1
|
Mistretta M, Fiorito V, Allocco AL, Ammirata G, Hsu MY, Digiovanni S, Belicchi M, Napoli L, Ripolone M, Trombetta E, Mauri P, Farini A, Meregalli M, Villa C, Porporato PE, Miniscalco B, Crich SG, Riganti C, Torrente Y, Tolosano E. Flvcr1a deficiency promotes heme-based energy metabolism dysfunction in skeletal muscle. Cell Rep 2024; 43:113854. [PMID: 38412099 DOI: 10.1016/j.celrep.2024.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The definition of cell metabolic profile is essential to ensure skeletal muscle fiber heterogeneity and to achieve a proper equilibrium between the self-renewal and commitment of satellite stem cells. Heme sustains several biological functions, including processes profoundly implicated with cell metabolism. The skeletal muscle is a significant heme-producing body compartment, but the consequences of impaired heme homeostasis on this tissue have been poorly investigated. Here, we generate a skeletal-muscle-specific feline leukemia virus subgroup C receptor 1a (FLVCR1a) knockout mouse model and show that, by sustaining heme synthesis, FLVCR1a contributes to determine the energy phenotype in skeletal muscle cells and to modulate satellite cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Miriam Mistretta
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Lucia Allocco
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Giorgia Ammirata
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Myriam Y Hsu
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sabrina Digiovanni
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - PierLuigi Mauri
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, 20054 Segrate, Milan, Italy; Clinical Proteomics Laboratory c/o ITB-CNR, CNR.Biomics Infrastructure, ElixirNextGenIT, 20054 Segrate, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Barbara Miniscalco
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Torino, Italy
| | - Simonetta Geninatti Crich
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
2
|
Mathis V, Wegman-Points L, Pope B, Lee CMJ, Mohamed M, Rhodes JS, Clark PJ, Clayton S, Yuan LL. Estrogen-mediated individual differences in female rat voluntary running behavior. J Appl Physiol (1985) 2024; 136:592-605. [PMID: 38299221 PMCID: PMC11212800 DOI: 10.1152/japplphysiol.00611.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
Regular exercise has numerous health benefits, but the human population displays significant variability in exercise participation. Rodent models, such as voluntary wheel running (VWR) in rats, can provide insight into the underlying mechanisms of exercise behavior and its regulation. In this study, we focused on the role of estrogen on VWR in female rats. Female rats run more than males, and we aimed to determine to what extent running levels in females were regulated by estrogen signaling. The running behavior of rats (duration, speed, and total distance run) was measured under normal physiological conditions, ovariectomy (OVX), and estrogen replacement in an OVX background. Results show cyclic variations in running linked to the estrous cycle. Ovariectomy markedly reduced running and eliminated the cyclic pattern. Estrogen replacement through estradiol benzoate (EB) injections and osmotic minipumps reinstated running activity to pre-OVX levels and restored the cyclic pattern. Importantly, individual differences and ranking are preserved such that high versus low runners before OVX remain high and low runners after treatment. Further analysis revealed that individual variation in running distance was primarily caused by rats running different speeds, but rats also varied in running duration. However, it is noteworthy that this model also displays features distinct from estrogen-driven running behavior under physiological conditions, notably a delayed onset and a broader duration of running activity. Collectively, this estrogen causality VWR model presents a unique opportunity to investigate sex-specific mechanisms that control voluntary physical activity.NEW & NOTEWORTHY This study investigates estrogen's role in voluntary wheel running (VWR) behavior in female rats. Female rats exhibit greater running than males, with estrogen signaling regulating this activity. The estrous cycle influences running, whereas ovariectomy reduces it, and estrogen replacement restores it, maintaining individual differences under all conditions. Both running speed and duration contribute to VWR variations. These findings emphasize individual estrogen regulation in female exercise and provide an estrogen replacement animal model for investigating neurobiological underpinnings that drive voluntary exercise behavior.
Collapse
Affiliation(s)
- Victoria Mathis
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Lauren Wegman-Points
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Brock Pope
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Chia-Ming Jimmy Lee
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Merna Mohamed
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| |
Collapse
|
3
|
Letsinger AC, Yang F, Menon R, Little-Letsinger SE, Granados JZ, Breidenbach B, Iyer AR, Padovani TC, Nagel EC, Jayaraman A, Lightfoot JT. Reduced Wheel Running via a High-Fat Diet Is Reversed by a Chow Diet with No Added Benefit from Fecal Microbial Transplants. Med Sci Sports Exerc 2022; 54:1437-1447. [PMID: 35969165 DOI: 10.1249/mss.0000000000002941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Chronic overfeeding via a high-fat/high-sugar (HFHS) diet decreases wheel running and substantially alters the gut metabolome of C57BL/6J mice. In this study, we tested the hypothesis that fecal microbial transplants can modulate the effect of diet on wheel running. METHODS Singly housed, 6-wk-old male C57BL/6J mice were fed either a grain-based diet (CHOW) or HFHS diet and provided a running wheel for 13 wk. Low-active, HFHS-exposed mice were then either switched to a CHOW diet and given an oral fecal microbial transplant from mice fed the CHOW diet, switched to a CHOW diet and given a sham transplant, or remained on the HFHS diet and given a fecal microbial transplant from mice fed the CHOW diet. Total wheel running, nutrient intake, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis were measured at various times throughout the study. RESULTS We found that an HFHS diet decreases wheel running activity, increases body fat, and decreases microbial alpha diversity compared with a CHOW diet. Improvements in wheel running, body composition, and microbial alpha diversity were accomplished within 2 wk for mice switched from an HFHS diet to a CHOW diet with no clear evidence of an added benefit from fecal transplants. A fecal transplant from mice fed a CHOW diet without altering diet did not improve wheel running or body composition. Wheel running, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis percentage were primarily determined by diet. CONCLUSIONS Our results suggest that diet is a primary mediator of wheel running with no clear effect from fecal microbial transplants.
Collapse
Affiliation(s)
- Ayland C Letsinger
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Fang Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | | | - Jorge Z Granados
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Brianne Breidenbach
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Anjushree R Iyer
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | | | - Edward C Nagel
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX
| | - J Timothy Lightfoot
- The Department of Health Kinesiology, Texas A&M University, College Station, TX
| |
Collapse
|
4
|
Li J, Chen Z, Cheng Y, Gao C, Li J, Gu X, He F, Luo Z, Yang H, Zhang H, Yu J. Ligamentous injury-induced ankle instability causing posttraumatic osteoarthritis in a mouse model. BMC Musculoskelet Disord 2022; 23:223. [PMID: 35260140 PMCID: PMC8905815 DOI: 10.1186/s12891-022-05164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to explore the relationship between surgically-induced ankle instability and posttraumatic osteoarthritis (PTOA) in a mouse model, and to provide reference for clinical practice. RESULTS Ligamentectomy was performed on 24 eight-week-old male C57BL/6 J mice, which were divided into three groups. Both the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL) were severed in the CFL + ATFL group, while only the CFL was removed in the CFL group. The SHAM group was set as the blank control group. A wheel-running device was used to accelerate the development of ankle osteoarthritis (OA). Balance measurement, footprint analysis, and histological analysis were used to assess the degree of ankle instability and OA. According to the balance test results, the CFL + ATFL group demonstrated the highest number of slips and the longest crossing beam time at 8 weeks postoperatively. The results of gait analysis exhibited that the CFL + ATFL group had the most significant asymmetry in stride length, stance length, and foot base width compared to the CFL and SHAM groups. The OARSI score of the CFL + ATFL group (16.7 ± 2.18) was also much higher than those of the CFL group (5.1 ± 0.96) and the SHAM group (1.6 ± 1.14). CONCLUSION Based on the mouse model, the findings indicate that severe ankle instability has nearly three times the chance to develop into ankle OA compared to moderate ankle instability.
Collapse
Affiliation(s)
- Junkun Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.,Department of Orthopedics, Fengcheng Hospital of Fengxian District, Shanghai, P. R. China
| | - Zhi Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.,Department of Orthopedics, Changshu Hospital affiliated to Soochow University, Changshu No.1 People's Hospital, No.1 Shuyuan St, Changshu, 215500, Jiangsu Province, P. R. China
| | - Yu Cheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Chao Gao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Jiaxin Li
- Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.,Department of Data Science, Faculty of Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Xiaohui Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Zongping Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China.,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Hongtao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China. .,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi St, Suzhou, 215006, Jiangsu Province, P. R. China. .,Orthopedic Institute, Medical College, Soochow University, No.708 Renmin Rd, Suzhou, 215006, Jiangsu Province, P. R. China.
| |
Collapse
|
5
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
6
|
Massett MP, Matejka C, Kim H. Systematic Review and Meta-Analysis of Endurance Exercise Training Protocols for Mice. Front Physiol 2021; 12:782695. [PMID: 34950054 PMCID: PMC8691460 DOI: 10.3389/fphys.2021.782695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Caitlyn Matejka
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
7
|
Urdinguio RG, Tejedor JR, Fernández-Sanjurjo M, Pérez RF, Peñarroya A, Ferrero C, Codina-Martínez H, Díez-Planelles C, Pinto-Hernández P, Castilla-Silgado J, Coto-Vilcapoma A, Díez-Robles S, Blanco-Agudín N, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Fernandez AF, Fraga MF. Physical exercise shapes the mouse brain epigenome. Mol Metab 2021; 54:101398. [PMID: 34801767 PMCID: PMC8661702 DOI: 10.1016/j.molmet.2021.101398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Rocío G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Juan Ramon Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Manuel Fernández-Sanjurjo
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Cecilia Ferrero
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Helena Codina-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos Díez-Planelles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Paola Pinto-Hernández
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Sergio Díez-Robles
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Noelia Blanco-Agudín
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Eduardo Iglesias-Gutiérrez
- Departamento de Biología Funcional, Fisiología, Universidad de Oviedo, Oviedo 33006, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain.
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo 33006, Spain
| | - Agustin F Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 33011 Oviedo, Asturias, Spain; Department of Organisms and Systems Biology (B.O.S), University of Oviedo, 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Budiono BP, See Hoe LE, Peart JN, Vider J, Ashton KJ, Jacques A, Haseler LJ, Headrick JP. Effects of voluntary exercise duration on myocardial ischaemic tolerance, kinase signaling and gene expression. Life Sci 2021; 274:119253. [PMID: 33647270 DOI: 10.1016/j.lfs.2021.119253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
AIM Exercise is cardioprotective, though optimal interventions are unclear. We assessed duration dependent effects of exercise on myocardial ischemia-reperfusion (I-R) injury, kinase signaling and gene expression. METHODS Responses to brief (2 day; 2EX), intermediate (7 and 14 day; 7EX and 14EX) and extended (28 day; 28EX) voluntary wheel running (VWR) were studied in male C57Bl/6 mice. Cardiac function, I-R tolerance and survival kinase signaling were assessed in perfused hearts. KEY FINDINGS Mice progressively increased running distances and intensity, from 2.4 ± 0.2 km/day (0.55 ± 0.04 m/s) at 2-days to 10.6 ± 0.4 km/day (0.72 ± 0.06 m/s) after 28-days. Myocardial mass and contractility were modified at 14-28 days VWR. Cardioprotection was not 'dose-dependent', with I-R tolerance enhanced within 7 days and not further improved with greater VWR duration, volume or intensity. Protection was associated with AKT, ERK1/2 and GSK3β phosphorylation, with phospho-AMPK selectively enhanced with brief VWR. Gene expression was duration-dependent: 7 day VWR up-regulated glycolytic (Pfkm) and down-regulated maladaptive remodeling (Mmp2) genes; 28 day VWR up-regulated caveolar (Cav3), mitochondrial biogenesis (Ppargc1a, Sirt3) and titin (Ttn) genes. Interestingly, I-R tolerance in 2EX/2SED groups improved vs. groups subjected to longer sedentariness, suggesting transient protection on transition to housing with running wheels. SIGNIFICANCE Cardioprotection is induced with as little as 7 days VWR, yet not enhanced with further or faster running. This protection is linked to survival kinase phospho-regulation (particularly AKT and ERK1/2), with glycolytic, mitochondrial, caveolar and myofibrillar gene changes potentially contributing. Intriguingly, environmental enrichment may also protect via similar kinase regulation.
Collapse
Affiliation(s)
- Boris P Budiono
- Charles Sturt University, School of Community Health, Port Macquarie, NSW, Australia
| | - Louise E See Hoe
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jason N Peart
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jelena Vider
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Kevin J Ashton
- Bond University, Faculty of Health and Medicine, Robina, QLD, Australia
| | - Angela Jacques
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - Luke J Haseler
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - John P Headrick
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia.
| |
Collapse
|
9
|
Khataei T, Romig-Martin SA, Harding AMS, Radley JJ, Benson CJ. Comparison of murine behavioural and physiological responses after forced exercise by electrical shock versus manual prodding. Exp Physiol 2021; 106:812-819. [PMID: 33527606 DOI: 10.1113/ep089117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Forced treadmill exercise using electrical shock is the most common technique in rodent exercise studies. Here, we examined how the use of electrical shock during forced treadmill exercise affects behavioural and physiological responses in comparison to a novel non-electrical shock technique. What is the main finding and its importance? In comparison to mice that underwent traditional treadmill running induced by electrical shock, mice that underwent forced running using a novel technique involving gentle prodding to induce running showed: (i) higher locomotor activity; (ii) less anxiety-like behaviour; and (iii) altered exercise-induced muscle pain immediately after exercise. ABSTRACT Animal models of exercise have been useful to understand underlying cellular and molecular mechanisms. Many studies have used methods of exercise that are unduly stressful (e.g., electrical shock to force running), potentially skewing results. Here, we compared physiological and behavioural responses of mice after exercise induced using a prodding technique that avoids electrical shock versus a traditional protocol using electrical shock. We found that exercise performance was similar for both techniques; however, the shock group demonstrated significantly lower locomotor activity and higher anxiety-like behaviour. We also observed divergent effects on muscle pain; the prodding group showed hyperalgesia immediately after exercise, whereas the shock group showed hypoalgesia. Corticosterone concentrations were elevated to a similar extent for both groups. In conclusion, mice that were exercised without shock generated similar maximal exercise performance, but postexercise these mice showed an increase in locomotor activity, less anxiety-like behaviour and altered muscle pain in comparison to mice that exercised with shock. Our data suggest that running of mice without the use of electrical shock is potentially less stressful and might be a better technique to study the physiological and behavioural responses to exercise.
Collapse
Affiliation(s)
- Tahsin Khataei
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Healthcare System, Iowa City, Iowa, USA
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, Neuroscience Program, University of Iowa, Iowa City, Iowa, USA
| | - Anne Marie S Harding
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Healthcare System, Iowa City, Iowa, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, Neuroscience Program, University of Iowa, Iowa City, Iowa, USA
| | - Christopher J Benson
- Department of Internal Medicine, Roy J. and Lucile A. Carver College or Medicine, University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Healthcare System, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Cross KM, Granados JZ, Ten Have GAM, Thaden JJ, Engelen MPKJ, Lightfoot JT, Deutz NEP. Protein fractional synthesis rates within tissues of high- and low-active mice. PLoS One 2020; 15:e0242926. [PMID: 33253250 PMCID: PMC7703944 DOI: 10.1371/journal.pone.0242926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
With the rise in physical inactivity and its related diseases, it is necessary to understand the mechanisms involved in physical activity regulation. Biological factors regulating physical activity are studied to establish a possible target for improving the physical activity level. However, little is known about the role metabolism plays in physical activity regulation. Therefore, we studied protein fractional synthesis rate (FSR) of multiple organ tissues of 12-week-old male mice that were previously established as inherently low-active (n = 15, C3H/HeJ strain) and high-active (n = 15, C57L/J strain). Total body water of each mouse was enriched to 5% deuterium oxide (D2O) via intraperitoneal injection and maintained with D2O enriched drinking water for about 24 h. Blood samples from the jugular vein and tissues (kidney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected for enrichment analysis of alanine by LC-MS/MS. Protein FSR was calculated as -ln(1-enrichment). Data are mean±SE as fraction/day (unpaired t-test). Kidney protein FSR in the low-active mice was 7.82% higher than in high-active mice (low-active: 0.1863±0.0018, high-active: 0.1754±0.0028, p = 0.0030). No differences were found in any of the other measured organ tissues. However, all tissues resulted in a generally higher protein FSR in the low-activity mice compared to the high-activity mice (e.g. lung LA: 0.0711±0.0015, HA: 0.0643±0.0020, heart LA: 0.0649± 0.0013 HA: 0.0712±0.0073). Our observations suggest that high-active mice in most organ tissues are no more inherently equipped for metabolic adaptation than low-active mice, but there may be a connection between protein metabolism of kidney tissue and physical activity level. In addition, low-active mice have higher organ-specific baseline protein FSR possibly contributing to the inability to achieve higher physical activity levels.
Collapse
Affiliation(s)
- Kristina M. Cross
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| | - Jorge Z. Granados
- Biology of Physical Activity Laboratory, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Gabriella A. M. Ten Have
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - John J. Thaden
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - J. Timothy Lightfoot
- Biology of Physical Activity Laboratory, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
11
|
A High Fat/High Sugar Diet Alters the Gastrointestinal Metabolome in a Sex Dependent Manner. Metabolites 2020; 10:metabo10100421. [PMID: 33092034 PMCID: PMC7589395 DOI: 10.3390/metabo10100421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
The gut metabolome offers insight for identifying the source of diet related pathology. As such, the purpose of this study was to characterize alterations of the gut metabolome in female and male C57BL/6J mice randomly assigned to a standard "chow" diet (CHOW) or a high fat/high sugar diet (HFHS; 45% fat and 20% fructose drinking solution) for nine weeks. Cecal metabolites were extracted and an untargeted analysis via LC-MS/MS was performed. Partial Least Sums Discriminate Analysis (PLS-DA) presented significant differences between the two diet groups in a sex-dependent manner. Mann-Whitney U-tests revealed 2443 and 1669 features to be significantly different between diet groups in the females and males, respectively. The majority of altered metabolites were depleted within the cecum of the HFHS fed mice. Metabolic pathways associated with galactose metabolism, leukotriene metabolism, and androgen and estrogen biosynthesis and metabolism were differentially altered with an HFHS diet between sexes. We concluded the immense metabolite depletion and elevation of adverse metabolites associated with the HFHS diet is suggestive of poor gut health. Further, the differential alterations between female and male mice suggests that sex plays an important role in determining the effect of diet on the metabolome and host health.
Collapse
|
12
|
Pain-related behavior is associated with increased joint innervation, ipsilateral dorsal horn gliosis, and dorsal root ganglia activating transcription factor 3 expression in a rat ankle joint model of osteoarthritis. Pain Rep 2020; 5:e846. [PMID: 33490841 PMCID: PMC7808682 DOI: 10.1097/pr9.0000000000000846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 12/02/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. In a rat model of osteoarthritis, we found increased joint sensory and sympathetic innervation and glia changes in dorsal horn, accompanying pain-related behavior onset. Introduction: Osteoarthritis (OA)-associated pain is often poorly managed, as our understanding of the underlying pain mechanisms remains limited. The known variability from patient to patient in pain control could be a consequence of a neuropathic component in OA. Methods: We used a rat monoiodoacetate model of the ankle joint to study the time-course of the development of pain-related behavior and pathological changes in the joint, dorsal root ganglia (DRG), and spinal cord, and to investigate drug treatments effects. Results: Mechanical hypersensitivity and loss of mobility (as assessed by treadmill) were detected from 4 weeks after monoiodoacetate. Cold allodynia was detected from 5 weeks. Using histology and x-ray microtomography, we confirmed significant cartilage and bone degeneration at 5 and 10 weeks. We detected increased nociceptive peptidergic and sympathetic fiber innervation in the subchondral bone and synovium at 5 and 10 weeks. Sympathetic blockade at 5 weeks reduced pain-related behavior. At 5 weeks, we observed, ipsilaterally only, DRG neurons expressing anti-activating transcription factor 3, a neuronal stress marker. In the spinal cord, there was microgliosis at 5 and 10 weeks, and astrocytosis at 10 weeks only. Inhibition of glia at 5 weeks with minocycline and fluorocitrate alleviated mechanical allodynia. Conclusion: Besides a detailed time-course of pathology in this OA model, we show evidence of contributions of the sympathetic nervous system and dorsal horn glia to pain mechanisms. In addition, late activating transcription factor 3 expression in the DRG that coincides with these changes provides evidence in support of a neuropathic component in OA pain.
Collapse
|
13
|
Pendergrast LA, Leszczynski EC, Visker JR, Triplett AN, Ferguson DP. Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice. Appl Physiol Nutr Metab 2020; 45:240-250. [DOI: 10.1139/apnm-2019-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Undernutrition during early life causes chronic disease with specific impairments to the heart and skeletal muscle. The purpose of this study was to determine the effects of early life undernutrition on adult exercise capacity as a result of cardiac and skeletal muscle function. Pups were undernourished during gestation (GUN) or lactation (PUN) using a cross-fostering nutritive mouse model. At postnatal day 21, all mice were weaned and refed a control diet. At postnatal day 67, mice performed a maximal treadmill test. Echocardiography and Doppler blood flow analysis was performed at postnatal day 72, following which skeletal muscle cross-sectional area (CSA) and fiber type were determined. Maximal running capacity was reduced (diet: P = 0.0002) in GUN and PUN mice. Left ventricular mass (diet: P = 0.03) and posterior wall thickness during systole (diet × sex: P = 0.03) of GUN and PUN mice was reduced, causing PUN mice to have reduced (diet: P = 0.04) stroke volume. Heart rate of GUN mice showed a trend (diet: P = 0.07) towards greater resting values than other groups. PUN mice had greater CSA of soleus fibers. PUN had a reduced (diet: P = 0.03) proportion of type-IIX fibers in the extensor digitorum longus (EDL) and a greater (diet: P = 0.008) percentage of type-IIB fibers in the EDL. In conclusion, gestational and postnatal undernourishment impairs exercise capacity.
Collapse
Affiliation(s)
- Logan A. Pendergrast
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Eric C. Leszczynski
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph R. Visker
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley N. Triplett
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Caru M, Lalonde F, Legault E, Curnier D, St-Pierre DH, Comtois AS, Tournoux F. Ethical consideration and feasibility demonstration of high-intensity interval training without the use of electrical shocks in mice with and without doxorubicin exposition. Am J Cancer Res 2019; 9:2813-2820. [PMID: 31911864 PMCID: PMC6943355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Most protocols intended to stimulate cardiovascular training in mice use electrical shocks that cause psychological stress and interfere with running performance. The aim of this study was to: 1) demonstrate the feasibility of a two-week high-intensity interval training (HIIT) program without the use of electric shocks in mice and 2) show that HIIT without electric shocks is feasible in the specific context of mice exposed to chemotherapy (i.e., doxorubicin). METHODS Ten C57bl/6 6-week-old female mice underwent a maximal exercise capacity test before and after two weeks of HIIT (five sessions per week) to measure their maximum running speed. The electrical stimulus was substituted by gently lifting the hind legs of the training mice using a tongue depressor. A second sample of ten C57bl/6 10-week-old female mice receiving a single intravenous injection of 20 mg/kg of doxorubicin underwent a single session of HIIT post-DOX using the same gentle stimulation method. RESULTS After two weeks of HIIT without the use of electric shocks, non-treated mice had a significant increase in their maximal speed (4.4 m•min-1; P = 0.019). In DOX-treated mice, the compliance rate to run went from 100% during the acclimation period prior to doxorubicin treatment to 100% when HIIT was performed after the DOX treatment. Doxorubicin treatment seemed to affect exercise compliance in DOX-treated mice. Our study demonstrated that a two-week HIIT program in non-treated mice and a single HIIT session in DOX-treated mice are feasible. CONCLUSION The use of electric shocks was not required to obtain acceptable exercise compliance and a significant change in mice physical capacity. Our technique to perform a treadmill maximal exercise capacity test was shown to be feasible, even in specific pathological conditions like chemotherapy infusion, and could become a reference for future research protocols aimed at reducing the impact of psychological stress caused by electric shocks in mice. This model of exercise training in mice introduces an alternative to ethical conduct standards in animal research.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of MontrealMontreal, Quebec, Canada
- Laboratoire EA 4430 - Clinique Psychanalyse Developpement (CliPsyD), Department of Psychology, University of Paris NanterreNanterre, Ile-de-France, France
- Sainte-Justine University Health Center, Research CenterMontreal, Canada
| | - François Lalonde
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of MontrealMontreal, Quebec, Canada
- University Hospital of Montreal, Research CenterMontreal, Canada
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | - Elise Legault
- University Hospital of Montreal, Research CenterMontreal, Canada
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of MontrealMontreal, Quebec, Canada
- Sainte-Justine University Health Center, Research CenterMontreal, Canada
- University Hospital of Montreal, Research CenterMontreal, Canada
| | - David H St-Pierre
- Sainte-Justine University Health Center, Research CenterMontreal, Canada
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | - Alain Steve Comtois
- Department of Exercise Sciences, Faculty of Sciences, Université du Québec à MontréalMontréal, Canada
| | | |
Collapse
|
15
|
Wikstrom EA, Hubbard-Turner T, Duncan A, Cline J, Turner MJ. Prolonged Rest, Long-Term Dynamic Balance, and Gait in a Mouse Ankle-Sprain Model. J Athl Train 2019; 54:801-807. [PMID: 31343261 DOI: 10.4085/1062-6050-38-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Lateral ankle sprains (LASs) result in short- and long-term adaptations in the sensorimotor system that are thought to contribute to the development of chronic ankle instability and posttraumatic ankle osteoarthritis. Debate continues as to the appropriateness of rapid return to sport after LASs given the prevalence of long-term consequences. OBJECTIVE To examine the short- and long-term effects of prolonged rest, as a model of immobilization, on dynamic balance and gait outcomes after a severe LAS in a mouse model. DESIGN Controlled laboratory study. SETTING Research laboratory. INTERVENTION(S) At 7 weeks of age, 18 male mice (CBA/J) had their right anterior talofibular and calcaneofibular ligaments transected. Mice were then randomized to 1 of 3 groups representing when access to a running wheel postsurgery was gained: at 3 days, 1 week, and 2 weeks. MAIN OUTCOME MEASURE(S) Dynamic balance and spatial gait characteristics were quantified before surgery (baseline) and at 3 days and 1, 2, 4, 6, 12, 18, 24, 30, 36, 42, 48, and 54 weeks postinjury. RESULTS Relative to prolonged rest, resting for only 3 days resulted in worse dynamic balance during the later assessment points (42-54 weeks postinjury, P < .01). Mice that underwent a prolonged rest period of 2 weeks crossed the balance beam faster than the group that rested for only 3 days when averaged across all time points (P < .012). Spatial gait characteristics did not differ among the groups (P > .05). CONCLUSIONS Relative to 3 days of rest, prolonged rest (1 and 2 weeks) after a severe LAS in mice positively affected balance. The apparent benefit of prolonged rest was noted on both dynamic-balance outcomes and performance. Stride length was not altered by the duration of rest after a surgically induced severe LAS in mice. Future research is needed to determine if these results translate to a human model.
Collapse
Affiliation(s)
- Erik A Wikstrom
- Department of Exercise & Sport Science, University of North Carolina at Chapel Hill
| | - Tricia Hubbard-Turner
- Department of Kinesiology, University of North Carolina at Charlotte.,Center for Biomedical Engineering & Science, University of North Carolina at Charlotte
| | | | - Jason Cline
- Department of Kinesiology, University of North Carolina at Charlotte
| | - Michael J Turner
- Department of Kinesiology, University of North Carolina at Charlotte
| |
Collapse
|
16
|
Hubbard-Turner T, Wikstrom EA, Turner MJ. A 14-Day Recovery and Physical Activity Levels After an Ankle Sprain in Mice. J Athl Train 2019; 54:796-800. [PMID: 31335178 DOI: 10.4085/1062-6050-135-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Research is needed to find ways of improving physical activity after a lateral ankle sprain. OBJECTIVE To investigate the effects of a prolonged rest period on lifelong activity after a surgically induced ankle sprain. DESIGN Controlled laboratory study. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS A total of 18 male CBA/J mice (age at surgery = 7 weeks). MAIN OUTCOME MEASURE(S) We transected the anterior talofibular ligament and calcaneofibular ligament of the right hindlimb. Each mouse was placed in a separate cage and randomized into 1 of 3 groups of 6 mice each. A running wheel was placed in each cage at 3 days, 7 days, or 14 days after surgery. Physical activity was measured daily. Daily duration (ie, time spent on the wheel), distance, and running speed were examined using analysis of variance (group × age) with repeated measures at 15-week periods to approximate the first 3 quartiles of the lifespan. RESULTS From weeks 3 to 15 after surgery, we observed no differences in duration, distance, or running speed among groups (P > .05). From weeks 16 to 30, distance (F2,14 = 0.57, P = .041) and running speed (F2,14 = 0.93, P = .01) were greater in the 14-day group than in the 3- and 7-day groups. From weeks 31 to 45, duration (F2,14 = 0.74, P = .02), distance (F2,14 = 0.95, P = .009), and running speed (F2,14 = 1.05, P = .007) were greater in the 14-day group than in the 3- and 7-day groups. CONCLUSIONS Our findings suggest that the longer recovery period of 14 days can increase activity levels throughout the lifespan after a severe ankle sprain. Rest after an ankle injury is critical to restoring physical activity levels across the lifespan. Rest and time away from exercise after an ankle sprain may be necessary to restore physical activity to normal, uninjured levels.
Collapse
Affiliation(s)
- Tricia Hubbard-Turner
- Department of Kinesiology, University of North Carolina at Charlotte.,Center for Biomedical Engineering & Science, University of North Carolina at Charlotte
| | - Erik A Wikstrom
- Department of Exercise & Sport Science, University of North Carolina at Chapel Hill
| | - Michael J Turner
- Department of Kinesiology, University of North Carolina at Charlotte
| |
Collapse
|
17
|
IMP2 Increases Mouse Skeletal Muscle Mass and Voluntary Activity by Enhancing Autocrine Insulin-Like Growth Factor 2 Production and Optimizing Muscle Metabolism. Mol Cell Biol 2019; 39:MCB.00528-18. [PMID: 30692269 DOI: 10.1128/mcb.00528-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/19/2019] [Indexed: 12/27/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA binding protein 2 (IMP2) was selectively deleted from adult mouse muscle; two phenotypes were observed: decreased accrual of skeletal muscle mass after weaning and reduced wheel-running activity but normal forced treadmill performance. Reduced wheel running occurs when mice are fed a high-fat diet but is normalized when mice consume standard chow. The two phenotypes are due to altered output from different IMP2 client mRNAs. The reduced fiber size of IMP2-deficient muscle is attributable, in part, to diminished autocrine Igf2 production; basal tyrosine phosphorylation of the insulin and IGF1 receptors is diminished, and Akt1 activation is selectively reduced. Gsk3α is disinhibited, and S536-phosphorylated ε subunit of eukaryotic initiation factor 2B [eIF2Bε(S536)] is hyperphosphorylated. Protein synthesis is reduced despite unaltered mTOR complex 1 activity. The diet-dependent reduction in voluntary exercise is likely due to altered muscle metabolism, as contractile function is normal. IMP2-deficient muscle exhibits reduced fatty acid oxidation, due to a reduced abundance of mRNA of peroxisome proliferator-activated receptor α (PPARα), an IMP2 client, and PPARα protein. IMP2-deficient muscle fibers treated with a mitochondrial uncoupler to increase electron flux, as occurs with exercise, exhibit reduced oxygen consumption from fatty acids, with higher oxygen consumption from glucose. The greater dependence on muscle glucose metabolism during increased oxygen demand may promote central fatigue and thereby diminish voluntary activity.
Collapse
|
18
|
Abstract
Research has demonstrated that the high capacity requirements of the heart are satisfied by a preference for oxidation of fatty acids. However, it is well known that a stressed heart, as in pathological hypertrophy, deviates from its inherent profile and relies heavily on glucose metabolism, primarily achieved by an acceleration in glycolysis. Moreover, it has been suggested that the chronically lipid overloaded heart augments fatty acid oxidation and triglyceride synthesis to an even greater degree and, thus, develops a lipotoxic phenotype. In comparison, classic studies in exercise physiology have provided a basis for the acute metabolic changes that occur during physical activity. During an acute bout of exercise, whole body glucose metabolism increases proportionately to intensity while fatty acid metabolism gradually increases throughout the duration of activity, particularly during moderate intensity. However, the studies in chronic exercise training are primarily limited to metabolic adaptations in skeletal muscle or to the mechanisms that govern physiological signaling pathways in the heart. Therefore, the purpose of this review is to discuss the precise changes that chronic exercise training elicits on cardiac metabolism, particularly on substrate utilization. Although conflicting data exists, a pattern of enhanced fatty oxidation and normalization of glycolysis emerges, which may be a therapeutic strategy to prevent or regress the metabolic phenotype of the hypertrophied heart. This review also expands on the metabolic adaptations that chronic exercise training elicits in amino acid and ketone body metabolism, which have become of increased interest recently. Lastly, challenges with exercise training studies, which could relate to several variables including model, training modality, and metabolic parameter assessed, are examined.
Collapse
Affiliation(s)
- Stephen C. Kolwicz Jr.
- Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology Department, Ursinus College, Collegeville, PA, United States
| |
Collapse
|
19
|
Ramos AE, Lo C, Estephan LE, Tai YY, Tang Y, Zhao J, Sugahara M, Gorcsan J, Brown MG, Lieberman DE, Chan SY, Baggish AL. Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. Am J Physiol Heart Circ Physiol 2018; 315:H273-H283. [PMID: 29600898 DOI: 10.1152/ajpheart.00741.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating microRNAs (c-miRNAs), plasma-based noncoding RNAs that control posttranscriptional gene expression, mediate processes that underlie phenotypical plasticity to exercise. The relationship and biological relevance between c-miRNA expression and variable dose exercise exposure remains uncertain. We hypothesized that certain c-miRNAs respond to changes in exercise intensity and/or duration in a dose-dependent fashion. Muscle release of such c-miRNAs may then deplete intracellular stores, thus facilitating gene reprogramming and exercise adaptation. To address these hypotheses, healthy men participated in variable intensity ( n = 12, 30 × 1 min at 6, 7, and 8 miles/h, order randomized) and variable duration ( n = 14, 7 × 1 mile/h for 30, 60, and 90 min, order randomized) treadmill-running protocols. Muscle-enriched c-miRNAs (i.e., miRNA-1 and miRNA-133a) and others with known relevance to exercise were measured before and after exercise. c-miRNA responses followed three profiles: 1) nonresponsive (miRNA-21 and miRNA-210), 2) responsive to exercise at some threshold but without dose dependence (miRNA-24 and miRNA-146a), and 3) responsive to exercise with dose dependence to increasing intensity (miRNA-1) or duration (miRNA-133a and miRNA-222). We also studied aerobic exercise-trained mice, comparing control, low-intensity (0.5 km/h), or high-intensity (1 km/h) treadmill-running protocols over 4 wk. In high- but not low-intensity-trained mice, we found increased plasma c-miR-133a along with decreased intracellular miRNA-133a and increased serum response factor, a known miR-133a target gene, in muscle. Characterization of c-miRNAs that are dose responsive to exercise in humans and mice supports the notion that they directly mediate physiological adaptation to exercise, potentially through depletion of intracellular stores of muscle-specific miRNAs. NEW & NOTEWORTHY In this study of humans and mice, we define circulating microRNAs in plasma that are dose responsive to exercise. Our data support the notion that these microRNAs mediate physiological adaptation to exercise potentially through depletion of intracellular stores of muscle-specific microRNAs and releasing their inhibitory effects on target gene expression.
Collapse
Affiliation(s)
- Anna E Ramos
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania
| | - Claire Lo
- Department of Human Evolutionary Biology, Harvard University , Cambridge, Massachusetts.,Cardiovascular Performance Program, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts
| | - Leonard E Estephan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania
| | - Masataka Sugahara
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine , Hyogo , Japan
| | - John Gorcsan
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Marcel G Brown
- Cardiovascular Performance Program, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University , Cambridge, Massachusetts
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC , Pittsburgh, Pennsylvania
| | - Aaron L Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
20
|
Ishihara K, Taniguchi H. Fat max as an index of aerobic exercise performance in mice during uphill running. PLoS One 2018; 13:e0193470. [PMID: 29474428 PMCID: PMC5825145 DOI: 10.1371/journal.pone.0193470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/12/2018] [Indexed: 11/22/2022] Open
Abstract
Endurance exercise performance has been used as a representative index in experimental animal models in the field of health sciences, exercise physiology, comparative physiology, food function or nutritional physiology. The objective of the present study was to evaluate the effectiveness of Fatmax (the exercise intensity that elicits maximal fat oxidation) as an additional index of endurance exercise performance that can be measured during running at submaximal exercise intensity in mice. We measured both Fatmax and Vo2 peak of trained ICR mice that voluntary exercised for 8 weeks and compared them with a sedentary group of mice at multiple inclinations of 20, 30, 40, and 50° on a treadmill. The Vo2 at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 30 and 40° (P < 0.001). The running speed at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 20, 30, and 40° (P < 0.05). Blood lactate levels sharply increased in the sedentary group (7.33 ± 2.58 mM) compared to the training group (3.13 ± 1.00 mM, P < 0.01) when running speeds exceeded the Fatmax of sedentary mice. Vo2 at Fatmax significantly correlated to Vo2 peak, running time to fatigue, and lactic acid level during running (P < 0.05) although the reproducibility of Vo2 peak was higher than that of Vo2 at Fatmax. In conclusion, Fatmax can be used as a functional assessment of the endurance exercise performance of mice during submaximal exercise intensity.
Collapse
Affiliation(s)
- Kengo Ishihara
- Faculty of Agriculture, Ryukoku University, Shiga, Japan
- * E-mail:
| | | |
Collapse
|
21
|
Oyanagi E, Uchida M, Kremenik MJ, Yano H. Altered gut microbiota by voluntary exercise induces high physical activity in high-fat diet mice. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2018. [DOI: 10.7600/jpfsm.7.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare
| | | | - Michael J. Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare
| |
Collapse
|
22
|
Seward T, Harfmann BD, Esser KA, Schroder EA. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity. J Appl Physiol (1985) 2017; 124:923-929. [PMID: 29357507 DOI: 10.1152/japplphysiol.00880.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to include potential behavioral input and physiological parameters.
Collapse
Affiliation(s)
- T Seward
- Department of Physiology, University of Kentucky , Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky , Lexington, Kentucky
| | - B D Harfmann
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan
| | - K A Esser
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Institute of Myology, University of Florida , Gainesville, Florida
| | - E A Schroder
- Department of Physiology, University of Kentucky , Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
23
|
HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into G Alert. Cell Rep 2017; 19:479-486. [PMID: 28423312 DOI: 10.1016/j.celrep.2017.03.066] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
The activation of quiescent stem cells into the cell cycle is a key step in initiating the process of tissue repair. We recently reported that quiescent stem cells can transition into GAlert, a cellular state in which they have an increased functional ability to activate and participate in tissue repair. However, the precise molecular signals that induce GAlert in stem cells have remained elusive. Here, we show that the injury-induced regulation of hepatocyte growth factor (HGF) proteolytic processing via the systemic protease, hepatocyte growth factor activator (HGFA), stimulates GAlert in skeletal muscle stem cells (MuSCs) and fibro-adipogenic progenitors (FAPs). We demonstrate that administering active HGFA to animals is sufficient to induce GAlert in stem cells throughout the body and to significantly accelerate the processes of stem cell activation and tissue repair. Our data suggest that factors that induce GAlert will have broad therapeutic applications for regenerative medicine and wound healing.
Collapse
|
24
|
Coletti D, Adamo S, Moresi V. Of Faeces and Sweat. How Much a Mouse is Willing to Run: Having a Hard Time Measuring Spontaneous Physical Activity in Different Mouse Sub-Strains. Eur J Transl Myol 2017; 27:6483. [PMID: 28458808 PMCID: PMC5391524 DOI: 10.4081/ejtm.2017.6483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Invited Letter to the Editor. Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University), we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.
Collapse
Affiliation(s)
- Dario Coletti
- Sorbonne Universités, UPMC Univ Paris 06 (CNRS, UMR 8256, INSERM ERL U1164), Institut Biologie Paris-Seine, Paris, France.,Dept. of Anatomy, Histology, Forensic Medicine & Orthopedics, School of Medicine Sapienza University of Rome, Italy.,Interuniversity Institute of Myology, Italy
| | - Sergio Adamo
- Dept. of Anatomy, Histology, Forensic Medicine & Orthopedics, School of Medicine Sapienza University of Rome, Italy.,Interuniversity Institute of Myology, Italy
| | - Viviana Moresi
- Dept. of Anatomy, Histology, Forensic Medicine & Orthopedics, School of Medicine Sapienza University of Rome, Italy.,Interuniversity Institute of Myology, Italy
| |
Collapse
|
25
|
Wolff BS, Renner MA, Springer DA, Saligan LN. A Mouse Model of Fatigue Induced by Peripheral Irradiation. J Vis Exp 2017. [PMID: 28362365 DOI: 10.3791/55145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cancer-related fatigue (CRF) is a distressing and costly condition that often affects patients receiving cancer treatments, including radiation therapy. Here we describe a method using targeted peripheral irradiation to induce fatigue-like behavior in mice. With appropriate shielding, the irradiation targets the lower abdominal/pelvic region of the mouse, sparing the brain, in an effort to model radiation treatment received by individuals with pelvic cancers. We deliver an irradiation dose that is sufficient to induce fatigue-like behavior in mice, measured by voluntary wheel-running activity (VWRA), without causing obvious morbidity. Since wheel running is a normal, voluntary behavior in mice, its use should have little confounding effect on other behavioral tests or biological measures. Hence, wheel running can be used as a feasible outcome measure in understanding the behavioral and biological correlates of fatigue. CRF is a complex condition with frequent comorbidities, and likely has causes related both to cancer and its various treatments. The methods described in this paper are useful for investigating radiation-induced changes that contribute to the development of CRF and, more generally, to explore the biological networks that can explain the development and persistence of a peripherally-triggered but centrally-driven behavior like fatigue.
Collapse
Affiliation(s)
- Brian S Wolff
- Symptom Biology Unit, National Institute of Nursing Research, National Institutes of Health
| | - Michael A Renner
- Symptom Biology Unit, National Institute of Nursing Research, National Institutes of Health
| | - Danielle A Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Leorey N Saligan
- Symptom Biology Unit, National Institute of Nursing Research, National Institutes of Health;
| |
Collapse
|
26
|
Kvedaras M, Minderis P, Fokin A, Ratkevicius A, Venckunas T, Lionikas A. Forced Running Endurance Is Influenced by Gene(s) on Mouse Chromosome 10. Front Physiol 2017; 8:9. [PMID: 28167917 PMCID: PMC5253375 DOI: 10.3389/fphys.2017.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/10/2023] Open
Abstract
Phenotypic diversity between laboratory mouse strains provides a model for studying the underlying genetic mechanisms. The A/J strain performs poorly in various endurance exercise models. The aim of the study was to test if endurance capacity and contractility of the fast- and slow-twitch muscles are affected by the genes on mouse chromosome 10. The C57BL/6J (B6) strain and C57BL/6J-Chr 10A/J/NaJ (B6.A10) consomic strain which carries the A/J chromosome 10 on a B6 strain background were compared. The B6.A10 mice compared to B6 were larger in body weight (p < 0.02): 27.2 ± 1.9 vs. 23.8 ± 2.7 and 23.4 ± 1.9 vs. 22.9 ± 2.3 g, for males and females, respectively, and in male soleus weight (p < 0.02): 9.7 ± 0.4 vs. 8.6 ± 0.9 mg. In the forced running test the B6.A10 mice completed only 64% of the B6 covered distance (p < 0.0001). However, there was no difference in voluntary wheel running (p = 0.6) or in fatigability of isolated soleus (p = 0.24) or extensor digitorum longus (EDL, p = 0.7) muscles. We conclude that chromosome 10 of the A/J strain contributes to reduced endurance performance. We also discuss physiological mechanisms and methodological aspects relevant to interpretation of these findings.
Collapse
Affiliation(s)
- Mindaugas Kvedaras
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Petras Minderis
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Andrej Fokin
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Aivaras Ratkevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University Kaunas, Lithuania
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen Aberdeen, UK
| |
Collapse
|
27
|
Dougherty JP, Springer DA, Gershengorn MC. The Treadmill Fatigue Test: A Simple, High-throughput Assay of Fatigue-like Behavior for the Mouse. J Vis Exp 2016. [PMID: 27286034 DOI: 10.3791/54052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatigue is a prominent symptom in many diseases and disorders and reduces quality of life for many people. The lack of clear pathogenesis and failure of current interventions to adequately treat fatigue in all patients leaves a need for new treatment options. Despite the therapeutic need and importance of preclinical research in helping identify promising novel treatments, few preclinical assays of fatigue are available. Moreover, the most common preclinical assay used to assess fatigue-like behavior, voluntary wheel running, is not suitable for use with some strains of mice, may not be sensitive to drugs that reduce fatigue, and has relatively low throughput. The current protocol describes a novel, non-voluntary preclinical assay of fatigue-like behavior, the treadmill fatigue test, and provides evidence of its efficacy in detecting fatigue-like behavior in mice treated with a chemotherapy drug known to cause fatigue in humans and fatigue-like behavior in animals. This assay may be a beneficial alternative to wheel running, as fatigue-like behavior and potential interventions can be assessed in a greater number of mice over a shorter time frame, thus permitting faster discovery of new therapeutic options.
Collapse
Affiliation(s)
- John P Dougherty
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - Danielle A Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health;
| |
Collapse
|
28
|
Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125:19-29. [PMID: 27021169 DOI: 10.1016/j.brainresbull.2016.03.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD.
Collapse
|
29
|
Quindry JC, Ballmann CG, Epstein EE, Selsby JT. Plethysmography measurements of respiratory function in conscious unrestrained mice. J Physiol Sci 2016; 66:157-64. [PMID: 26459291 PMCID: PMC10717823 DOI: 10.1007/s12576-015-0408-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Whole body plethysmography (WBP) is used to quantify pulmonary function in conscious, unrestrained mice. We determined currently whether time of day and environmental lighting influence day-to-day reproducibility of pulmonary function, and quantifed the necessary habituation time in the WBP chamber. Two-month-old male C57BL6 and mdx mice (n = 8/group, reverse light cycle), were examined on consecutive days using a calibrated WBP chamber and manufacturer software was used to calculate respiratory measures. Respiratory data stabilized between 5-10 min for all variables. Mice exhibited time of day respiratory differences, performing more forceful and less frequent breaths midday (11:45 a.m. and 3:00 p.m.) compared to 7:30 a.m. WBP performed in darkened conditions elicited more forceful breathing than lit conditions. Day-to-day reproducibility during controlled conditions ranged from r(2) = 0.58 to 0.62 for the functional measures. Findings indicate reproducible respiratory data are obtainable following a 15-min chamber habituation and standardization of time of day and room lighting.
Collapse
Affiliation(s)
- John C Quindry
- Cardioprotection Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36830, USA.
| | - Christopher G Ballmann
- Cardioprotection Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36830, USA
| | - Erin E Epstein
- Cardioprotection Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36830, USA
| | | |
Collapse
|
30
|
Bowen RS, Cates BE, Combs EB, Dillard BM, Epting JT, Foster BR, Patterson SV, Spivey TP. Stabilization of the wheel running phenotype in mice. Physiol Behav 2016; 155:149-56. [DOI: 10.1016/j.physbeh.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/14/2015] [Accepted: 12/09/2015] [Indexed: 01/27/2023]
|
31
|
Turner MJ, Guderian S, Wikstrom EA, Huot JR, Peck BD, Arthur ST, Marino JS, Hubbard-Turner T. Altered left ventricular performance in aging physically active mice with an ankle sprain injury. AGE (DORDRECHT, NETHERLANDS) 2016; 38:15. [PMID: 26803818 PMCID: PMC5005884 DOI: 10.1007/s11357-016-9877-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.
Collapse
Affiliation(s)
- Michael J Turner
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Sophie Guderian
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Erik A Wikstrom
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
- Center for Biomedical Engineering & Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Joshua R Huot
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Bailey D Peck
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Susan T Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Joseph S Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Tricia Hubbard-Turner
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA
- Center for Biomedical Engineering & Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
32
|
Ferguson DP, Dangott LJ, Vellers HL, Schmitt EE, Lightfoot JT. Differential protein expression in the nucleus accumbens of high and low active mice. Behav Brain Res 2015; 291:283-288. [DOI: 10.1016/j.bbr.2015.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
|
33
|
Hubbard-Turner T, Wikstrom EA, Guderian S, Turner MJ. An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan. J Sports Sci Med 2015; 14:556-561. [PMID: 26336342 PMCID: PMC4541119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/12/2015] [Indexed: 06/05/2023]
Abstract
We do not know the impact an ankle sprain has on physical activity levels across the lifespan. With the negative consequences of physical inactivity well established, understanding the effect of an ankle sprain on this outcome is critical. The objective of this study was to measure physical activity across the lifespan after a single ankle sprain in an animal model. Thirty male mice (CBA/J) were randomly placed into one of three groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament (ATFL)/CFL group, and a SHAM group. Three days after surgery, all of the mice were individually housed in a cage containing a solid surface running wheel. Physical activity levels were recorded and averaged every week across the mouse's lifespan. The SHAM mice ran significantly more distance each day compared to the remaining two running groups (post hoc p = 0.011). Daily duration was different between the three running groups (p = 0.048). The SHAM mice ran significantly more minutes each day compared to the remaining two running groups (post hoc p=0.046) while the ATFL/CFL mice ran significantly less minutes each day (post hoc p = 0.028) compared to both the SHAM and CFL only group. The SHAM mice ran at a faster daily speed versus the remaining two groups of mice (post hoc p = 0.019) and the ATFL/CFL mice ran significantly slower each day compared to the SHAM and CFL group (post hoc p = 0.005). The results of this study indicate that a single ankle sprain significantly decreases physical activity across the lifespan in mice. This decrease in physical activity can potentially lead to the development of numerous chronic diseases. An ankle sprain thus has the potential to lead to significant long term health risks if not treated appropriately. Key pointsA single ankle significantly decreased physical activity levels in mice across the lifespan.Decreased physical activity could significantly negatively impact overall health if not modified.Initial treatment and rehabilitation of ankle sprains needs to be studied to determine ways to keep physical activity levels up after injury.
Collapse
Affiliation(s)
- Tricia Hubbard-Turner
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte , Charlotte, NC, USA ; Center for Biomedical Engineering & Science, University of North Carolina at Charlotte , Charlotte, NC, USA
| | - Erik A Wikstrom
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte , Charlotte, NC, USA ; Center for Biomedical Engineering & Science, University of North Carolina at Charlotte , Charlotte, NC, USA
| | | | - Michael J Turner
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte , Charlotte, NC, USA
| |
Collapse
|
34
|
Dawes M, Kochan KJ, Riggs PK, Timothy Lightfoot J. Differential miRNA expression in inherently high- and low-active inbred mice. Physiol Rep 2015; 3:3/7/e12469. [PMID: 26229004 PMCID: PMC4552544 DOI: 10.14814/phy2.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 01/12/2023] Open
Abstract
Despite established health benefits of regular exercise, the majority of Americans do not meet the recommended levels of physical activity. While it is known that voluntary activity levels are largely heritable, the genetic mechanisms that regulate activity are not well understood. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit transcription by binding to a target gene, inhibiting protein production. The purpose of this study was to investigate differential miRNA expression between inherently high- (C57L/J) and low- (C3H/HeJ) active inbred mice in soleus, extensor digitorum longus (EDL), and nucleus accumbens tissues. Expression was initially determined by miRNA microarray analysis, and selected miRNAs were validated by qRT-PCR. Expression of 13 miRNAs varied between strains in the nucleus accumbens, 20 in soleus, and eight in EDL, by microarray analysis. Two miRNAs were validated by qRT-PCR in the nucleus accumbens; miR-466 was downregulated (∼4 fold; P < 0.0004), and miR-342-5p was upregulated (∼115 fold; P < 0.0001) in high-active mice. MiR-466 was downregulated (∼5 fold; P < 0.0001) in the soleus of high-active mice as well. Interestingly, miR-466 is one of several miRNA families with sequence located in intron 10 of Sfmbt2; miRNAs at this locus are thought to drive imprinting of this gene. “Pathways in cancer” and “TGFβ signaling” were the most significant pathways of putative target genes in both the soleus and nucleus accumbens. Our results are the first to consider differential miRNA expression between high- and low-active mice, and suggest that miRNAs may play a role in regulation of physical activity.
Collapse
Affiliation(s)
- Michelle Dawes
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Kelli J Kochan
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Penny K Riggs
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - J Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
35
|
Wikstrom EA, Hubbard-Turner T, Woods S, Guderian S, Turner MJ. Developing a Mouse Model of Chronic Ankle Instability. Med Sci Sports Exerc 2015; 47:866-72. [DOI: 10.1249/mss.0000000000000466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Abstract
Exercise is the archetype of physiologic demands placed on the cardiovascular system. Acute responses provide an informative assessment of cardiovascular function and fitness, while repeated exercise promotes cardiovascular health and evokes important molecular, structural, and functional changes contributing to its effects in primary and secondary prevention. Here we examine the use of exercise in murine models, both as a phenotypic assay and as a provocative intervention. We first review the advantages and limitations of exercise testing for assessing cardiac function, then highlight the cardiac structural and cellular changes elicited by chronic exercise and key molecular pathways that mediate these effects.
Collapse
Affiliation(s)
- Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Nicholas Houstis
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215.,Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Sussman D, Germann J, Henkelman M. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring. Brain Behav 2015; 5:e00300. [PMID: 25642385 PMCID: PMC4309881 DOI: 10.1002/brb3.300] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/12/2014] [Accepted: 11/10/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. METHODS To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. RESULTS The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. CONCLUSIONS These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.
Collapse
Affiliation(s)
- Dafna Sussman
- Physiology and Experimental Medicine, The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Jurgen Germann
- Mouse Imaging Center (MICe), The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Center (MICe), The Hospital for Sick ChildrenToronto, Ontario, Canada
| |
Collapse
|
38
|
Abstract
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms.
Collapse
|
39
|
Conner JD, Wolden-Hanson T, Quinn LS. Assessment of murine exercise endurance without the use of a shock grid: an alternative to forced exercise. J Vis Exp 2014:e51846. [PMID: 25145813 DOI: 10.3791/51846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters.
Collapse
Affiliation(s)
- Jennifer D Conner
- Research Service, VA Puget Sound Health Care System; Seattle Institute for Biomedical and Clinical Research
| | | | - LeBris S Quinn
- Research Service, VA Puget Sound Health Care System; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington; Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System;
| |
Collapse
|
40
|
Hubbard-Turner T, Guderian S, Turner MJ. Lifelong physical activity and knee osteoarthritis development in mice. Int J Rheum Dis 2014; 18:33-9. [DOI: 10.1111/1756-185x.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tricia Hubbard-Turner
- Department of Kinesiology; The University of North Carolina at Charlotte; Charlotte North Carolina USA
- Department of Mechanical Engineering & Engineering Science; Center for Biomedical Engineering Systems; The University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - Sophie Guderian
- Department of Kinesiology; The University of North Carolina at Charlotte; Charlotte North Carolina USA
| | - Michael J. Turner
- Department of Kinesiology; The University of North Carolina at Charlotte; Charlotte North Carolina USA
| |
Collapse
|
41
|
Wojewoda M, Kmiecik K, Ventura-Clapier R, Fortin D, Onopiuk M, Jakubczyk J, Sitek B, Fedorowicz A, Majerczak J, Kaminski K, Chlopicki S, Zoladz JA. Running performance at high running velocities is impaired but V'O(₂max) and peripheral endothelial function are preserved in IL-6⁻/⁻ mice. PLoS One 2014; 9:e88333. [PMID: 24533077 PMCID: PMC3922811 DOI: 10.1371/journal.pone.0088333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/07/2014] [Indexed: 11/07/2022] Open
Abstract
It has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05) than in WT mice. V'O(₂max) in IL-6⁻/⁻ (n = 20) amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16). No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max), endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we identified important compensatory mechanism limiting reduced exercise performance in IL-6⁻/⁻ mice.
Collapse
Affiliation(s)
- Marta Wojewoda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiecik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | | | - Marta Onopiuk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Justyna Jakubczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Andrzej Fedorowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Majerczak
- Department of Muscle Physiology, University School of Physical Education, Krakow, Poland
| | - Karol Kaminski
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Jerzy Andrzej Zoladz
- Department of Muscle Physiology, University School of Physical Education, Krakow, Poland
| |
Collapse
|
42
|
Ferguson DP, Dangott LJ, Schmitt EE, Vellers HL, Lightfoot JT. Differential skeletal muscle proteome of high- and low-active mice. J Appl Physiol (1985) 2014; 116:1057-67. [PMID: 24505100 DOI: 10.1152/japplphysiol.00911.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical inactivity contributes to cardiovascular disease, type II diabetes, obesity, and some types of cancer. While the literature is clear that there is genetic regulation of physical activity with existing gene knockout data suggesting that skeletal muscle mechanisms contribute to the regulation of activity, actual differences in end-protein expression between high- and low-active mice have not been investigated. This study used two-dimensional differential gel electrophoresis coupled with mass spectrometry to evaluate the proteomic differences between high-active (C57L/J) and low-active (C3H/HeJ) mice in the soleus and extensor digitorum longus (EDL). Furthermore, vivo-morpholinos were used to transiently knockdown candidate proteins to confirm their involvement in physical activity regulation. Proteins with higher expression patterns generally fell into the calcium-regulating and Krebs (TCA) cycle pathways in the high-active mice (e.g., annexin A6, P = 0.0031; calsequestrin 1; P = 0.000025), while the overexpressed proteins in the low-active mice generally fell into cytoskeletal structure- and electron transport chain-related pathways (e.g., ATPase, P = 0.031; NADH dehydrogenase, P = 0.027). Transient knockdown of annexin A6 and calsequestrin 1 protein of high-active mice with vivo-morpholinos resulted in decreased physical activity levels (P = 0.001). These data suggest that high- and low-active mice have unique protein expression patterns and that each pattern contributes to the peripheral capability to be either high- or low-active, suggesting that different specific mechanisms regulate activity leading to the high- or low-activity status of the animal.
Collapse
Affiliation(s)
- David P Ferguson
- Children's Nutritional Research Center, Baylor College of Medicine, Houston, Texas
| | | | | | | | | |
Collapse
|
43
|
Differential gene expression in high- and low-active inbred mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361048. [PMID: 24551844 PMCID: PMC3914289 DOI: 10.1155/2014/361048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/15/2013] [Indexed: 12/26/2022]
Abstract
Numerous candidate genes have been suggested in the recent literature with proposed roles in regulation of voluntary physical activity, with little evidence of these genes' functional roles.
This study compared the haplotype structure and expression profile in skeletal muscle and brain of inherently high- (C57L/J) and low- (C3H/HeJ) active mice. Expression of nine candidate genes
[Actn2, Actn3, Casq1, Drd2, Lepr, Mc4r, Mstn, Papss2, and Glut4 (a.k.a. Slc2a4)] was evaluated via RT-qPCR. SNPs were observed in regions of
Actn2, Casq1, Drd2, Lepr,
and Papss2; however,
no SNPs were located in coding sequences or associated with any known regulatory sequences. In mice exposed to a running wheel, Casq1 (P = 0.0003) and Mstn (P = 0.002) transcript levels in the
soleus were higher in the low-active mice. However, when these genes were evaluated in naïve animals, differential expression was not observed, demonstrating a training effect. Among naïve mice,
no genes in either tissue exhibited differential expression between strains. Considering that no obvious SNP mechanisms were determined or differential expression was observed, our results indicate
that genomic structural variation or gene expression data alone is not adequate to establish any of these genes' candidacy or causality in relation to regulation of physical activity.
Collapse
|
44
|
Abstract
Behavioral methods are extensively used in pain research. Rodent modeling tends to rely on evoked responses but there is a growing interest in behavioral readouts that may capture elements of ongoing pain and disability, reflecting the major clinical signs and symptoms. Clinically, analgesics show greater efficacy in acute pain after standard surgery than in chronic conditions but are never completely effective on a population basis. In contrast, experimental pharmacological studies in rodents often demonstrate full efficacy, but there is variability in sensitivity between models and readouts. Full efficacy is rarely seen when more complex or multiple readouts are used to quantify behavior, especially after acute surgery or in studies of clinical pain in animals. Models with excellent sensitivity for a particular drug class exist and are suitable for screening mechanistically similar drugs. However, if used to compare drugs with different modes of action or to predict magnitude of clinical efficacy, these models will be misleading. Effective use of behavioral pharmacology in pain research is thus dependent on selection and validation of the best models for the purpose.
Collapse
|
45
|
HUBBARD-TURNER TRICIA, WIKSTROM ERIKA, GUDERIAN SOPHIE, TURNER MICHAELJ. Acute Ankle Sprain in a Mouse Model. Med Sci Sports Exerc 2013; 45:1623-8. [DOI: 10.1249/mss.0b013e3182897d25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Richards DA, Bao W, Rambo MV, Burgert M, Jucker BM, Lenhard SC. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure. J Appl Physiol (1985) 2013; 114:1202-10. [DOI: 10.1152/japplphysiol.00556.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The loss of cardiac reserve is, in part, responsible for exercise intolerance in late-stage heart failure (HF). Exercise tolerance testing (ETT) has been performed in mouse models of HF; however, treadmill performance and at-rest cardiac indexes determined by magnetic resonance imaging (MRI) rarely correlate. The present study adopted a stress-MRI technique for comparison with ETT in HF models, using isoproterenol (ISO) to evoke cardiac reserve responses. Male C57BL/6J mice were randomly subjected to myocardial infarction (MI), transverse aortic constriction (TAC), or sham surgery under general anesthesia. Mice underwent serial ETT on a graded treadmill with follow-up ISO stress-MRI. TAC mice showed consistent exercise intolerance, with a 16.2% reduction in peak oxygen consumption vs. sham at 15-wk postsurgery (WPS). MI and sham mice had similar peak oxygen consumption from 7 WPS onward. Time to a respiratory exchange ratio of 1.0 correlated with ETT distance ( r = 0.64; P < 0.001). The change in ejection fraction under ISO stress was reduced in HF mice at 4 WPS [10.1 ± 3.9% change (Δ) and 8.9 ± 3.5%Δ in MI and TAC, respectively, compared with 32.0 ± 3.5%Δ in sham; P < 0.001]. However, cardiac reserve differences between surgery groups were not observed at 16 WPS in terms of ejection fraction or cardiac output. In addition, ETT did not correlate with cardiac indexes under ISO stress. In conclusion, ISO stress was unable to reflect consistent differences in ETT between HF and healthy mice, suggesting cardiac-specific indexes are not the sole factors in defining exercise intolerance in mouse HF models.
Collapse
Affiliation(s)
- Daniel A. Richards
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
- University of Bristol, Bristol, Avon, United Kingdom
| | - Weike Bao
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Mary V. Rambo
- Laboratory Animal Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Mark Burgert
- Statistical Consulting Group, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Beat M. Jucker
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
- Preclinical and Translational Imaging, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Stephen C. Lenhard
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
- Preclinical and Translational Imaging, GlaxoSmithKline, King of Prussia, Pennsylvania
| |
Collapse
|
47
|
Abadi A, Crane JD, Ogborn D, Hettinga B, Akhtar M, Stokl A, MacNeil L, Safdar A, Tarnopolsky M. Supplementation with α-lipoic acid, CoQ10, and vitamin E augments running performance and mitochondrial function in female mice. PLoS One 2013; 8:e60722. [PMID: 23565271 PMCID: PMC3614986 DOI: 10.1371/journal.pone.0060722] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/01/2013] [Indexed: 12/31/2022] Open
Abstract
Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10) on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group) and divided into trained (8 wks treadmill running) (n = 12/group) and untrained groups (n = 24/group). Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05). Furthermore, antioxidant-supplemented females (untrained) showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris) (p ≤ 0.05), reduced oxidative damage to muscle proteins (p ≤ 0.05), and increased expression of mitochondrial proteins (p ≤ 0.05) compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α) (p ≤ 0.05) via activation of AMP-activated protein kinase (AMPK) (p ≤ 0.05) by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations.
Collapse
Affiliation(s)
- Arkan Abadi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Justin D. Crane
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Ogborn
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Bart Hettinga
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mahmood Akhtar
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Stokl
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Lauren MacNeil
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
48
|
Coletti D, Berardi E, Aulino P, Rossi E, Moresi V, Li Z, Adamo S. Substrains of inbred mice differ in their physical activity as a behavior. ScientificWorldJournal 2013; 2013:237260. [PMID: 23533342 PMCID: PMC3606797 DOI: 10.1155/2013/237260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/04/2013] [Indexed: 11/17/2022] Open
Abstract
Recent studies strengthen the belief that physical activity as a behavior has a genetic basis. Screening wheel-running behavior in inbred mouse strains highlighted differences among strains, showing that even very limited genetic differences deeply affect mouse behavior. We extended this observation to substrains of the same inbred mouse strain, that is, BALB/c mice. We found that only a minority of the population of one of these substrains, the BALB/c J, performs spontaneous physical activity. In addition, the runners of this substrain cover a significantly smaller distance than the average runners of two other substrains, namely, the BALB/c ByJ and the BALB/c AnNCrl. The latter shows a striking level of voluntary activity, with the average distance run/day reaching up to about 12 kilometers. These runners are not outstanders, but they represent the majority of the population, with important scientific and economic fallouts to be taken into account during experimental planning. Spontaneous activity persists in pathological conditions, such as cancer-associated cachexia. This important amount of physical activity results in a minor muscle adaptation to endurance exercise over a three-week period; indeed, only a nonsignificant increase in NADH transferase+ fibers occurs in this time frame.
Collapse
Affiliation(s)
- Dario Coletti
- UR4 Aging, Stress, Inflammation, University Pierre et Marie Curie Paris 6, 7 Quai Saint Bernard, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Bowen RS, Ferguson DP, Lightfoot JT. Effects of Aromatase Inhibition on the Physical Activity Levels of Male Mice. ACTA ACUST UNITED AC 2013; 1:1-7. [PMID: 23483029 DOI: 10.4172/2157-7536.s1-001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasing activity levels in an inactive population can lead to associative increases in health and well-being. Both biologic and genetic factors have been identified that alter physical activity levels in humans and rodents with an extensive early literature regarding sex steroid effects on physical activity. Currently, it is suggested that the androgens require conversion to estrogens prior to eliciting any effects on activity patterns. Recent data contradicts this assertion; thus, the purpose of this study was to evaluate the necessity of the aromatase complex in activity regulation. Wheel running was assessed in male C57BL/6J mice under various sex steroid-disrupted and aromatase-inhibited conditions. Inhibition of the aromatase complex was achieved through administration of two different aromatase inhibiting substances-letrozole and exemestane. Wheel running was unaffected by aromatase inhibition in reproductively intact and sex steroid supplemented mice. Orchidectomy significantly reduced wheel running activity. Steroid replacement recovered wheel running to pre-surgical levels; however, aromatase inhibition did not further affect wheel running levels. The recovery of wheel running in mice with androgen supplementation and the further persistence of wheel running in mice with compromised aromatase function suggests that the androgens-testosterone in particular-may directly affect wheel running patterns in male mice.
Collapse
Affiliation(s)
- Robert S Bowen
- Science and Mathematics Division, Truett-McConnell College, Cleveland, GA 30528, USA ; Department of Kinesiology, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | | | | |
Collapse
|
50
|
Rothman SM, Griffioen KJ, Wan R, Mattson MP. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Ann N Y Acad Sci 2012; 1264:49-63. [PMID: 22548651 PMCID: PMC3411899 DOI: 10.1111/j.1749-6632.2012.06525.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.
Collapse
Affiliation(s)
- Sarah M Rothman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|