD34 by immunohistochemistrical analyses. In contrast to placebo, treatment with estrogen significantly intensified the colony formation of EPC and MSC, and further promoted the viability and proliferation potential of cells. Meanwhile, estrogen-treated
mice exhibited increased recruitment of EPC to the diabetic wounds along with increased vascular density. Additionally, on day 6 after injury, estrogen significantly accelerated wound healing, which was mediated by the enhanced collagen deposition through boosting MSC activation and differentiation,
resulting in elevated scar density. In conclusion, estrogen prompts wound healing of diabetic mice via ameliorating the function of BM-derived EPC and MSC, so as to accelerate the neovascularization at the sites of wounds in diabetic mice.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Clinical Laboratory, The People’s Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong City, Chuxiong Yi Autonomous Prefecture, Yunnan Province, 675000, China
| | - Heng Luo
- Department of Ophthalmology, The People’s Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong City, Chuxiong Yi Autonomous Prefecture, Yunnan Province, 675000, China
| | - Zhengke Zhao
- Department of Teaching & Research, The People’s Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong City, Chuxiong Yi Autonomous Prefecture, Yunnan Province, 675000, China
| | - Lei Feng
- Department of Clinical Laboratory, The People’s Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong City, Chuxiong Yi Autonomous Prefecture, Yunnan Province, 675000, China
| |
Collapse
|
17
|
Shah D, Challagundla N, Dave V, Patidar A, Saha B, Nivsarkar M, Trivedi VB, Agrawal-Rajput R. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153904. [PMID: 35231825 DOI: 10.1016/j.phymed.2021.153904] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Berberine is a plant-derived alkaloid with potent anti-cancer activities. Berberine may redirect the tumor-promoting immunosuppressive M2 macrophages, to tumoricidal activated M1 macrophages. But such an anti-tumor function remains to be demonstrated. HYPOTHESIS Polarization of macrophages to an immunosuppressive phenotype within the tumor microenvironment promotes tumor growth and contributes to resistance to chemotherapy. We examined if berberine would target macrophage polarization to reinstate anti-tumor immune response. STUDY DESIGN Using a B16F10 mouse melanoma model, we assessed berberine-induced re-polarization of immunosuppressive M2 macrophages to anti-tumor M1 macrophages and subsequent T-cell activation within the immunosuppressive tumor microenvironment. METHODS The B16F10 culture supernatant along with tumor antigen was used as tumor mimicking conditioned medium (CM). The bone marrow-derived macrophages were cultured in CM for 5 days. The CM-induced skewing of macrophages to M2-like phenotype was confirmed by flow cytometry and ELISA. The T-cells were co-cultured with macrophages to decipher the effect of berberine on T-cell differentiation. In vivo efficacy of berberine was analyzed using melanoma model of solid tumor. RESULTS Berberine inhibited rIL-6-induced STAT-3 phosphorylation and IL-10 release from B16F10 cells. It enhanced tumor antigen-induced IL-1β, IL-12 and TNFα, but suppressed IL-6 and TGF-β release. Berberine significantly prevented the tumor antigen-mediated IL-10-enhanced IL-6 and TGF-β expression. The CM skewed the bone marrow-derived macrophages to CD206-high but MHC-II-low M2-like tumor-associated macrophages. Berberine partially prevented the generation of these macrophages and was associated with reduced C/EBPβ and Egr2 mRNA expression and lowered IL-10 and TGF-β production. Berberine significantly reduced Arginase-1 expression in CM-treated M1 and M2-like macrophages. Berberine increased MHC-II and CD40 expression on the macrophages augmenting the CTL activity and the number of IFNγ-producing CD4+ T-cells. Berberine significantly lowered tumor volume, weight and enhanced the frequency of M1-like macrophages in mice. CONCLUSION These data indicate that berberine interferes with pro-tumor macrophage polarization and IL-10 and TGF-β release but restores Tcell anti-tumor cytotoxicity in the tumor microenvironment.
Collapse
Affiliation(s)
- Dhruvi Shah
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382 426, India
| | - Naveen Challagundla
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382 426, India
| | - Vaidehi Dave
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382 426, India
| | - Ashok Patidar
- National Centre for Cell Science (NCCS), Pune 411 007, India
| | - Bhaskar Saha
- National Centre for Cell Science (NCCS), Pune 411 007, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B.V. Patel PERD Centre, Ahmedabad, Gujarat 380 054, India
| | - Varsha B Trivedi
- Department of Pathology, Laboratory Medicine, Transfusion Services and Immuno haematology, IKDRC-ITS, Ahmedabad 380 016, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382 426, India.
| |
Collapse
|
18
|
Song F, Mao YJ, Hu Y, Zhao SS, Wang R, Wu WY, Li GR, Wang Y, Li G. Acacetin attenuates diabetes-induced cardiomyopathy by inhibiting oxidative stress and energy metabolism via PPAR-α/AMPK pathway. Eur J Pharmacol 2022; 922:174916. [PMID: 35341782 DOI: 10.1016/j.ejphar.2022.174916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Diabetic cardiomyopathy seriously affects the life quality of diabetic patients and can lead to heart failure and death in severe cases. Acacetin was reported to be an anti-oxidant and anti-inflammatory agent in several cardiovascular diseases. However, the effect of acacetin on diabetic cardiomyopathy was not understood. This study was designed to explore the therapeutic effect of acacetin on diabetic cardiomyopathy and the potential mechanism with in vitro and in vivo experimental techniques. In cultured neonatal rat cardiomyocytes and H9C2 cardiac cells, acacetin (0.3, 1, 3 μM) showed effective protection against high glucose-induced injury in a concentration-dependent manner. Acacetin countered high glucose-induced increase of Bax and decrease of Bcl-2, SOD1, and SOD2. In streptozotocin-induced rat diabetic cardiomyopathy model, treatment with acacetin prodrug (10 mg/kg, s.c., b.i.d.) significantly improved the cardiac function and reduced myocardial injury, and reversed the increase of serum MDA, Ang Ⅱ, and IL-6 levels and myocardial Bax and IL-6, and the decrease of serum SOD, indicating that acacetin plays a cardioprotective effect by inhibiting oxidative stress, inflammation, and apoptosis. In addition, both in vitro and in vivo experimental results showed that acacetin increased the expression of PPAR-α and pAMPK, indicating that PPAR-α and pAMPK are potential targets of acacetin for the protection against diabetic cardiomyopathy. This study demonstrates the new application of acacetin for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China
| | - Yi-Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China
| | - Shan-Shan Zhao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China
| | - Ruiying Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China
| | - Wei-Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China.
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China; Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu, 210032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian province, China.
| |
Collapse
|
19
|
Sarma P, Bharadwaj S, Swargiary D, Ahmed SA, Sheikh Y, Barge SR, Manna P, Talukdar NC, Bora J, Borah JC. Iridoid glycoside isolated from Wendlandia glabrata and the role of its enriched fraction in regulating AMPK/PEPCK/G6Pase signaling pathway of hepatic gluconeogenesis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochemical investigation of W. glabrata and antihyperglycemic potential of isolated novel iridoid glycoside enriched fraction in CC1 hepatocytes and STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Pranamika Sarma
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
- Department of Chemistry, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India
| | - Simanta Bharadwaj
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
| | - Deepsikha Swargiary
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Semim Akhtar Ahmed
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Yunus Sheikh
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
| | - Sagar Ramrao Barge
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Narayan Chandra Talukdar
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
- Currently, Assam Down Town University, Sankar Madhab Path Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Jayanta Bora
- CSIR-North East Institute of Science and Technology Branch Itanagar, Itanagar, 791110, Arunachal Pradesh, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati 781035, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
20
|
Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. Molecules 2021; 26:6836. [PMID: 34833928 PMCID: PMC8618521 DOI: 10.3390/molecules26226836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria 21511, Egypt
| |
Collapse
|
21
|
Portes J, Bullón B, Quiles JL, Battino M, Bullón P. Diabetes Mellitus and Periodontitis Share Intracellular Disorders as the Main Meeting Point. Cells 2021; 10:cells10092411. [PMID: 34572060 PMCID: PMC8467361 DOI: 10.3390/cells10092411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes and periodontitis are two of the most prevalent diseases worldwide that negatively impact the quality of life of the individual suffering from them. They are part of the chronic inflammatory disease group or, as recently mentioned, non-communicable diseases, with inflammation being the meeting point among them. Inflammation hitherto includes vascular and tissue changes, but new technologies provide data at the intracellular level that could explain how the cells respond to the aggression more clearly. This review aims to emphasize the molecular pathophysiological mechanisms in patients with type 2 diabetes mellitus and periodontitis, which are marked by different impaired central regulators including mitochondrial dysfunction, impaired immune system and autophagy pathways, oxidative stress, and the crosstalk between adenosine monophosphate-activated protein kinase (AMPK) and the renin-angiotensin system (RAS). All of them are the shared background behind both diseases that could explain its relationship. These should be taken in consideration if we would like to improve the treatment outcomes. Currently, the main treatment strategies in diabetes try to reduce glycemia index as the most important aspect, and in periodontitis try to reduce the presence of oral bacteria. We propose to add to the therapeutic guidelines the handling of all the intracellular disorders to try to obtain better treatment success.
Collapse
Affiliation(s)
- Juliana Portes
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - Beatriz Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
| | - José Luis Quiles
- Biomedical Research Center (CIBM), Department of Physiology, University Campus of Cartuja, Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C/Isabel Torres, 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche. Via Tronto 10A, 60126 Torrette di Ancona, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Seville, C/Avicena, s/n, 41009 Seville, Spain; (J.P.); (B.B.)
- Correspondence:
| |
Collapse
|
22
|
Han B, Wang J, Wu J, Yan F, Wang Y, Li J. High glucose‑induced upregulation of CD36 promotes inflammation stress via NF‑κB in H9c2 cells. Mol Med Rep 2021; 24:764. [PMID: 34490487 PMCID: PMC8430300 DOI: 10.3892/mmr.2021.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac inflammation serves an important role in the progression of diabetic cardiomyopathy. CD36 (cluster of differentiation 36) mediates inflammation stress in a variety of disease states. The present study investigated CD36 expression in high glucose (HG)-induced H9c2 cells, whether CD36 upregulation promotes inflammatory stress, and its potential mechanism. HG induced CD36 expression in a time-dependent manner in cells, which was blocked following CD36 knockout or treatment with N-acetylcysteine or MitoTEMPO. CD36 translocation to the cell membrane was increased at 72 h by HG stimulation of H9c2 cells. Moreover, CD36 knockout inhibited HG-induced reactive oxygen species (ROS) generation, tumor necrosis factor-α, interleukin (IL)-6 and IL-1β expression, and nuclear factor (NF)-κB pathway activation. Further, CD36 knockout reversed metabolic reprogramming, lipid accumulation and AMP-activated protein kinase activation caused by HG. The aforementioned data suggest that HG-induced upregulation of CD36 promotes inflammatory stress via NF-κB in H9c2 cells, mediated by metabolism reprogramming, lipid accumulation and enhanced ROS generation.
Collapse
Affiliation(s)
- Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Jianzhong Wang
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Jiawei Wu
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Fang Yan
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Yaru Wang
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Jun Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
23
|
Solly EL, Psaltis PJ, Bursill CA, Tan JTM. The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications. Front Pharmacol 2021; 12:718679. [PMID: 34483928 PMCID: PMC8414254 DOI: 10.3389/fphar.2021.718679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.
Collapse
Affiliation(s)
- Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: Nonapoptotic Cell Death, Immunosuppression, and Effects beyond the AMPK Pathway. Int J Mol Sci 2021; 22:ijms22179453. [PMID: 34502359 PMCID: PMC8430477 DOI: 10.3390/ijms22179453] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.
Collapse
|
25
|
Behl T, Gupta A, Sehgal A, Sharma S, Singh S, Sharma N, Diaconu CC, Rahdar A, Hafeez A, Bhatia S, Al-Harrasi A, Bungau S. A spotlight on underlying the mechanism of AMPK in diabetes complications. Inflamm Res 2021; 70:939-957. [PMID: 34319417 DOI: 10.1007/s00011-021-01488-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Camelia Cristina Diaconu
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, Bucharest, Romania.,Department 5, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur, Uttar Pradesh, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
26
|
Yang Y, Wu Y, Zou J, Wang YH, Xu MX, Huang W, Yu DJ, Zhang L, Zhang YY, Sun XD. Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Enhancing Energy Expenditure and Regulating Autophagy via AMPK. Front Pharmacol 2021; 12:687095. [PMID: 34163366 PMCID: PMC8215389 DOI: 10.3389/fphar.2021.687095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The prevalence of non-alcoholic fatty liver disease (NAFLD) keeps growing recently. Purpose: To investigate the effects and mechanisms of naringenin (NAR) on NAFLD. Methods: High-fat diet (HFD)-induced NAFLD rats were orally administered with NAR at 10, 30, and 90 mg/kg for 2 weeks. The serum level of triglyceride (TG), total cholesterol (TC), glutamic-oxaloacetic transaminase (AST), and glutamic-pyruvic transaminase (ALT) was measured. The hepatic histology was detected by H&E and oil red O staining. L02 and Huh-7 cells were induced by sodium oleate to establish a NAFLD cell model. The effects of NAR on lipid accumulation were detected by oil red O staining. The glucose uptake and ATP content of 3T3-L1 adipocytes and C2C12 myotubes were measured. The expression of proteins of the AMPK signaling pathway in 3T3-L1 adipocytes and C2C12 myotubes was assessed by Western blotting. The mitochondrial biogenesis of 3T3-L1 adipocytes and C2C12 myotubes was measured by mitotracker orange staining and Western blotting. The biomarkers of autophagy were detected by Western blotting and immunofluorescence. The binding of NAR to AMPKγ1 was analyzed by molecular docking. Chloroquine and compound C were employed to block autophagic flux and AMPK, respectively. Results: NAR alleviated HFD-induced NAFLD in rats at 10, 30, and 90 mg/kg. NAR attenuated lipid accumulation in L02 and Huh-7 cells at 0.7, 2.2, 6.7, and 20 μM. NAR increased glucose uptake, decreased the ATP content, activated the CaMKKβ/AMPK/ACC pathway, and enhanced the mitochondrial biogenesis in 3T3-L1 adipocytes and C2C12 myotubes. NAR increased autophagy and promoted the initiation of autophagic flux in 3T3-L1 preadipocytes and C2C12 myoblasts, while it inhibited autophagy in NAFLD rats, 3T3-L1 adipocytes, and C2C12 myotubes. Molecular docking showed that NAR binds to AMPKγ1. Compound C blocked effects of NAR on lipid accumulation and autophagy in L02 cells. Conclusion: NAR alleviates NAFLD by increasing energy expenditure and regulating autophagy via activating AMPK directly and indirectly. The direct binding of NAR and AMPKγ1 needs further validation.
Collapse
Affiliation(s)
- Ying Yang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yue Wu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jie Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu-Hao Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Meng-Xia Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dao-Jiang Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
27
|
MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3. Biosci Rep 2021; 40:222706. [PMID: 32309847 PMCID: PMC7189364 DOI: 10.1042/bsr20193653] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) is one of the most severe and frequent diabetic complications. MicroRNAs (miRNAs) have been reported to play a vital role in DN pathogenesis. The present study aimed to investigate the molecular mechanism of miR-770-5p in DN. METHODS Podocyte injury model was established by treating mouse podocytes with high glucose (HG, 33 mM) for 24 h. The levels of miR-770-5p and TIMP3 were examined in kidney tissues and podocytes using quantitative real-time PCR (qRT-PCR). Flow cytometry analysis was applied to detect apoptosis in podocytes. Western blot assay was used to measure the protein levels of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax) and tissue inhibitors of metalloproteinase 3 (TIMP3). Enzyme-linked immunosorbent assay (ELISA) was conducted to measure the levels of inflammatory factors. The interaction between miR-770-5p and TIMP3 was determined by MicroT-CDS and luciferase reporter assay. RESULTS MiR-770-5p was up-regulated and TIMP3 was down-regulated in DN kidney tissues and HG-stimulated podocytes. Depletion of miR-770-5p suppressed cell apoptosis and the release of pro-inflammatory factors in HG-treated podocytes. Additionally, TIMP3 was a target of miR-770-5p in HG-treated podocytes. TIMP3 inhibited cell apoptosis and inflammation in HG-treated podocytes. Moreover, TIMP3 knockdown alleviated the inhibitory effect of miR-770-5p silencing on podocyte apoptosis and inflammatory response. CONCLUSION Knockdown of miR-770-5p suppressed podocyte apoptosis and inflammatory response by targeting TIMP3 in HG-treated podocytes, indicating that miR-770-5p may be a potential therapeutic target for DN therapy.
Collapse
|
28
|
Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene 2021; 780:145532. [PMID: 33631244 DOI: 10.1016/j.gene.2021.145532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
As one of the most common complications of diabetes, nephropathy develops in approximately 40% of diabetic individuals. Although end stage kidney disease is known as one of the most consequences of diabetic nephropathy, the majority of diabetic individuals might die from cardiovascular diseases and infections before renal replacement treatment. Moreover, the routine medical treatments for diabetes hold undesirable side effects. The explosive prevalence of diabetes urges clinicians and scientists to investigate the complementary or alternative therapies. Phytochemicals are emerging as alternatives with a wide range of therapeutic effects on various pathologies, including diabetic kidney disease. Of those phytochemicals, resveratrol, a natural polyphenolic stilbene, has been found to exert a broad spectrum of health benefits via various signaling molecules. In particular, resveratrol has gained a great deal of attention because of its anti-oxidative, anti-inflammatory, anti-diabetic, anti-obesity, cardiovascular-protective, and anti-tumor properties. In the renal system, emerging evidence shows that resveratrol has already been used to ameliorate chronic or acute kidney injury. This review critically summarizes the current findings and molecular mechanisms of resveratrol in diabetic renal damage. In addition, we will discuss the adverse and inconsistent effects of resveratrol in diabetic nephropathy. Although there is increasing evidence that resveratrol affords great potential in diabetic nephropathy therapy, these results should be treated with caution before its clinical translation. In addition, the unfavorable pharmacokinetics and/or pharmacodynamics profiles, such as poor bioavailability, may limit its extensive clinical applications. It is clear that further research is needed to unravel these limitations and improve its efficacy against diabetic nephropathy. Increasing investigation of resveratrol in diabetic kidney disease will not only help us better understand its pharmacological actions, but also provide novel potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
29
|
Ma X, Zhang J, Wu Z, Wang X. Chicoric acid attenuates hyperglycemia-induced endothelial dysfunction through AMPK-dependent inhibition of oxidative/nitrative stresses. J Recept Signal Transduct Res 2020; 41:378-392. [PMID: 32900249 DOI: 10.1080/10799893.2020.1817076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial dysfunction is a driving force during the development and progression of cardiovascular complications in diabetes. Targeting endothelial injury may be an attractive avenue for the management of diabetic vascular disorders. Chicoric acid is reported to confer antioxidant and anti-inflammatory properties in various diseases including diabetes. However, the role and mechanism of chicoric acid in hyperglycemia-induced endothelial damage are not well understood. METHODS In the present study, human umbilical vein endothelial cells (HUVECs) were incubated with high glucose/high fat (HG + HF) to induce endothelial cell injury. RESULTS We found that exposure of HUVECs to HG + HF medium promoted the release of cytochrome c (cytc) from mitochondrion into the cytoplasm, stimulated the cleavage of caspase-3 and poly ADP-ribose-polymerase (PARP), then inducing cell apoptosis, the effects that were prevented by administration of chicoric acid. Besides, we found that chicoric acid diminished HG + HF-induced phosphorylation and degradation of IκBα, and subsequent p65 NFκB nuclear translocation, thereby contributing to its anti-inflammatory effects in HUVECs. We also confirmed that chicoric acid mitigated oxidative/nitrative stresses under HG + HF conditions. Studies aimed at exploring the underlying mechanisms found that chicoric acid activated the AMP-activated protein kinase (AMPK) signaling pathway to attenuate HG + HF-triggered injury in HUVECs as AMPK inhibitor Compound C or silencing of AMPKα1 abolished the beneficial effects of chicoric acid in HUVECs. CONCLUSION Collectively, chicoric acid is likely protected against diabetes-induced endothelial dysfunction by activation of the AMPK signaling pathway. Chicoric acid could be a novel candidate for the treatment of the diabetes-associated vascular endothelial injury.
Collapse
Affiliation(s)
- Xiaojuan Ma
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Junli Zhang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
31
|
Li Y, Sun R, Zou J, Ying Y, Luo Z. Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells 2019; 8:E752. [PMID: 31331111 PMCID: PMC6678403 DOI: 10.3390/cells8070752] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays important roles in development, stress response, wound healing, tumorigenesis and cancer progression, diabetic retinopathy, and age-related macular degeneration. It is a complex event engaging many signaling pathways including vascular endothelial growth factor (VEGF), Notch, transforming growth factor-beta/bone morphogenetic proteins (TGF-β/BMPs), and other cytokines and growth factors. Almost all of them eventually funnel to two crucial molecules, VEGF and hypoxia-inducing factor-1 alpha (HIF-1α) whose expressions could change under both physiological and pathological conditions. Hypoxic conditions stabilize HIF-1α, while it is upregulated by many oncogenic factors under normaxia. HIF-1α is a critical transcription activator for VEGF. Recent studies have shown that intracellular metabolic state participates in regulation of sprouting angiogenesis, which may involve AMP-activated protein kinase (AMPK). Indeed, AMPK has been shown to exert both positive and negative effects on angiogenesis. On the one hand, activation of AMPK mediates stress responses to facilitate autophagy which stabilizes HIF-1α, leading to increased expression of VEGF. On the other hand, AMPK could attenuate angiogenesis induced by tumor-promoting and pro-metastatic factors, such as the phosphoinositide 3-kinase /protein kinase B (Akt)/mammalian target of rapamycin (PI3K/Akt/mTOR), hepatic growth factor (HGF), and TGF-β/BMP signaling pathways. Thus, this review will summarize research progresses on these two opposite effects and discuss the mechanisms behind the discrepant findings.
Collapse
Affiliation(s)
- Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ruipu Sun
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China.
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China.
| |
Collapse
|