1
|
Parthimos TP, Schulpis KH, Karousi AD, Loukas YL, Dotsikas Y. The relationship between neurotransmission-related amino acid blood concentrations and neuropsychological performance following acute exercise. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:560-574. [PMID: 35227132 DOI: 10.1080/23279095.2022.2043327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acid neurotransmitters, including glutamate, phenylalanine, tyrosine, alanine, and glycine, underlie the majority of the excitatory and inhibitory neurotransmission in the nervous system, and acute exercise has been shown to modulate their concentrations. We aimed to determine whether any correlation exists between the above-mentioned amino acid blood concentrations and the neuropsychological performance after an acute exercise intervention. Sixty basketball players were randomly assigned to one of two experimental conditions: exercise or inactive resting. All participants underwent a comprehensive neuropsychological assessment and blood samples were taken on a Guthrie card before and after the end of the experimental conditions. Amino acid blood concentrations were significantly elevated and cognitive performance significantly improved post-exercise on specific neuropsychological assessments. Significant intervention × group interaction effects were apparent for Trail Making Test part-B [F(1,58) = 20.46, p < .0001, η2 = .26] and Digit Span Backwards [F(1,58) = 15.47, p < .0001, η2 = .21] neuropsychological assessments. Additionally, regression analysis indicated that tyrosine accounted for 38.0% of the variance in the Trail Making Test part-A test. These results suggest that elevated blood concentrations of neurotransmission-related amino acids are associated with improved neuropsychological performance after a single bout of high-intensity exercise.
Collapse
Affiliation(s)
- Theodore P Parthimos
- Division of Psychology, Faculty of Life and Health Sciences, De Montfort University, Leicester, UK
| | - Kleopatra H Schulpis
- Institute of Child Health, Research Center, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alexandra D Karousi
- Department of Psychology, Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, UK
| | - Yannis L Loukas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Song W, Su F, Li S, Wang S. The association between soyfoods or soybean products consumption and executive functioning among Chinese adolescents: A cross-sectional multicenter study. Acta Psychol (Amst) 2024; 246:104260. [PMID: 38626599 DOI: 10.1016/j.actpsy.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The association of soyfoods or soybean products with executive functions in the brain has been less well studied. In this study, we investigated the consumption of soyfoods or soybean products and its association with executive functions in Chinese adolescents. METHODS A three-stage stratified whole group sampling method was used to investigate the consumption of soyfoods or soybean products and executive functions among 1643 Chinese adolescents aged 13-15 years. One-way ANOVA and chi-square test were used to compare the basic conditions and executive functions of adolescents with different soyfoods or soybean products consumption. Linear regression analysis and logistic regression analysis were used to analyze the association between soyfoods or soybean products and executive functions. RESULTS The proportions of Chinese adolescents with soyfoods or soybean products consumption ≤0 time/week, 1-3 time/week, and ≥4 time/week were 41.14 %, 46.80 %, and 12.05 %, respectively. Logistic regression analysis showed that with adolescents with soyfoods or soybean products consumption ≥4 time/week as a reference, adolescents with ≤0 time/week were less likely to have executive dysfunction in inhibiting functional (OR = 17.523, 95 % CI: 7.501, 40.938), 2back (OR = 3.384, 95 % CI: 1.729, 6.623), and switching functional (OR = 7.846, 95 % CI: 3.300, 18.657), were at higher risk of executive dysfunction (P < 0.001). CONCLUSION Chinese adolescents' consumption of soyfoods or soybean products is inadequate and has a positive association with executive functions. The consumption of soyfoods or soybean products among Chinese adolescents should be increased in the future.
Collapse
Affiliation(s)
- Wei Song
- College of Education and Sports Sciences, Yangtze University, Hubei, Jingzhou 434023, PR China
| | - Fan Su
- College of Physical Education, China Three Gorges University, Hubei, Yichang 443002, PR China
| | - Shengpeng Li
- School of Preschool Education, Jingzhou Institute of Technology, Hubei, Jingzhou 434020, PR China
| | - Shoudu Wang
- School of Sports Science, Wenzhou Medical University, Zhejiang, Wenzhou 325000, PR China.
| |
Collapse
|
3
|
Fischer S, Naegeli K, Cardone D, Filippini C, Merla A, Hanusch KU, Ehlert U. Emerging effects of temperature on human cognition, affect, and behaviour. Biol Psychol 2024; 189:108791. [PMID: 38599369 DOI: 10.1016/j.biopsycho.2024.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Human body core temperature is tightly regulated within approximately 37 °C. Global near surface temperature has increased by over 1.2 °C between 1850 and 2020. In light of the challenge this poses to human thermoregulation, the present perspective article sought to provide an overview on the effects of varying ambient and body temperature on cognitive, affective, and behavioural domains of functioning. To this end, an overview of observational and experimental studies in healthy individuals and individuals with mental disorders was provided. Within body core temperature at approximately 37 °C, relatively lower ambient and skin temperatures appear to evoke a need for social connection, whereas comparably higher temperatures appear to facilitate notions of other as closer and more sociable. Above-average ambient temperatures are associated with increased conflicts as well as incident psychotic and depressive symptoms, mental disorders, and suicide. With mild hypo- and hyperthermia, paradoxical effects are observed: whereas the acute states are generally characterised by impairments in cognitive performance, anxiety, and irritability, individuals with depression experience longer-term symptom improvements with treatments deliberately inducing these states for brief amounts of time. When taken together, it has thus become clear that temperature is inexorably associated with human cognition, affect, and (potentially) behaviour. Given the projected increase in global warming, further research into the affective and behavioural sequelae of heat and the mechanisms translating it into mental health outcomes is urgently warranted.
Collapse
Affiliation(s)
- Susanne Fischer
- University of Zurich, Institute of Psychology, Zurich, Switzerland.
| | - Kathrin Naegeli
- University of Zurich, Department of Geography, Zurich, Switzerland
| | - Daniela Cardone
- University G. d'Annunzio of Chieti-Pescara, Department of Engineering and Geology, Chieti, Italy
| | - Chiara Filippini
- University G. d'Annunzio of Chieti-Pescara, Department of Engineering and Geology, Chieti, Italy
| | - Arcangelo Merla
- University G. d'Annunzio of Chieti-Pescara, Department of Engineering and Geology, Chieti, Italy
| | - Kay-Uwe Hanusch
- Bern University of Applied Sciences, Department of Health Sciences, Berne, Switzerland
| | - Ulrike Ehlert
- University of Zurich, Institute of Psychology, Zurich, Switzerland
| |
Collapse
|
4
|
Moes MI, Elia A, Gennser M, Keramidas ME. Combined effects of mild hypothermia and nitrous-oxide-induced narcosis on manual and cognitive performance. Am J Physiol Regul Integr Comp Physiol 2024; 326:R197-R209. [PMID: 38189165 PMCID: PMC11283895 DOI: 10.1152/ajpregu.00246.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Divers are at enhanced risk of suffering from acute cognitive deterioration because of the low ambient temperatures and the narcotic action of inert gases inspired at high pressures. Yet, the behavioral effects of cold and inert gas narcosis have commonly been assessed in isolation and during short-term provocations. We therefore evaluated the interactive influence of mild hypothermia and narcosis engendered by a subanesthetic dose of nitrous oxide (N2O; a normobaric intervention analog of hyperbaric nitrogen) on cognitive function during prolonged iterative exposure. Fourteen men partook in two ∼12-h sessions (separated by ≥4 days), wherein they performed sequentially three 120-min cold (20°C) water immersions (CWIs), while inhaling, in a single-blinded manner, either normal air or a normoxic gas mixture containing 30% N2O. CWIs were separated by a 120-min rewarming in room-air breathing conditions. Before the first CWI and during each CWI, subjects performed a finger dexterity test, and the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) test assessing aspects of attention, memory, learning, and visuospatial ability. Rectal and skin temperatures were, on average, reduced by ∼1.2 °C and ∼8 °C, respectively (P < 0.001). Cooling per se impaired (P ≤ 0.01) only short-term memory (∼37%) and learning (∼18%); the impairments were limited to the first CWI. N2O also attenuated (P ≤ 0.02) short-term memory (∼37%) and learning (∼35%), but the reductions occurred in all CWIs. Furthermore, N2O invariably compromised finger dexterity, attention, concentration, working memory, and spatial processing (P < 0.05). The present results demonstrate that inert gas narcosis aggravates, in a persistent manner, basic and higher-order cognitive abilities during protracted cold exposure.
Collapse
Affiliation(s)
- Maaike I Moes
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonis Elia
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Gennser
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michail E Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
5
|
McAllister MJ, Martaindale MH, Dillard CC, McCullough R. Impact of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality based active shooter training drill. Stress 2024; 27:2375588. [PMID: 38975711 DOI: 10.1080/10253890.2024.2375588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Ingestion of L-theanine and L-tyrosine has been shown to reduce salivary stress biomarkers and improve aspects of cognitive performance in response to stress. However, there have been no studies to concurrently examine the impact of both L-theanine and L-tyrosine ingestion during a mental stress challenge (MSC) involving a brief cognitive challenge and a virtual reality based active shooter training drill. Thus, the purpose of this study was to determine the impact of ingestion of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality active shooter drill and cognitive challenge. The cognitive challenge involved a Stroop challenge and mental arithmetic. Eighty subjects (age = 21 ± 2.6 yrs; male = 46; female = 34) were randomly assigned L-tyrosine (n = 28; 2000 mg), L-theanine (n = 25; 200 mg), or placebo (n = 27) prior to MSC exposure. Saliva samples, state-anxiety inventory (SAI) scales, and heart rate (HR) were collected before and after exposure to the MSC. Saliva was analyzed for stress markers α-amylase (sAA) and secretory immunoglobulin A (SIgA). The MSC resulted in significant increases in sAA, SIgA, HR, and SAI. Ingestion of L-theanine and L-tyrosine did not impact markers of stress. However, the L-tyrosine treatment demonstrated significantly lower missed responses compared to the placebo treatment group during the Stroop challenge. These data demonstrate that ingestion of L-theanine or L-tyrosine does not impact markers of stress in response to a MSC but may impact cognitive performance. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX, USA
| | | | - Courtney C Dillard
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX, USA
| | - Rory McCullough
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX, USA
| |
Collapse
|
6
|
Jones DM, Weller RS, McClintock RJ, Roberts N, Zheng W, Dunn TL. Prevalence of hypothermia and critical hand temperatures during military cold water immersion training. Int J Circumpolar Health 2023; 82:2236777. [PMID: 37469312 PMCID: PMC10361000 DOI: 10.1080/22423982.2023.2236777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Cold-weather military operations can quickly undermine warfighter readiness and performance. Specifically, accidental cold-water immersion (CWI) contributes to rapid body heat loss and impaired motor function. This study evaluated the prevalence of hypothermia and critical hand temperatures during CWI. One-hundred seventeen (N = 117) military personnel (mean ± SD age: 27 ± 6 yr, height: 176 ± 8 cm, weight: 81.5 ± 11.6 kg) completed CWI and rewarming during cold-weather training, which included a 10-min outdoor CWI (1.3 ± 1.4°C) combined with cold air (-4.2 ± 8.5°C) exposure. Following CWI, students removed wet clothing, donned dry clothing, and entered sleeping systems. Core (Tc) and hand (Thand) temperatures were recorded continuously during the training exercise. Tc for 96 students (mean ± SD lowest Tc = 35.6 ± 0.9°C) revealed that 24 students (25%) experienced Tc below 35.0°C. All of 110 students (100%) experienced Thand below 15.0°C, with 71 students (65%) experiencing Thand at or below 8.0°C. Loss of hand function and hypothermia should be anticipated in warfighters who experience CWI in field settings. Given the high prevalence of low Thand, focus should be directed on quickly rewarming hands to recover function.
Collapse
Affiliation(s)
- Douglas M Jones
- Warfighter Performance, Naval Health Research Center, San Diego, CA, USA
| | - Rebecca S Weller
- Warfighter Performance, Naval Health Research Center, San Diego, CA, USA
| | | | - Nicholas Roberts
- Mountain Medicine, Marine Corps Mountain Warfare Training Center, Bridgeport, CA, USA
| | - Weimin Zheng
- Warfighter Performance, Naval Health Research Center, San Diego, CA, USA
| | - Timothy L Dunn
- Warfighter Performance, Naval Health Research Center, San Diego, CA, USA
| |
Collapse
|
7
|
Wallace PJ, Gagnon DD, Hartley GL, Taber MJ, Cheung SS. Effects of skin and mild core cooling on cognitive function in cold air in men. Physiol Rep 2023; 11:e15893. [PMID: 38114071 PMCID: PMC10730300 DOI: 10.14814/phy2.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
This study tested the effects of skin and core cooling on cognitive function in 0°C cold air. Ten males completed a randomized, repeated measures study consisting of four environmental conditions: (i) 30 min of exposure to 22°C thermoneutral air (TN), (ii) 15 min to 0°C cold air which cooled skin temperature to ~27°C (CS), (iii) 0°C cold air exposure causing mild core cooling of ∆-0.3°C from baseline (C-0.3°C) and (iv) 0°C cold air exposure causing mild core cooling of ∆-0.8°C from baseline (C-0.8°C). Cognitive function (reaction time [ms] and errors made [#]) were tested using a simple reaction test, a two-six item working memory capacity task, and vertical flanker task to assess executive function. There were no condition effects (all p > 0.05) for number of errors made on any task. There were no significant differences in reaction time relative to TN for the vertical flanker and item working memory capacity task. However, simple reaction time was slower in C-0.3°C (297 ± 33 ms) and C-0.8°C (296 ± 41 ms) compared to CS (267 ± 26 ms) but not TN (274 ± 38). Despite small changes in simple reaction time (~30 ms), executive function and working memory was maintained in 0°C cold air with up to ∆-0.8°C reduction in core temperature.
Collapse
Affiliation(s)
- Phillip J. Wallace
- Environmental Ergonomics Laboratory, Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
| | - Dominique D. Gagnon
- Faculty of Sports and Health SciencesUniversity of JyväskyläJyväskyläFinland
- Clinic for Sports and Exercise Medicine, Department of Sports and Exercise Medicine, Faculty of MedicineUniversity of Helsinki MäkelänkatuHelsinkiFinland
- School of Kinesiology and Health SciencesLaurentian UniversitySudburyOntarioCanada
| | - Geoffrey L. Hartley
- Department of Physical and Health EducationNipissing UniversityNorth BayOntarioCanada
| | - Michael J. Taber
- Environmental Ergonomics Laboratory, Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- NM Consulting Inc.St. CatharinesOntarioCanada
| | - Stephen S. Cheung
- Environmental Ergonomics Laboratory, Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
8
|
Jagim AR, Harty PS, Tinsley GM, Kerksick CM, Gonzalez AM, Kreider RB, Arent SM, Jager R, Smith-Ryan AE, Stout JR, Campbell BI, VanDusseldorp T, Antonio J. International society of sports nutrition position stand: energy drinks and energy shots. J Int Soc Sports Nutr 2023; 20:2171314. [PMID: 36862943 PMCID: PMC9987737 DOI: 10.1080/15502783.2023.2171314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of energy drink (ED) or energy shot (ES) consumption on acute exercise performance, metabolism, and cognition, along with synergistic exercise-related performance outcomes and training adaptations. The following 13 points constitute the consensus of the Society and have been approved by the Research Committee of the Society: Energy drinks (ED) commonly contain caffeine, taurine, ginseng, guarana, carnitine, choline, B vitamins (vitamins B1, B2, B3, B5, B6, B9, and B12), vitamin C, vitamin A (beta carotene), vitamin D, electrolytes (sodium, potassium, magnesium, and calcium), sugars (nutritive and non-nutritive sweeteners), tyrosine, and L-theanine, with prevalence for each ingredient ranging from 1.3 to 100%. Energy drinks can enhance acute aerobic exercise performance, largely influenced by the amount of caffeine (> 200 mg or >3 mg∙kg bodyweight [BW-1]) in the beverage. Although ED and ES contain several nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES based on scientific evidence appear to be caffeine and/or the carbohydrate provision. The ergogenic value of caffeine on mental and physical performance has been well-established, but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. Consuming ED and ES 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance with doses >3 mg∙kg BW-1. Consuming ED and ES containing at least 3 mg∙kg BW-1 caffeine is most likely to benefit maximal lower-body power production. Consuming ED and ES can improve endurance, repeat sprint performance, and sport-specific tasks in the context of team sports. Many ED and ES contain numerous ingredients that either have not been studied or evaluated in combination with other nutrients contained in the ED or ES. For this reason, these products need to be studied to demonstrate efficacy of single- and multi-nutrient formulations for physical and cognitive performance as well as for safety. Limited evidence is available to suggest that consumption of low-calorie ED and ES during training and/or weight loss trials may provide ergogenic benefit and/or promote additional weight control, potentially through enhanced training capacity. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. Individuals should consider the impact of regular coingestion of high glycemic index carbohydrates from ED and ES on metabolic health, blood glucose, and insulin levels. Adolescents (aged 12 through 18) should exercise caution and seek parental guidance when considering the consumption of ED and ES, particularly in excessive amounts (e.g. > 400 mg), as limited evidence is available regarding the safety of these products among this population. Additionally, ED and ES are not recommended for children (aged 2-12), those who are pregnant, trying to become pregnant, or breastfeeding and those who are sensitive to caffeine. Diabetics and individuals with preexisting cardiovascular, metabolic, hepatorenal, and/or neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should exercise caution and consult with their physician prior to consuming ED. The decision to consume ED or ES should be based upon the beverage's content of carbohydrate, caffeine, and other nutrients and a thorough understanding of the potential side effects. Indiscriminate use of ED or ES, especially if multiple servings per day are consumed or when consumed with other caffeinated beverages and/or foods, may lead to adverse effects. The purpose of this review is to provide an update to the position stand of the International Society of Sports Nutrition (ISSN) integrating current literature on ED and ES in exercise, sport, and medicine. The effects of consuming these beverages on acute exercise performance, metabolism, markers of clinical health, and cognition are addressed, as well as more chronic effects when evaluating ED/ES use with exercise-related training adaptions.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Sport Science, University of Wisconsin – La Crosse, La Crosse, WI, USA
| | - Patrick S. Harty
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Grant M. Tinsley
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Chad M. Kerksick
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI, USA
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, USA
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | | | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | - Trisha VanDusseldorp
- Bonafede Health, LLC, JDS Therapeutics, Harrison, NY, USA
- Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
9
|
Guy N, Azulay H, Pertzov Y, Israel S. Attenuation of visual exploration following stress. Psychophysiology 2023; 60:e14330. [PMID: 37171035 DOI: 10.1111/psyp.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
When we explore our surroundings, we frequently move our gaze to collect visual information. Studies have extensively examined gaze behavior in response to different visual scenes. Here, we examined how differences in an individual's state may affect visual exploration, for example, following acute stress. In this study, participants were exposed to either a psychosocial stressor-performing a public speaking task in front of a two-person committee-or a control condition absent stress induction. Elicitation of stress responses was validated using cortisol levels and subjective reports. Stress also led to an extended increase in pupil diameter (a proxy of arousal responses), suggesting it may also affect eye movements. Gaze behavior measures were taken prior and following the stress or control tasks. Acute stress attenuated visual exploration, reflected by fewer saccades and a smaller scanned area. Stress did not have a significant effect on either the tendency to look at social features or at salient regions of the images. These findings diverge from theoretical predictions suggesting that acute stress may facilitate social affiliative behaviors (e.g., Tend-and-Befriend theory). Reduced saccades and a smaller scanned area may be a possible mechanism explaining previous reports showing stress-related effects on various cognitive processes (e.g., visual working memory) that rely on visual exploration.
Collapse
Affiliation(s)
- Nitzan Guy
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cognitive and Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Azulay
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Salomon Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Scheinfeld Center of Human Genetics for the Social Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
10
|
Qi P, Lv J, Bai LH, Yan XD, Zhang L. Effects of Hypoxemia by Acute High-Altitude Exposure on Human Intestinal Flora and Metabolism. Microorganisms 2023; 11:2284. [PMID: 37764130 PMCID: PMC10535934 DOI: 10.3390/microorganisms11092284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
This study examined the effects of hypoxemia caused by acute high-altitude hypoxia (AHAH) exposure on the human intestinal flora and its metabolites. The changes in the intestinal flora, metabolism, and erythropoietin content in the AHAH population under altitude hypoxia conditions were comprehensively analyzed using 16S rRNA sequencing, metabonomics, and erythropoietin content. The results showed that compared with those in the control group (C group), the flora and metabolites in the hypoxemia group (D group) were altered. We found alterations in the flora according to the metabolic marker tyrosine through random forest and ROC analyses. Fecal and serum metabonomics analyses revealed that microbial metabolites could be absorbed into the blood and participate in human metabolism. Finally, a significant correlation between tyrosine and erythropoietin (EPO) content was found, which shows that human intestinal flora and its metabolites can help to confront altitude stress by regulating EPO levels. Our findings provide new insights into the adaptive mechanism and prevention of AHAH.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liu-Hui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiang-Dong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Boča R, Štofko J, Imrich R. Ab initio study of molecular properties of l-tyrosine. J Mol Model 2023; 29:245. [PMID: 37442864 PMCID: PMC10344843 DOI: 10.1007/s00894-023-05648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
CONTEXT l-Tyrosine is a naturally occurring agent that acts as a precursor in biosynthesis of monoaminergic neurotransmitters in brain such as dopamine, adrenaline, noradrenaline, and hormones like thyroxine and triiodothyronine. While l-tyrosine in vacuo adopts the canonical aminoacid form with -NH2 and -COOH functional groups, from neutral solutions, is crystallizes in the zwitterionic form possessing -NH3+ and -COO- groups. As l-tyrosine is non-innocent agent with respect to redox processes, redox ability in water expressed by the absolute oxidation and reduction potentials is investigated. The cluster analysis applied to a set of nine related neurotransmitters and trace amines confirms that l-tyrosine is mostly similar to aminoacid forms of phenylalanine, octopamine, and noradrenaline. METHODS The energetic data at the Hartree-Fock MO-LCAO-SCF method has been conducted using def2-TZVP basis set, and improved by the many-body perturbation theory using the MP2 correction to the correlation energy. For the aminoacid form and the zwitterionic form of l-tyrosine, a set of molecular descriptors has been evaluated (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment, and dipole polarizability). The solvent effect (CPCM) is very expressive to the zwitterionic form and alters the sign of the electron affinity from positive to negative values. In parallel, density-functional theory with B3LYP variant in the same basis set has been employed for full geometry optimization of the neutral and ionized forms of l-tyrosine allowing assessing the adiabatic (a) ionization/affinity processes. The complete vibrational analysis enables evaluating thermodynamic functions such as the inner energy, enthalpy, entropy, Gibbs energy, and consequently the absolute oxidation and reduction potentials. Of applied methods, the most reliable are B3LYP(a) results that account to the correlation energy and the electron and nuclear relaxation during the ionization/affinity processes.
Collapse
Affiliation(s)
- Roman Boča
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
| | - Juraj Štofko
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| | - Richard Imrich
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| |
Collapse
|
12
|
Plini ERG, Melnychuk MC, Harkin A, Dahl MJ, McAuslan M, Kühn S, Boyle RT, Whelan R, Andrews R, Düzel S, Drewelies J, Wagner GG, Lindenberger U, Norman K, Robertson IH, Dockree PM. Dietary Tyrosine Intake (FFQ) Is Associated with Locus Coeruleus, Attention and Grey Matter Maintenance: An MRI Structural Study on 398 Healthy Individuals of the Berlin Aging Study-II. J Nutr Health Aging 2023; 27:1174-1187. [PMID: 38151868 DOI: 10.1007/s12603-023-2005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVE It is documented that low protein and amino-acid dietary intake is related to poorer cognitive health and increased risk of dementia. Degradation of the neuromodulatory pathways, (comprising the cholinergic, dopaminergic, serotoninergic and noradrenergic systems) is observed in neurodegenerative diseases and impairs the proper biosynthesis of key neuromodulators from micro-nutrients and amino acids. How these micro-nutrients are linked to neuromodulatory pathways in healthy adults is less studied. The Locus Coeruleus-Noradrenergic System (LC-NA) is the earliest subcortical structure affected in Alzheimer's disease, showing marked neurodegeneration, but is also sensitive for age-related changes. The LC-NA system is critical for supporting attention and cognitive control, functions that are enhanced both by tyrosine administration and chronic tyrosine intake. The purpose of this study was to 1) investigate whether the dietary intake of tyrosine, the key precursor for noradrenaline (NA), is related to LC signal intensity 2) whether LC mediates the reported association between tyrosine intake and higher cognitive performance (measured with Trail Making Test - TMT), and 3) whether LC signal intensity relates to an objective measure of brain maintenance (BrainPAD). METHODS The analyses included 398 3T MRIs of healthy participants from the Berlin Aging Study II to investigate the relationship between LC signal intensity and habitual dietary tyrosine intake-daily average (HD-Tyr-IDA - measured with Food Frequency Questionnaire - FFQ). As a control procedure, the same analyses were repeated on other main seeds of the neuromodulators' subcortical system (Dorsal and Medial Raphe, Ventral Tegmental Area and Nucleus Basalis of Meynert). In the same way, the relationships between the five nuclei and BrainPAD were tested. RESULTS Results show that HD-Tyr-IDA is positively associated with LC signal intensity. Similarly, LC disproportionally relates to better brain maintenance (BrainPAD). Mediation analyses reveal that only LC, relative to the other nuclei tested, mediates the relationship between HD-Tyr-IDA I and performance in the TMT and between HD-Tyr-IDA and BrainPAD. CONCLUSIONS These findings provide the first evidence linking tyrosine intake with LC-NA system signal intensity and its correlation with neuropsychological performance. This study strengthens the role of diet for maintaining brain and cognitive health and supports the noradrenergic theory of cognitive reserve. Within this framework, adequate tyrosine intake might increase the resilience of LC-NA system functioning, by preventing degeneration and supporting noradrenergic metabolism required for LC function and neuropsychological performance.
Collapse
Affiliation(s)
- E R G Plini
- Emanuele RG Plini, Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Beckner ME, Lieberman HR, Hatch-McChesney A, Allen JT, Niro PJ, Thompson LA, Karl JP, Gwin JA, Margolis LM, Hennigar SR, McClung JP, Pasiakos SM. Effects of energy balance on cognitive performance, risk-taking, ambulatory vigilance and mood during simulated military sustained operations (SUSOPS). Physiol Behav 2023; 258:114010. [PMID: 36349660 DOI: 10.1016/j.physbeh.2022.114010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Sustained operations (SUSOPS) require military personnel to conduct combat and training operations while experiencing physical and cognitive stress and limited sleep. These operations are often conducted in a state of negative energy balance and are associated with degraded cognitive performance and mood. Whether maintaining energy balance can mitigate these declines is unclear. This randomized crossover study assessed the effects of energy balance on cognitive performance, risk-taking propensity, ambulatory vigilance, and mood during a simulated 72-h SUSOPS. METHODS Ten male Soldiers (mean ± SE; 22.4 ± 1.7 y; body weight 87.3 ± 1.1 kg) completed two, 72-h simulated SUSOPS in random order, separated by 7 days of recovery. Each SUSOPS elicited ∼4500 kcal/d total energy expenditure and restricted sleep to 4 h/night. During SUSOPS, participants consumed either an energy-balanced or restricted diet that induced a 43 ± 3% energy deficit. A cognitive test battery was administered each morning and evening to assess: vigilance, working memory, grammatical reasoning, risk-taking propensity, and mood. Real-time ambulatory vigilance was assessed each morning, evening, and night via a wrist-worn monitoring device. RESULTS Participants exhibited heightened risk-taking propensity (p = 0.047) with lower self-reported self-control (p = 0.021) and fatigue (p = 0.013) during energy deficit compared to during energy balance. Vigilance accuracy (p < 0.001) and working memory (p = 0.040) performance decreased, and vigilance lapses increased (p < 0.001) during SUSOPS, but did not differ by diet. Percentage of correct responses to ambulatory vigilance stimuli varied during SUSOPS (p = 0.019) independent of diet, with generally poorer performance during the morning and night. Total mood disturbance (p = 0.001), fatigue (p < 0.001), tension (p = 0.003), and confusion (p = 0.036) increased whereas vigor decreased (p < 0.001) during SUSOPS, independent of diet. CONCLUSION Prolonged physical activity combined with sleep restriction is associated with impaired vigilance, memory, and mood state. Under such conditions, maintaining energy balance prevents increased risk-taking and improves self-control, but does not improve other aspects of cognitive function or mood. Given the small sample in the present study, replication in a larger cohort is warranted.
Collapse
Affiliation(s)
- Meaghan E Beckner
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Harris R Lieberman
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States.
| | - Adrienne Hatch-McChesney
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | - Jillian T Allen
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States; Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Philip J Niro
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | - Lauren A Thompson
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | - J Philip Karl
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | - Jess A Gwin
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | - Lee M Margolis
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | | | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Building 42, Natick, MA 01760, United States
| |
Collapse
|
14
|
Mathar D, Erfanian Abdoust M, Marrenbach T, Tuzsus D, Peters J. The catecholamine precursor Tyrosine reduces autonomic arousal and decreases decision thresholds in reinforcement learning and temporal discounting. PLoS Comput Biol 2022; 18:e1010785. [PMID: 36548401 PMCID: PMC9822114 DOI: 10.1371/journal.pcbi.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/06/2023] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Supplementation with the catecholamine precursor L-Tyrosine might enhance cognitive performance, but overall findings are mixed. Here, we investigate the effect of a single dose of tyrosine (2g) vs. placebo on two catecholamine-dependent trans-diagnostic traits: model-based control during reinforcement learning (2-step task) and temporal discounting, using a double-blind, placebo-controlled, within-subject design (n = 28 healthy male participants). We leveraged drift diffusion models in a hierarchical Bayesian framework to jointly model participants' choices and response times (RTS) in both tasks. Furthermore, comprehensive autonomic monitoring (heart rate, heart rate variability, pupillometry, spontaneous eye blink rate) was performed both pre- and post-supplementation, to explore potential physiological effects of supplementation. Across tasks, tyrosine consistently reduced participants' RTs without deteriorating task-performance. Diffusion modeling linked this effect to attenuated decision-thresholds in both tasks and further revealed increased model-based control (2-step task) and (if anything) attenuated temporal discounting. On the physiological level, participants' pupil dilation was predictive of the individual degree of temporal discounting. Tyrosine supplementation reduced physiological arousal as revealed by increases in pupil dilation variability and reductions in heart rate. Supplementation-related changes in physiological arousal predicted individual changes in temporal discounting. Our findings provide first evidence that tyrosine supplementation might impact psychophysiological parameters, and suggest that modeling approaches based on sequential sampling models can yield novel insights into latent cognitive processes modulated by amino-acid supplementation.
Collapse
Affiliation(s)
- David Mathar
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| | - Mani Erfanian Abdoust
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Tobias Marrenbach
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Deniz Tuzsus
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Gonzalez DE, McAllister MJ, Waldman HS, Ferrando AA, Joyce J, Barringer ND, Dawes JJ, Kieffer AJ, Harvey T, Kerksick CM, Stout JR, Ziegenfuss TN, Zapp A, Tartar JL, Heileson JL, VanDusseldorp TA, Kalman DS, Campbell BI, Antonio J, Kreider RB. International society of sports nutrition position stand: tactical athlete nutrition. J Int Soc Sports Nutr 2022; 19:267-315. [PMID: 35813846 PMCID: PMC9261739 DOI: 10.1080/15502783.2022.2086017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
Abstract
This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN). General Recommendations Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness. Military Recommendations Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions. First Responder Recommendations Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| | - Matthew J. McAllister
- Texas State University, Metabolic and Applied Physiology Laboratory, Department of Health & Human Performance, San Marcos, TX, USA
| | - Hunter S. Waldman
- University of North Alabama, Department of Kinesiology, Florence, AL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jill Joyce
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK, USA
| | - Nicholas D. Barringer
- US. Army-Baylor Master’s Program in Nutrition, Department of Nutrition, San Antonio, TX, USA
| | - J. Jay Dawes
- Oklahoma State University, Department of Kinesiology, Applied Health, and Recreation, Stillwater, OK, USA
| | - Adam J. Kieffer
- Brooke Army Medical Center, Department of Nutritional Medicine, San Antonio, TX, USA
| | - Travis Harvey
- United States Special Operations Command, Preservation of the Force and Family, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Jeffrey R. Stout
- University of Central Florida, Institute of Exercise Physiology and Rehabilitation Sciences, School of Kinesiology and Physical Therapy, Orlando, FL, USA
| | | | | | - Jamie L. Tartar
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| | - Jeffery L. Heileson
- Baylor University, Department of Health, Human Performance, and Recreation, Waco, TX, USA
| | | | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Jose Antonio
- Fight Science Laboratory, Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Cardiovascular reactivity during sadness induction predicts inhibitory control performance. Physiol Behav 2022; 254:113869. [PMID: 35691588 DOI: 10.1016/j.physbeh.2022.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/25/2022]
Abstract
Higher negative affectivity has an association with decreased executive function and cognitive control. Heart rate variability (HRV) serves as an index of cardiac vagal regulation differences in the autonomic nervous system for both cognition and emotion. The current study investigates this association using a classic as well as emotional antisaccade paradigm to study inhibitory control performance. Ninety participants completed affective questionnaires (Beck Depression Inventory-II, and Mood Scale), a 6-minute baseline electrocardiogram, and two different antisaccade tasks. After the baseline, subjects were presented with a video sequence with either neutral, sad, or emotionally arousing content. By subtracting the baseline from the video sequence, we computed HRV reactivity and tested whether the reactivity score could predict inhibitory control performance. We hypothesized that this would be the case in both the sadness and arousal group, but not in the neutral one. Furthermore, we awaited significant performance differences between experimental groups. Contrary to our assumption, inhibitory control performance did not differ between experimental groups. Moreover, there was no significant relation between affective measures and task performance. Nevertheless, cardiovascular reactivity in terms of HRV was predictive of error rates in both antisaccade tasks in the sadness group. We could find this effect neither in the neutral nor in the arousal group. In addition, BDI scores moderated the effect in the emotional task. Results indicate that emotional reactivity to a sad video stimulus as indexed by HRV as well as the interaction with current emotional state predict inhibitory control performance.
Collapse
|
17
|
Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved Pharmaceutical Properties of Ritonavir through Co-crystallization Approach with Liquid Assisted Grinding Method. Drug Dev Ind Pharm 2022; 47:1633-1642. [PMID: 35156497 DOI: 10.1080/03639045.2022.2042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ritonavir is a BCS class II antiretroviral agent which shows poor aqueous solubility and low oral bioavailability. The cocrystallization approach was selected to overcome these problems and to improve the physicochemical and mechanical properties of Ritonavir. The novel pharmaceutical Ritonavir-L-tyrosine cocrystals (RTC at a molar ratio of 1:1) were synthesized using the liquid assisted grinding (LAG) method. The possibility of molecular interactions between drug and coformer were studied using Gold software version 5.2. The newly formed crystalline solid phase was characterized through Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Solid-State Nuclear magnetic resonance (SSNMR). The improved pharmaceutical properties were confirmed by solubility, dissolution, and powder compaction study. The prepared cocrystals exhibited an 11.24-fold increase in solubility and a 3.73-fold increase in % of drug release at 1 h compared to pure drug. Tabletability and compaction behaviour of the pure drug and cocrystal with added excipients assessed. The tabletability profile of cocrystals showed enhanced tabletting performance as compared to pure drug. The stability studies revealed that cocrystals were stable for at least one month when stored at 40 °C/75% RH and 25 °C/60% RH conditions. The cocrystallization approach was found to be very promising and showed an overall improved performance of Ritonavir.
Collapse
Affiliation(s)
| | - Jignasa K Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | | | - Harsh Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201, USA
| |
Collapse
|
18
|
Jagim AR, Harty PS, Barakat AR, Erickson JL, Carvalho V, Khurelbaatar C, Camic CL, Kerksick CM. Prevalence and Amounts of Common Ingredients Found in Energy Drinks and Shots. Nutrients 2022; 14:nu14020314. [PMID: 35057494 PMCID: PMC8780606 DOI: 10.3390/nu14020314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Energy drinks are one of the most popular packaged beverage products consumed within the United States (US). Energy drinks are considered a functional beverage, a category that also includes sports drinks and nutraceutical beverages. PURPOSE The focus of the current study was to examine the nutrition fact panels of the top selling commercially available energy drink and energy shot products within the US to characterize common ingredient profiles to help establish a standard definition and ingredient profile of energy drinks and energy shots for consumers, health care practitioners, and researchers. METHODS The top 75 commercially available energy drinks and shots were identified and compiled from multiple commercial retail websites as of September 2021. For the purpose of this study, an energy drink must have met the following criteria: (A) marketed as an energy drink; (B) purported to improve energy, focus, or alertness; (C) not sold as a dietary supplement (no supplement fact panels); (D) manufactured as a pre-packaged and ready-to-drink beverage; and (E) contains at least three of (1) caffeine, (2) B-vitamins, (3) sugar, (4) taurine, (5) creatine, (6) quercetin, (7) guarana, (8) ginseng, (9) coenzyme Q10, or (10) branched chain amino acids. Energy shots must have met similar criteria to be included: (A) marketed as an energy shot; (B) purported to improve energy, focus, or alertness; (C) sold as a dietary supplement; (D) manufactured as a pre-packaged beverage with a small volume (<3.5 mL); and (E) contains at least three of the ingredients stated above. RESULTS Twenty energy shots and fifty-five energy drinks were included in this analysis. The number of ingredients per product (mean ± SD) was 18.2 ± 5.7, with 15 products containing proprietary blends with undisclosed ingredient amounts. The relative prevalence and average amounts of the top ingredients were as follows: caffeine (100%; 174.4 ± 81.1 mg), vitamin B6 (72%; 366.9 ± 648.1 percent daily value (%DV)), vitamin B3 (67%; 121.44 ± 69.9% DV), vitamin B12 (67%; 5244.5 ± 10,474.6% DV), vitamin B5 (37.3%; 113.6 ± 76.6% DV), and taurine (37.3%; amounts undisclosed). CONCLUSIONS Our findings suggest a high prevalence of caffeine and B-vitamins in these energy products, with many of the formulations containing well above the recommended daily value of B-vitamins.
Collapse
Affiliation(s)
- Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
- Exercise & Sport Science, University of Wisconsin—La Crosse, La Crosse, WI 54603, USA;
- Correspondence:
| | - Patrick S. Harty
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Abdelrahman R. Barakat
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
| | - Jacob L. Erickson
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
| | - Victoria Carvalho
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA; (A.R.B.); (J.L.E.); (V.C.)
| | - Chinguun Khurelbaatar
- Exercise & Sport Science, University of Wisconsin—La Crosse, La Crosse, WI 54603, USA;
| | - Clayton L. Camic
- Kinesiology and Physical Education, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Chad M. Kerksick
- Exercise & Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO 63301, USA;
| |
Collapse
|
19
|
Castellani JW, Eglin CM, Ikäheimo TM, Montgomery H, Paal P, Tipton MJ. ACSM Expert Consensus Statement: Injury Prevention and Exercise Performance during Cold-Weather Exercise. Curr Sports Med Rep 2021; 20:594-607. [PMID: 34752434 DOI: 10.1249/jsr.0000000000000907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT Cold injury can result from exercising at low temperatures and can impair exercise performance or cause lifelong debility or death. This consensus statement provides up-to-date information on the pathogenesis, nature, impacts, prevention, and treatment of the most common cold injuries.
Collapse
Affiliation(s)
- John W Castellani
- United States Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA
| | - Clare M Eglin
- University of Portsmouth, School of Sport, Health and Exercise Science, Portsmouth, United Kingdom
| | | | - Hugh Montgomery
- University College London, Centre for Human Health and Performance, London, United Kingdom
| | - Peter Paal
- Hospitallers Brothers Hospital, Anaesthesiology and Intensive Care Medicine, Salzburg, Austria
| | - Michael J Tipton
- University of Portsmouth, School of Sport, Health and Exercise Science, Portsmouth, United Kingdom
| |
Collapse
|
20
|
The Effect of Cold Exposure on Cognitive Performance in Healthy Adults: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189725. [PMID: 34574649 PMCID: PMC8470111 DOI: 10.3390/ijerph18189725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023]
Abstract
Several aspects of cognition can be affected after cold exposure, but contradictory results have been reported regarding affected cognitive domains. The aim of the current systematic review was to evaluate the effects of specific cold exposure on cognitive performance in healthy subjects. A systematic search was performed using MEDLINE (through PubMed), EMBASE (Scopus) and PsycINFO databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria were healthy subjects exposed to a cold environment (either simulated or not) and cognitive performance related to cold exposure with an experimental design. The literature search identified 18 studies, eight studies investigated the effect of cold air exposure and ten the effect of cold water immersion on cognitive performance of healthy subjects. There were several differences among the studies (environmental temperature reached, time of exposure, timing, and type of cognitive test administration). Cold exposure induced in most of the experimental settings (15 of 18) an impairment of CP even before accidental hypothermia was established. The most investigated and affected cognitive domains were attention and processing speed, executive function, and memory. Gender differences and effects of repeated exposure and possible acclimation on cognitive performance need further studies to be confirmed.
Collapse
|
21
|
Plini ERG, O’Hanlon E, Boyle R, Sibilia F, Rikhye G, Kenney J, Whelan R, Melnychuk MC, Robertson IH, Dockree PM. Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer's Disease Neuroimaging Initiative. Cells 2021; 10:1829. [PMID: 34359997 PMCID: PMC8306442 DOI: 10.3390/cells10071829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
Collapse
Affiliation(s)
- Emanuele R. G. Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Erik O’Hanlon
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychiatry, Royal College of Surgeons in Ireland, Hospital Rd, Beaumont, 9QRH+4F Dublin, Ireland
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Rory Boyle
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Francesca Sibilia
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Gaia Rikhye
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Joanne Kenney
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Robert Whelan
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Michael C. Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Ian H. Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Paul M. Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| |
Collapse
|
22
|
Lee M, Jeong J, Jeong J, Lee J. Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115573. [PMID: 34071083 PMCID: PMC8197104 DOI: 10.3390/ijerph18115573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Fatal injury and accidents in the construction industry occur under the influence of outdoor weather conditions such as temperature, humidity and wind speed in all four seasons. Previous research in this area has focused on hot and cold weather conditions: hot weather causes heat rash, heat cramps and heat fainting, while cold weather causes fatigue, lumbago, and cold finger sensations. However, other weather conditions are also associated with, and cause, fatal injury and accidents. Accordingly, this study analyzes injury and fatal accidents in the construction industry based on the physiological equivalent temperature (PET) as it pertains to thermal comfort using an uncertainty analysis. Furthermore, using a neural network, relative importance is analyzed considering injury and fatal accidents. This study is conducted in five steps: (i) Establishment of the database, (ii) Classification of accident types and weather conditions, (iii) Calculation of thermal comfort, (iv) Analysis of injury and fatal accidents based on thermal comfort, and (v) Calculation of the relative importance of thermal comfort during injury and fatal accidents. Via the research process, 5317 fatal incidents and 207,802 injuries are analyzed according to 18 accident types in all seasons. It was found that 'falls', were the most frequent fatal incident and injury (2804 fatal incidents and 71,017 injuries), with most of these occurring during the autumn season. The probabilities of injury and fatal accidents in the 'fall' category are 86.01% and 85.60%, respectively, in the outside comfort ranges. The contribution of this study can provide data for a database on safety management considering weather conditions.
Collapse
|
23
|
Ahrens S, Laux J, Müller C, Thiel CM. Increased dopamine availability magnifies nicotine effects on cognitive control: A pilot study. J Psychopharmacol 2020; 34:548-556. [PMID: 32133910 PMCID: PMC7370651 DOI: 10.1177/0269881120907989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION AND OBJECTIVES The ability to adapt to new task demands flexibly and to stabilise performance in the presence of distractors is termed cognitive control and is mediated by dopaminergic and cholinergic neurotransmission. We aimed to test the hypothesis that the effect of the cholinergic agonist nicotine on cognitive control depends on baseline dopamine levels. METHODS Thirty-eight healthy non-smokers (16 males; Mage=24.05 years) performed a cognitive control task including distractor and switch trials twice. Subjects were split into two parallel groups. One group received 2 g of L-tyrosine two hours prior to testing to manipulate dopamine availability experimentally, while the other group received placebo on both days. One hour later, both groups received in a within-subject design: on one day, a 7 mg nicotine patch; on the other day, a matched placebo. Response time costs for distractor and switch trials served as measures of cognitive stability and flexibility. RESULTS Nicotinic modulation reduced response time costs in switch trials and increased costs in distractor trials (nicotine×condition, p=0.027) with a trend-wise interaction between nicotine, L-tyrosine and trial type (nicotine×L-tyrosine×condition, p=0.068), which was due to stronger nicotine effects under L-tyrosine. CONCLUSIONS Our data provide preliminary evidence that nicotine has opponent effects on cognitive stability and flexibility. Subjects who received the dopamine precursor L-tyrosine were more prone to nicotine effects on behaviours, which are improvements in cognitive flexibility at the cost of decreased cognitive stability.
Collapse
Affiliation(s)
- Stefan Ahrens
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,Stefan Ahrens, Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg, 26111, Germany. Emails: ;
| | - Joana Laux
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christina Müller
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,Cluster of Excellence ‘Hearing4all’, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany,Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
24
|
Froböse MI, Westbrook A, Bloemendaal M, Aarts E, Cools R. Catecholaminergic modulation of the cost of cognitive control in healthy older adults. PLoS One 2020; 15:e0229294. [PMID: 32084218 PMCID: PMC7034873 DOI: 10.1371/journal.pone.0229294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/03/2020] [Indexed: 11/19/2022] Open
Abstract
Catecholamines have long been associated with cognitive control and value-based decision-making. More recently, we have shown that catecholamines also modulate value-based decision-making about whether or not to engage in cognitive control. Yet it is unclear whether catecholamines influence these decisions by altering the subjective value of control. Thus, we tested whether tyrosine, a catecholamine precursor altered the subjective value of performing a demanding working memory task among healthy older adults (60-75 years). Contrary to our prediction, tyrosine administration did not significantly increase the subjective value of conducting an N-back task for reward, as a main effect. Instead, in line with our previous study, exploratory analyses indicated that drug effects varied as a function of participants' trait impulsivity scores. Specifically, tyrosine increased the subjective value of conducting an N-back task in low impulsive participants, while reducing its value in more impulsive participants. One implication of these findings is that the over-the-counter tyrosine supplements may be accompanied by an undermining effect on the motivation to perform demanding cognitive tasks, at least in certain older adults. Taken together, these findings indicate that catecholamines can alter cognitive control by modulating motivation (rather than just the ability) to exert cognitive control.
Collapse
Affiliation(s)
- Monja I. Froböse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Andrew Westbrook
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America
| | - Mirjam Bloemendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Dept Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Tyrosine negatively affects flexible-like behaviour under cognitively demanding conditions. J Affect Disord 2020; 260:329-333. [PMID: 31521870 DOI: 10.1016/j.jad.2019.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The catecholaminergic precursor to dopamine, tyrosine, is an important modulator of cognitive performance. A number of studies have demonstrated that the beneficial effects of tyrosine on cognitive performance are most pronounced when individuals are exposed to stressful situations, such as hypothermia. However, little is known about whether manipulation of stress using non-aversive stimuli, such as cognitive demand, can also bring about similar improvements. METHODS We conducted a randomized, double-blind, placebo-controlled experiment to test the effects of tyrosine administration and cognitive load (low or high) on cognitive flexibility, a measure known to be influenced by catecholaminergic function. A total of 70 healthy volunteers completed a baseline cognitive flexibility test (Wisconsin Card Sorting Test: WCST). Participants were given a dose of either tyrosine (2.0 g) or placebo (cellulose) and subject to either low cognitive load (simple reaction time task) or high cognitive load (digit memory span task), immediately followed by a WCST for a second time. RESULTS Contrary to expectations, we found that instead of ameliorating performance under the high cognitive load condition, tyrosine worsened cognitive flexibility. LIMITATIONS Physiological marker of stress was not measured. CONCLUSIONS Our results suggest that aversive stressors and cognitive demand modulate the effects of tyrosine on cognitive performance in a differential manner.
Collapse
|
26
|
Tumilty L, Gregory N, Beckmann M, Thatcher R. No Influence of Low-, Medium-, or High-Dose Tyrosine on Exercise in a Warm Environment. Med Sci Sports Exerc 2019; 52:1404-1413. [PMID: 31834099 DOI: 10.1249/mss.0000000000002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Tyrosine administration may counter exercise fatigue in a warm environment, but the typical dose is inconclusive, with little known about higher doses. We explored how three tyrosine doses influenced the circulating ratio of tyrosine/amino acids competing for brain uptake and hypothesized that a medium and high dose would enhance exercise performance in a warm environment. METHODS Eight recreationally trained, non-heat-acclimated male individuals (mean ± SD age, 23 ± 4 yr; stature, 181 ± 7 cm; body mass, 76.1 ± 5.9 kg; peak oxygen uptake, 4.1 ± 0.5 L·min) performed a peak oxygen uptake test, two familiarization trials, then four experimental trials in a randomized order separated by 7 d. Before exercise, subjects drank 2 × 300 mL sugar-free drinks delivering 0 (PLA), 150 (LOW), 300 (MED), or 400 (HIGH) mg·kg body mass tyrosine in a double-blind fashion. Subjects performed a 60-min constant intensity cycling then a simulated time trial in 30°C and 60% relative humidity. RESULTS Time trial performance (P = 0.579) was not influenced by tyrosine ingestion. The plasma ratio of tyrosine/∑(free-tryptophan, leucine, isoleucine, valine, phenylalanine, methionine), a key determinant of brain tyrosine influx, increased relative to PLA (P < 0.001). The increase was similar (P > 0.05) in MED (7.7-fold) and HIGH (8.2-fold), and greater than that in LOW (5.3-fold; P < 0.05). No differences existed between trials in core and skin temperature, heart rate, RPE, or thermal sensation (P > 0.05). CONCLUSION Exercise performance in a warm environment was not influenced by tyrosine availability in recreationally trained male individuals. The results provide novel data informing future studies, on the tyrosine dose maximizing the circulating ratio of tyrosine/amino acids competing for brain uptake.
Collapse
Affiliation(s)
- Les Tumilty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UNITED KINGDOM
| | | | | | | |
Collapse
|
27
|
Martin K, McLeod E, Périard J, Rattray B, Keegan R, Pyne DB. The Impact of Environmental Stress on Cognitive Performance: A Systematic Review. HUMAN FACTORS 2019; 61:1205-1246. [PMID: 31002273 DOI: 10.1177/0018720819839817] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE In this review, we detail the impact of environmental stress on cognitive and military task performance and highlight any individual characteristics or interventions which may mitigate any negative effect. BACKGROUND Military personnel are often deployed in regions markedly different from their own, experiencing hot days, cold nights, and trips both above and below sea level. In spite of these stressors, high-level cognitive and operational performance must be maintained. METHOD A systematic review of the electronic databases Medline (PubMed), EMBASE (Scopus), PsycINFO, and Web of Science was conducted from inception up to September 2018. Eligibility criteria included a healthy human cohort, an outcome of cognition or military task performance and assessment of an environmental condition. RESULTS The search returned 113,850 records, of which 124 were included in the systematic review. Thirty-one studies examined the impact of heat stress on cognition; 20 of cold stress; 59 of altitude exposure; and 18 of being below sea level. CONCLUSION The severity and duration of exposure to the environmental stressor affects the degree to which cognitive performance can be impaired, as does the complexity of the cognitive task and the skill or familiarity of the individual performing the task. APPLICATION Strategies to improve cognitive performance in extreme environmental conditions should focus on reducing the magnitude of the physiological and perceptual disturbance caused by the stressor. Strategies may include acclimatization and habituation, being well skilled on the task, and reducing sensations of thermal stress with approaches such as head and neck cooling.
Collapse
Affiliation(s)
- Kristy Martin
- University of Canberra, Australian Capital Territory, Australia
| | - Emily McLeod
- University of Canberra, Australian Capital Territory, Australia
| | - Julien Périard
- University of Canberra, Australian Capital Territory, Australia
| | - Ben Rattray
- University of Canberra, Australian Capital Territory, Australia
| | - Richard Keegan
- University of Canberra, Australian Capital Territory, Australia
| | - David B Pyne
- University of Canberra, Australian Capital Territory, Australia
| |
Collapse
|
28
|
Lang JA, Krajek AC, Schwartz KS, Rand JE. Oral L-Tyrosine Supplementation Improves Core Temperature Maintenance in Older Adults. Med Sci Sports Exerc 2019; 52:928-934. [PMID: 31609301 DOI: 10.1249/mss.0000000000002188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION During cold exposure, an increase in sympathetic nerve activity evokes vasoconstriction (VC) of cutaneous vessels to minimize heat loss. In older adults, this reflex VC response is impaired thereby increasing their susceptibility to excess heat loss and hypothermia. Because L-tyrosine, the amino acid substrate necessary for catecholamine production, has been shown to augment reflex VC in age skin, we hypothesize that oral ingestion of L-tyrosine will attenuate the decline in core temperature (Tc) during whole-body cooling in older adults. METHODS In a randomized, double-blind design, nine young (25 ± 3 yr) and nine older (72 ± 8 yr) participants ingested either 150 mg·kg of L-tyrosine or placebo before commencing 90 min of whole-body cooling to decrease skin temperature to approximately 29.5°C. Esophageal temperature and forearm laser Doppler flux (LDF) were measured continuously throughout the protocol to provide an index of Tc and skin blood flow, respectively. The change in esophageal temperature (ΔTES) was the difference in temperature at the end of cooling subtracted from baseline. Cutaneous vascular conductance (CVC) was calculated as CVC = LDF/mean arterial pressure and expressed as a percent change from baseline (%ΔCVCBASELINE). RESULTS Oral tyrosine ingestion augmented the cutaneous VC response to cooling in older adults (placebo, 14.4 ± 2.0; tyrosine, 32.7% ± 1.7% ΔCVCBASELINE; P < 0.05). Additionally, tyrosine improved Tc maintenance throughout cooling in older adults (placebo, -0.29 ± 0.07; tyrosine, -0.07 ± 0.07 ΔTES; P < 0.05). Both the cutaneous VC and Tc during cooling were similar between young and older adults supplemented with tyrosine (P > 0.05). CONCLUSIONS These results indicate that L-tyrosine supplementation improves Tc maintenance in response to acute cold exposure in an older population.
Collapse
Affiliation(s)
| | - Alex C Krajek
- Department of Physical Therapy, Des Moines University, Des Moines, IA
| | | | | |
Collapse
|
29
|
Shields GS, Rivers AM, Ramey MM, Trainor BC, Yonelinas AP. Mild acute stress improves response speed without impairing accuracy or interference control in two selective attention tasks: Implications for theories of stress and cognition. Psychoneuroendocrinology 2019; 108:78-86. [PMID: 31229636 PMCID: PMC6707871 DOI: 10.1016/j.psyneuen.2019.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
Abstract
Acute stress is generally thought to impair performance on tasks thought to rely on selective attention. This effect has been well established for moderate to severe stressors, but no study has examined how a mild stressor-the most common type of stressor-influences selective attention. In addition, no study to date has examined how stress influences the component processes involved in overall selective attention task performance, such as controlled attention, automatic attentional activation, decision-making, and motor abilities. To address these issues, we randomly assigned 107 participants to a mild acute stress or control condition. As expected, the mild acute stress condition showed a small but significant increase in cortisol relative to the control condition. Following the stressor, we assessed attention with two separate flanker tasks. One of these tasks was optimized to investigate component attentional processes using computational cognitive modeling, whereas the other task employed mouse-tracking to illustrate how response conflict unfolded over time. The results for both tasks showed that mild acute stress decreased response time (i.e., increased response speed) without influencing accuracy or interference control. Further, computational modeling and mouse-tracking analyses indicated that these effects were due to faster motor action execution time for chosen actions. Intriguingly, however, cortisol responses were unrelated to any of the observed effects of mild stress. These results have implications for theories of stress and cognition, and highlight the importance of considering motor processes in understanding the effects of stress on cognitive task performance.
Collapse
Affiliation(s)
- Grant S Shields
- Department of Psychology, University of California, Davis, California, USA; Center for Neuroscience, University of California, Davis, California, USA.
| | - Andrew M Rivers
- Department of Psychology, University of British Columbia, Vancouver, CA
| | - Michelle M Ramey
- Department of Psychology, University of California, Davis, California, USA; Center for Neuroscience, University of California, Davis, California, USA; Center for Mind and Brain, University of California, Davis, California, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, California, USA; Department of Animal Behavior, University of California, Davis, California, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, California, USA; Center for Neuroscience, University of California, Davis, California, USA; Center for Mind and Brain, University of California, Davis, California, USA
| |
Collapse
|
30
|
Lyte JM. Eating for 3.8 × 10 13: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Front Endocrinol (Lausanne) 2019; 9:796. [PMID: 30761092 PMCID: PMC6361751 DOI: 10.3389/fendo.2018.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022] Open
Abstract
The study of host-microbe neuroendocrine crosstalk, termed microbial endocrinology, suggests the impact of diet on host health and microbial viability is, in part, reliant upon nutritional modulation of shared host-microbe neuroendocrine axes. In the 1990's it was first recognized that neuroendocrine pathways are major components of the microbiota-gut-brain axis, and that diet-induced changes in the gut microbiota were correlated with changes in host behavior and cognition. A causative link, however, between nutritional-induced shifts in microbiota composition and change in host behavior has yet to be fully elucidated. Substrates found in food which are utilized by bacteria in the production of microbial-derived neurochemicals, which are structurally identical to those made by the host, likely represent a microbial endocrinology-based route by which the microbiota causally influence the host and microbial community dynamics via diet. For example, food safety is strongly impacted by the microbial production of biogenic amines. While microbial-produced tyramine found in cheese can elicit hypertensive crises, microorganisms which are common inhabitants of the human intestinal tract can convert L-histidine found in common foodstuffs to histamine and thereby precipitate allergic reactions. Hence, there is substantial evidence suggesting a microbial endocrinology-based role by which the gastrointestinal microbiota can utilize host dietary components to produce neuroactive molecules that causally impact the host. Conversely, little is known regarding the reverse scenario whereby nutrition-mediated changes in host neuroendocrine production affect microbial viability, composition, and/or function. Mechanisms in the direction of brain-to-gut, such as how host production of catecholamines drives diverse changes in microbial growth and functionality within the gut, require greater examination considering well-known nutritional effects on host stress physiology. As dietary intake mediates changes in host stress, such as the effects of caffeine on the hypothalamic-pituitary-adrenal axis, it is likely that nutrition can impact host neuroendocrine production to affect the microbiota. Likewise, the plasticity of the microbiota to changes in host diet has been hypothesized to drive microbial regulation of host food preference via a host-microbe feedback loop. This review will focus on food as concerns microbial endocrinology with emphasis given to nutrition as a mediator of host-microbe bi-directional neuroendocrine crosstalk and its impact on microbial viability and host health.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| |
Collapse
|
31
|
Rusinova-Videva S, Kambourova M, Alipieva K, Nachkova S, Simova S. Metabolic profiling of Antarctic yeasts by proton nuclear magnetic resonance-based spectroscopy. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1490201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Snezhana Rusinova-Videva
- Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Botany, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Margarita Kambourova
- Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kalina Alipieva
- Laboratory Chemistry of Natural Products, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefka Nachkova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Svetlana Simova
- Laboratory Bulgarian NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
32
|
Vartanian O, Fraser B, Saunders D, Suurd Ralph C, Lieberman HR, Morgan CA, Cheung B. Changes in mood, fatigue, sleep, cognitive performance and stress hormones among instructors conducting stressful military captivity survival training. Physiol Behav 2018; 194:137-143. [PMID: 29752975 DOI: 10.1016/j.physbeh.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 11/25/2022]
Abstract
Numerous studies have examined the effects of captivity survival training on psychological and physiological function in trainees. In the present study we shifted the focus to instructors, and measured the effects that the delivery of training exerts on their levels of stress and performance. Because instructors are called upon to perform difficult duties (e.g., mock interrogations) under extreme conditions, we hypothesized that significant increases in psychological and physiological indices of stress would occur due to training. In addition, as part of their job tasking, the instructors conducted courses in consecutive weeks. This offered a unique and ecologically valid opportunity to assess carryover of stress from one week to the next. We hypothesized stress levels would be higher in the second than the first week of training. Our first hypothesis was supported: Delivering training was associated with impairments in mood, fatigue, and sleep, as well as a reduction in the ratio of testosterone/cortisol level in blood. Our second hypothesis was largely not supported as a 3-day break separating consecutive courses appeared sufficient for restoring psychological and physiological function. Our results demonstrate that although the delivery of training exerts negative effects on instructors' levels of stress, the 3-day recovery period separating consecutive courses is sufficient to return psychological and physiological function to baseline levels.
Collapse
Affiliation(s)
- Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| | - Brenda Fraser
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Saunders
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Cindy Suurd Ralph
- Director General Military Personnel Research and Analysis, Department of National Defence, Ottawa, ON, Canada; Queen's University, Kingston, ON, Canada
| | - Harris R Lieberman
- U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Charles A Morgan
- Yale University School of Medicine, New Haven, CT, United States; Henry C. Lee College of Criminal Justice & Forensic Sciences, University of New Haven, CT, United States
| | - Bob Cheung
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| |
Collapse
|
33
|
Pandit C, Sai Latha S, Usha Rani T, Anilakumar KR. Pepper and cinnamon improve cold induced cognitive impairment via increasing non-shivering thermogenesis; a study. Int J Hyperthermia 2018; 35:518-527. [PMID: 30208750 DOI: 10.1080/02656736.2018.1511835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Despite an understanding that a major effect of cold exposure is a fall in core body temperature which is responsible for the observed decrements in the performance, it is surprising that thermogenic supplements are seldom evaluated to verify if they can aid in improving the performance during cold exposure. Following evidence from our previous study indicating the ability of pepper and cinnamon to improve cold endurance, we investigated further here if the improved endurance had advantages in real time where they could positively affect cognitive performance (assessed by Novel object test) when exposed to cold in albino wistar rats. In order to delineate if the observed improvement if any, was due to their cognitive enhancing ability or thermogenic potential, distinctive room temperature (RT) and cold temperature (CT) groups were used. Cold exposure impaired cognitive performance which improved following treatment with both the spices. We noted an increased rate of cold adaptive thermogenesis in CT treated group as evidenced by an elevated norepinephrine, free fatty acid levels in blood, increased expression of UCP1 in brown adipose tissue, the net effect being a decreased fall in the core body temperature. Absence of any notable effect in these parameters in the RT treated group ascertained that at least in the current experimental set up the observed improvement in performance in CT treated group is due to the thermogenic potential of the spices alone. In conclusion, our results demonstrate that the cognitive impairment caused by exposure to cold can be effectively countered by agents with thermogenic potential.
Collapse
Affiliation(s)
| | - S Sai Latha
- a Defence Food Research Laboratory , DRDO , Mysore , India
| | - T Usha Rani
- a Defence Food Research Laboratory , DRDO , Mysore , India
| | - K R Anilakumar
- a Defence Food Research Laboratory , DRDO , Mysore , India
| |
Collapse
|
34
|
Stock AK, Colzato L, Beste C. On the effects of tyrosine supplementation on interference control in a randomized, double-blind placebo-control trial. Eur Neuropsychopharmacol 2018; 28:933-944. [PMID: 29980424 DOI: 10.1016/j.euroneuro.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/22/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Exerting cognitive control is an effortful endeavor that is strongly modulated by the availability of dopamine (DA) and norepinephrine (NE), which are both synthesized from the amino acid precursor tyrosine. Supplementing tyrosine may increase the synthesis of both catecholamines. This has been suggested to improve executive functioning and potentially even counteract depletion effects in this domain. Yet, it has remained unclear whether tyrosine also improves interference control and whether subliminally and consciously triggered response conflicts are subject to the same modulation. We investigated this question in a double-blind intra-individual study design. N = 26 young healthy subjects performed two consecutive cognitive control tasks that triggered automatic incorrect response tendencies; once with tyrosine supplementation and once with a placebo. The results show that tyrosine decreased the size of consciously perceived conflicts in a Simon Task, but not a Flanker task, thus suggesting that stimulus-response conflicts might be modulated differently from stimulus-stimulus conflicts. At the same time, tyrosine supplementation increased the size of subliminally triggered conflicts whenever a different, consciously perceived conflict was also present. This suggests that control-related DA and NE release may increase visuo-motor priming, especially when no conflict-specific top-down control may be triggered to counteract subliminal priming effects. Also, these subliminal conflicts might be aggravated by concurrent control investments in other kinds of conflict. Taken together, our data suggest that beneficial effects of tyrosine supplementation do not require depletion effects, but may be limited to situations where we consciously perceive a conflict and the associated need for conflict-specific control.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Schubertstr. 42, D-01307 Dresden, Germany; Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands.
| | - Lorenza Colzato
- Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands; Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Institute for Sports and Sport Science, University of Kassel, Kassel, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Schubertstr. 42, D-01307 Dresden, Germany
| |
Collapse
|
35
|
Barringer N, Crombie A, Kotwal R. Impact of a purported nootropic supplementation on measures of mood, stress, and marksmanship performance in U.S. active duty soldiers. J Int Soc Sports Nutr 2018; 15:26. [PMID: 29855372 PMCID: PMC5984413 DOI: 10.1186/s12970-018-0229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022] Open
Abstract
Background The purpose of this study was to determine the impact of a commercially available purported nootropic supplement on mood, stress, and rifle marksmanship accuracy and engagement time via an Engagement Skills Trainer. Methods In this double-blind, placebo-controlled trial, 43 U.S. active duty Soldiers participating in a professional military course were assigned to treatment (n = 20; 16 males and 4 females) or placebo (n = 23; 15 males and 8 females) based on initial marksmanship score. The study period was 31 days (testing performed on days 1 and 31, supplementation days 2 through 30). Participants were instructed to consume 2 pills at breakfast and 1 pill at dinner for a total of 3 pills per day (1925 mg) of either the Alpha Brain® nootropic supplement or a placebo. Height, weight, cortisol (in a hair sample), body composition using multi-frequency tetrapolar bioelectrical impedance (InBody 720), and marksmanship (Engagement Skills Trainer 2000). Marksmanship was assessed in the prone position with zeroed M-4 rifles with a twenty target protocol with targets presenting and remaining for 3 s at set intervals. Participants’ performance were assessed with hits versus misses, distance of hit from target center mass (DCM), and target engagement speed. Statistical analysis via SPSS Statistics 21 (IBM) was conducted using a repeated measures ANOVA with significance set at P < 0.5. Results There was no statistically significant difference between Treatment and Placebo for hits (TreatmentPre 18.5 ± 1.5, TreatmentPost 19.4 ± 0.8, PlaceboPre18.2 ± 2.9, PlaceboPost19.4 ± 1.3), initial reaction time in seconds (TreatmentPre 1.65 ± 0.28, TreatmentPost 1.43 ± 0.28, PlaceboPre1.59 ± 0.29, PlaceboPost1.41 ± 0.21), mean reaction time in seconds (TreatmentPre 1.60 ± 0.20, TreatmentPost 1.41 ± 0.16, PlaceboPre1.61 ± 0.51, PlaceboPost1.46 ± 0.56), or distance from center mass in centimeters (TreatmentPre 11.28 ± 4.28, TreatmentPost 11.92 ± 4.23, PlaceboPre10.52 ± 5.29, PlaceboPost10.94 ± 4.64). A significant time effect (P < 0.5) was found for both groups on all variables except distance from center mass. Reaction time values were adjusted to give percent decrease for initial reaction and mean reaction for the Treatment group (− 12.3% ± 16, − 15.2% ± 21.6) compared to the Placebo group (− 8.3% ± 21.8, − 12.5% ± 23.5), but no significant difference was found. Conclusion The Alpha Brain® nootropic supplement did not have any statistically significant effects on marksmanship performance in this study. Given the rising popularity of nootropic supplements, future research on their potential impact on cognitively demanding soldier tasks, such as target discrimination scenarios, are recommended.
Collapse
Affiliation(s)
- Nicholas Barringer
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA, 01760, USA.
| | - Aaron Crombie
- U.S. Military-Baylor University Graduate Program in Nutrition, AMEDDC&S HRCoE, 3630 Stanley Rd, Bldg 2841, Suite 0308. Joint Base San Antonio-Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Russ Kotwal
- Department of Defense Joint Trauma System, 3698 Chambers Road, Joint Base San Antonio-Fort Sam Houston, San Antonio, TX, 78234, USA
| |
Collapse
|
36
|
Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. eNeuro 2018; 5:eN-NWR-0035-17. [PMID: 30094335 PMCID: PMC6084775 DOI: 10.1523/eneuro.0035-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 01/02/2023] Open
Abstract
The aging brain is characterized by altered dopamine signaling. The amino acid tyrosine, a catecholamine precursor, is known to improve cognitive performance in young adults, especially during high environmental demands. Tyrosine administration might also affect catecholamine transmission in the aging brain, thereby improving cognitive functioning. In healthy older adults, impairments have been demonstrated in two forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipatory response slowing) under high information load. However, no study has directly compared the effects of a catecholamine precursor on reactive and load-dependent proactive inhibition. In this study we explored the effects of tyrosine on reactive and proactive response inhibition and signal in dopaminergically innervated fronto-striatal regions. Depending on age, tyrosine might lead to beneficial or detrimental neurocognitive effects. We aimed to address these hypotheses in 24 healthy older human adults (aged 61-72 years) using fMRI in a double blind, counterbalanced, placebo-controlled, within-subject design. Across the group, tyrosine did not alter reactive or proactive inhibition behaviorally but did increase fronto-parietal proactive inhibition-related activation. When taking age into account, tyrosine affected proactive inhibition both behaviorally and neurally. Specifically, increasing age was associated with a greater detrimental effect of tyrosine compared with placebo on proactive slowing. Moreover, with increasing age, tyrosine decreased fronto-striatal and parietal proactive signal, which correlated positively with tyrosine's effects on proactive slowing. Concluding, tyrosine negatively affected proactive response slowing and associated fronto-striatal activation in an age-dependent manner, highlighting the importance of catecholamines, perhaps particularly dopamine, for proactive response inhibition in older adults.
Collapse
|
37
|
Blasiman RN, Was CA. Why Is Working Memory Performance Unstable? A Review of 21 Factors. EUROPES JOURNAL OF PSYCHOLOGY 2018; 14:188-231. [PMID: 29899806 PMCID: PMC5973525 DOI: 10.5964/ejop.v14i1.1472] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023]
Abstract
In this paper, we systematically reviewed twenty-one factors that have been shown to either vary with or influence performance on working memory (WM) tasks. Specifically, we review previous work on the influence of intelligence, gender, age, personality, mental illnesses/medical conditions, dieting, craving, stress/anxiety, emotion/motivation, stereotype threat, temperature, mindfulness training, practice, bilingualism, musical training, altitude/hypoxia, sleep, exercise, diet, psychoactive substances, and brain stimulation on WM performance. In addition to a review of the literature, we suggest several frameworks for classifying these factors, identify shared mechanisms between several variables, and suggest areas requiring further investigation. This review critically examines the breadth of research investigating WM while synthesizing the results across related subfields in psychology.
Collapse
|
38
|
Miquel S, Champ C, Day J, Aarts E, Bahr BA, Bakker M, Bánáti D, Calabrese V, Cederholm T, Cryan J, Dye L, Farrimond JA, Korosi A, Layé S, Maudsley S, Milenkovic D, Mohajeri MH, Sijben J, Solomon A, Spencer JPE, Thuret S, Vanden Berghe W, Vauzour D, Vellas B, Wesnes K, Willatts P, Wittenberg R, Geurts L. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res Rev 2018; 42:40-55. [PMID: 29248758 DOI: 10.1016/j.arr.2017.12.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ageing is a highly complex process marked by a temporal cascade of events, which promote alterations in the normal functioning of an individual organism. The triggers of normal brain ageing are not well understood, even less so the factors which initiate and steer the neuronal degeneration, which underpin disorders such as dementia. A wealth of data on how nutrients and diets may support cognitive function and preserve brain health are available, yet the molecular mechanisms underlying their biological action in both normal ageing, age-related cognitive decline, and in the development of neurodegenerative disorders have not been clearly elucidated. OBJECTIVES This review aims to summarise the current state of knowledge of vulnerabilities that predispose towards dysfunctional brain ageing, highlight potential protective mechanisms, and discuss dietary interventions that may be used as therapies. A special focus of this paper is on the impact of nutrition on neuroprotection and the underlying molecular mechanisms, and this focus reflects the discussions held during the 2nd workshop 'Nutrition for the Ageing Brain: Functional Aspects and Mechanisms' in Copenhagen in June 2016. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). CONCLUSION Coupling studies of cognitive ageing with studies investigating the effect of nutrition and dietary interventions as strategies targeting specific mechanisms, such as neurogenesis, protein clearance, inflammation, and non-coding and microRNAs is of high value. Future research on the impact of nutrition on cognitive ageing will need to adopt a longitudinal approach and multimodal nutritional interventions will likely need to be imposed in early-life to observe significant impact in older age.
Collapse
Affiliation(s)
- Sophie Miquel
- Mars-Wrigley, 1132 W. Blackhawk Street, Chicago, IL 60642, United States
| | - Claire Champ
- Human Appetite Research Unit, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jon Day
- Cerebrus Associates Limited, The White House, 2 Meadrow, Godalming, Surrey, GU7 3HN, United Kingdom
| | - Esther Aarts
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Ben A Bahr
- Biotechnology Research and Training Centre, University of North Carolina - Pembroke, United States
| | - Martijntje Bakker
- The Netherlands Organisation for Health Research and Development, Laan van Nieuw Oost-Indië 334, 2593 CE The Hague, The Netherlands
| | - Diána Bánáti
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium
| | - Vittorio Calabrese
- University of Catania, Department of Biomedical and Biotechnological Sciences, Biological Tower - Via Santa Sofia, 97, Catania, Italy
| | - Tommy Cederholm
- University of Uppsala, Institutionen för folkhälso- och vårdvetenskap, Klinisk nutrition och metabolism, Uppsala Science Park, 751 85 Uppsala, Sweden
| | - John Cryan
- Anatomy & Neuroscience, University College Cork, 386 Western Gateway Building, Cork, Ireland
| | - Louise Dye
- Human Appetite Research Unit, School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA Bordeaux University, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Stuart Maudsley
- Department of Biomedical Research and VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Gebouw V, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Dragan Milenkovic
- INRA, Human Nutrition Unit, UCA, F-63003, Clermont-Ferrand, France; Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, United States
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland
| | - John Sijben
- Nutricia Research, Nutricia Advanced Medical Nutrition, PO Box 80141, 3508TC, Utrecht, The Netherlands
| | - Alina Solomon
- Aging Research Center, Karolinska Institutet, Gävlegatan 16, SE-113 30 Stockholm, Sweden
| | - Jeremy P E Spencer
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - Sandrine Thuret
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, The Maurice Wohl Clinical Neuroscience Institute,125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Wim Vanden Berghe
- PPES, Department Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - David Vauzour
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Bruno Vellas
- Department of Geriatric Medicine, CHU Toulouse, Gerontopole, Toulouse, France
| | - Keith Wesnes
- Wesnes Cognition Limited, Little Paddock, Streatley on Thames, RG8 9RD, United Kingdom; Medical School, University of Exeter, Exeter, United Kingdom; Department of Psychology, Northumbria University, Newcastle, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia; Medicinal Plant Research Group, Newcastle University, United Kingdom
| | - Peter Willatts
- School of Psychology, University of Dundee Nethergate, Dundee, DD1 4HN, United Kingdom
| | - Raphael Wittenberg
- London School of Economics and Political Science, Personal Social Services Research Unit, London, United Kingdom
| | - Lucie Geurts
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200 Brussels, Belgium.
| |
Collapse
|
39
|
Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. PSYCHOLOGICAL RESEARCH 2017; 83:1097-1106. [PMID: 29255945 PMCID: PMC6647184 DOI: 10.1007/s00426-017-0957-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/04/2017] [Indexed: 11/03/2022]
Abstract
The fact that tyrosine increases dopamine availability that, in turn, may enhance cognitive performance has led to numerous studies on healthy young participants taking tyrosine as a food supplement. As a result of this dietary intervention, participants show performance increases in working memory and executive functions. However, the potential association between habitual dietary tyrosine intake and cognitive performance has not been investigated to date. The present study aims at clarifying the association of episodic memory (EM), working memory (WM) and fluid intelligence (Gf), and tyrosine intake in younger and older adults. To this end, we acquired habitual tyrosine intake (food frequency questionnaire) from 1724 participants of the Berlin Aging Study II (1383 older adults, 341 younger adults) and modelled its relations to cognitive performance assessed in a broad battery of cognitive tasks using structural equation modeling. We observed a significant association between tyrosine intake and the latent factor capturing WM, Gf, and EM in the younger and the older sample. Due to partial strong factorial invariance between age groups for a confirmatory factor analysis on cognitive performance, we were able to compare the relationship between tyrosine and cognition between age groups and found no difference. Above and beyond previous studies on tyrosine food supplementation the present result extend this to a cross-sectional association between habitual tyrosine intake levels in daily nutrition and cognitive performance (WM, Gf, and EM). This corroborates nutritional recommendations that are thus far derived from single-dose administration studies.
Collapse
|
40
|
Kennedy DO, Wightman EL, Forster J, Khan J, Haskell-Ramsay CF, Jackson PA. Cognitive and Mood Effects of a Nutrient Enriched Breakfast Bar in Healthy Adults: A Randomised, Double-Blind, Placebo-Controlled, Parallel Groups Study. Nutrients 2017; 9:nu9121332. [PMID: 29215606 PMCID: PMC5748782 DOI: 10.3390/nu9121332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Objectives: Few previous studies have assessed the effects of concomitant administration of multiple potentially psychoactive nutrients. Methods: 95 healthy adult participants consumed either a nutrient enriched breakfast bar (containing α-Linolenic acid, l-tyrosine, l-theanine, vitamins, minerals and 21.5 mg of caffeine) or an isocaloric, macronutrient matched control bar for 56 days. Cognitive function and mood were assessed pre-dose and at 40- and 160-min post-dose on the 1st and 56th day of the intervention period. Results: The results demonstrated acute effects of treatment across post-dose assessments on both assessment days in terms of alertness, and on tasks assessing attention, working and episodic memory and executive function, including cognitively demanding Serial subtraction and Rapid Visual Information Processing tasks. There were no evident chronic effects independent of the breakfast bars’ acute effects. Discussion: These results demonstrate that a nutrient enriched breakfast bar with low caffeine content can exert striking beneficial effects on acute cognitive function and alertness.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Emma L Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Joanne Forster
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Julie Khan
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Crystal F Haskell-Ramsay
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
41
|
Cold acclimation and cognitive performance: A review. Auton Neurosci 2017; 208:36-42. [PMID: 29158117 DOI: 10.1016/j.autneu.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022]
Abstract
Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change.
Collapse
|
42
|
Maran T, Sachse P, Martini M, Weber B, Pinggera J, Zuggal S, Furtner M. Lost in Time and Space: States of High Arousal Disrupt Implicit Acquisition of Spatial and Sequential Context Information. Front Behav Neurosci 2017; 11:206. [PMID: 29170634 PMCID: PMC5684831 DOI: 10.3389/fnbeh.2017.00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023] Open
Abstract
Biased cognition during high arousal states is a relevant phenomenon in a variety of topics: from the development of post-traumatic stress disorders or stress-triggered addictive behaviors to forensic considerations regarding crimes of passion. Recent evidence indicates that arousal modulates the engagement of a hippocampus-based "cognitive" system in favor of a striatum-based "habit" system in learning and memory, promoting a switch from flexible, contextualized to more rigid, reflexive responses. Existing findings appear inconsistent, therefore it is unclear whether and which type of context processing is disrupted by enhanced arousal. In this behavioral study, we investigated such arousal-triggered cognitive-state shifts in human subjects. We validated an arousal induction procedure (three experimental conditions: violent scene, erotic scene, neutral control scene) using pupillometry (Preliminary Experiment, n = 13) and randomly administered this method to healthy young adults to examine whether high arousal states affect performance in two core domains of contextual processing, the acquisition of spatial (spatial discrimination paradigm; Experiment 1, n = 66) and sequence information (learned irrelevance paradigm; Experiment 2, n = 84). In both paradigms, spatial location and sequences were encoded incidentally and both displacements when retrieving spatial position as well as the predictability of the target by a cue in sequence learning changed stepwise. Results showed that both implicit spatial and sequence learning were disrupted during high arousal states, regardless of valence. Compared to the control group, participants in the arousal conditions showed impaired discrimination of spatial positions and abolished learning of associative sequences. Furthermore, Bayesian analyses revealed evidence against the null models. In line with recent models of stress effects on cognition, both experiments provide evidence for decreased engagement of flexible, cognitive systems supporting encoding of context information in active cognition during acute arousal, promoting reduced sensitivity for contextual details. We argue that arousal fosters cognitive adaptation towards less demanding, more present-oriented information processing, which prioritizes a current behavioral response set at the cost of contextual cues. This transient state of behavioral perseverance might reduce reliance on context information in unpredictable environments and thus represent an adaptive response in certain situations.
Collapse
Affiliation(s)
- Thomas Maran
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.,Department of Educational Sciences and Research, Alps-Adria University of Klagenfurt, Klagenfurt, Austria
| | - Pierre Sachse
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Markus Martini
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Barbara Weber
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Pinggera
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Stefan Zuggal
- Department of Computer Science, University of Innsbruck, Innsbruck, Austria
| | - Marco Furtner
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.,Department of Entrepreneurship, University of Liechtenstein, Vaduz, Liechtenstein
| |
Collapse
|
43
|
Dang J. Commentary: The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Front Psychol 2017; 8:1711. [PMID: 29033882 PMCID: PMC5625323 DOI: 10.3389/fpsyg.2017.01711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/19/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Junhua Dang
- Department of Psychology, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Ji LY, Li XL, Liu Y, Sun XW, Wang HF, Chen L, Gao L. Time-Dependent Effects of Acute Exercise on University Students' Cognitive Performance in Temperate and Cold Environments. Front Psychol 2017; 8:1192. [PMID: 28747896 PMCID: PMC5506219 DOI: 10.3389/fpsyg.2017.01192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
Background: Few studies have examined the acute exercise-induced changes in cognitive performance in different thermal environments and the time course effects. Objective: Investigate the time-dependent effects of acute exercise on university students’ processing speed, working memory and cognitive flexibility in temperate and cold environments. Method: Twenty male university students (age 23.5 ± 2.0 years) with moderate physical activity level participated in a repeated-measures within-subjects design. Processing speed, working memory and cognitive flexibility were assessed using CogState test battery at baseline (BASE), followed by a 45-min rest (REST), immediately after (EX) and 30 min after (POST-EX) 30-min moderate-intensity treadmill running in both temperate (TEMP; 25°C) and cold (COLD; 10°C) environments. Mean skin temperature (MST) and thermal sensation (TS) were also recorded. Two-way repeated measures ANOVA was performed to analyze each variable. Spearman’s rho was used to identify the correlations between MST, TS and cognitive performance. Results: Reaction time (RT) of processing speed and working memory decreased immediately after exercise in both conditions (processing speed: p = 0.003; working memory: p = 0.007). The facilitating effects on processing speed disappeared within 30 min after exercise in TEMP (p = 0.163) and COLD (p = 0.667), while improvements on working memory remained 30 min after exercise in TEMP (p = 0.047), but not in COLD (p = 0.663). Though RT of cognitive flexibility reduced in both conditions (p = 0.003), no significance was found between EX and REST (p = 0.135). Increased MST and TS were significantly associated with reductions in processing speed RT (MST: r = -0.341, p < 0.001; TS: r = -0.262, p = 0.001) and working memory RT (MST: r = -0.282, p < 0.001; TS: r = -0.2229, p = 0.005), and improvements in working memory accuracy (MST: r = 0.249, p = 0.002; TS: r = 0.255, p = 0.001). Conclusion: The results demonstrate different time-dependent effects of acute exercise on cognition in TEMP and COLD. Our study reveals facilitating effects of exercise on university students’ processing speed and working memory in both environments. However, in contrast to TEMP, effects on working memory in COLD are transient.
Collapse
Affiliation(s)
- Ling-Yu Ji
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Xiao-Ling Li
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Yang Liu
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Xiu-Wen Sun
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Hui-Fen Wang
- School of Mechanical Engineering, Xi'an Jiaotong UniversityXi'an, China
| | - Long Chen
- China Research and Development Academy of Machinery EquipmentBeijing, China
| | - Liang Gao
- China Research and Development Academy of Machinery EquipmentBeijing, China
| |
Collapse
|
45
|
Suurd Ralph C, Vartanian O, Lieberman HR, Morgan CA, Cheung B. The effects of captivity survival training on mood, dissociation, PTSD symptoms, cognitive performance and stress hormones. Int J Psychophysiol 2017; 117:37-47. [DOI: 10.1016/j.ijpsycho.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/03/2017] [Accepted: 04/05/2017] [Indexed: 11/29/2022]
|
46
|
Lang JA, Smaller KA. Orall-tyrosine supplementation augments the vasoconstriction response to whole-body cooling in older adults. Exp Physiol 2017; 102:835-844. [DOI: 10.1113/ep086329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- James A. Lang
- Department of Physical Therapy; Des Moines University; Des Moines IA 50312 USA
| | - Kevin A. Smaller
- Department of Neuroscience; Drake University; Des Moines IA 50311 USA
| |
Collapse
|
47
|
Crawford C, Teo L, Elfenbaum P, Enslein V, Deuster PA, Berry K. Methodological approach to moving nutritional science evidence into practice. Nutr Rev 2017; 75:6-16. [PMID: 28969344 DOI: 10.1093/nutrit/nux017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Metabolically Optimized Brain study explored nutritional science believed to be ready to place into practice to help improve US service members' cognitive performance and, thereby, optimize mission-readiness. A transparent, step-wise, research approach was used for informing evidence-based decisions among and for various, diverse stakeholders. A steering committee and subject-matter experts convened to devise the protocol and independent systematic reviews were performed to determine the quality of the evidence for nutritional science in 4 areas relevant to military populations: (1) caffeinated foods and beverages; (2) omega-3 polyunsaturated fatty acids; (3) plant-based foods and beverages or their phytochemical constituents; and (4) whole dietary patterns. A research expert panel was asked to then recommend future research directions and solutions likely to benefit warfighters. An implementation expert panel further considered how to apply sound nutritional science in a cost-effective manner. This article summarizes the methodological processes, high-level results, global research recommendations, and priorities for implementation. Specific results of the individual dietary interventions, as well as recommendations for moving this field of research and practice forward, are detailed throughout the current supplement.
Collapse
Affiliation(s)
- Cindy Crawford
- Samueli Institute, Alexandria, Virginia, USA.,Thought Leadership & Innovation Foundation, McLean, Virginia, USA
| | - Lynn Teo
- Samueli Institute, Alexandria, Virginia, USA.,Thought Leadership & Innovation Foundation, McLean, Virginia, USA
| | - Pamela Elfenbaum
- Department of Military and Emergency Medicine, Consortium for Health and Military Performance, Uniformed Services University, Bethesda, Maryland, USA
| | - Viviane Enslein
- Department of Military and Emergency Medicine, Consortium for Health and Military Performance, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Kevin Berry
- Samueli Institute, Alexandria, Virginia, USA.,Thought Leadership & Innovation Foundation, McLean, Virginia, USA
| |
Collapse
|
48
|
Shearer J, Graham TE, Skinner TL. Nutra-ergonomics: influence of nutrition on physical employment standards and the health of workers. Appl Physiol Nutr Metab 2017; 41:S165-74. [PMID: 27277565 DOI: 10.1139/apnm-2015-0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The importance of ergonomics across several scientific domains, including biomechanics, psychology, sociology, and physiology, have been extensively explored. However, the role of other factors that may influence the health and productivity of workers, such as nutrition, is generally overlooked. Nutra-ergonomics describes the interface between workers, their work environment, and performance in relation to their nutritional status. It considers nutrition to be an integral part of a safe and productive workplace that encompasses physical and mental health as well as the long-term wellbeing of workers. This review explores the knowledge, awareness, and common practices of nutrition, hydration, stimulants, and fortified product use employed prior to physical employment standards testing and within the workplace. The influence of these nutra-ergonomic strategies on physical employment standards, worker safety, and performance will be examined. Further, the roles, responsibilities, and implications for the applicant, worker, and the employer will be discussed within the context of nutra-ergonomics, with reference to the provision and sustainability of an environment conducive to optimize worker health and wellbeing. Beyond physical employment standards, workplace productivity, and performance, the influence of extended or chronic desynchronization (irregular or shift work) in the work schedule on metabolism and long-term health, including risk of developing chronic and complex diseases, is discussed. Finally, practical nutra-ergonomic strategies and recommendations for the applicant, worker, and employer alike will be provided to enhance the short- and long-term safety, performance, health, and wellbeing of workers.
Collapse
Affiliation(s)
- Jane Shearer
- a Department of Biochemistry and Molecular Biology, Cumming School of Medicine. Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Terry E Graham
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tina L Skinner
- c Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland QLD 4072, Australia
| |
Collapse
|
49
|
Jung YP, Earnest CP, Koozehchian M, Galvan E, Dalton R, Walker D, Rasmussen C, Murano PS, Greenwood M, Kreider RB. Effects of acute ingestion of a pre-workout dietary supplement with and without p-synephrine on resting energy expenditure, cognitive function and exercise performance. J Int Soc Sports Nutr 2017; 14:3. [PMID: 28096758 PMCID: PMC5234109 DOI: 10.1186/s12970-016-0159-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine the effects of acute ingestion of a pre-workout dietary supplement (PWS) with and without p-synephrine (S) on perceptions of readiness to perform, cognitive function, exercise performance, and markers of safety. METHODS In a randomized, double-blind, and counterbalanced manner; 25 healthy and recreationally active male and female participants ingested a flavored maltodextrin placebo (PLA), a PWS containing beta-alanine (3 g), creatine nitrate as a salt (2 g), arginine alpha-ketoglutarate (2 g), N-Acetyl-L-Tyrosine (300 mg), caffeine (284 mg), Mucuna pruiriens extract standardized for 15% L-Dopa (15 mg), Vitamin C as Ascorbic Acid (500 mg), niacin (60 mg), folate as folic acid (50 mg), and Vitamin B12 as Methylcobalamin (70 mg) with 2 g of maltodextrin and flavoring; or, the PWS with Citrus aurantium (PWS + S) extract standardized for 30% p-synephrine (20 mg). Participants had heart rate (HR), blood pressure, resting energy expenditure (REE), 12-lead electrocardiograms (ECG), perceptions about readiness to perform, cognitive function (Stroop Color-Word test), bench and leg press performance (2 sets of 10 repetitions at 70% of 1RM and 1 set to failure), and Wingate anaerobic capacity (WAC) sprint performance determined as well as donated blood samples prior to and/or following exercise/supplementation. Data were analyzed by MANOVA with repeated measures as well as mean changes from baseline with 95% confidence intervals (CI). RESULTS No clinically significant differences were observed among treatments in HR, blood pressure, ECG, or general clinical blood panels. There was evidence that PWS and PWS + S ingestion promoted greater changes in REE responses. Participants reported higher perception of optimism about performance and vigor and energy with PWS and PWS + S ingestion and there was evidence that PWS and PWS + S improved changes in cognitive function scores from baseline to a greater degree than PLA after 1 or 2 h. However, the scores in the PWS + S treatment did not exceed PLA or PWS responses at any data point. No statistically significant differences were observed among treatments in total bench press lifting volume, leg press lifting volume or WAC sprint performance. CONCLUSIONS Within the confines of this study, ingestion of PWS and/or PWS + S prior to exercise appears to be well-tolerated when consumed by young, healthy individuals. The primary effects appear to be to increase REE responses and improve perceptions about readiness to perform and cognitive function with limited to no effects on muscular endurance and WAC. The addition of 20 mg of p-synephrine to the PWS provided limited to no additive benefits. TRIAL REGISTRATION This trial (NCT02952014) was retrospectively registered on September 13th 2016.
Collapse
Affiliation(s)
- Y. Peter Jung
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Conrad P. Earnest
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
- Nutrabolt, Bryan, TX 77807 USA
| | - Majid Koozehchian
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Elfego Galvan
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Ryan Dalton
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Dillon Walker
- Center for Translational Research in Aging and Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Peter S. Murano
- Institute for Obesity Research & Program Evaluation, Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|
50
|
Jung YP, Earnest CP, Koozehchian M, Cho M, Barringer N, Walker D, Rasmussen C, Greenwood M, Murano PS, Kreider RB. Effects of ingesting a pre-workout dietary supplement with and without synephrine for 8 weeks on training adaptations in resistance-trained males. J Int Soc Sports Nutr 2017; 14:1. [PMID: 28096757 PMCID: PMC5234097 DOI: 10.1186/s12970-016-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine whether ingesting a pre-workout dietary supplement (PWS) with and without synephrine (S) during training affects training responses in resistance-trained males. METHODS Resistance-trained males (N = 80) were randomly assigned to supplement their diet in a double-blind manner with either a flavored placebo (PLA); a PWS containing beta-alanine (3 g), creatine nitrate as a salt (2 g), arginine alpha-ketoglutarate (2 g), N-Acetyl-L-Tyrosine (300 mg), caffeine (284 mg), Mucuna pruiriens extract standardized for 15% L-Dopa (15 mg), Vitamin C as Ascorbic Acid (500 mg), niacin (60 mg), folate as folic acid (50 mg), and Vitamin B12 as Methylcobalamin (70 mg); or, the PWS supplement with Citrus aurantium extract containing 20 mg of synephrine (PWS + S) once per day for 8-weeks during training. Participants donated a fasting blood sample and had body composition (DXA), resting heart rate and blood pressure, cognitive function (Stroop Test), readiness to perform, bench and leg press 1 RM, and Wingate anaerobic capacity assessments determined a 0, 4, and 8-weeks of standardized training. Data were analyzed by MANOVA with repeated measures. Performance and cognitive function data were analyzed using baseline values as covariates as well as mean changes from baseline with 95% confidence intervals (CI). Blood chemistry data were also analyzed using Chi-square analysis. RESULTS Although significant time effects were seen, no statistically significant overall MANOVA Wilks' Lambda interactions were observed among groups for body composition, resting heart and blood pressure, readiness to perform questions, 1RM strength, anaerobic sprint capacity, or blood chemistry panels. MANOVA univariate analysis and analysis of changes from baseline with 95% CI revealed some evidence that cognitive function and 1RM strength were increased to a greater degree in the PWS and/or PWS + S groups after 4- and/or 8-weeks compared to PLA responses. However, there was no evidence that PWS + S promoted greater overall training adaptations compared to the PWS group. Dietary supplementation of PWS and PWS + S did not increase the incidence of reported side effects or significantly affect the number of blood values above clinical norms compared to PLA. CONCLUSION Results provide some evidence that 4-weeks of PWS and/or PWS + S supplementation can improve some indices of cognitive function and exercise performance during resistance-training without significant side effects in apparently health males. However, these effects were similar to PLA responses after 8-weeks of supplementation and inclusion of synephrine did not promote additive benefits. TRIAL REGISTRATION This trial (NCT02999581) was retrospectively registered on December 16th 2016.
Collapse
Affiliation(s)
- Y. Peter Jung
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Conrad P. Earnest
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
- Nutrabolt, Bryan, TX 77807 USA
| | - Majid Koozehchian
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Minye Cho
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Nick Barringer
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Dillon Walker
- Department of Health & Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX 77843-4243 USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Peter S. Murano
- Department of Nutrition and Food Sciences, Institute for Obesity Research & Program Evaluation, Texas A&M University, College Station, TX 77843 USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| |
Collapse
|