1
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
2
|
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 2021; 19:133. [PMID: 34182994 PMCID: PMC8240315 DOI: 10.1186/s12915-021-01064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. Results First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. Conclusions Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01064-7.
Collapse
Affiliation(s)
- Rohini Bansal
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Zhao X, Fuxjager MJ, McLamore Q, Marler CA. Rapid effects of testosterone on social decision-making in a monogamous California mice (Peromyscus californicus). Horm Behav 2019; 115:104544. [PMID: 31220461 DOI: 10.1016/j.yhbeh.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 01/27/2023]
Abstract
Social animals must cope with challenges and opportunities by adjusting how they react to a salient stimulus. Here we use California mice (Peromyscus californicus) and investigate the mechanisms underlying social decision-making by studying (i) rapid effects of testosterone (T) pulses on a male's decisions to approach a novel male (challenge) versus a receptive female (opportunity), and (ii) whether social experience shapes how such effects are manifested. In Experiment 1, we found that sexually naïve males administered saline injections preferentially approached unfamiliar females over unfamiliar males, in contrast, 10 min after receiving a single T-injection, males expressed a preference for approaching unfamiliar males. Such an effect of T only occurred in sexually naïve males, but not pair-bonded males, suggesting that the rapid effects of T on approach behavior may rely on the pair-bonding experiences. Experiment 2 investigated social decision-making across three repeated exposures to the challenge/opportunity situations. Only the initial decision, approach to the challenge, predicted future aggressive behaviors, and such an effect relied on the rapid actions of T. We also found that experience with the controlled challenge situation (the male intruder was restrained behind a wire mesh) dampened the approach to the male side (potential threat) when later exposed to the same conditions. This suggests that a resident's motivation to defend against a threatening individual may decrease as the threat posed by the "neighbors" is reduced. Overall rapid effects of post-encounter T pulses may play important roles in influencing behavioral decisions during social interactions.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA.
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Quinnehtukqut McLamore
- Department of Psychology and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
4
|
Baum MJ, Cherry JA. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 2015; 68:53-64. [PMID: 24929017 DOI: 10.1016/j.yhbeh.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.
Collapse
Affiliation(s)
- Michael J Baum
- Departments of Biology, Boston University, Boston, MA 02215, USA.
| | - James A Cherry
- Departments of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
The interplay between reproductive social stimuli and adult olfactory bulb neurogenesis. Neural Plast 2014; 2014:497657. [PMID: 25140258 PMCID: PMC4130132 DOI: 10.1155/2014/497657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Adult neurogenesis is a striking form of structural plasticity that adapts the brain to the changing world. Accordingly, new neuron production is involved in cognitive functions, such as memory, learning, and pattern separation. Recent data in rodents indicate a close link between adult neurogenesis and reproductive social behavior. This provides a key to unravel the functional meaning of adult neurogenesis in biological relevant contexts and, in parallel, opens new perspectives to explore the way the brain is processing social stimuli. In this paper we will summarize some of the major achievements on cues and mechanisms modulating adult neurogenesis during social behaviors related to reproduction and possible role/s played by olfactory newborn neurons in this context. We will point out that newborn interneurons in the accessory olfactory bulb (AOB) represent a privileged cellular target for social stimuli that elicit reproductive behaviors and that such cues modulate adult neurogenesis at two different levels increasing both proliferation of neuronal progenitors in the germinative regions and integration of newborn neurons into functional circuits. This dual mechanism provides fresh neurons that can be involved in critical activities for the individual fitness, that is, the processing of social stimuli driving the parental behavior and partner recognition.
Collapse
|
6
|
Grant LM, Richter F, Miller JE, White SA, Fox CM, Zhu C, Chesselet MF, Ciucci MR. Vocalization deficits in mice over-expressing alpha-synuclein, a model of pre-manifest Parkinson's disease. Behav Neurosci 2014; 128:110-21. [PMID: 24773432 PMCID: PMC4079049 DOI: 10.1037/a0035965] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Communication and swallowing deficits are common in Parkinson's disease (PD). Evidence indicates that voice and speech dysfunction manifest early, prior to motor deficits typically associated with striatal dopamine loss. Unlike deficits in the extremities, cranial sensorimotor deficits are refractory to standard dopamine-related pharmacological and surgical interventions, thus the mechanisms underlying vocal deficits are unclear. Although neurotoxin models have provided some insight, they typically model nigrostriatal dopamine depletion and are therefore limited. Widespread alpha-synuclein (aSyn) pathology is common to familial and sporadic PD, and transgenic mouse models based on aSyn overexpression present a unique opportunity to explore vocalization deficits in relation to extrastriatal, nondopaminergic pathologies. Specifically, mice overexpressing human wild-type aSyn under a broad neuronal promoter (Thy1-aSyn) present early, progressive motor and nonmotor deficits starting at 2-3 months, followed by parkinsonism with dopamine loss at 14 months. We recorded ultrasonic vocalizations from Thy1-aSyn mice and wild-type (WT) controls at 2-3, 6-7, and 9 months. Thy1-aSyn mice demonstrated early, progressive vocalization deficits compared with WT. Duration and intensity of calls were significantly reduced and call profile was altered in the Thy1-aSyn mice, particularly at 2-3 months. Call rate trended toward a more drastic decrease with age in the Thy1-aSyn mice compared with WT. Alpha-synuclein pathology is present in the periaqueductal gray and may underlie the manifestation of vocalization deficits. These results indicate that aSyn overexpression can induce vocalization deficits at an early age in mice and provides a new model for studying the mechanisms underlying cranial sensorimotor deficits and treatment interventions for PD.
Collapse
Affiliation(s)
- Laura M Grant
- Department of Surgery, Division of Otolaryngology- Head & Neck Surgery, University of Wisconsin
| | | | | | | | - Cynthia M Fox
- National Center for Voice and Speech, University of Colorado
| | - Chunni Zhu
- Department of Neurology, David Geffen School of Medicine at UCLA
| | | | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin
| |
Collapse
|
7
|
DiBenedictis BT, Helfand AI, Baum MJ, Cherry JA. A quantitative comparison of the efferent projections of the anterior and posterior subdivisions of the medial amygdala in female mice. Brain Res 2013; 1543:101-8. [PMID: 24262912 DOI: 10.1016/j.brainres.2013.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022]
Abstract
In rodents, many aspects of sociosexual behavior are mediated by chemosignals released by opposite-sex conspecifics. These chemosignals are relayed via the main (MOS) and accessory olfactory systems (AOS) to the medial amygdala (Me). The Me is subdivided into anterior (MeA) and posterior (MeP) subnuclei, and lesions targeting these regions have different effects on proceptive courtship behaviors in female mice. Differential behavioral effects of MeA vs. MeP lesions could reflect a difference in the projections of neurons located in these Me subnuclei. To examine this question, we injected female mice with the anterograde tracer, Fluoro-Ruby into either the MeA or MeP and quantified labeled puncta in 11 forebrain target sites implicated in courtship behaviors using confocal fluorescence microscopy. We found that the MeP more densely innervates the medial and intermediate regions of the posterior bed nucleus of the stria terminalis (pBNST) and the posteromedial cortical amygdala (PMCo), while the MeA more densely innervates the horizontal diagonal band of Broca (HDB) and the medial olfactory tubercle (mOT), a region that may be a component of the circuitry responsible for olfactory-mediated motivated behaviors.
Collapse
Affiliation(s)
| | | | - Michael J Baum
- Department of Biology, Boston University, Boston, MA 02215, United States
| | - James A Cherry
- Department of Psychology, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
8
|
Petrulis A. Chemosignals and hormones in the neural control of mammalian sexual behavior. Front Neuroendocrinol 2013; 34:255-67. [PMID: 23911848 DOI: 10.1016/j.yfrne.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Males and females of most mammalian species depend on chemosignals to find, attract and evaluate mates and, in most cases, these appetitive sexual behaviors are strongly modulated by activational and organizational effects of sex steroids. The neural circuit underlying chemosensory-mediated pre- and peri-copulatory behavior involves the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), medial preoptic area (MPOA) and ventromedial hypothalamus (VMH), each area being subdivided into interconnected chemoreceptive and hormone-sensitive zones. For males, MA-BNST connections mediate chemoinvestigation whereas the MA-MPOA pathway regulates copulatory initiation. For females, MA-MPOA/BNST connections also control aspects of precopulatory behavior whereas MA-VMH projections control both precopulatory and copulatory behavior. Significant gaps in understanding remain, including the role of VMH in male behavior and MPOA in female appetitive behavior, the function of cortical amygdala, the underlying chemical architecture of this circuit and sex differences in hormonal and neurochemical regulation of precopulatory behavior.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
9
|
Korzan WJ, Freamat M, Johnson AG, Cherry JA, Baum MJ. Either main or accessory olfactory system signaling can mediate the rewarding effects of estrous female chemosignals in sexually naive male mice. Behav Neurosci 2013; 127:755-62. [PMID: 23978150 DOI: 10.1037/a0033945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A long-held view has been that interest of male mice in female body odors reflects an activation of reward circuits in the male brain following their detection by the vomeronasal organ (VNO) and processing via the accessory olfactory system. We found that adult, sexually naive male mice acquired a conditioned place preference (CPP) after repeatedly receiving estrous female urine on the nose and being placed in an initially nonpreferred chamber with soiled estrous bedding on the floor. CPP was not acquired in control mice that received saline on the nose before being placed in a nonpreferred chamber with clean bedding. Robust acquisition of a CPP using estrous female odors as the reward persisted in separate groups of mice in which VNO-accessory olfactory function was disrupted by bilateral lesioning of the accessory olfactory bulb (AOB) or in which main olfactory function was disrupted by zinc sulfate lesions of the main olfactory epithelium (MOE). By contrast, no CPP was acquired for estrous odors in males that received combined AOB and MOE lesions. Either the main or the accessory olfactory system suffices to mediate the rewarding effects of estrous female odors in the male mouse, even in the absence of prior mating experience. The main olfactory system is part of the circuitry that responds to chemosignals involved in motivated behavior, a role that may be particularly important for humans who lack a functional accessory olfactory system.
Collapse
|
10
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Roberts SA, Davidson AJ, McLean L, Beynon RJ, Hurst JL. Pheromonal induction of spatial learning in mice. Science 2012; 338:1462-5. [PMID: 23239735 DOI: 10.1126/science.1225638] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many mammals use scent marking for sexual and competitive advertisement, but little is known about the mechanism by which scents are used to locate mates and competitors. We show that darcin, an involatile protein sex pheromone in male mouse urine, can rapidly condition preference for its remembered location among females and competitor males so that animals prefer to spend time in the site even when scent is absent. Learned spatial preference is conditioned through contact with darcin in a single trial and remembered for approximately 14 days. This pheromone-induced learning allows animals to relocate sites of particular social relevance and provides proof that pheromones such as darcin can be highly potent stimuli for social learning.
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | | | | | | | | |
Collapse
|
12
|
Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones. PLoS One 2012; 7:e39204. [PMID: 22720075 PMCID: PMC3376129 DOI: 10.1371/journal.pone.0039204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/21/2012] [Indexed: 02/03/2023] Open
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT) and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus) as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus), as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.
Collapse
|
13
|
Dhungel S, Masaoka M, Rai D, Kondo Y, Sakuma Y. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats. Neuroscience 2011; 199:225-34. [PMID: 21983295 DOI: 10.1016/j.neuroscience.2011.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
Abstract
Chemosensory inputs signaling volatile and nonvolatile molecules play a pivotal role in sexual and social behavior in rodents. We have demonstrated that olfactory preference in male rats, that is, attraction to receptive female odors, is regulated by the medial amygdala (MeA), the cortical amygdala (CoA), and the preoptic area (POA). In this paper, we investigated the involvement of two chemosensory organs, the olfactory epithelium (OE) and the vomeronasal organ (VNO), in olfactory preference and copulatory behavior in male rats. We found that olfactory preferences were impaired by zinc sulfate lesion of the OE but not surgical removal of the VNO. Copulatory behaviors, especially intromission frequency and ejaculation, were also suppressed by zinc sulfate treatment. Neuronal activation in the accessory olfactory bulb (AOB), the MeA, the CoA, and the POA was analyzed after stimulation by airborne odors or soiled bedding of estrous females using cFos immunohistochemistry. Although the OE and VNO belong to different neural systems, the main and accessory olfactory systems, respectively, both OE lesion and VNO removal almost equally suppressed the number of cFos-immunoreactive cells in those areas that regulate olfactory preference. These results suggest that signals received by the OE and VNO interact and converge in the early stage of olfactory processing, in the AOB and its targets, although they have distinct roles in the regulation of social behaviors.
Collapse
Affiliation(s)
- S Dhungel
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
14
|
Oboti L, Schellino R, Giachino C, Chamero P, Pyrski M, Leinders-Zufall T, Zufall F, Fasolo A, Peretto P. Newborn interneurons in the accessory olfactory bulb promote mate recognition in female mice. Front Neurosci 2011; 5:113. [PMID: 21994486 PMCID: PMC3182443 DOI: 10.3389/fnins.2011.00113] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/22/2022] Open
Abstract
In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well known model of mating-induced imprinting to avoid pregnancy block, which requires accessory olfactory bulb (AOB) function, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in this brain region. We show that, in adult female mice, exposure to the male urine compounds involved in mate recognition increases the number of new granule cells surviving in the AOB. This process is modulated by male signals sensed through the vomeronasal organ and, in turn, changes the activity of the downstream amygdaloid and hypothalamic nuclei involved in the pregnancy block response. Chemical depletion of newly generated bulbar interneurons causes strong impairment in mate recognition, thus resulting in a high pregnancy failure rate to familiar mating male odors. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odor learning and mate recognition.
Collapse
Affiliation(s)
- Livio Oboti
- Department of Animal and Human Biology, University of Turin Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Trezza V, Campolongo P, Vanderschuren LJMJ. Evaluating the rewarding nature of social interactions in laboratory animals. Dev Cogn Neurosci 2011; 1:444-58. [PMID: 22436566 DOI: 10.1016/j.dcn.2011.05.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/17/2022] Open
Abstract
Positive social interactions are essential for emotional well-being, healthy development, establishment and maintenance of adequate social structures and reproductive success of humans and animals. Here, we review the studies that have investigated whether forms of social interaction that occur in different phases of the lifespan of animals, i.e., maternal behavior, social play and sexual interaction are rewarding in rodents and non-human primates. We show that these three forms of social interaction can be used as incentive for place conditioning, lever pressing and maze learning, three setups that have been extensively used to study the rewarding properties of food and drugs of abuse and their neural underpinnings. The experience of positive social interactions during key developmental ages has profound and long-lasting effects on brain function and behavior in emotional, motivational and cognitive domains. For instance, pup interaction is more rewarding than cocaine for early postpartum dams and rats deprived of the opportunity to play during adolescence show social and cognitive impairments at adulthood. Furthermore, sexual behavior is only overtly rewarding when animals can control the rate at which the sexual interaction occurs. Last, we discuss how animal models contributed to our understanding of social reward mechanisms and its psychological components throughout development.
Collapse
Affiliation(s)
- Viviana Trezza
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
16
|
Lahvis GP, Alleva E, Scattoni ML. Translating mouse vocalizations: prosody and frequency modulation. GENES BRAIN AND BEHAVIOR 2011; 10:4-16. [PMID: 20497235 DOI: 10.1111/j.1601-183x.2010.00603.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mental illness can include impaired abilities to express emotions or respond to the emotions of others. Speech provides a mechanism for expressing emotions, by both what words are spoken and by the melody or intonation of speech (prosody). Through the perception of variations in prosody, an individual can detect changes in another's emotional state. Prosodic features of mouse ultrasonic vocalizations (USVs), indicated by changes in frequency and amplitude, also convey information. Dams retrieve pups that emit separation calls, females approach males emitting solicitous calls, and mice can become fearful of a cue associated with the vocalizations of a distressed conspecific. Because acoustic features of mouse USVs respond to drugs and genetic manipulations that influence reward circuits, USV analysis can be employed to examine how genes influence social motivation, affect regulation, and communication. The purpose of this review is to discuss how genetic and developmental factors influence aspects of the mouse vocal repertoire and how mice respond to the vocalizations of their conspecifics. To generate falsifiable hypotheses about the emotional content of particular calls, this review addresses USV analysis within the framework of affective neuroscience (e.g. measures of motivated behavior such as conditioned place preference tests, brain activity and systemic physiology). Suggested future studies include employment of an expanded array of physiological and statistical approaches to identify the salient acoustic features of mouse vocalizations. We are particularly interested in rearing environments that incorporate sufficient spatial and temporal complexity to familiarize developing mice with a broader array of affective states.
Collapse
Affiliation(s)
- G P Lahvis
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3011, USA.
| | | | | |
Collapse
|
17
|
Dhungel S, Urakawa S, Kondo Y, Sakuma Y. Olfactory preference in the male rat depends on multiple chemosensory inputs converging on the preoptic area. Horm Behav 2011; 59:193-9. [PMID: 21094648 DOI: 10.1016/j.yhbeh.2010.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 01/23/2023]
Abstract
Both volatile and nonvolatile molecules are involved in chemosensory communication in rodents. Volatile odors from physically inaccessible estrous females induced increased numbers of c-Fos-positive cells in the preoptic area (POA) and in the cortical nucleus of the amygdala (CoA) of male rats. The numbers of c-Fos-positive cells in the medial nucleus of the amygdala (MeA) increased in response to the nonvolatile odors of bedding soiled with the excreta of estrous females. In an alternate choice paradigm, male rats carrying ibotenic acid lesions in either the MeA or the CoA--or a combination of both--distinguished the odors of estrous females from those of males, although the time spent sniffing the stimuli was diminished. Males with POA lesions showed complete loss of this capability. Males carrying either of the lesions did not detect differences between estrous and anestrous females or between intact and orchidectomized males. Lesions in the POA or MeA severely impaired male sexual behavior, whereas a CoA lesion had no effects. Thus, c-Fos-positive cells in the CoA might be involved in chemosensory transmission relevant to certain social contexts, but not in the execution of male sexual behavior. The POA is indispensable for both olfactory preferences and sexual behavior. The residual olfactory preference in males with MeA or CoA lesions or the combination of both could reflect an additional route for chemosensory transmission from the main olfactory bulb to the POA.
Collapse
Affiliation(s)
- Sunil Dhungel
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
18
|
Bell MR, Meerts SH, Sisk CL. Male Syrian hamsters demonstrate a conditioned place preference for sexual behavior and female chemosensory stimuli. Horm Behav 2010; 58:410-4. [PMID: 20515693 PMCID: PMC2919302 DOI: 10.1016/j.yhbeh.2010.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Sexual behavior is a natural reward for many rodent species, and it often includes chemosensory-directed components. Chemosensory stimuli themselves may also be rewarding. Conditioned place preference (CPP) is one paradigm frequently used to test the rewarding properties of a range of stimuli. Males and females of several rodent species show a CPP for sexual behavior; however, it is currently unknown whether sexual behavior can induce a CPP in male Syrian hamsters. As male Syrian hamsters are an animal model commonly used for investigation of the neurobiology of sexual behavior, understanding the rewarding components of sexual stimuli will better direct future research on brain regions and neurotransmitters involved in these behaviors. Experiment 1 tested the prediction that male hamsters show a CPP for sexual behavior. Female chemosensory stimuli are essential for the display of sexual behavior in male hamsters; however, the rewarding properties of female chemosensory stimuli contained in vaginal secretions (VS) are uncertain. Therefore, experiment 2 tested the prediction that male hamsters show a CPP for VS. This study is the first demonstration that both sexual behavior and VS induce a CPP in male hamsters. Thus, female chemosensory stimuli are a natural reward in a species that is dependent on these stimuli for reproductive fitness.
Collapse
Affiliation(s)
- Margaret R Bell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
19
|
Bakker J, Pierman S, González-Martínez D. Effects of aromatase mutation (ArKO) on the sexual differentiation of kisspeptin neuronal numbers and their activation by same versus opposite sex urinary pheromones. Horm Behav 2010; 57:390-5. [PMID: 19945459 DOI: 10.1016/j.yhbeh.2009.11.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/28/2022]
Abstract
Pheromones have been shown to induce sexually dimorphic responses in LH secretion. Here we asked whether the sexually dimorphic population of kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) could relay sexually dimorphic information from the olfactory systems to the GnRH system. Furthermore, we analyzed the effects of aromatase mutation (ArKO) and thus the role of estradiol on RP3V kisspeptin neuronal numbers and on the response of these kisspeptin neurons to same- versus opposite-sex urinary pheromones. Exposure to male but not female urinary odors induced Fos protein in kisspeptin neurons in the RP3V of female wildtype (WT) mice, suggesting that these kisspeptin neurons may be part of the neural circuitry that relays information from the olfactory brain to the GnRH system in a sexually dimorphic manner. Male pheromones induced Fos in kisspeptin neurons in ArKO females, albeit significantly less compared to WT females. The sexual differentiation of kisspeptin neuronal number was lost in ArKO mice, i.e. the number of kisspeptin-immunoreactive neurons in the RP3V of ArKO females was as low as in male mice, whereas male ArKO mice had somewhat increased numbers of kisspeptin neurons. These results suggest that the sex difference in kisspeptin neuronal number in WT mice reflects an organizational action of estradiol in females. By contrast, the ability of male urinary pheromones to activate kisspeptin neurons in WT females may not depend on the organizational action of estradiol since ArKO females still showed some Fos/kisspeptin co-activation.
Collapse
Affiliation(s)
- Julie Bakker
- GIGA Neurosciences, University of Liège, B36 (1st floor). Avenue de l'Hopital, 1 4000, Liège, Belgium.
| | | | | |
Collapse
|
20
|
Baum MJ. Sexual differentiation of pheromone processing: links to male-typical mating behavior and partner preference. Horm Behav 2009; 55:579-88. [PMID: 19446074 PMCID: PMC2684524 DOI: 10.1016/j.yhbeh.2009.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/30/2009] [Accepted: 02/01/2009] [Indexed: 11/18/2022]
Abstract
Phoenix et al. (Phoenix, C., Goy, R., Gerall, A., Young, W., 1959. Organizing actions of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65, 369-382.) were the first to propose an essential role of fetal testosterone exposure in the sexual differentiation of the capacity of mammals to display male-typical mating behavior. In one experiment control male and female guinea pigs as well as females given fetal testosterone actually showed equivalent levels of mounting behavior when gonadectomized and given ovarian steroids prior to adult tests with a stimulus female. This finding is discussed in the context of a recent, high-profile paper by Kimchi et al. (Kimchi, T., Xu, J., Dulac, C., 2007. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009-1014.) arguing that female rodents possess the circuits that control the expression of male-typical mating behavior and that their function is normally suppressed in this sex by pheromonal inputs that are processed via the vomeronasal organ (VNO)-accessory olfactory nervous system. In another Phoenix et al. experiment, significantly more mounting behavior was observed in male guinea pigs and in females given fetal testosterone than in control females following adult gonadectomy and treatment with testosterone. Literature is reviewed that attempts to link sex differences in the anatomy and function of the accessory versus the main olfactory projections to the amygdala and hypothalamus to parallel sex differences in courtship behaviors, including sex partner preference, as well as the capacity to display mounting behavior.
Collapse
Affiliation(s)
- Michael J Baum
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA.
| |
Collapse
|
21
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1021] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
22
|
Alekseyenko OV, Waters P, Zhou H, Baum MJ. Bilateral damage to the sexually dimorphic medial preoptic area/anterior hypothalamus of male ferrets causes a female-typical preference for and a hypothalamic Fos response to male body odors. Physiol Behav 2007; 90:438-49. [PMID: 17118411 PMCID: PMC2265004 DOI: 10.1016/j.physbeh.2006.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/11/2006] [Accepted: 10/10/2006] [Indexed: 11/23/2022]
Abstract
Previous studies showed that bilateral lesions of the male ferret's preoptic area/anterior hypothalamus (POA/AH), centered in the sexually dimorphic nuclei present in this region, caused subjects to seek out a same-sex male, as opposed to a female conspecific. Male subjects with POA/AH lesions (which were also castrated and given estradiol) displayed female-typical receptive behavior in response to neck gripping by a stimulus male, implying that subjects' approaches to a same-sex conspecific were sexually motivated. We asked whether the effect of POA/AH lesions on males' partner preference reflects a shift in the central processing of body odorant cues so that males come to display a female-typical preference to approach male body odorants. Sexually experienced male ferrets in which electrolytic lesions of the POA/AH caused bilateral damage to the sexually dimorphic male nucleus (MN) resembled sham-operated females by preferring to approach body odors emitted from anesthetized male as opposed to female stimulus ferrets confined in the goal boxes of a Y-maze. This lesion-induced shift in odor preference was correlated with a significant increase in the ability of soiled male bedding to induce a Fos response in the medial POA of males with bilateral damage to the MN-POA/AH. No such partner preference or neural Fos responses were seen in sham-operated males or in other groups of males with POA/AH lesions that either caused unilateral damage or no damage to the MN-POA/AH. Male-typical hypothalamic processing of conspecifics' body odorants may determine males' normal preference to seek out odors emitted by female conspecifics, leading to mating and successful reproduction.
Collapse
Affiliation(s)
| | - Patricia Waters
- Department of Biology, 5 Cummington St., Boston, MA 02215, USA
| | - Huiquan Zhou
- Department of Biology, 5 Cummington St., Boston, MA 02215, USA
| | - Michael J. Baum
- Department of Biology, 5 Cummington St., Boston, MA 02215, USA
| |
Collapse
|
23
|
Tai F, Broders H, Lian Y, Wang T, Sun R. Cellular activation patterns of the main olfactory bulb and accessory olfactory bulb following exposure to beddings soiled by same- or opposite-sex conspecifics in Mandarin voles (Microtus mandarinus). CAN J ZOOL 2006. [DOI: 10.1139/z06-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using induction of Fos as an index, we studied cellular activation patterns in the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) of Mandarin voles ( Microtus mandarinus (Milne-Edwards, 1871)) following their exposure to beddings soiled by different sexes. Male and female Mandarin voles that were exposed to beddings soiled by the opposite sex produced significantly more Fos-immunoreactive (Fos-ir) neurons in the anterior portion of the AOB and significantly fewer Fos-ir neurons in the posterior portion of the AOB than voles exposed to beddings soiled by the same sex. Furthermore, male and female Mandarin voles exposed to bedding soiled by different sex produced different numbers of Fos-ir cells in MOB. Mandarin voles exposed to beddings soiled by the opposite sex produced significantly more Fos-ir neurons in MOB than voles exposed to beddings soiled by the same sex. Our results establish that Mandarin voles of each sex showed different cellular activation patterns in AOB and MOB following exposures to sex-specific beddings. We suggest that both AOB and MOB were involved in sexual activities induced by chemosensory signals.
Collapse
Affiliation(s)
- F.D. Tai
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - H.G. Broders
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Y. Lian
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - T.Z. Wang
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - R.Y. Sun
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|