1
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
2
|
Dakic T, Velickovic K, Lakic I, Ruzicic A, Milicevic A, Plackic N, Vujovic P, Jevdjovic T. Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting. Biofactors 2024; 50:101-113. [PMID: 37482913 DOI: 10.1002/biof.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Andjela Milicevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Nikola Plackic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| |
Collapse
|
3
|
Teegala SB, Sarkar P, Siegel DM, Sheng Z, Hao L, Bello NT, De Lecea L, Beck KD, Routh VH. Lateral hypothalamus hypocretin/orexin glucose-inhibited neurons promote food seeking after calorie restriction. Mol Metab 2023; 76:101788. [PMID: 37536499 PMCID: PMC10448466 DOI: 10.1016/j.molmet.2023.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE The present study tests the hypothesis that changes in the glucose sensitivity of lateral hypothalamus (LH) hypocretin/orexin glucose-inhibited (GI) neurons following weight loss leads to glutamate plasticity on ventral tegmental area (VTA) dopamine neurons and drives food seeking behavior. METHODS C57BL/6J mice were calorie restricted to a 15% body weight loss and maintained at that body weight for 1 week. The glucose sensitivity of LH hypocretin/orexin GI and VTA dopamine neurons was measured using whole cell patch clamp recordings in brain slices. Food seeking behavior was assessed using conditioned place preference (CPP). RESULTS 1-week maintenance of calorie restricted 15% body weight loss reduced glucose inhibition of hypocretin/orexin GI neurons resulting in increased neuronal activation with reduced glycemia. The effect of decreased glucose on hypocretin/orexin GI neuronal activation was blocked by pertussis toxin (inhibitor of G-protein coupled receptor subunit Gαi/o) and Rp-cAMP (inhibitor of protein kinase A, PKA). This suggests that glucose sensitivity is mediated by the Gαi/o-adenylyl cyclase-cAMP-PKA signaling pathway. The excitatory effect of the hunger hormone, ghrelin, on hcrt/ox neurons was also blocked by Rp-cAMP suggesting that hormonal signals of metabolic status may converge on the glucose sensing pathway. Food restriction and weight loss increased glutamate synaptic strength (indexed by increased AMPA/NMDA receptor current ratio) on VTA dopamine neurons and the motivation to seek food (indexed by CPP). Chemogenetic inhibition of hypocretin/orexin neurons during caloric restriction and weight loss prevented these changes in glutamate plasticity and food seeking behavior. CONCLUSIONS We hypothesize that this change in the glucose sensitivity of hypocretin/orexin GI neurons may drive, in part, food seeking behavior following caloric restriction.
Collapse
Affiliation(s)
- Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Zhenyu Sheng
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lihong Hao
- Department of Animal Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Nicholas T Bello
- Department of Animal Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Luis De Lecea
- Department of Psychiatry and Behavioral Sciences. Wu Tsai Neuroscience Institute. 1201 Welch Rd. Stanford, CA 94305, USA
| | - Kevin D Beck
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Neurobehavioral Research Laboratory, Research Service, Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
4
|
Patel V, Sarkar P, Siegel DM, Teegala SB, Hirschberg PR, Wajid H, Itani O, Routh VH. The Antinarcolepsy Drug Modafinil Reverses Hypoglycemia Unawareness and Normalizes Glucose Sensing of Orexin Neurons in Male Mice. Diabetes 2023; 72:1144-1153. [PMID: 36525384 PMCID: PMC10382647 DOI: 10.2337/db22-0639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2023] [Indexed: 12/23/2022]
Abstract
Perifornical hypothalamus (PFH) orexin glucose-inhibited (GI) neurons that facilitate arousal have been implicated in hypoglycemia awareness. Mice lacking orexin exhibit narcolepsy, and orexin mediates the effect of the antinarcolepsy drug modafinil. Thus, hypoglycemia awareness may require a certain level of arousal for awareness of the sympathetic symptoms of hypoglycemia (e.g., tremors, anxiety). Recurrent hypoglycemia (RH) causes hypoglycemia unawareness. We hypothesize that RH impairs the glucose sensitivity of PFH orexin GI neurons and that modafinil normalizes glucose sensitivity of these neurons and restores hypoglycemia awareness after RH. Using patch-clamp recording, we found that RH enhanced glucose inhibition of PFH orexin GI neurons in male mice, thereby blunting activation of these neurons in low-glucose conditions. We then used a modified conditioned place preference behavioral test to demonstrate that modafinil reversed hypoglycemia unawareness in male mice after RH. Similarly, modafinil restored normal glucose sensitivity to PFH orexin GI neurons. We conclude that impaired glucose sensitivity of PFH orexin GI neurons plays a role in hypoglycemia unawareness and that normalizing their glucose sensitivity after RH is associated with restoration of hypoglycemia awareness. This suggests that the glucose sensitivity of PFH orexin GI neurons is a therapeutic target for preventing hypoglycemia unawareness.
Collapse
Affiliation(s)
- Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Dashiel M. Siegel
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Suraj B. Teegala
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Pamela R. Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Hamad Wajid
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| | - Omar Itani
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ
| | - Vanessa H. Routh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers – the State University of New Jersey, Newark, NJ
| |
Collapse
|
5
|
Xu H, Wang Y, Kwon H, Shah A, Kalemba K, Su X, He L, Wondisford FE. Glucagon changes substrate preference in gluconeogenesis. J Biol Chem 2022; 298:102708. [PMID: 36402444 PMCID: PMC9747632 DOI: 10.1016/j.jbc.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ankit Shah
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Katarzyna Kalemba
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
6
|
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a complex brain structure that is integral to many neuroendocrine functions, including glucose regulation, thermogenesis, and appetitive, social, and sexual behaviors. As such, it is of little surprise that the nucleus is under intensive investigation to decipher the mechanisms which underlie these diverse roles. Developments in genetic and investigative tools, for example the targeting of steroidogenic factor-1-expressing neurons, have allowed us to take a closer look at the VMH, its connections, and how it affects competing behaviors. In the current review, we aim to integrate recent findings into the literature and contemplate the conclusions that can be drawn.
Collapse
Affiliation(s)
- Tansi Khodai
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
- Correspondence: Simon M. Luckman, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
7
|
Beecher K, Alvarez Cooper I, Wang J, Walters SB, Chehrehasa F, Bartlett SE, Belmer A. Long-Term Overconsumption of Sugar Starting at Adolescence Produces Persistent Hyperactivity and Neurocognitive Deficits in Adulthood. Front Neurosci 2021; 15:670430. [PMID: 34163325 PMCID: PMC8215656 DOI: 10.3389/fnins.2021.670430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Sugar has become embedded in modern food and beverages. This has led to overconsumption of sugar in children, adolescents, and adults, with more than 60 countries consuming more than four times (>100 g/person/day) the WHO recommendations (25 g/person/day). Recent evidence suggests that obesity and impulsivity from poor dietary habits leads to further overconsumption of processed food and beverages. The long-term effects on cognitive processes and hyperactivity from sugar overconsumption, beginning at adolescence are not known. Using a well-validated mouse model of sugar consumption, we found that long-term sugar consumption, at a level that significantly augments weight gain, elicits an abnormal hyperlocomotor response to novelty and alters both episodic and spatial memory. Our results are similar to those reported in attention deficit and hyperactivity disorders. The deficits in hippocampal-dependent learning and memory were accompanied by altered hippocampal neurogenesis, with an overall decrease in the proliferation and differentiation of newborn neurons within the dentate gyrus. This suggests that long-term overconsumption of sugar, as that which occurs in the Western Diet might contribute to an increased risk of developing persistent hyperactivity and neurocognitive deficits in adulthood.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ignatius Alvarez Cooper
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shaun B Walters
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, School of Biomedical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
9
|
Luo S, Ezrokhi M, Cominos N, Tsai TH, Stoelzel CR, Trubitsyna Y, Cincotta AH. Experimental dopaminergic neuron lesion at the area of the biological clock pacemaker, suprachiasmatic nuclei (SCN) induces metabolic syndrome in rats. Diabetol Metab Syndr 2021; 13:11. [PMID: 33485386 PMCID: PMC7825247 DOI: 10.1186/s13098-021-00630-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The daily peak in dopaminergic neuronal activity at the area of the biological clock (hypothalamic suprachiasmatic nuclei [SCN]) is diminished in obese/insulin resistant vs lean/insulin sensitive animals. The impact of targeted lesioning of dopamine (DA) neurons specifically at the area surrounding (and that communicate with) the SCN (but not within the SCN itself) upon glucose metabolism, adipose and liver lipid gene expression, and cardiovascular biology in normal laboratory animals has not been investigated and was the focus of this study. METHODS Female Sprague-Dawley rats received either DA neuron neurotoxic lesion by bilateral intra-cannula injection of 6-hydroxydopamine (2-4 μg/side) or vehicle treatment at the area surrounding the SCN at 20 min post protriptyline ip injection (20 mg/kg) to protect against damage to noradrenergic and serotonergic neurons. RESULTS At 16 weeks post-lesion relative to vehicle treatment, peri-SCN area DA neuron lesioning increased weight gain (34.8%, P < 0.005), parametrial and retroperitoneal fat weight (45% and 90% respectively, P < 0.05), fasting plasma insulin, leptin and norepinephrine levels (180%, 71%, and 40% respectively, P < 0.05), glucose tolerance test area under the curve (AUC) insulin (112.5%, P < 0.05), and insulin resistance (44%-Matsuda Index, P < 0.05) without altering food consumption during the test period. Such lesion also induced the expression of several lipid synthesis genes in adipose and liver and the adipose lipolytic gene, hormone sensitive lipase in adipose (P < 0.05 for all). Liver monocyte chemoattractant protein 1 (a proinflammatory protein associated with metabolic syndrome) gene expression was also significantly elevated in peri-SCN area dopaminergic lesioned rats. Peri-SCN area dopaminergic neuron lesioned rats were also hypertensive (systolic BP rose from 157 ± 5 to 175 ± 5 mmHg, P < 0.01; diastolic BP rose from 109 ± 4 to 120 ± 3 mmHg, P < 0.05 and heart rate increase from 368 ± 12 to 406 ± 12 BPM, P < 0.05) and had elevated plasma norepinephrine levels (40% increased, P < 0.05) relative to controls. CONCLUSIONS These findings indicate that reduced dopaminergic neuronal activity in neurons at the area of and communicating with the SCN contributes significantly to increased sympathetic tone and the development of metabolic syndrome, without effect on feeding.
Collapse
Affiliation(s)
- Shuqin Luo
- VeroScience LLC, 1334 Main Road, Tiverton, RI, 02878, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Stoelzel CR, Zhang Y, Cincotta AH. Circadian-timed dopamine agonist treatment reverses high-fat diet-induced diabetogenic shift in ventromedial hypothalamic glucose sensing. Endocrinol Diabetes Metab 2020; 3:e00139. [PMID: 32704560 PMCID: PMC7375120 DOI: 10.1002/edm2.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Within the ventromedial hypothalamus (VMH), glucose inhibitory (GI) neurons sense hypoglycaemia while glucose excitatory (GE) neurons sense hyperglycaemia to initiate counter control mechanisms under normal conditions. However, potential electrophysiological alterations of these two neuronal types in vivo in insulin-resistant states have never been simultaneously fully documented. Further, the anti-diabetic effect of dopamine agonism on this VMH system under insulin resistance has not been studied. METHODS This study examined the impact of a high-fat diet (HFD) on in vivo electrophysiological recordings from VMH GE and GI neurons and the ability of circadian-timed dopamine agonist therapy to reverse any adverse effect of the HFD on such VMH activities and peripheral glucose metabolism. RESULTS HFD significantly inhibited VMH GE neuronal electrophysiological response to local hyperglycaemia (36.3%) and augmented GI neuronal excitation response to local hypoglycaemia (47.0%). Bromocriptine (dopamine agonist) administration at onset of daily activity (but not during the daily sleep phase) completely reversed both VMH GE and GI neuronal aberrations induced by HFD. Such timed treatment also normalized glucose intolerance and insulin resistance. These VMH and peripheral glucose metabolism effects of circadian-timed bromocriptine may involve its known effect to reduce elevated VMH noradrenergic activity in insulin-resistant states as local VMH administration of norepinephrine was observed to significantly inhibit VMH GE neuronal sensing of local hyperglycaemia in insulin-sensitive animals on regular chow diet (52.4%). CONCLUSIONS HFD alters VMH glucose sensing in a manner that potentiates hyperglycaemia and this effect on the VMH can be reversed by appropriately circadian-timed dopamine agonist administration.
Collapse
|
11
|
Khayum MA, Moraga-Amaro R, Buwalda B, Koole M, den Boer JA, Dierckx RAJO, Doorduin J, de Vries EFJ. Ovariectomy-induced depressive-like behavior and brain glucose metabolism changes in female rats are not affected by chronic mild stress. Psychoneuroendocrinology 2020; 115:104610. [PMID: 32088632 DOI: 10.1016/j.psyneuen.2020.104610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023]
Abstract
The increased incidence of depression in women going through peri-menopause suggests that fluctuations in estrogen levels may increase the risk of developing depression. Nonetheless, this psychiatric disorder is likely to be multifactorial and consequently an additional trigger may be needed to induce depression in this population. Stress could be such a trigger. We therefore investigated the effect of ovarian estrogen depletion and chronic mild stress (CMS) on depressive-like behavior and brain metabolism in female rats. Approximately 2 and 9 weeks after estrogen depletion by ovariectomy, behavioral changes were assessed in the open-field test and the forced swim test, and brain metabolism was measured with [18F]FDG PET imaging. A subset of animals was subjected to a 6-weeks CMS protocol starting 17 days after ovariectomy. Short-term estrogen depletion had a significant effect on brain metabolism in subcortical areas, but not on behavior. Differences in depressive-like behavior were only found after prolonged estrogen depletion, leading to an increased immobility time in the forced swim test. Prolonged estrogen depletion also resulted in an increase in glucose metabolism in frontal cortical areas and hippocampus, whereas a decrease glucose metabolism was found in temporal cortical areas, hypothalamus and brainstem. Neither short-term nor prolonged estrogen depletion caused anxiety-like behavior. Changes in body weight, behavior and brain glucose metabolism were not significantly affected by CMS. In conclusion, ovarian estrogen depletion resulted in changes in brain metabolism and depressive-like behavior, but these changes were not enhanced by CMS.
Collapse
Affiliation(s)
- M A Khayum
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - R Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B Buwalda
- Behavioral Physiology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - M Koole
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - J A den Boer
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; PRA-Health Sciences, Van Swietenlaan, 9728 NZ, Groningen, the Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - J Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
12
|
Hanna L, Kawalek TJ, Beall C, Ellacott KLJ. Changes in neuronal activity across the mouse ventromedial nucleus of the hypothalamus in response to low glucose: Evaluation using an extracellular multi-electrode array approach. J Neuroendocrinol 2020; 32:e12824. [PMID: 31880369 PMCID: PMC7064989 DOI: 10.1111/jne.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
The hypothalamic ventromedial nucleus (VMN) is involved in maintaining systemic glucose homeostasis. Neurophysiological studies in rodent brain slices have identified populations of VMN glucose-sensing neurones: glucose-excited (GE) neurones, cells which increased their firing rate in response to increases in glucose concentration, and glucose-inhibited (GI) neurones, which show a reduced firing frequency in response to increasing glucose concentrations. To date, most slice electrophysiological studies characterising VMN glucose-sensing neurones in rodents have utilised the patch clamp technique. Multi-electrode arrays (MEAs) are a state-of-the-art electrophysiological tool enabling the electrical activity of many cells to be recorded across multiple electrode sites (channels) simultaneously. We used a perforated MEA (pMEA) system to evaluate electrical activity changes across the dorsal-ventral extent of the mouse VMN region in response to alterations in glucose concentration. Because intrinsic (ie, direct postsynaptic sensing) and extrinsic (ie, presynaptically modulated) glucosensation were not discriminated, we use the terminology 'GE/presynaptically excited by an increase (PER)' and 'GI/presynaptically excited by a decrease (PED)' in the present study to describe responsiveness to changes in extracellular glucose across the mouse VMN. We observed that 15%-60% of channels were GE/PER, whereas 2%-7% were GI/PED channels. Within the dorsomedial portion of the VMN (DM-VMN), significantly more channels were GE/PER compared to the ventrolateral portion of the VMN (VL-VMN). However, GE/PER channels within the VL-VMN showed a significantly higher basal firing rate in 2.5 mmol l-1 glucose than DM-VMN GE/PER channels. No significant difference in the distribution of GI/PED channels was observed between the VMN subregions. The results of the present study demonstrate the utility of the pMEA approach for evaluating glucose responsivity across the mouse VMN. pMEA studies could be used to refine our understanding of other neuroendocrine systems by examining population level changes in electrical activity across brain nuclei, thus providing key functional neuroanatomical information to complement and inform the design of single-cell neurophysiological studies.
Collapse
Affiliation(s)
- Lydia Hanna
- Reading School of PharmacyUniversity of ReadingReadingUK
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
- Present address:
Department of Biological SciencesCentre for Biomedical SciencesRoyal Holloway University of LondonEghamUK
| | - Tristan J. Kawalek
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Craig Beall
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Kate L. J. Ellacott
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
13
|
Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020; 32:e12773. [PMID: 31329314 PMCID: PMC7074896 DOI: 10.1111/jne.12773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamus (VMH) plays a complex role in glucose and energy homeostasis. The VMH is necessary for the counter-regulatory response to hypoglycaemia (CRR) that increases hepatic gluconeogenesis to restore euglycaemia. On the other hand, the VMH also restrains hepatic glucose production during euglycaemia and stimulates peripheral glucose uptake. The VMH is also important for the ability of oestrogen to increase energy expenditure. This latter function is mediated by VMH modulation of the lateral/perifornical hypothalamic area (lateral/perifornical hypothalamus) orexin neurones. Activation of VMH AMP-activated protein kinase (AMPK) is necessary for the CRR. By contrast, VMH AMPK inhibition favours decreased basal glucose levels and is required for oestrogen to increase energy expenditure. Specialised VMH glucose-sensing neurones confer the ability to sense and respond to changes in blood glucose levels. Glucose-excited (GE) neurones increase and glucose-inhibited (GI) neurones decrease their activity as glucose levels rise. VMH GI neurones, in particular, appear to be important in the CRR, although a role for GE neurones cannot be discounted. AMPK mediates glucose sensing in VMH GI neurones suggesting that, although activation of these neurones is important for the CRR, it is necessary to silence them to lower basal glucose levels and enable oestrogen to increase energy expenditure. In support of this, we found that oestrogen reduces activation of VMH GI neurones in low glucose by inhibiting AMPK. In this review, we present the evidence underlying the role of the VMH in glucose and energy homeostasis. We then discuss the role of VMH glucose-sensing neurones in mediating these effects, with a strong emphasis on oestrogenic regulation of glucose sensing and how this may affect glucose and energy homeostasis.
Collapse
Affiliation(s)
- Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
14
|
Wang Y, Kwon H, Su X, Wondisford FE. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol Metab 2019; 31:36-44. [PMID: 31918920 PMCID: PMC6881678 DOI: 10.1016/j.molmet.2019.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022] Open
Abstract
Objective Fasting results in major metabolic changes including a switch from glycogenolysis to gluconeogenesis to maintain glucose homeostasis. However, the relationship between the length of fasting and the relative contribution of gluconeogenic substrates remains unclear. We investigated the relative contribution of glycogen, lactate, and glycerol in glucose production of male C57BL/6 J-albino mice after 6, 12, and 18 h of fasting. Methods We used non-perturbative infusions of 13C3 lactate, 13C3 glycerol, and 13C6 glucose combined with liquid chromatography mass spectrometry and metabolic flux analysis to study the contribution of substrates in gluconeogenesis (GNG). Results During infusion studies, both lactate and glycerol significantly label about 60% and 30–50% glucose carbon, respectively, but glucose labels much more lactate (∼90%) than glycerol carbon (∼10%). Our analyses indicate that lactate, but not glycerol is largely recycled during all fasting periods such that lactate is the largest direct contributor to GNG via the Cori cycle but a minor source of new glucose carbon (overall contribution). In contrast, glycerol is not only a significant direct contributor to GNG but also the largest overall contributor to GNG regardless of fasting length. Prolonged fasting decreases both the whole body turnover rate of glucose and lactate but increases that of glycerol, indicating that the usage of glycerol in GNG become more significant with longer fasting. Conclusion Collectively, these findings suggest that glycerol is the dominant overall contributor of net glucose carbon in GNG during both short and prolonged fasting. Prolonged fasting significantly decreases the turnover rate of glucose and lactate but increases the glycerol turnover rate in mice. In both short and prolonged fasting, lactate is the largest direct contributor to gluconeogenesis but a minor source of new carbon entry. Glycerol is the second largest direct contributor to gluconeogenesis and the dominant overall carbon contributor during both short and prolonged fasting.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
15
|
MacGregor DJ, Leng G. Emergent decision-making behaviour and rhythm generation in a computational model of the ventromedial nucleus of the hypothalamus. PLoS Comput Biol 2019; 15:e1007092. [PMID: 31158265 PMCID: PMC6564049 DOI: 10.1371/journal.pcbi.1007092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 06/13/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
The ventromedial nucleus of the hypothalamus (VMN) has an important role in diverse behaviours. The common involvement in these of sex steroids, nutritionally-related signals, and emotional inputs from other brain areas, suggests that, at any given time, its output is in one of a discrete number of possible states corresponding to discrete motivational drives. Here we explored how networks of VMN neurons might generate such a decision-making architecture. We began with minimalist assumptions about the intrinsic properties of VMN neurons inferred from electrophysiological recordings of these neurons in rats in vivo, using an integrate-and-fire based model modified to simulate activity-dependent post-spike changes in neuronal excitability. We used a genetic algorithm based method to fit model parameters to the statistical features of spike patterning in each cell. The spike patterns in both recorded cells and model cells were assessed by analysis of interspike interval distributions and of the index of dispersion of firing rate over different binwidths. Simpler patterned cells could be closely matched by single neuron models incorporating a hyperpolarising afterpotential and either a slow afterhyperpolarisation or a depolarising afterpotential, but many others could not. We then constructed network models with the challenge of explaining the more complex patterns. We assumed that neurons of a given type (with heterogeneity introduced by independently random patterns of external input) were mutually interconnected at random by excitatory synaptic connections (with a variable delay and a random chance of failure). Simple network models of one or two cell types were able to explain the more complex patterns. We then explored the information processing features of such networks that might be relevant for a decision-making network. We concluded that rhythm generation (in the slow theta range) and bistability arise as emergent properties of networks of heterogeneous VMN neurons.
Collapse
Affiliation(s)
- Duncan J. MacGregor
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab 2018; 15:8-19. [PMID: 29773464 PMCID: PMC6066743 DOI: 10.1016/j.molmet.2018.04.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The early life environment experienced by an individual in utero and during the neonatal period is a major factor in shaping later life disease risk-including susceptibility to develop obesity, diabetes, and cardiovascular disease. The incidence of metabolic disease is different between males and females. How the early life environment may underlie these sex differences is an area of active investigation. SCOPE OF REVIEW The purpose of this review is to summarize our current understanding of how the early life environment influences metabolic disease risk in a sex specific manner. We also discuss the possible mechanisms responsible for mediating these sexually dimorphic effects and highlight the results of recent intervention studies in animal models. MAJOR CONCLUSIONS Exposure to states of both under- and over-nutrition during early life predisposes both sexes to develop metabolic disease. Females seem particularly susceptible to develop increased adiposity and disrupted glucose homeostasis as a result of exposure to in utero undernutrition or high sugar environments, respectively. The male placenta is particularly vulnerable to damage by adverse nutritional states and this may underlie some of the metabolic phenotypes observed in adulthood. More studies investigating both sexes are needed to understand how changes to the early life environment impact differently on the long-term health of male and female individuals.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Cambridge, CB2 0QQ, United Kingdom
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program & Diabetes and Obesity Program, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
17
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|