1
|
Kaur K, Kulkarni YA, Wairkar S. Exploring the potential of quercetin in Alzheimer's Disease: Pharmacodynamics, Pharmacokinetics, and Nanodelivery systems. Brain Res 2024; 1834:148905. [PMID: 38565372 DOI: 10.1016/j.brainres.2024.148905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a primary cause of dementia that affects millions of people worldwide and its prevalence is likely to increase largely in the coming decades. Multiple complex pathways, such as oxidative stress, tau and amyloid-beta (Aβ) pathology, and cholinergic dysfunction, are involved in the pathogenesis of Alzheimer's disease. The conventional treatments provide only symptomatic relief and not a complete cure for the disease. On the other hand, recent studies have looked into the possibility of flavonoids as an effective therapeutic strategy for treating AD. Quercetin, a well-known flavonol, has been extensively studied for AD treatment. Therefore, this review mainly focuses on the pharmacokinetics properties of quercetin and its modes of action, such as antioxidant, anti-inflammatory, anti-amyloidogenic, and neuroprotective properties, which are beneficial in treating AD. It also highlights the nano delivery systems of quercetin, including liposomes, nanostructures lipid carriers, solid lipid nanoparticles, nanoemulsions, microemulsions, self-emulsifying drug delivery systems, and nanoparticles reported for AD treatment. The remarkable potential of quercetin nanocarriers has been reflected in enhancing its bioavailability and therapeutic efficacy. Therefore, clinical studies must be conducted to explore it as a therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Komaldeep Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
2
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
4
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Naomi R, Yazid MD, Teoh SH, Balan SS, Shariff H, Kumar J, Bahari H, Embong H. Dietary Polyphenols as a Protection against Cognitive Decline: Evidence from Animal Experiments; Mechanisms and Limitations. Antioxidants (Basel) 2023; 12:antiox12051054. [PMID: 37237920 DOI: 10.3390/antiox12051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging evidence suggests that cognitive impairments may result from various factors, such as neuroinflammation, oxidative stress, mitochondrial damage, impaired neurogenesis, synaptic plasticity, blood-brain barrier (BBB) disruption, amyloid β protein (Aβ) deposition, and gut dysbiosis. Meanwhile, dietary polyphenol intake in a recommended dosage has been suggested to reverse cognitive dysfunction via various pathways. However, excessive intake of polyphenols could trigger unwanted adverse effects. Thus, this review aims to outline possible causes of cognitive impairments and how polyphenols alleviate memory loss via various pathways based on in vivo experimental studies. Thus, to identify potentially relevant articles, the keywords (1) nutritional polyphenol intervention NOT medicine AND neuron growth OR (2) dietary polyphenol AND neurogenesis AND memory impairment OR (3) polyphenol AND neuron regeneration AND memory deterioration (Boolean operators) were used in the Nature, PubMed, Scopus, and Wiley online libraries. Based on the inclusion and exclusion criteria, 36 research papers were selected to be further reviewed. The outcome of all the studies included supports the statement of appropriate dosage by taking into consideration gender differences, underlying conditions, lifestyle, and causative factors for cognitive decline, which will significantly boost memory power. Therefore, this review recapitulates the possible causes of cognitive decline, the mechanism of polyphenols involving various signaling pathways in modulating the memory, gut dysbiosis, endogenous antioxidants, bioavailability, dosage, and safety efficacy of polyphenols. Hence, this review is expected to provide a basic understanding of therapeutic development for cognitive impairments in the future.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Santhra Segaran Balan
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| | - Halim Shariff
- Faculty of Health Sciences, University Technology Mara (UITM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
7
|
Protective Mechanisms of Nootropic Herb Shankhpushpi ( Convolvulus pluricaulis) against Dementia: Network Pharmacology and Computational Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1015310. [PMID: 36225186 PMCID: PMC9550454 DOI: 10.1155/2022/1015310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.
Collapse
|
8
|
Regulation of DAPK1 by Natural Products: An Important Target in Treatment of Stroke. Neurochem Res 2022; 47:2142-2157. [PMID: 35674928 DOI: 10.1007/s11064-022-03628-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel in the brain, called ischemic stroke and hemorrhagic stroke, respectively. Stroke is more common in men than women. Atrial fibrillation, hypertension, kidney disease, high cholesterol and lipids, genetic predisposition, inactivity, poor nutrition, diabetes mellitus, family history and smoking are factors that increase the risk of stroke. Restoring blood flow by repositioning blocked arteries using thrombolytic agents or endovascular therapy are the most effective treatments for stroke. However, restoring circulation after thrombolysis can cause fatal edema or intracranial hemorrhage, and worsen brain damage in a process known as ischemia-reperfusion injury. Therefore, there is a pressing need to find and develop more effective treatments for stroke. In the past, the first choice of treatment was based on natural compounds. Natural compounds are able to reduce the symptoms and reduce various diseases including stroke that attract the attention of the pharmaceutical industry. Nowadays, as a result of the numerous studies carried out in the field of herbal medicine, many useful and valuable effects of plants have been identified. The death-associated protein kinase (DAPK) family is one of the vital families of serine/threonine kinases involved in the regulation of some biological functions in human cells. DAPK1 is the most studied kinase within the DAPKs family as it is involved in neuronal and recovery processes. Dysregulation of DAPK1 in the brain is involved in the developing neurological diseases such as stroke. Natural products can function in a variety of ways, including reducing cerebral edema, reducing brain endothelial cell death, and inhibiting TNFα and interleukin-1β (IL-1β) through regulating the DAPK1 signal against stroke. Due to the role of DAPK1 in neurological disorders, the aim of this article was to investigate the role of DAPK1 in stroke and its modulation by natural compounds.
Collapse
|
9
|
Catarina Duarte A, Raquel Costa A, Gonçalves I, Quintela T, Preissner R, R A Santos C. The druggability of bitter taste receptors for the treatment of neurodegenerative disorders. Biochem Pharmacol 2022; 197:114915. [PMID: 35051386 DOI: 10.1016/j.bcp.2022.114915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The delivery of therapeutic drugs to the brain remains a major pharmacology challenge. A complex system of chemical surveillance to protect the brain from endogenous and exogenous toxicants at brain barriers hinders the uptake of many compounds with significant in vitro and ex vivo therapeutic properties. Despite the advances in the field in recent years, the components of this system are not completely understood. Recently, a large group of chemo-sensing receptors, have been identified in the blood-cerebrospinal fluid barrier. Among these chemo-sensing receptors, bitter taste receptors (TAS2R) hold promise as potential drug targets, as many TAS2R bind compounds with recognized neuroprotective activity (quercetin, resveratrol, among others). Whether activation of TAS2R by their ligands contributes to their diverse biological actions described in other cells and tissues is still debatable. In this review, we discuss the potential role of TAS2R gene family as the mediators of the biological activity of their ligands for the treatment of central nervous system disorders and discuss their potential to counteract drug resistance by improving drug delivery to the brain.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-IPG- Centro de Potencial e Inovação de Recursos Naturais- Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559, Guarda, Portugal
| | - Ana Raquel Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Philippstrasse 12, 10115, Berlin, Germany
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
10
|
Zheng Y, Chen ZY, Ma WJ, Wang QZ, Liang H, Ma AG. B Vitamins Supplementation Can Improve Cognitive Functions and May Relate to the Enhancement of Transketolase Activity in A Rat Model of Cognitive Impairment Associated with High-fat Diets. Curr Med Sci 2021; 41:847-856. [PMID: 34652631 DOI: 10.1007/s11596-021-2456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether B vitamin treatment was sufficient to reduce cognitive impairment associated with high-fat diets in rats and to modulate transketolase (TK) expression and activity. METHODS To test this, we separated 50 rats into five groups that were either fed a standard chow diet (controls) or a high-fat diet (experimental groups H0, H1, H2, and H3). H0 group animals received no additional dietary supplementation, while H1 group animals were administered 100 mg/kg body weight (BW) thiamine, 100 mg/kg BW riboflavin, and 250 mg/kg BW niacin each day, and group H2 animals received daily doses of 100 mg/kg BW pyridoxine, 100 mg/kg BW cobalamin, and 5 mg/kg BW folate. Animals in the H3 group received the B vitamin regimens administered to both H1 and H2 each day. RESULTS Over time, group H0 exhibited greater increases in BW and fat mass relative to other groups. When spatial and memory capabilities in these animals were evaluated via conditioned taste aversion (CTA) and Morris Water Maze (MWM), we found B vitamin treatment was associated with significant improvements relative to untreated H0 controls. Similarly, B vitamin supplementation was associated with elevated TK expression in erythrocytes and hypothalamus of treated animals relative to those in H0 (P<0.05). CONCLUSION Together, these findings suggest B vitamin can modulate hypothalamic TK activity to reduce the severity of cognitive deficits in a rat model of obesity. As such, B vitamin supplementation may be a beneficial method for reducing cognitive dysfunction in clinical settings associated with high-fat diets.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhi-Yong Chen
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, China
| | - Wen-Jun Ma
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qiu-Zhen Wang
- Institute of Nutrition and Health, Medical College of Qingdao University, Qingdao, 266021, China
| | - Hui Liang
- Institute of Nutrition and Health, Medical College of Qingdao University, Qingdao, 266021, China
| | - Ai-Guo Ma
- Institute of Nutrition and Health, Medical College of Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
11
|
Wu X, Wang LJ, Hou Y, Guo RY, Liu M, Yang L, Zhang JL. Different action mechanisms of low- and high-level quercetin in the brains of adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112597. [PMID: 34365213 DOI: 10.1016/j.ecoenv.2021.112597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Quercetin is reported to be beneficial to or pose hazards to the health of animals, the inconsistence remains to be recognized and debated. This work was conducted to understand the neuroprotective or neurotoxic properties of quercetin, and investigate the different action mechanisms between low- and high-level quercetin. Therefore, we evaluated brain oxidative stress and monoamine neurotransmitters in adult zebrafish (Danio rerio) after exposure to 1 and 1000 μg/L quercetin. In addition, the brain transcriptional profiles were analyzed to identify genes and pathways that were differentially regulated in the brains. The results of oxidative stress and neurotransmitters suggest that low-level quercetin might be beneficial to nervous system, while high-level quercetin might exert detrimental effects. Furthermore, transcriptional profiles also suggested different toxic mechanisms occurred between low- and high-level quercetin. At 1 μg/L quercetin, enrichment analysis of differently expressed genes (DEGs) revealed that the fanconi anemia pathway might be an important mechanism in neuroprotective effects. At 1000 μg/L quercetin, the up-regulated DEGs were enriched in many Gene Ontology (GO) terms related to neuronal synapses, indicating potential neuroprotective effects; however, enrichment of up-regulated DEGs in GO terms of response to stimulus and the MAPK signaling pathway was also found, which indicated increases of stress. Notably, at 1000 μg/L quercetin, the down-regulated DEGs were enriched in several GO terms related to the proteostasis and the proteasome pathway, indicating impairment of proteasome functions which was involved in neurodegenerative diseases. Moreover, several hub genes involved in the pathology of neurodegenerative diseases were identified by Protein-protein interaction analysis at 1000 μg/L quercetin. Thus, high-level quercetin might pose potential risk inducing neurodegenerative diseases, which should receive more attention in the future. Additionally, our findings may provide awareness to society and researchers about toxicity possibilities of phytochemicals on wildlife and human.
Collapse
Affiliation(s)
- Xia Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Li-Jun Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Min Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
12
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
13
|
Batabyal A, Rivi V, Benatti C, Blom JMC, Lukowiak K. Long-term memory of configural learning is enhanced via CREB upregulation by the flavonoid quercetin in Lymnaea stagnalis. J Exp Biol 2021; 224:268357. [PMID: 34031691 DOI: 10.1242/jeb.242761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Abstract
Animals respond to acute stressors by modifying their behaviour and physiology. The pond snail Lymnaea stagnalis exhibits configural learning (CL), a form of higher order associative learning. In CL snails develop a landscape of fear when they experience a predatory cue along with a taste of food. This experience results in a suppression of the food response; but the memory only persists for 3 h. Lymnaea has also been found to upregulate heat shock proteins (HSPs) as a result of acute heat stress, which leads to the enhancement of memory formation. A plant flavonoid quercetin blocks the upregulation of HSPs when experienced prior to heat stress. Here, we used this blocking mechanism to test the hypothesis that HSP upregulation plays a critical role in CL. Snails experienced quercetin prior to CL training and surprisingly instead of blocking memory formation it enhanced the memory such that it now persisted for at least 24 h. Quercetin exposure either prior to or after CL enhanced long-term memory (LTM) up to 48 h. We quantified mRNA levels of the transcription factor CREB1 in the Lymnaea central nervous system and found LymCREB1 to be upregulated following quercetin exposure. The enhanced LTM phenotype in L. stagnalis was most pronounced when quercetin was experienced during the consolidation phase. Additionally, quercetin exposure during the memory reconsolidation phase also led to memory enhancement. Thus, we found no support of our original hypothesis but found that quercetin exposure upregulated LymCREB1 leading to LTM formation for CL.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Veronica Rivi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
14
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
15
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, Martorell M, Mamurova A, Seilkhan A, Altybaeva N, Abdullayeva B, Docea AO, Calina D, Sharifi-Rad J. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front Pharmacol 2021; 12:665031. [PMID: 34220504 PMCID: PMC8248808 DOI: 10.3389/fphar.2021.665031] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - Assem Mamurova
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ainur Seilkhan
- Educational program, Geography, Environment and Service sector, Abai Kazakh National Pedagogical University, Kazakhstan, Almaty, Kazakhstan.,Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Nazgul Altybaeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bagila Abdullayeva
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Arshad N'A, Lin TS, Yahaya MF. Stingless Bee Honey Reduces Anxiety and Improves Memory of the Metabolic Disease-induced Rats. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:115-126. [PMID: 31957619 DOI: 10.2174/1871527319666200117105133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Scientific studies support the evidence of the involvement of Metabolic Syndrome (MetS) in the progression of neurodegenerative diseases through oxidative stress. Consumption of antioxidant compounds was found to be beneficial for brain-health as it reduced the brain oxidative stress level and improved cognitive performance in animals. Stingless bee honey or locally known as Kelulut Honey (KH) has high phenolic content and is widely used as a food supplement. OBJECTIVES In this study, we aimed to investigate the effects of KH on the brain of MetS-induced rats. METHODS Forty male Wistar rats were divided into 5 groups; 8 weeks (C8) and 16 weeks control groups (C16), groups that received High-Carbohydrate High Fructose (HCHF) diet for 8 weeks (MS8) and 16 weeks (MS16), and a group that received HCHF for 16 weeks with KH supplemented for the last 35 days (KH). RESULTS Serum fasting blood glucose decreased in the KH group compared to the MS16 group. HDL levels were significantly decreased in MetS groups compared to control groups. Open field experiments showed that KH group exhibits less anxious behavior compared to the MetS group. Probe trial of Morris water maze demonstrated significant memory retention of KH group compared to the MS16 group. Nissl staining showed a significant decrease in the pyramidal hippocampal cells in the MS16 compared to the KH group. CONCLUSION KH has the ability to normalise blood glucose and reduce serum triglyceride and LDL levels in MetS rats, while behavior studies complement its effect on anxiety and memory. This shows a promising role of KH in attenuating neurodegenerative diseases through the antioxidant activity of its polyphenolic content.
Collapse
Affiliation(s)
- Nurul 'Ain Arshad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia.,School of Nursing, Faculty of Engineering, Science & Technology, Nilai University, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6119-6144. [PMID: 34038102 DOI: 10.1021/acs.jafc.1c00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Today, neurodegenerative diseases have become a remarkable public health challenge due to their direct relation with aging. Accordingly, understanding the molecular and cellular mechanisms occurring in the pathogenesis of them is essential. Both protein aggregations as a result of the ubiquitin-proteasome system (UPS) inefficiency and gut microbiota alternation are the main pathogenic hallmarks. Polyphenols upregulating this system may decrease the developing rate of neurodegenerative diseases. Most of the dietary intake of polyphenols is converted into other microbial metabolites, which have completely different biological properties from the original polyphenols and should be thoroughly investigated. Herein, several prevalent neurodegenerative diseases are pinpointed to explain the role of gut microbiota alternations and the role of molecular changes, especially UPS down-regulation in their pathogenesis. Some of the most important polyphenols found in our diet are explained along with their microbial metabolites in the body.
Collapse
Affiliation(s)
- Hanieh Nargeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Marjan Ajami
- Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg No. 2 SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Physiology and Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
19
|
Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 2021; 140:111729. [PMID: 34044274 DOI: 10.1016/j.biopha.2021.111729] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the primary cause of disabilities in the elderly people. Growing evidence indicates that oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis are associated with aging and the basis of most neurodegenerative disorders. Quercetin is a flavonoid with significant pharmacological effects and promising therapeutic potential. It is widely distributed among plants and typically found in daily diets mainly in fruits and vegetables. It shows a number of biological properties connected to its antioxidant activity. Neuroprotection by quercetin has been reported in many in vitro as well as in in vivo studies. However, the exact mechanism of action is still mystery and similarly there are a number of hypothesis exploring the mechanism of neuroprotection. Quercetin enhances neuronal longevity and neurogenesis by modulating and inhibiting wide number of pathways. This review assesses the food sources of quercetin, its pharmacokinetic profile, structure activity relationship and its pathophysiological role in various NDDs and it also provides a synopsis of the literature exploring the relationship between quercetin and various downstream signalling pathways modulated by quercetin for neuroprotection for eg. nuclear factor erythroid 2-related factor 2 (Nrf2), Paraoxonase-2 (PON2), c-Jun N-terminal kinase (JNK), Tumour Necrosis Factor alpha (TNF-α), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α), Sirtuins, Mitogen-activated protein kinases (MAPKs) signalling cascades, CREB (Cyclic AMP response element binding protein) and Phosphoinositide 3- kinase(PI3K/Akt). Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against NDDs.
Collapse
|
20
|
Kawamura N, Katsuura G, Yamada-Goto N, Novianti E, Inui A, Asakawa A. Impaired brain fractalkine-CX3CR1 signaling is implicated in cognitive dysfunction in diet-induced obese mice. BMJ Open Diabetes Res Care 2021; 9:9/1/e001492. [PMID: 33568358 PMCID: PMC7878130 DOI: 10.1136/bmjdrc-2020-001492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/09/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION A diet high in saturated fat is well known to affect neuronal function and contribute to cognitive decline in experimental animals and humans. Fractalkine released from neurons acts on its receptor, CX3C chemokine receptor 1 (CX3CR1), in the microglia to regulate several brain functions. The present study addressed whether fractalkine-CX3CR1 signaling in the brain, especially the hippocampus, contributes to the cognitive deficits observed in diet-induced obese (DIO) mice. RESEARCH DESIGN AND METHODS Mice were given 60% high-fat diet for 16 weeks. The expression of fractalkine and CX3CR1 in the hippocampus, amygdala and prefrontal cortex of DIO mice was analyzed. Cognitive ability in the Y-maze test and hippocampal glutamate receptors and synaptic markers were observed in DIO and CX3CR1 antagonist-treated mice. Regulation of fractalkine and CX3CR1 expression in the hippocampus was examined following administration of a selective insulin-like growth factor-1 (IGF-1) receptor inhibitor and a tyrosine receptor kinase B (TrkB) antagonist in normal mice. RESULTS DIO mice exhibited significant cognitive deficits in the Y-maze test and decrease in fractalkine and CX3CR1 in the hippocampus and amygdala compared with mice fed a control diet (CD mice). Administration of the CX3CR1 antagonist 18a in normal mice induced significant cognitive deficits in the Y-maze test. DIO mice and CX3CR1 antagonist-treated mice exhibited significant decreases in protein levels of NMDA (N-methyl-D-aspartate) receptor subunit (NR2A), AMPA (α-amino-5-methyl-3-hydroxy-4-isoxazole propionate) receptor subunit (GluR1) and postsynaptic density protein 95 in the hippocampus compared with their respective controls. Furthermore, plasma IGF-1 and hippocampal brain-derived neurotrophic factor were significantly decreased in DIO mice compared with CD mice. Administration of a selective IGF-1 receptor inhibitor and a TrkB antagonist in normal mice significantly decreased fractalkine and CX3CR1 in the hippocampus. CONCLUSIONS These findings indicate that the cognitive decline observed in DIO mice is due, in part, to reduced fractalkine-CX3CR1 signaling in the corticolimbic system.
Collapse
Affiliation(s)
- Namiko Kawamura
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Goro Katsuura
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Nobuko Yamada-Goto
- Health Center, Keio University, Shinjuku-ku, Tokyo, Japan
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ela Novianti
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
Hazzaa SM, Eldaim MAA, Fouda AA, Mohamed ASED, Soliman MM, Elgizawy EI. Intermittent Fasting Ameliorated High-Fat Diet-Induced Memory Impairment in Rats via Reducing Oxidative Stress and Glial Fibrillary Acidic Protein Expression in Brain. Nutrients 2020; 13:nu13010010. [PMID: 33375195 PMCID: PMC7822208 DOI: 10.3390/nu13010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Intermittent fasting (IF) plays an important role in the protection against metabolic syndrome-induced memory defects. This study aimed to assess the protective effects of both prophylactic and curative IF against high-fat diet (HFD)-induced memory defects in rats. The control group received a normal diet; the second group received a HFD; the third group was fed a HFD for 12 weeks and subjected to IF during the last four weeks (curative IF); the fourth group was fed a HFD and subjected to IF simultaneously (prophylactic IF). A high-fat diet significantly increased body weight, serum lipids levels, malondialdehyde (MDA) concentration, glial fibrillary acidic protein (GFAP) and H score in brain tissue and altered memory performance. In addition, it significantly decreased reduced glutathione (GSH) concentration in brain tissue and viability and thickness of pyramidal and hippocampus granular cell layers. However, both types of IF significantly decreased body weight, serum lipids, GFAP protein expression and H score and MDA concentration in brain tissue, and improved memory performance, while it significantly increased GSH concentration in brain tissue, viability, and thickness of pyramidal and granular cell layers of the hippocampus. This study indicated that IF ameliorated HFD-induced memory disturbance and brain tissue damage and the prophylactic IF was more potent than curative IF.
Collapse
Affiliation(s)
- Suzan M. Hazzaa
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| | - Mabrouk A. Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, Medicine, Menoufia University, Shebeen Elkom 32511, Egypt
- Correspondence:
| | - Amira A. Fouda
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Asmaa Shams El Dein Mohamed
- Pathology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (A.A.F.); (A.S.E.D.M.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Eman I. Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt; (S.M.H.); (E.I.E.)
| |
Collapse
|
22
|
Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, Ashraf GM, Aleya L. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412. [DOI: 10.1016/j.ejphar.2020.173412] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
|
23
|
Cichon N, Saluk-Bijak J, Gorniak L, Przyslo L, Bijak M. Flavonoids as a Natural Enhancer of Neuroplasticity-An Overview of the Mechanism of Neurorestorative Action. Antioxidants (Basel) 2020; 9:antiox9111035. [PMID: 33114058 PMCID: PMC7690743 DOI: 10.3390/antiox9111035] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity is a complex physiological process occurring in the brain for its entire life. However, it is of particular importance in the case of central nervous system (CNS) disorders. Neurological recovery largely depends on the ability to reestablish the structural and functional organization of neurovascular networks, which must be pharmacologically supported. For this reason, new forms of therapy are constantly being sought. Including adjuvant therapies in standard treatment may support the enhancement of repair processes and restore impaired brain functions. The common hallmark of nerve tissue damage is increased by oxidative stress and inflammation. Thus, the studies on flavonoids with strong antioxidant and anti-inflammatory properties as a potential application in neuro intervention have been carried out for a long time. However, recent results have revealed another important property of these compounds in CNS therapy. Flavonoids possess neuroprotective activity, and promote synaptogenesis and neurogenesis, by, among other means, inhibiting oxidative stress and neuroinflammation. This paper presents an overview of the latest knowledge on the impact of flavonoids on the plasticity processes of the brain, taking into account the molecular basis of their activity.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
- Correspondence: ; Tel.: +48-42-635-43-36
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Leslaw Gorniak
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Research Institute of Polish Mother’s Memorial Hospital, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
| |
Collapse
|
24
|
Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC. Neural Underpinnings of Obesity: The Role of Oxidative Stress and Inflammation in the Brain. Antioxidants (Basel) 2020; 9:antiox9101018. [PMID: 33092099 PMCID: PMC7589608 DOI: 10.3390/antiox9101018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.
Collapse
Affiliation(s)
- Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Shahjalal Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
| | - Md Abu B. Siddik
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - Vijay K. Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.S.K.); (M.A.B.S.); (V.K.H.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79409, USA;
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.A.M.); (R.B.G.); (H.S.)
- Correspondence: ; Tel.: +1-806-834-1713
| |
Collapse
|
25
|
Zhang JL, Liu M, Cui W, Yang L, Zhang CN. Quercetin affects shoaling and anxiety behaviors in zebrafish: Involvement of neuroinflammation and neuron apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 105:359-368. [PMID: 32693159 DOI: 10.1016/j.fsi.2020.06.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Quercetin, a potential fish food supplement, has been reported to process many beneficial properties. However, some negative effects of quercetin have been observed, which pointed out necessity for additional studies to evaluate its safety. Therefore, the present study investigated effects of quercetin (0.01, 0.1, 1, 10, 100 and 1000 μg/L) on shoaling and anxiety behaviors through novel tank tests in zebrafish (Danio rerio). Furthermore, oxidative stress, neuroinflammation and apoptosis in the brains were examined to learn more about mechanisms of action related to quercetin. The results showed that quercetin at the lower concentrations exerted beneficial effects on shoaling and anxiety behaviors. On the contrary, when quercetin was up to 1000 μg/L, it exerted detrimental effects shown as decreases of movement and increases of anxiety behaviors. Generally, U-shaped responses of antioxidant enzyme activities (superoxide dismutase and catalase), and inversed U-shaped responses of inflammatory mediators (cyclooxygenase-2) and cytokines (interleukin-1β, interleukin-6, interleukin-10, and tumor necrosis factor α) to quercetin treatment were found in the brains. In addition, quercetin at the lower concentrations attenuated cell apoptosis, while even more apoptosis was found at the 1000 μg/L quercetin group. In conclusion, quercetin could exert beneficial or detrimental effects on the shoaling and anxiety behaviors depending on the treatment concentrations, and the underlying mechanisms are potentially associated with neuroinflammation and neuron apoptosis.
Collapse
Affiliation(s)
- Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Min Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wei Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
26
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
27
|
Teixeira AE, Rocha-Gomes A, Pereira dos Santos T, Amaral BLS, da Silva AA, Malagutti AR, Leite FRF, Stuckert-Seixas SR, Riul TR. Cafeteria diet administered from lactation to adulthood promotes a change in risperidone sensitivity on anxiety, locomotion, memory, and social interaction of Wistar rats. Physiol Behav 2020; 220:112874. [DOI: 10.1016/j.physbeh.2020.112874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
|
28
|
Molaei A, Hatami H, Dehghan G, Sadeghian R, Khajehnasiri N. Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in animal model of Alzheimer's disease. EXCLI JOURNAL 2020; 19:596-612. [PMID: 32483406 PMCID: PMC7257248 DOI: 10.17179/excli2019-2082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
It has widely been reported that the brain in Alzheimer's disease (AD) is affected by increased oxidative stress, and this may have a role in the pathogenesis of this disorder. Quercetin, a polyphenol extensively found in nature, has recently been considered. Also, physical activities have a paradoxical effect on brain function in older adults. Therefore, this study aimed at investigating the synergic effects of quercetin (as chemical treatment) and exercise (as physical treatment) on AD-induced learning and memory impairment. Fifty-six adult male Wistar rats were randomly assigned into one of the following eight groups (n=7): The Control, Sham (saline), AD (intracerebroventricular administration of streptozotocin (STZ)), AD+80 mg/kg Quercetin (STZ+Q80), Quercetin vehicle (1 % Ethanol)+STZ, Exercise pretreatment (EX)+STZ, Off the treadmill+STZ, and EX+Q80+STZ. Quercetin administration was done intraperitoneally for 21 days after STZ injection. The rats ran on the treadmill for one hour a day for 60 days at a speed of 20-22 m/min. After the treatment, the spatial memory and levels of oxidative stress parameters were evaluated. The results showed that STZ caused spatial memory impairment and increased oxidative stress in the hippocampus. Exercise pretreatment or Quercetin injection improved the spatial memory impairment and oxidative stress caused by STZ injection. However, the combination of quercetin and exercise pretreatment was more effective. It can be concluded that the combined exercise pretreatment and Quercetin injection affected the antioxidant defense system and improved STZ-induced memory impairment.
Collapse
Affiliation(s)
- Amin Molaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Homeira Hatami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Pharmacy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazli Khajehnasiri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| |
Collapse
|
29
|
Sharma P, Kumar A, Singh D. Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2020; 17:1158-1175. [PMID: 31400269 PMCID: PMC7057203 DOI: 10.2174/1570159x17666190809165549] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
cAMP response element binding protein (CREB) is a key transcriptional regulator that regulates the transcription of genes related with neuronal differentiation, synaptic plasticity, learning and memory. Brain derived neurotrophic factor (BDNF), is a CREB dependent gene which plays a pivotal role in the pathogenesis of epilepsy and central comorbid conditions associated with epilepsy. However, the beneficial or detrimental consequences of CREB-BDNF activation on the induction and/or progression of seizures depend specifically on the region of brain involved and the time of activation. The bioactive molecules that alter the activity of CREB in a way to have specialized effects in different brain regions and neural circuits involved could potentially be utilized for therapeutic purposes. Flavonoids are the polyphenolic compounds which lead to phosphorylation of CREB in the hippocampus, followed by increase in extracellular signal regulated kinase (ERK) and BDNF. Several members of flavonoid family have also showed suppression of epileptic seizures via interaction with CREB/BDNF pathway. Moreover, epilepsy is often accompanied by a number of behavioural and psychological comorbid conditions that further gets aggravated by the use of conventional antiepileptic drug therapy. Multiple studies have also supported the beneficial effects of flavonoids in cognitive and memory impairments by upregulation of CREB-BDNF pathway. The current review is an attempt to collate the available preclinical and clinical studies to establish the therapeutic potential of various dietary flavonoids in comprehensive management of epilepsy with relation to CREB-BDNF pathway.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Amit Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
30
|
Wang Z, Ge Q, Wu Y, Zhang J, Gu Q, Han J. Impairment of Long-term Memory by a Short-term High-fat Diet via Hippocampal Oxidative Stress and Alterations in Synaptic Plasticity. Neuroscience 2020; 424:24-33. [DOI: 10.1016/j.neuroscience.2019.10.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023]
|
31
|
Park DJ, Kang JB, Shah FA, Jin YB, Koh PO. Quercetin Attenuates Decrease of Thioredoxin Expression Following Focal Cerebral Ischemia and Glutamate-induced Neuronal Cell Damage. Neuroscience 2019; 428:38-49. [PMID: 31874239 DOI: 10.1016/j.neuroscience.2019.11.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
Quercetin is a bioactive flavonoid which abundantly exists in vegetables and fruits. Quercetin exerts a neuroprotective effect against cerebral ischemia. Thioredoxin acts as antioxidant by regulating redox signaling. This study investigated whether quercetin regulates thioredoxin expression in focal cerebral ischemia and glutamate-induced neuronal cell death. Male Sprague Dawley rats (210-230 g) were intraperitoneally injected with vehicle or quercetin (10 mg/kg) 1 h prior to middle cerebral artery occlusion (MCAO). Cerebral cortex was collected 24 h after MCAO. MCAO led to neurological movement deficits, brain edema, and serious histopathological damages in cerebral cortex, and quercetin alleviated these damages following MCAO. We observed the change of thioredoxin expression in MCAO animals with quercetin using proteomic approach, reverse-transcription PCR, and Western blot analyses. Thioredoxin expression decreased in vehicle-treated MCAO animals, while quercetin attenuated this decrease. Moreover, quercetin treatment alleviated the decrease in the number of thioredoxin-positive cells in cerebral cortex of MCAO animals. Furthermore, immunoprecipitation analysis demonstrated that interaction of apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin was decreased in MCAO animals with vehicle, while quercetin prevented MCAO-induced decrease in these binding. In addition, quercetin also alleviated the reduction of cell viability and the decrease in thioredoxin expression in glutamate-treated hippocampal cell line and primary cultures of cortical neurons. However in thioredoxin-silenced cortical neuron, anti-apoptotic effect of quercetin was decreased. Thus, changes of thioredoxin expression by quercetin may contribute to the neuroprotective effect of quercetin in focal cerebral ischemia. Our findings suggest that quercetin mediates its neuroprotective function by regulation of thioredoxin expression and maintenance of interaction between ASK1 and thioredoxin.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Fawad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea
| | - Yeung-Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KIRBB), Cheongju 28116, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, South Korea.
| |
Collapse
|
32
|
Cognitive Function and Consumption of Fruit and Vegetable Polyphenols in a Young Population: Is There a Relationship? Foods 2019; 8:foods8100507. [PMID: 31627296 PMCID: PMC6836211 DOI: 10.3390/foods8100507] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Scientific evidence has shown the relationship between consumption of fruits and vegetables and their polyphenols with the prevention or treatment of diseases. The aim of this review was to find out whether the same relationship exists between fruits and vegetables and cognitive function, especially memory, in a young population. The mechanisms by which polyphenols of fruits and vegetables can exert cognitive benefits were also evaluated. These compounds act to improve neuronal plasticity through the protein CREB (Camp Response Element Binding) in the hippocampus, modulating pathways of signaling and transcription factors (ERK/Akt). In the same way, brain-derived neurotrophic factor (BDNF) is implicated in the maintenance, survival, growth, and differentiation of neurons. All these effects are produced by an increase of cerebral blood flow and an increase of the blood’s nitric oxide levels and oxygenation.
Collapse
|
33
|
Damiano F, Giannotti L, Gnoni GV, Siculella L, Gnoni A. Quercetin inhibition of SREBPs and ChREBP expression results in reduced cholesterol and fatty acid synthesis in C6 glioma cells. Int J Biochem Cell Biol 2019; 117:105618. [PMID: 31542428 DOI: 10.1016/j.biocel.2019.105618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Quercetin (Que), a widely distributed flavonoid in the human diet, exerts neuroprotective action because of its property to antagonize oxidative stress. Here, we investigated the effects of Que on lipid synthesis in C6 glioma cells. A rapid Que-induced inhibition of cholesterol and, to a lesser extent, of fatty acid synthesis from [1-14C]acetate was observed. The maximum decrease was detected at the level of palmitate, the end product of de novo fatty acid synthesis. The effect of Que on the enzyme activities of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS), the two enzymes of this pathway, was investigated directly in situ in permeabilized C6 cells. An inhibitory effect on ACC1 was observed after 4 h of 25 μM Que treatment, while FAS activity was not affected. A reduction of polar lipid biosynthesis was also detected. A remarkable decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity, regulatory enzyme of cholesterol synthesis, was evidenced. Expression studies demonstrated that Que acts at transcriptional level, by reducing the mRNA abundance and protein amount of ACC1 and HMGCR. Deepening the molecular mechanism, we found that Que decreased the expression of SREBP-1 and SREBP-2, transcriptional factors representing the main regulators of de novo fatty acid and cholesterol synthesis, respectively. Que also reduced the nuclear content of ChREBP, a glucose-induced transcription factor involved in the regulation of lipogenic genes. Our results represent the first evidence that a direct and rapid downregulatory effect of Que on cholesterol and de novo fatty acid synthesis is elicited in C6 cells.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Gabriele V Gnoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy.
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy
| |
Collapse
|
34
|
Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 2019; 9:6876. [PMID: 31053743 PMCID: PMC6499818 DOI: 10.1038/s41598-019-43345-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
Biomedical application of quercetin (QT) as an effective flavonoid has limitations due to its low bioavailability. Superparamagnetic iron oxide nanoparticle (SPION) is a novel drug delivery system that enhances the bioavailability of quercetin. The effect of short time usage of quercetin on learning and memory function and its signaling pathways in the healthy rat is not well understood. The aim of this study was to investigate the effect of free quercetin and in conjugation with SPION on learning and memory in healthy rats and to find quercetin target proteins involved in learning and memory using Morris water maze (MWM) and computational methods respectively. Results of MWM show an improvement in learning and memory of rats treated with either quercetin or QT-SPION. Better learning and memory functions using QT-SPION reveal increased bioavailability of quercetin. Comparative molecular docking studies show the better binding affinity of quercetin to RSK2, MSK1, CytC, Cdc42, Apaf1, FADD, CRK proteins. Quercetin in comparison to specific inhibitors of each protein also demonstrates a better QT binding affinity. This suggests that quercetin binds to proteins leading to prevent neural cell apoptosis and improves learning and memory. Therefore, SPIONs could increase the bioavailability of quercetin and by this way improve learning and memory.
Collapse
Affiliation(s)
- Elnaz Amanzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | | | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zari Pahlevanneshan
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
35
|
Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer's disease. Life Sci 2019; 224:109-119. [PMID: 30914316 DOI: 10.1016/j.lfs.2019.03.055] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Quercetin belongs to the flavonoids family, which is present in most of the plants including fruits, vegetables, green tea and even in red wine having antioxidant activities. It is available as a food supplement in the market and has physiological health effects. Quercetin has anti-inflammatory, anticancer and anti-prostate activities along with its beneficial effects on high cholesterol, kidney transplantation, asthma, diabetes, viral infections, pulmonary, schizophrenia and cardiovascular diseases. Quercetin possesses scavenging potential of hydroxyl radical (OH-), hydrogen peroxide (H2O2), and superoxide anion (O2-). These reactive oxygen species (ROS) hampers lipid, protein, amino acids and deoxyribonucleic acid (DNA) processing leading to epigenetic alterations. Quercetin has the ability to combat these harmful effects. ROS plays a vital role in the progression of Alzheimer's disease (AD), and we propose that quercetin would be the best choice to overcome cellular and molecular signals in regulating normal physiological functions. However, data are not well documented regarding exact cellular mechanisms of quercetin. The neuroprotective effects of quercetin are mainly due to potential up- and/or down-regulation of cytokines via nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Paraoxonase-2, c-Jun N-terminal kinase (JNK), Protein kinase C, Mitogen-activated protein kinase (MAPK) signalling cascades, and PI3K/Akt pathways. Therefore, the aim of the present review was to elaborate on the cellular and molecular mechanisms of the quercetin involved in the protection against AD.
Collapse
|
36
|
Kim HJ, Joe Y, Chen Y, Park GH, Kim UH, Chung HT. Carbon monoxide attenuates amyloidogenesis via down-regulation of NF-κB-mediated BACE1 gene expression. Aging Cell 2019; 18:e12864. [PMID: 30411846 PMCID: PMC6351829 DOI: 10.1111/acel.12864] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) peptides, the major constituent of plaques, are generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via β-secretase (BACE1) and the γ-secretase complex. It has been proposed that the abnormal secretion and accumulation of Aβ are the initial causative events in the development of Alzheimer's disease (AD). Drugs modulating this pathway could be used for AD treatment. Previous studies indicated that carbon monoxide (CO), a product of heme oxygenase (HO)-1, protects against Aβ-induced toxicity and promotes neuroprotection. However, the mechanism underlying the mitigative effect of CO on Aβ levels and BACE1 expression is unclear. Here, we show that CO modulates cleavage of APP and Aβ production by decreasing BACE1 expression in vivo and in vitro. CO reduces Aβ levels and improves memory deficits in AD transgenic mice. The regulation of BACE1 expression by CO is dependent on nuclear factor-kappa B (NF-κB). Consistent with the negative role of SIRT1 in the NF-κB activity, CO fails to evoke significant decrease in BACE1 expression in the presence of the SIRT1 inhibitor. Furthermore, CO attenuates elevation of BACE1 level in brains of 3xTg-AD mouse model as well as mice fed high-fat, high-cholesterol diets. CO reduces the NF-κB-mediated transcription of BACE1 induced by the cholesterol oxidation product 27-hydroxycholesterol or hydrogen peroxide. These data suggest that CO reduces the NF-κB-mediated BACE1 transcription and consequently decreases Aβ production. Our study provides novel mechanisms by which CO reduces BACE1 expression and Aβ production and may be an effective agent for AD treatment.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Medical School; Chonbuk National University; Jeonju South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| |
Collapse
|
37
|
Effects and Underlying Mechanisms of Bioactive Compounds on Type 2 Diabetes Mellitus and Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8165707. [PMID: 30800211 PMCID: PMC6360036 DOI: 10.1155/2019/8165707] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes mellitus is a complicated metabolic disorder characterized by hyperglycemia and glucose intolerance. Alzheimer's disease is a progressive brain disorder characterized by a chronic loss of cognitive and behavioral function. Considering the shared characteristics of both diseases, common therapeutic and preventive agents may be effective. Bioactive compounds such as polyphenols, vitamins, and carotenoids found in vegetables and fruits can have antioxidant and anti-inflammatory effects. These effects make them suitable candidates for the prevention or treatment of diabetes and Alzheimer's disease. Increasing evidence from cell or animal models suggest that bioactive compounds may have direct effects on decreasing hyperglycemia, enhancing insulin secretion, and preventing formation of amyloid plaques. The possible underlying molecular mechanisms are described in this review. More studies are needed to establish the clinical effects of bioactive compounds.
Collapse
|
38
|
Yu T, Dohl J, Chen Y, Gasier HG, Deuster PA. Astaxanthin but not quercetin preserves mitochondrial integrity and function, ameliorates oxidative stress, and reduces heat‐induced skeletal muscle injury. J Cell Physiol 2019; 234:13292-13302. [DOI: 10.1002/jcp.28006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Jacob Dohl
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Yifan Chen
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Heath G. Gasier
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Patricia A. Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda Maryland
| |
Collapse
|
39
|
Kim JH, Lee S, Cho EJ. Acer okamotoanumand isoquercitrin improve cognitive functionviaattenuation of oxidative stress in high fat diet- and amyloid beta-induced mice. Food Funct 2019; 10:6803-6814. [DOI: 10.1039/c9fo01694e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High fat diet (HFD) and accumulation of amyloid beta (Aβ) are known as a risk factor of Alzheimer's disease.Acer okamotoanumand isoquercitrin improved cognition function against both HFD and Aβ accumulation by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology
- Chung-Ang University
- Anseong 17546
- Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
40
|
Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2018; 109:417-428. [PMID: 30399577 DOI: 10.1016/j.biopha.2018.10.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Effects of food-added monosodium glutamate (MSG) on neurobehaviour, serum biochemical parameters, malondialdehyde (MDA) levels, and changes in cerebral cortex, liver and kidney morphology were assessed in mice fed standard diet (SD) or high-fat diet (HFD). Animals were assigned to 8 groups [SD control, HFD control, and six groups fed MSG plus SD or HFD at 0.1, 0.2 and 0.4 g/kg of feed]. Animals were fed for 8 weeks, behavioural tests were conducted, and blood was taken for estimation of biochemical parameters and MDA level. Whole brain was homogenised for neurochemical assays, while the cerebrum, liver and kidneys were processed for histology. In groups fed MSG/SD, there was a decrease in weight gain, increase in food-intake, an increase in locomotion, a decrease in rearing/grooming, and a decrease in anxiety-response. Also observed were derangements in biochemical parameters, increased MDA, and alteration of renal morphology. Compared to HFD, MSG/HFD groups had reduction in weight gain, food-intake, grooming and anxiety-response, an increase in locomotion, and improved memory. Protection against biochemical derangements and HFD-induced organ injuries were also observed. In conclusion, the findings suggest that possible interactions that may occur between dietary constituents and MSG are determinants of the effects of food-added MSG in mice.
Collapse
|
41
|
Babaei F, Mirzababaei M, Nassiri-Asl M. Quercetin in Food: Possible Mechanisms of Its Effect on Memory. J Food Sci 2018; 83:2280-2287. [DOI: 10.1111/1750-3841.14317] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Fatemeh Babaei
- Dept. of Clinical Biochemistry; Qazvin Univ. of Medical Sciences; Qazvin Iran
| | - Mohammadreza Mirzababaei
- Dept. of Clinical Biochemistry, Faculty of Medical Sciences; Tarbiat Modares Univ.; 14115-111 Tehran Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center; Qazvin Univ. of Medical Sciences; 341197-5981 Qazvin Iran
| |
Collapse
|
42
|
Hong-Qiang H, Mang-Qiao S, Fen X, Shan-Shan L, Hui-Juan C, Wu-Gang H, Wen-Jun Y, Zheng-Wu P. Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol Behav 2018; 195:1-8. [PMID: 30040951 DOI: 10.1016/j.physbeh.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023]
Abstract
Hyperbaric oxygen (HBO) preconditioning (PC) has been suggested as a feasible method to provide neuroprotection from postoperative cognitive dysfunction (POCD). However, whether HBO-PC can ameliorate cognitive deficits induced by isoflurane, and the possible mechanism by which it may exert its effect, has not yet been clarified. In the present study, middle-aged mice were exposed to isoflurane anesthesia (1.5 minimal alveolar concentration [MAC]) for 2 h to establish a POCD model. After HBO preconditioning, cognitive function and expression of hippocampal sirtuin 1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were evaluated 24 h following isoflurane treatment, in the presence or absence of Sirt1 knockdown by short hairpin RNA (shRNA). HBO preconditioning increased the expression of Sirt1, Nrf2, and HO-1 and ameliorated memory dysfunction. Meanwhile, Sirt1 knockdown inhibited the expression of Nrf2 and HO-1 and attenuated the HBO preconditioning-associated memory improvement. Our results suggest that the application of HBO preconditioning is a useful treatment for POCD, and that Sirt1 may be a potential molecular target for POCD therapy.
Collapse
Affiliation(s)
- Hu Hong-Qiang
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Shu Mang-Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Psychiatry, Changan Hospital, Xi'an 710016, China
| | - Xue Fen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Shan-Shan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Cao Hui-Juan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Hou Wu-Gang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wen-Jun
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Peng Zheng-Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
43
|
Kale A, Pişkin Ö, Baş Y, Aydın BG, Can M, Elmas Ö, Büyükuysal Ç. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. JOURNAL OF RADIATION RESEARCH 2018; 59:404-410. [PMID: 29688418 PMCID: PMC6054235 DOI: 10.1093/jrr/rry032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/02/2018] [Indexed: 05/27/2023]
Abstract
Extensive research has been focused on radiation-induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of quercetin in an experimental radiation-induced brain injury. A total of 32 adult male Wistar-Albino rats were randomly divided into four groups (control, quercetin, radiation, and radiation+quercetin groups, with eight rats in each group). Doses (50 mg/kg) of quercetin were administered to the animals in the quercetin and radiation+quercetin groups; radiation and radiation+quercetin groups were exposed to a dose of 20 Gy to the cranium region. Tissue samples, and biochemical levels of tissue injury markers in the four groups were compared. In all measured parameters of oxidative stress, administration of quercetin significantly demonstrated favorable effects. Both plasma and tissue levels of malondialdehyde and total antioxidant status significantly changed in favor of antioxidant activity. Histopathological evaluation of the tissues also demonstrated a significant decrease in cellular degeneration and infiltration parameters after quercetin administration. Quercetin demonstrated significant neuroprotection after radiation-induced brain injury. Further studies of neurological outcomes under different experimental settings are required in order to achieve conclusive results.
Collapse
Affiliation(s)
- Aydemir Kale
- Department of Neurosurgery, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Özcan Pişkin
- Department of Anesthesiology and Reanimation, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Yılmaz Baş
- Department of Pathology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Bengü Gülhan Aydın
- Department of Anesthesiology and Reanimation, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Murat Can
- Department of Biochemistry, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Özlem Elmas
- Department of Radiation Oncology, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Çağatay Büyükuysal
- Department of Biostatistics, Bülent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| |
Collapse
|
44
|
Zeni ALB, Moreira TD, Dalmagro AP, Camargo A, Bini LA, Simionatto EL, Scharf DR. Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. AN ACAD BRAS CIENC 2017; 89:2805-2815. [PMID: 29236863 DOI: 10.1590/0001-3765201720160660] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/31/2017] [Indexed: 01/22/2023] Open
Abstract
Morus nigra L. (Moraceae) is a tree known as black mulberry and the leaves are used in folk medicine in the treatment of diabetes, high cholesterol and menopause symptoms. The aim of this study was to evaluate the M. nigra leaves phytochemical profile in different extractions and the hypolipidemic effect of the infusion comparing to the fenofibrate. Morus nigra infusion (MN) showed higher amounts of phenolics and flavonoids (83.85 mg/g and 79.96 µg/g, respectively), as well as antioxidant activity (83.85%) than decoction or hydromethanolic extracts. Although, decoction showed the best result for ascorbic acid (4.35 mg/100 g) than hydromethanolic or infusion (2.51 or 2.13 mg/100 g, respectively). The phenolic acids gallic, chlorogenic and caffeic and the flavonoids quercetin, rutin and catechin were found in the M. nigra extracts. Hyperlipidemic rats treated with 100, 200 or 400 mg/kg of MN decreased serum cholesterol, triglycerides and normalized lipoproteins. Furthermore, MN inhibited lipid peroxidation in liver, kidney and brain of hyperlipidemic rats. This study provides evidence that M. nigra leaves extracts are rich in polyphenols, mainly chlorogenic acid, which normalized hyperlipidemic disturbance. The results suggest a potential therapeutic effect of the M. nigra leaves infusion on dislipidemic condition and related oxidative stress.
Collapse
Affiliation(s)
- Ana Lúcia B Zeni
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil.,Departamento de Ciências Naturais, Laboratório de Avaliação de Substâncias Bioativas, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil
| | - Tatianne D Moreira
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil
| | - Ana Paula Dalmagro
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil
| | - Anderson Camargo
- Departamento de Ciências Naturais, Laboratório de Avaliação de Substâncias Bioativas, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil
| | - Larissa A Bini
- Departamento de Ciências Naturais, Laboratório de Avaliação de Substâncias Bioativas, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil
| | - Edésio L Simionatto
- Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil.,Laboratório de Cromatografia, Universidade Regional de Blumenau, Rua São Paulo, 3250, 89030-000 Blumenau, SC, Brazil
| | - Dilamara R Scharf
- Laboratório de Cromatografia, Universidade Regional de Blumenau, Rua São Paulo, 3250, 89030-000 Blumenau, SC, Brazil
| |
Collapse
|
45
|
Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 2017; 61:50-62. [PMID: 29117513 DOI: 10.1016/j.mam.2017.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022]
Abstract
Flavonoids are a class of plant-derived dietary polyphenols that have attracted attention for their pro-cognitive and anti-inflammatory effects. The diversity of flavonoids and their extensive in vivo metabolism suggest that a variety of cellular targets in the brain are likely to be impacted by flavonoid consumption. Initially characterized as antioxidants, flavonoids are now believed to act directly on neurons and glia via the interaction with major signal transduction cascades, as well as indirectly via interaction with the blood-brain barrier and cerebral vasculature. This review discusses potential mechanisms of flavonoid action in the brain, with a focus on two critical transcription factors: cAMP response element-binding protein (CREB) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). To advance beyond current understanding of cellular targets, critical bioavailability studies need to be performed to verify the identity and concentration of flavonoid metabolites reaching the brain after ingestion and to validate that these metabolites are produced not just in rodent models but also in humans. Recent advances in human induced pluripotent stem cell (iPSC) differentiation protocols to generate human neuronal and glial cell types could also provide a unique tool for clinically relevant in vitro investigation of the mechanisms of action of bioavailable flavonoid metabolites in humans.
Collapse
|
46
|
Ge Q, Wang Z, Wu Y, Huo Q, Qian Z, Tian Z, Ren W, Zhang X, Han J. High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 2017; 61. [PMID: 28654221 PMCID: PMC5656827 DOI: 10.1002/mnfr.201700134] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022]
Abstract
Scope A high salt (HS) diet is detrimental to cognitive function, in addition to having a role in cardiovascular disorders. However, the method by which an HS diet impairs cognitive functions such as learning and memory remains open. Methods and results In this study, we found that mice on a 7 week HS diet demonstrated disturbed short‐term memory in an object‐place recognition task, and both 4 week and 7 week HS treatments impaired long‐term memory, as evidenced in a fear conditioning test. Mechanistically, the HS diet inhibited memory‐related long‐term potentiation (LTP) in the hippocampus, while also increasing the levels of reactive oxygen species (ROS) in hippocampal cells and downregulating the expression of synapsin I, synaptophysin, and brain‐derived neurotrophic factor in specific encephalic region. Conclusion This suggests that oxidative stress or synaptic protein/neurotrophin deregulation was involved in the HS diet‐induced memory impairment. Thus, the present study provides novel insights into the mechanisms of memory impairment caused by excessive dietary salt, and underlined the importance of controlling to salt absorb quantity.
Collapse
Affiliation(s)
- Qian Ge
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuwei Wu
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qing Huo
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhaoqiang Qian
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xia Zhang
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
47
|
M S S, C D N. Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 94:605-611. [PMID: 28783583 DOI: 10.1016/j.biopha.2017.07.142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 01/05/2023] Open
Abstract
Quercetin, naringenin, and berberine are plant bioactives that can cross the blood-brain barrier and offer neuroprotection. In the present study, we looked into the effect of them on expression of various glucose transporters and key components of brain insulin signalling, namely, insulin receptor substrate 1 (IRS 1), phosphatidyl inositol 3 kinase (PI3K), Akt 1 and low-density lipoprotein receptor-related protein 1 (LRP1) in brain of control, diabetic and bioactive-treated rats by Western blot. Amongst the bioactives tested, quercetin was more potent and restored LRP1 and brain insulin signalling components as well as glucose transporters such as GLUTs 1, 2, 3 and 4 in diabetic animals. On the other hand, berberine and naringenin supplementation to diabetic animals improved brain IRS 1 levels and restored GLUT 1 and GLUT 3 expression without significant effect on PI3K and Akt 1 activation and GLUT 4 levels. From the present study, we conclude that quercetin, naringenin, and berberine can differentially act through insulin-dependent and -independent mechanisms thereby altering glucose homeostasis in the brain during experimental diabetes and bring about the beneficial effect.
Collapse
Affiliation(s)
- Sandeep M S
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Nandini C D
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India.
| |
Collapse
|
48
|
Exercise training rescues high fat diet-induced neuronal nitric oxide synthase expression in the hippocampus and cerebral cortex of mice. Nitric Oxide 2017; 66:71-77. [DOI: 10.1016/j.niox.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
|
49
|
Seo JY, Kim SK, Nguyen PH, Lee JY, Tung PHT, Sung SH, Oh WK. Chemical constituents from a Gynostemma laxum and their antioxidant and neuroprotective activities. Chin Med 2017; 12:15. [PMID: 28546827 PMCID: PMC5442659 DOI: 10.1186/s13020-017-0136-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023] Open
Abstract
Background A few bioactivities of constituents from Gynostemma laxum, which has been collected in Vietnam, have been
reported until now. There is no report about the effects of constituents from G. laxum although the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase-1 (HO-1) antioxidant defense system is involved in neuroprotection in the brain. Therefore, we investigated whether quercetin (2), benzoic acid (10) and their analogues (1, 3–9 and 11) from G. laxum have the antioxidant and neuroprotective activities and also their underlying mechanism. Methods To examine their neuroprotective and antioxidant activities, oxytosis, total oxidant scavenging capacity (TOSC), 2,7-dichlorofluorescein (DCFDA), dihydroethidium (DHE), antioxidant response element (ARE)-luciferase reporter gene assays, Western blot analysis, real time-PCR, immunocytochemistry and in silico 3D molecular docking simulation were performed. Results The study of constituents using chromatographic techniques and spectroscopic analysis showed that G. laxum contained an abundance of quercetin (2), benzoic acid (10) and their analogues (1, 3–9 and 11). Our data demonstrated that quercetin (2) and its analogue (4) among the constituents from G. laxum showed the strongest neuroprotective effect against oxytosis triggered by the excessive amount of glutamate. Compounds 2, 4, 6 and 11 exhibited reactive oxygen species (ROS) inhibitory and ARE transcriptional activities in immortalized hippocampal HT22 cell line. Among them, compound 4, a second active compound, induced Nrf2/HO-1 activation. They were also fit stable onto the Tramtrack and Bric-à-Brac (BTB) domain of Kelch-like ECH-associated protein 1 (Keap1), a known Nrf2 inhibitor protein, based on the results of docking and interaction energies. Overall, these data suggest that –OH and –OCH3 groups of quercetin and its analogues are responsible for their neuroprotective effect. Conclusions In summary, the major constituents of G. laxum had strong antioxidant and neuroprotective activities so that they could consider as a natural antioxidant supplement. Furthermore, G. laxum might be used beneficially in reducing oxidative complications with the further deep investigation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0136-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Yeon Seo
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Phi Hung Nguyen
- College of Pharmacy, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ju Yong Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Pham Ha Thanh Tung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang Hyun Sung
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
50
|
Jung E, Kim JH, Kim MO, Lee SY, Lee J. Melanocyte-protective effect of afzelin is mediated by the Nrf2-ARE signalling pathway via GSK-3β inactivation. Exp Dermatol 2017; 26:764-770. [PMID: 27992083 DOI: 10.1111/exd.13277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/27/2022]
Abstract
Vitiligo is an acquired condition characterized by depigmented, cutaneous lesions that result from the death of pigment-producing cells, melanocytes. The occurrence of oxidative stress has been proposed as a pathogenetic mechanism for melanocyte degeneration in vitiligo. Therefore, in this study, we investigated the cytoprotective effects of afzelin against oxidative stress and its mechanism of action in human epidermal melanocytes. We found that afzelin significantly inhibited hydrogen peroxide-induced cell death, cellular reactive oxygen species production and lipid peroxidation in melanocytes. In an antioxidant response element (ARE)-luciferase reporter assay, afzelin increased ARE-luciferase reporter activity in a concentration-dependent manner. Consistently, the expression of antioxidant genes, including NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1) and catalase, was enhanced by afzelin treatment. Nuclear translocation of Nrf2 also increased in response to afzelin treatment. In addition, the phosphorylation of glycogen synthase kinase-3β (GSK-3β) was induced by afzelin treatment. The enhancement of HO-1 gene expression by afzelin treatment was reduced by Nrf2-siRNA expression. Furthermore, we found that the expression of Nrf2-siRNA significantly attenuated the cytoprotective effect of afzelin against hydrogen peroxide. These data suggest that the cytoprotective effects of afzelin against hydrogen peroxide may be mediated by Nrf2-ARE signalling via GSK-3β inactivation. Our data suggest the novel use of afzelin for the prevention of oxidative stress-induced damage in melanocytes and its potential as a therapeutic agent for vitiligo.
Collapse
Affiliation(s)
- Eunsun Jung
- Biospectrum Life Science Institute, Seongnam City, Gyunggi Do, Korea
| | - Jin Hee Kim
- College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan City, Gyeongsangbuk Do, Korea
| | - Mi Ok Kim
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do, Korea
| | - Sang Yeol Lee
- Department of Life Science, Gachon University, Seongnam-Si, Gyunggi Do, Korea
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, Gyunggi Do, Korea
| |
Collapse
|