1
|
Tang X, Zhang XJ, Pan JF, Guo K, Tan CL, Zhang QZ, Long LP, Ding RF, Niu XM, Liu Y, Li SH. Z/E configuration controlled by a Taxus sesquiterpene synthase facilitating the biosynthesis of (3Z,6E)-α-farnesene. PHYTOCHEMISTRY 2025; 229:114304. [PMID: 39424093 DOI: 10.1016/j.phytochem.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plant enzymes often present advantages in the synthesis of natural products with specific configurations. Farnesene is a pharmacologically active sesquiterpene with three natural Z/E configurations, among which the enzyme selectively responsible for the biosynthesis of (3Z,6E)-α-farnesene remains elusive. Herein, a sesquiterpene synthase TwSTPS1 biosynthesizing (3Z,6E)-α-farnesene as the major product was identified from Taxus wallichiana through genome mining. Utilizing molecular dynamics simulations and mutation analysis, the catalytic mechanism of TwSTPS1, especially Z/E configuration control, was explored. Moreover, the crucial residues associated with the specific catalytic activity of TwSTPS1 was elucidated through mutagenesis experiments. The findings contribute to our understanding of the Z/E configuration control by plant terpene synthases and also provide an alternative tool for manipulating (3Z,6E)-α-farnesene production using synthetic biology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xian-Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing-Feng Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui-Feng Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Mezzomo P, Leong JV, Vodrážka P, Moos M, Jorge LR, Volfová T, Michálek J, de L Ferreira P, Kozel P, Sedio BE, Volf M. Variation in induced responses in volatile and non-volatile metabolites among six willow species: Do willow species share responses to herbivory? PHYTOCHEMISTRY 2024; 226:114222. [PMID: 39047854 DOI: 10.1016/j.phytochem.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Chemical variation is a critical aspect affecting performance among co-occurring plants. High chemical variation in metabolites with direct effects on insect herbivores supports chemical niche partitioning, and it can reduce the number of herbivores shared by co-occurring plant species. In contrast, low intraspecific variation in metabolites with indirect effects, such as induced volatile organic compounds (VOCs), may improve the attraction of specialist predators or parasitoids as they show high specificity to insect herbivores. We explored whether induced chemical variation following herbivory by various insect herbivores differs between VOCs vs. secondary non-volatile metabolites (non-VOCs) and salicinoids with direct effects on herbivores in six closely related willow species. Willow species identity explained most variation in VOCs (18.4%), secondary non-VOCs (41.1%) and salicinoids (60.7%). The variation explained by the independent effect of the herbivore treatment was higher in VOCs (2.8%) compared to secondary non-VOCs (0.5%) and salicinoids (0.5%). At the level of individual VOCs, willow species formed groups, as some responded similarly to the same herbivores. Most non-VOCs and salicinoids were upregulated by sap-suckers compared to other herbivore treatments and control across the willow species. In contrast, induced responses in non-VOCs and salicinoids to other herbivores largely differed between the willows. Our results suggest that induced responses broadly differ between various types of chemical defences, with VOCs and non-VOCs showing different levels of specificity and similarity across plant species. This may further contribute to flexible plant responses to herbivory and affect how closely related plants share or partition their chemical niches.
Collapse
Affiliation(s)
- Priscila Mezzomo
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Jing V Leong
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Leonardo R Jorge
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Algatech Centre, Institute of Microbiology, Trebon, Czech Republic
| | - Paola de L Ferreira
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Aarhus University, Department of Biology, Aarhus, Denmark
| | - Petr Kozel
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, United States; Smithsonian Tropical Research Institute, Balboa, the Republic of Panama
| | - Martin Volf
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Zhao H, Su J, Zhong Z, Xiong T, Dai W, Zhang D, Chang Y. Functional Identification and Regulatory Active Site Screening of the DfDXS Gene of Dryopteris fragrans. PLANTS (BASEL, SWITZERLAND) 2024; 13:2647. [PMID: 39339623 PMCID: PMC11435244 DOI: 10.3390/plants13182647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Dryopteris fragrans (L.) Schott has anti-inflammatory and antioxidant properties, and terpenoids are important components of its active constituents. The methyl-D-erythritol 4-phosphate (MEP) pathway is one of the major pathways for the synthesis of terpene precursors in plants, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme in this pathway. DXS has been shown to be associated with increased stress tolerance in plants. In this experiment, two DXS genes were extracted from the D. fragrans transcriptome and named DfDXS1 and DfDXS2. Based on phylogenetic tree and conserved motif analyses, DXS was shown to be highly conserved evolutionarily and its localization to chloroplasts was determined by subcellular localization. Prokaryotic expression results showed that the number and growth status of recombinant colonies were better than the control under 400 mM NaCl salt stress and 800 mM mannitol-simulated drought stress. In addition, the DfDXS1 and DfDXS2 transgenic tobacco plants showed improved resistance to drought and salt stress. DfDXS1 and DfDXS2 responded strongly to methyl jasmonate (MeJA) and PEG-mimicked drought stress following exogenous hormone and abiotic stress treatments of D. fragrans. The transcriptional active sites were investigated by dual luciferase and GUS staining assays, and the results showed that the STRE element (AGGGG), the ABRE element (ACGTGGC), and the MYC element (CATTTG) were the important transcriptional active sites in the promoters of the two DXS genes, which were closely associated with hormone response and abiotic stress. These results suggest that the DfDXS gene of D. fragrans plays an important role in hormone signaling and response to stress. This study provides a reference for analyzing the molecular mechanisms of stress tolerance in D. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Chang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (J.S.); (Z.Z.); (T.X.); (W.D.); (D.Z.)
| |
Collapse
|
4
|
Srividya N, Kim H, Simone R, Lange BM. Chemical diversity in angiosperms - monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:28-55. [PMID: 38565299 DOI: 10.1111/tpj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| | - Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Raugei Simone
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| |
Collapse
|
5
|
Woźniak NJ, Sartori K, Kappel C, Tran TC, Zhao L, Erban A, Gallinger J, Fehrle I, Jantzen F, Orsucci M, Ninkovic V, Rosa S, Lenhard M, Kopka J, Sicard A. Convergence and molecular evolution of floral fragrance after independent transitions to self-fertilization. Curr Biol 2024; 34:2702-2711.e6. [PMID: 38776901 DOI: 10.1016/j.cub.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of β-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.
Collapse
Affiliation(s)
- Natalia Joanna Woźniak
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Kevin Sartori
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Thi Chi Tran
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lihua Zhao
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jannicke Gallinger
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ines Fehrle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Friederike Jantzen
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
| |
Collapse
|
6
|
Pastierovič F, Kalyniukova A, Hradecký J, Dvořák O, Vítámvás J, Mogilicherla K, Tomášková I. Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. PLANTS (BASEL, SWITZERLAND) 2024; 13:1243. [PMID: 38732458 PMCID: PMC11085190 DOI: 10.3390/plants13091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The main biochemical traits were estimated in poplar leaves under biotic attack (aphids and spongy moth infestation). Changes in the abundance of bioactive compounds in genetically uniform individuals of European aspen (Populus tremula), such as proline, polyphenolic compounds, chlorophylls a and b, and volatile compounds, were determined between leaves damaged by sucking insects (aphid-Chaitophorus nassonowi) and chewing insects (spongy moth-Lymantria dispar) compared to uninfected leaves. Among the nine analyzed phenolic compounds, only catechin and procyanidin showed significant differences between the control leaves and leaves affected by spongy moths or aphids. GC-TOF-MS volatile metabolome analysis showed the clear separation of the control versus aphids-infested and moth-infested leaves. In total, the compounds that proved to have the highest explanatory power for aphid-infested leaves were 3-hexenal and 5-methyl-2-furanone, and for moth-infested leaves, trans-α-farnesene and 4-cyanocyclohexane. The aphid-infested leaves contained around half the amount of chlorophylls and twice the amount of proline compared to uninfected leaves, and these results evidenced that aphids influence plant physiology more than chewing insects.
Collapse
Affiliation(s)
- Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Ondřej Dvořák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Jan Vítámvás
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic; (A.K.); (J.H.); (O.D.); (J.V.); or (K.M.); (I.T.)
| |
Collapse
|
7
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
8
|
Bhargav P, Chaurasia S, Kumar A, Srivastava G, Pant Y, Chanotiya CS, Ghosh S. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia. PLANT MOLECULAR BIOLOGY 2023; 113:219-236. [PMID: 37898975 DOI: 10.1007/s11103-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.
Collapse
Affiliation(s)
- Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Seema Chaurasia
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yatish Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Zhang X, Chen X, Teixeira da Silva JA, Zhang T, Xiong Y, Li Y, Yuan Y, Pan X, Ma G. Characterization of sandalwood (E,E)-α-farnesene synthase whose overexpression enhances cold tolerance through jasmonic acid biosynthesis and signaling in Arabidopsis. PLANTA 2023; 258:54. [PMID: 37515637 DOI: 10.1007/s00425-023-04212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
MAIN CONCLUSION Santalum album (E,E)-α-farnesene synthase catalyzes FPP into (E,E)-α-farnesene. Overexpression of the SaAFS gene positively improved cold stress tolerance through JA biosynthesis and signaling pathways in Arabidopsis. Volatile terpenoids are released from plants that suffer negative effects following exposure to various biotic and abiotic stresses. Recent studies revealed that (E,E)-α-farnesene synthase (AFS) plays a significant role in a plant's defence against biotic attack. However, little is known about whether AFS contributes to plant resistance to cold stress. In this study, a SaAFS gene was isolated from Indian sandalwood (Santalum album L.) and functionally characterized. The SaAFS protein mainly converts farnesyl diphosphate to (E,E)-α-farnesene. SaAFS was clustered into the AFS clade from angiosperms, suggesting a highly conserved enzyme. SaAFS displayed a significant response to cold stress and methyl jasmonate. SaAFS overexpression (OE) in Arabidopsis enhanced cold tolerance by increasing proline content, reducing malondialdehyde content, electrolyte leakage, and accumulating reactive oxygen species. Transcriptomic analysis revealed that upregulated genes related to stress response and JA biosynthesis and signaling were detected in SaAFS-OE lines compared with wild type plants that were exposed to cold stress. Endogenous JA and jasmonoyl-isoleucine content increased significantly in SaAFS-OE lines exposed to cold stress. Collectively considered, these results suggest that the SaAFS gene is a positive regulator during cold stress tolerance via JA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaohong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Ting Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuping Xiong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yunfei Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Pan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Valle D, Mujica V, Gonzalez A. Herbivore-Dependent Induced Volatiles in Pear Plants Cause Differential Attractive Response by Lacewing Larvae. J Chem Ecol 2023; 49:262-275. [PMID: 36690765 DOI: 10.1007/s10886-023-01403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Biological control may benefit from the behavioral manipulation of natural enemies using volatile organic compounds (VOCs). Among these, herbivore-induced plant volatiles (HIPVs) provide potential tools for attracting or retaining predators and parasitoids of insect pests. This work aimed to characterize the VOCs emitted by pear plants in response to attack by Cacopsylla bidens (Hemiptera: Psyllidae), a major pest in pear orchards, to compare these with VOCs induced by a leaf chewing insect, Argyrotaenia sphaleropa (Lepidoptera: Tortricidae), and to evaluate the behavioral response of Chrysoperla externa (Neuroptera: Chrysopidae) to HIPVs from pear plants damaged by either herbivore. The results demonstrated that plants damaged by the pear psylla emitted VOC blends with increased amounts of aliphatic aldehydes. Leafroller damage resulted in increased amounts of benzeneacetonitrile, (E)-4,8-dimethylnona-1,3,7-triene, β-ocimene and caryophyllene. In olfactometer bioassays, larvae of C. externa were attracted to herbivore-damaged plants when contrasted with undamaged plants. When plant odors from psylla-damaged were contrasted with those of leafroller-damaged plants, C.externa preferred the former, also showing shorter response lag-times and higher response rates when psylla-damaged plants were present. Our results suggest that pear plants respond to herbivory by modifying their volatile profile, and that psylla-induced volatiles may be used as prey-specific chemical cues by chrysopid larvae. Our study is the first to report HIPVs in pear plants attacked by C. bidens, as well as the attraction of C. externa to psyllid-induced volatiles.
Collapse
Affiliation(s)
- D Valle
- Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Canelones, Uruguay.
| | - V Mujica
- Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Canelones, Uruguay
| | - A Gonzalez
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Ali MY, Naseem T, Holopainen JK, Liu T, Zhang J, Zhang F. Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels. Cells 2023; 12:251. [PMID: 36672186 PMCID: PMC9856403 DOI: 10.3390/cells12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland
| | - Tongxian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| |
Collapse
|
12
|
Abbas F, O'Neill Rothenberg D, Zhou Y, Ke Y, Wang HC. Volatile organic compounds as mediators of plant communication and adaptation to climate change. PHYSIOLOGIA PLANTARUM 2022; 174:e13840. [PMID: 36512339 DOI: 10.1111/ppl.13840] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Plant volatile organic compounds are the most abundant and structurally diverse plant secondary metabolites. They play a key role in plant lifespan via direct and indirect plant defenses, attracting pollinators, and mediating various interactions between plants and their environment. The ecological diversity and context-dependence of plant-plant communication driven by volatiles are crucial elements that influence plant performance in different habitats. Plant volatiles are also valued for their multiple applications in food, flavor, pharmaceutical, and cosmetics industries. In the current review, we summarize recent advances that have elucidated the functions of plant volatile organic compounds as mediators of plant interaction at community and individual levels, highlighting the complexities of plant receiver feedback to various signals and cues. This review emphasizes volatile terpenoids, the most abundant class of plant volatile organic compounds, highlighting their role in plant adaptability to global climate change and stress-response pathways that are integral to plant growth and survival. Finally, we identify research gaps and suggest future research directions.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dylan O'Neill Rothenberg
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanguo Ke
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Effect of Developmental Stages on Genes Involved in Middle and Downstream Pathway of Volatile Terpene Biosynthesis in Rose Petals. Genes (Basel) 2022; 13:genes13071177. [PMID: 35885960 PMCID: PMC9320630 DOI: 10.3390/genes13071177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete RcTPSs, and 9 RcNUDX1 genes in the genome of Rosachinensis. During the flower opening process of butterfly rose (Rosachinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis of differential volatile terpenes and differential expressed genes indicated that higher emission of geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18 may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation.
Collapse
|
14
|
Piesik D, Lemańczyk G, Bocianowski J, Buszewski B, Vidal S, Mayhew CA. Induction of volatile organic compounds in Triticum aestivum (wheat) plants following infection by different Rhizoctonia pathogens is species specific. PHYTOCHEMISTRY 2022; 198:113162. [PMID: 35278419 DOI: 10.1016/j.phytochem.2022.113162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The most popular means of plant protection is the chemical method, but this control is often connected with the need for repeating chemical treatments. Thus, eco-friendly strategies should be developed where, under the European Green Deal, aromatic plants and their repellent properties seem to constitute a good alternative. In earlier studies, we have shown that insect injury, bacteria infestation and pathogen infection induce plant volatile organic compounds (VOCs) emission, which can provide defensive functions to plants. In this study, Triticum aestivum L. (Poaceae) cv. 'Jenga' wheat plants were intentionally infected with one of four Rhizoctonia species (R. cerealis, R. solani, R. zeae, and R. oryzae). The soil was inoculated by the pathogens during sowing, whereas shoots were inoculated at stage BBCH 33. In greenhouse experiments, we measured VOCs from wheat 3, 7 and 11 days following stem infestation, or 42 days following soil inoculation of Rhizoctonia spp. VOC emissions were found to be largest on days 7 or 11 post-stem inoculation (>3 days post-stem inoculation >42 days post-soil inoculation). T. aestivum infected by pathogens induced five common green leaf volatiles (GLVs), namely (Z)-3-hexenal = (Z)-3-HAL, (E)-2-hexenal = (E)-2-HAL, (Z)-3-hexen-1-ol = (Z)-3- HOL, (E)-2-hexenol = (E)-2-HOL, (Z)-3-hexen-1-yl acetate = (Z)-3-HAC], six common terpenes (β-pinene = β-PIN, β-myrcene = β-MYR, Z-ocimene = Z-OCI, linalool = LIN, benzyl acetate = BAC, β-caryophyllene = β-CAR), and indole = IND. We found that R. cerealis infested T. aestivum emitted the largest amounts of (Z)-3-HAL and (Z)-3-HAC, while T. aestivum infested by R. solani released the largest amount of LIN (7 or 11 days following stem infestation). VOCs released by the T. aestivum after R. cerealis (AGD I) and R. solani (AG 5) infestations were significantly larger in comparison to R. zeae (WAG-Z) and R. oryzae (WAG-O) for the volatiles (Z)-3-HAL, (E)-2-HAL, (Z)-3-HOL, (E)-2-HOL, (Z)-3-HAC, β-PIN, β-MYR, and LIN. With the exception of (E)-2-HOL, β-MYR, LIN, BAC, β-CAR, the other VOCs were emitted in similar amounts by infected T. aestivum 3 days following stem and soil inoculation. The quantities of induced VOCs were higher at days 7 and 11 than at 3 days post-infection, and greater when T. aestivum was infected with Rhizoctonia on the stem base than through the soil.
Collapse
Affiliation(s)
- Dariusz Piesik
- Bydgoszcz University of Science and Technology, Department of Biology and Plant Protection, 7 Prof. Kaliskiego Ave., 85-796, Bydgoszcz, Poland.
| | - Grzegorz Lemańczyk
- Bydgoszcz University of Science and Technology, Department of Biology and Plant Protection, 7 Prof. Kaliskiego Ave., 85-796, Bydgoszcz, Poland
| | - Jan Bocianowski
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, 28 Wojska Polskiego, 60-637, Poznań, Poland
| | - Bogusław Buszewski
- Nicolaus Copernicus University, Faculty of Chemistry, Chair of Environmental Chemistry Bioanalytics, 7 Gagarina, 87-100, Toruń, Poland
| | - Stefan Vidal
- Georg-August-University Goettingen, Department of Crop Sciences, Agricultural, Entomology, 6 Grisebachstrasse, 37077, Goettingen, Germany
| | - Chris A Mayhew
- University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| |
Collapse
|
15
|
Ďurkovič J, Bubeníková T, Gužmerová A, Fleischer P, Kurjak D, Čaňová I, Lukáčik I, Dvořák M, Milenković I. Effects of Phytophthora Inoculations on Photosynthetic Behaviour and Induced Defence Responses of Plant Volatiles in Field-Grown Hybrid Poplar Tolerant to Bark Canker Disease. J Fungi (Basel) 2021; 7:jof7110969. [PMID: 34829256 PMCID: PMC8624009 DOI: 10.3390/jof7110969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
Bark cankers accompanied by symptoms of decline and dieback are the result of a destructive disease caused by Phytophthora infections in woody plants. Pathogenicity, gas exchange, chlorophyll a fluorescence, and volatile responses to P. cactorum and P. plurivora inoculations were studied in field-grown 10-year-old hybrid poplar plants. The most stressful effects of P. cactorum on photosynthetic behaviour were found at days 30 and 38 post-inoculation (p.-i.), whereas major disturbances induced by P. plurivora were identified at day 30 p.-i. and also belatedly at day 52 p.-i. The spectrum of volatile organic compounds emitted at day 98 p.-i. was richer than that at day 9 p.-i, and the emissions of both sesquiterpenes α-cubebene and germacrene D were induced solely by the Phytophthora inoculations. Significant positive relationships were found between both the axial and the tangential development of bark cankers and the emissions of α-cubebene and β-caryophyllene, respectively. These results show that both α-cubebene and germacrene D are signal molecules for the suppression of Phytophthora hyphae spread from necrotic sites of the bark to healthy living tissues. Four years following inoculations, for the majority of the inoculated plants, the callus tissue had already closed over the bark cankers.
Collapse
Affiliation(s)
- Jaroslav Ďurkovič
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (A.G.); (P.F.); (D.K.); (I.Č.); (I.L.)
- Correspondence:
| | - Tatiana Bubeníková
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Adriána Gužmerová
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (A.G.); (P.F.); (D.K.); (I.Č.); (I.L.)
| | - Peter Fleischer
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (A.G.); (P.F.); (D.K.); (I.Č.); (I.L.)
| | - Daniel Kurjak
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (A.G.); (P.F.); (D.K.); (I.Č.); (I.L.)
| | - Ingrid Čaňová
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (A.G.); (P.F.); (D.K.); (I.Č.); (I.L.)
| | - Ivan Lukáčik
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; (A.G.); (P.F.); (D.K.); (I.Č.); (I.L.)
| | - Miloň Dvořák
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic;
| | - Ivan Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
- The Chair of Forest Protection, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| |
Collapse
|
16
|
Walther C, Baumann P, Luck K, Rothe B, Biedermann PHW, Gershenzon J, Köllner TG, Unsicker SB. Volatile emission and biosynthesis in endophytic fungi colonizing black poplar leaves. Beilstein J Org Chem 2021; 17:1698-1711. [PMID: 34367348 PMCID: PMC8313976 DOI: 10.3762/bjoc.17.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Plant volatiles play a major role in plant-insect interactions as defense compounds or attractants for insect herbivores. Recent studies have shown that endophytic fungi are also able to produce volatiles and this raises the question of whether these fungal volatiles influence plant-insect interactions. Here, we qualitatively investigated the volatiles released from 13 endophytic fungal species isolated from leaves of mature black poplar (Populus nigra) trees. The volatile blends of these endophytes grown on agar medium consist of typical fungal compounds, including aliphatic alcohols, ketones and esters, the aromatic alcohol 2-phenylethanol and various sesquiterpenes. Some of the compounds were previously reported as constituents of the poplar volatile blend. For one endophyte, a species of Cladosporium, we isolated and characterized two sesquiterpene synthases that can produce a number of mono- and sesquiterpenes like (E)-β-ocimene and (E)-β-caryophyllene, compounds that are dominant components of the herbivore-induced volatile bouquet of black poplar trees. As several of the fungus-derived volatiles like 2-phenylethanol, 3-methyl-1-butanol and the sesquiterpene (E)-β-caryophyllene, are known to play a role in direct and indirect plant defense, the emission of volatiles from endophytic microbial species should be considered in future studies investigating tree-insect interactions.
Collapse
Affiliation(s)
- Christin Walther
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Pamela Baumann
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany.,Chair of Forest Entomology and Protection, Institute of Forest Sciences, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Beate Rothe
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Peter H W Biedermann
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany.,Chair of Forest Entomology and Protection, Institute of Forest Sciences, University of Freiburg, Fohrenbühl 27, 79252 Stegen-Wittental, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
17
|
Tong Y, Hu T, Tu L, Chen K, Liu T, Su P, Song Y, Liu Y, Huang L, Gao W. Functional characterization and substrate promiscuity of sesquiterpene synthases from Tripterygium wilfordii. Int J Biol Macromol 2021; 185:949-958. [PMID: 34237366 DOI: 10.1016/j.ijbiomac.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Acyclic terpenes, commonly found in plants, are of high physiological importance and commercial value, and their diversity was controlled by different terpene synthases. During the screen of sesquiterpene synthases from Tripterygium wilfordii, we observed that Ses-TwTPS1-1 and Ses-TwTPS2 promiscuously accepted GPP, FPP, and GGPP to produce corresponding terpene alcohols (linalool/nerolidol/geranyllinalool). The Ses-TwTPS1-2, Ses-TwTPS3, and Ses-TwTPS4 also showed unusual substrate promiscuity by catalyzing GGPP or GPP in addition to FPP as substrate. Furthermore, key residues for the generation of diterpene product, (E, E)-geranyllinalool, were screened depending on mutagenesis studies. The functional analysis of Ses-TwTPS1-1:V199I and Ses-TwTPS1-2:I199V showed that Val in 199 site assisted the produce of diterpene product geranyllinalool by enzyme mutation studies, which indicated that subtle differences away from the active site could alter the product outcome. Moreover, an engineered sesquiterpene high-yielding yeast that produced 162 mg/L nerolidol in shake flask conditions was constructed to quickly identify the function of sesquiterpene synthases in vivo and develop potential applications in microbial fermentation. Our functional characterization of acyclic sesquiterpene synthases will give some insights into the substrate promiscuity of diverse acyclic terpene synthases and provide key residues for expanding the product portfolio.
Collapse
Affiliation(s)
- Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| | - Tianyuan Hu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Tiezheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ping Su
- Department of Chemistry, the Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yadi Song
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
18
|
Lackus ND, Schmidt A, Gershenzon J, Köllner TG. A peroxisomal β-oxidative pathway contributes to the formation of C6-C1 aromatic volatiles in poplar. PLANT PHYSIOLOGY 2021; 186:891-909. [PMID: 33723573 PMCID: PMC8195509 DOI: 10.1093/plphys/kiab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/19/2021] [Indexed: 05/06/2023]
Abstract
Benzenoids (C6-C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6-C3). The biosynthesis of C6-C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6-C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.
Collapse
Affiliation(s)
- Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- Author for communication:
| |
Collapse
|
19
|
Liu G, Yang M, Yang X, Ma X, Fu J. Five TPSs are responsible for volatile terpenoid biosynthesis in Albizia julibrissin. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153358. [PMID: 33453433 DOI: 10.1016/j.jplph.2020.153358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Silk tree, Albizia julibrissin Duraz, is an old ornamental plant and extensively cultivated in Asia. Previous works have discovered that the terpenoids were the dominating compounds in the floral VOC of A. julibrissin, however the biosynthesis of these terpenoids was poorly understood so far. Here, 11 terpene synthase genes (TPSs) were identified by transcriptome sequencing that fell into TPS-a, TPS-b and TPS-g subfamilies. The enzymatic activity tests showed that five genes were functional: AjTPS2 was a sesquiterpene synthase and produced α-farnesene and (Z, E)-β-farnesene; AjTPS5 was able to catalyze the formation of five monoterpenes and nine sesquiterpenes; AjTPS7, AjTPS9 and AjTPS10 were dedicated monoterpene synthases, as AjTPS7 and AjTPS10 formed the single product β-ocimene and linalool, respectively, and AjTPS9 produced γ-terpinene with other three monoterpenes. More importantly, the main catalytic products of the characterized AjTPSs were consistent with the terpenoids observed in A. julibrissin volatiles. Combining terpene chemistry, TPSs biochemical activities and gene expression analysis, we demonstrate that AjTPS2, AjTPS5, AjTPS7, AjTPS9 and AjTPS10 are responsible for the volatile terpenoids biosynthesis in A. julibrissin.
Collapse
Affiliation(s)
- Guanhua Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, PR China.
| |
Collapse
|
20
|
Zhang X, Teixeira da Silva JA, Niu M, Zhang T, Liu H, Zheng F, Yuan Y, Li Y, Fang L, Zeng S, Ma G. Functional characterization of an Indian sandalwood (Santalum album L.) dual-localized bifunctional nerolidol/linalool synthase gene involved in stress response. PHYTOCHEMISTRY 2021; 183:112610. [PMID: 33383368 DOI: 10.1016/j.phytochem.2020.112610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Essential oils extracted from the heartwood of Indian sandalwood (Santalum album L.) contain linalool and nerolidol as minor components. However, nerolidol/linalool synthase (NES/LIS), which produce linalool and nerolidol, have yet to be characterized in sandalwood. Using a transcriptomic-based approach, a terpene synthase gene was screened from unigenes of transcriptome data derived from S. album seedlings exposed to low temperature (4 °C). The enzyme encoded by these complementary DNAs belongs to the TPS-b clade. Recombinant SaNES/LIS is a bifunctional enzyme that can catalyze the formation of (E)-nerolidol from farnesyl diphosphate and linalool from geranyl diphosphate, respectively. Whereas SaNES/LIS was primarily localized in chloroplastids, both as granular fluorescence and as diffuse fluorescence, it was also detected in the cytosol of a limited number of cells. Agrobacterium tumefaciens-mediated transient gene expression in planta produced the same terpene products as those obtained in vitro. Real-time PCR analysis showed the highest expression of SaNES/LIS in fruits, with about a three-fold higher level than in leaves, followed by flowers, heartwood and roots. SaNES/LIS transcripts were differentially activated in different tissues in response to methyl jasmonate, cold, high temperature, strong illumination, and drought stress. Our results provide novel insight into the role of sandalwood terpenoids in response to various environmental stresses.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Jaime A Teixeira da Silva
- Independent Researcher, P. O. Box 7, Miki Cho Post Office, Ikenobe 3011-2, Kagawa-Ken, 761-0799, Japan
| | - Meiyun Niu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huanfang Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Feng Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yunfei Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
21
|
Liu H, Liu Y, Cheng N, Zhang Y. De novo transcriptome assembly of transgenic tobacco ( Nicotiana tabacum NC89) with early senescence characteristic. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:237-249. [PMID: 33707866 PMCID: PMC7907299 DOI: 10.1007/s12298-021-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The enzyme, α-farnesene synthase (AFS), which synthesizes α-farnesene, is the final enzyme in α-farnesene synthesis pathway. We overexpressed the α-farnesene synthase gene (previously cloned in our lab from apple peel) and ectopically expressed it in tobacco (Nicotiana tabacum NC89). Then, the transgenic plants showed an accelerated developmental process and bloomed about 7 weeks earlier than the control plants. We anticipate that de novo transcriptomic analyses of N. tabacum may provide useful information on isoprenoid biosynthesis, growth, and development. We generated 318,925,338 bp sequencing data using Illumina paired-end sequencing from the cDNA library of the apical buds of transgenic line and the wild-type line. We annotated and functionally classified the unigenes in a nucleotide and protein database. Differentially expressed unigenes may be involved in carbohydrate metabolism, nitrogen metabolism, transporter activity, hormone signal transduction, antioxidant systems and transcription regulator activity particularly related to senescence. Moreover, we analyzed eight genes related to terpenoid biosynthesis using qRT-PCR to study the changes in growth and development patterns in the transgenic plants. Our study shows that transgenic plants show premature senescence. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00953-z.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Yu Liu
- Qingdao Agricultural University, Qingdao, 266109 Shandong People’s Republic of China
| | - Nini Cheng
- Linyi University, Linyi, 276005 Shandong People’s Republic of China
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
22
|
Lackus ND, Morawetz J, Xu H, Gershenzon J, Dickschat JS, Köllner TG. The Sesquiterpene Synthase PtTPS5 Produces (1 S,5 S,7 R,10 R)-Guaia-4(15)-en-11-ol and (1 S,7 R,10 R)-Guaia-4-en-11-ol in Oomycete-Infected Poplar Roots. Molecules 2021; 26:555. [PMID: 33494506 PMCID: PMC7866031 DOI: 10.3390/molecules26030555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/15/2023] Open
Abstract
Pathogen infection often leads to the enhanced formation of specialized plant metabolites that act as defensive barriers against microbial attackers. In this study, we investigated the formation of potential defense compounds in roots of the Western balsam poplar (Populus trichocarpa) upon infection with the generalist root pathogen Phytophthora cactorum (Oomycetes). P. cactorum infection led to an induced accumulation of terpenes, aromatic compounds, and fatty acids in poplar roots. Transcriptome analysis of uninfected and P. cactorum-infected roots revealed a terpene synthase gene PtTPS5 that was significantly induced upon pathogen infection. PtTPS5 had been previously reported as a sesquiterpene synthase producing two unidentified sesquiterpene alcohols as major products and hedycaryol as a minor product. Using heterologous expression in Escherichia coli, enzyme assays with deuterium-labeled substrates, and NMR analysis of reaction products, we could identify the major PtTPS5 products as (1S,5S,7R,10R)-guaia-4(15)-en-11-ol and (1S,7R,10R)-guaia-4-en-11-ol, with the former being a novel compound. The transcript accumulation of PtTPS5 in uninfected and P. cactorum-infected poplar roots matched the accumulation of (1S,5S,7R,10R)-guaia-4(15)-en-11-ol, (1S,7R,10R)-guaia-4-en-11-ol, and hedycaryol in this tissue, suggesting that PtTPS5 likely contributes to the pathogen-induced formation of these compounds in planta.
Collapse
Affiliation(s)
- Nathalie D. Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| | - Jennifer Morawetz
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| | - Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; (H.X.); (J.S.D.)
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; (H.X.); (J.S.D.)
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| |
Collapse
|
23
|
Abbas F, Ke Y, Zhou Y, Ashraf U, Li X, Yu Y, Yue Y, Ahmad KW, Yu R, Fan Y. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety 'Siberia'. PHYTOCHEMISTRY 2020; 173:112294. [PMID: 32058861 DOI: 10.1016/j.phytochem.2020.112294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Lilies are a commercially significant cut flower worldwide due not only to their elegant shape but also to their appealing scent. Among Lilium varieties, Lilium 'Siberia' is a cultivar that is prominent and highly favored by consumers due to its snowy white color and strong floral scent. Here, two terpene synthase genes (LoTPS2 and LoTPS4) that are responsible for floral scent production in Lilium 'Siberia' were cloned and functionally characterized. Recombinant LoTPS2 specifically catalyzed the formation of (E, E)-α-farnesene from FPP. Recombinant LoTPS4 is a multiproduct enzyme that produces D-limonene and β-myrcene as major volatile compounds and β-phellandrene, (+)-4-carene and 3-carene as minor products from GPP. Furthermore, LoTPS4 generates trans-α-bergamotene as a major product and di-epi-α-cedrene, α-cubebene and (E)-β-farnesene as minor compounds from FPP. Subcellular localization analysis using GFP fusion constructs revealed that LoTPS2 was localized in the cytosol, whereas LoTPS4 was localized in plastids. Real-time PCR analysis showed that LoTPS2 was highly expressed in the petals and sepals of the flower, while LoTPS4 was highly expressed in the filament of the flower. Moreover, mechanical wounding of flowers revealed that LoTPS2 showed a strong response to wounding via a rapid increase in its mRNA transcript level. Our results will assist scientists in exploring the molecular mechanisms of terpene biosynthesis in this species and will provide new insight into the biotechnological modification of the floral bouquet in Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kanwar Waqas Ahmad
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Muthusamy S, Vetukuri RR, Lundgren A, Ganji S, Zhu LH, Brodelius PE, Kanagarajan S. Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro. PeerJ 2020; 8:e8904. [PMID: 32377446 PMCID: PMC7194099 DOI: 10.7717/peerj.8904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt–nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg−1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography–mass spectrometry (GC–MS). GC–MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.,Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
25
|
Lackner S, Lackus ND, Paetz C, Köllner TG, Unsicker SB. Aboveground phytochemical responses to belowground herbivory in poplar trees and the consequence for leaf herbivore preference. PLANT, CELL & ENVIRONMENT 2019; 42:3293-3307. [PMID: 31350910 DOI: 10.1111/pce.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Belowground (BG) herbivory can influence aboveground (AG) herbivore performance and food preference via changes in plant chemistry. Most evidence for this phenomenon derives from studies in herbaceous plants but studies in woody plants are scarce. Here we investigated whether and how BG herbivory on black poplar (Populus nigra) trees by Melolontha melolontha larvae influences the feeding preference of Lymantria dispar (gypsy moth) caterpillars. In a food choice assay, caterpillars preferred to feed on leaves from trees that had experienced attack by BG herbivores. Therefore, we investigated the effect of BG herbivory on the phytochemical composition of P. nigra trees alone and in combination with AG feeding by L. dispar caterpillars. BG herbivory did not increase systemic AG tree defences like volatile organic compounds, protease inhibitors and salicinoids. Jasmonates and salicylic acid were also not induced by BG herbivory in leaves but abscisic acid concentrations drastically increased together with proline and few other amino acids. Leaf coating experiments with amino acids suggest that proline might be responsible for the caterpillar feeding preference via presumptive phagostimulatory properties. This study shows that BG herbivory in poplar can modify the feeding preference of AG herbivores via phytochemical changes as a consequence of root-to-shoot signaling.
Collapse
Affiliation(s)
- Sandra Lackner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
26
|
Günther J, Schmidt A, Gershenzon J, Köllner TG. Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar. PLANT SIGNALING & BEHAVIOR 2019; 14:1668233. [PMID: 31532355 PMCID: PMC6804715 DOI: 10.1080/15592324.2019.1668233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 05/29/2023]
Abstract
In response to herbivory, poplar produces among other compounds the volatile alcohol 2-phenylethanol and its corresponding glucoside 2-phenylethyl-β-D-glucopyranoside. While the free alcohol is released only upon herbivory, the glucoside accumulates also in undamaged leaves, but increases after herbivore feeding. Recently we showed that 2-phenylethanol and its glucoside are biosynthesized via separate pathways in Populus trichocarpa. The phenylacetaldehyde synthase PtAAS1 plays a central role in the de novo formation of herbivory-induced volatile 2-phenylethanol, while the phenylalanine decarboxylase PtAADC1 initiates a pathway responsible for the herbivory-induced production of 2-phenylethyl-β-D-glucopyranoside. Besides PtAAS1, P. trichocarpa possesses another aromatic aldehyde synthase PtAAS2 with in vitro enzymatic activity comparable to that of PtAAS1. However, in contrast to PtAAS1, which is exclusively expressed in herbivory-damaged leaves, PtAAS2 was found to be expressed at constant levels in both damaged and undamaged leaves. Thus it has been hypothesized that PtAAS2 provides phenylacetaldehyde as substrate for the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in undamaged P. trichocarpa trees. By generating RNAi-mediated AAS2 knockdown plants, we show here that despite the similar activities of PtAAS1 and PtAAS2 in vitro, the latter enzyme does not contribute to the biosynthesis of 2-phenylethyl-β-D-glucopyranoside in planta. Based on the recent finding that phenylpyruvic acid accumulates in undamaged poplar leaves, the constitutive formation of the glucoside may now be suggested to proceed via the Ehrlich pathway, which begins with the conversion of phenylalanine into phenylpyruvic acid.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Schmidt
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G. Köllner
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
27
|
Identification and Characterization of trans-Isopentenyl Diphosphate Synthases Involved in Herbivory-Induced Volatile Terpene Formation in Populus trichocarpa. Molecules 2019; 24:molecules24132408. [PMID: 31261889 PMCID: PMC6651613 DOI: 10.3390/molecules24132408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.
Collapse
|
28
|
McCormick AC, Irmisch S, Boeckler GA, Gershenzon J, Köllner TG, Unsicker SB. Herbivore-induced volatile emission from old-growth black poplar trees under field conditions. Sci Rep 2019; 9:7714. [PMID: 31118456 PMCID: PMC6531464 DOI: 10.1038/s41598-019-43931-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/25/2019] [Indexed: 11/17/2022] Open
Abstract
Herbivory is well known to trigger increased emission of volatile organic compounds (VOCs) from plants, but we know little about the responses of mature trees. We measured the volatiles emitted by leaves of old-growth black poplar (Populus nigra) trees after experimental damage by gypsy moth (Lymantria dispar) caterpillars in a floodplain forest, and studied the effect of herbivory on the transcript abundance of two genes involved in the biosynthesis of VOCs, and the accumulation of defence phytohormones. Herbivory significantly increased volatile emission from the experimentally damaged foliage, but not from adjacent undamaged leaves in the damaged branches (i.e., no systemic response). Methylbutyraldoximes, 4,8-dimethyl-1,3,7-nonatriene (DMNT), (Z)-3-hexenol and (E)-β-ocimene, amongst other compounds, were found to be important in distinguishing the blend of herbivore-damaged vs. undamaged leaves. Herbivory also increased expression of PnTPS3 (described here for the first time) and PnCYP79D6-v4 genes at the damaged sites, these genes encode for an (E)-β-ocimene synthase and a P450 enzyme involved in aldoxime formation, respectively, demonstrating de novo biosynthesis of the volatiles produced. Herbivore-damaged leaves had significantly higher levels of jasmonic acid and its conjugate (-)-jasmonic acid-isoleucine. This study shows that mature trees in the field have a robust response to herbivory, producing induced volatiles at the damaged sites even after previous natural herbivory and under changing environmental conditions, however, further studies are needed to establish whether the observed absence of systemic responses is typical of mature poplar trees or if specific conditions are required for their induction.
Collapse
Affiliation(s)
- Andrea Clavijo McCormick
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
- Massey University, College of Sciences, Tennent Drive, 4410, Palmerston North, New Zealand
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, V6T 1Z4, BC, Canada
| | - G Andreas Boeckler
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany.
| |
Collapse
|
29
|
Abbas F, Ke Y, Yu R, Fan Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium 'Siberia'. PLANTA 2019; 249:71-93. [PMID: 30218384 DOI: 10.1007/s00425-018-3006-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
Floral scent formation in Lilium 'Siberia' is mainly due to monoterpene presence in the floral profile. LoTPS1 and LoTPS3 are responsible for the formation of (±)-linalool and β-ocimene in Lilium 'Siberia'. Lilium 'Siberia' is a perennial herbaceous plant belonging to Liliaceae family, cultivated both as a cut flower and garden plant. The snowy white flower emits a pleasant aroma which is mainly caused by monoterpenes present in the floral volatile profile. Previously terpene synthase (TPS) genes have been isolated and characterized from various plant species but less have been identified from Liliaceae family. Here, two terpene synthase genes (LoTPS1 and LoTPS3), which are highly expressed in sepals and petals of Lilium 'Siberia' flower were functionally characterized recombinant LoTPS1 specifically catalyzes the formation of (Z)-β-ocimene and (±)-linalool as its main volatile compounds from geranyl pyrophosphate (GPP), whereas LoTPS3 is a promiscuous monoterpene synthase which utilizes both GPP and farnesyl pyrophosphate (FPP) as a substrate to generate (±)-linalool and cis-nerolidol, respectively. Transcript levels of both genes were prominent in flowering parts, especially in sepals and petals which are the main source of floral scent production. The gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analysis revealed that the compounds were emitted throughout the day, prominently during the daytime and lower levels at night following a strong circadian rhythm in their emission pattern. Regarding mechanical wounding, both genes showed considerable involvement in floral defense by inducing the emission of (Z)-β-ocimene and (±)-linalool, elevating the transcript accumulation of LoTPS1 and LoTPS3. Furthermore, the subcellular localization experiment revealed that LoTPS1 was localized in plastids, whilst LoTPS3 in mitochondria. Our findings on these two TPSs characterized from Lilium 'Siberia' provide new insights into molecular mechanisms of terpene biosynthesis in this species and also provide an opportunity for biotechnological modification of floral scent profile of Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Department of Horticulture, College of Agriculture, University of Sargodha, Punjab, Pakistan
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Lackus ND, Lackner S, Gershenzon J, Unsicker SB, Köllner TG. The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Sci Rep 2018; 8:17936. [PMID: 30560919 PMCID: PMC6299004 DOI: 10.1038/s41598-018-36302-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Volatiles are often released upon herbivory as plant defense compounds. While the formation of volatiles above-ground has been intensively studied, little is known about herbivore-induced root volatiles. Here, we show that cockchafer larvae-damaged roots of Populus trichocarpa and P. nigra release a mixture of monoterpenes, including (−)-α-pinene, (−)-camphene, (−)-β-pinene, p-cymene, and 1,8-cineole. Three terpene synthases, PtTPS16 and PtTPS21 from P. trichocarpa and PnTPS4 from P. nigra, could be identified and characterized in vitro. PnTPS4 was found to produce 1,8-cineole as sole product. PtTPS16 and PtTPS21, although highly similar to each other, showed different product specificities and produced γ-terpinene and a mixture of (−)-camphene, (−)-α-pinene, (−)-β-pinene, and (−)-limonene, respectively. Four active site residues were found to determine the different product specificities of the two enzymes. The expression profiles of PtTPS16, PtTPS21, and PnTPS4 in undamaged and herbivore-damaged poplar roots generally matched the emission pattern of monoterpenes, indicating that monoterpene emission in roots is mainly determined at the gene transcript level. Bioassays with Phytophtora cactorum (Oomycetes) revealed inhibitory effects of vapor-phase 1,8-cineole and (−)-β-pinene on the growth of this important plant pathogen. Thus herbivore-induced volatile monoterpenes may have a role in defense against pathogens that cause secondary infections after root wounding.
Collapse
Affiliation(s)
- Nathalie D Lackus
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Sandra Lackner
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Strasse 8, 07745, Jena, Germany.
| |
Collapse
|
31
|
Eberl F, Hammerbacher A, Gershenzon J, Unsicker SB. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. THE NEW PHYTOLOGIST 2018; 220:760-772. [PMID: 28418581 DOI: 10.1111/nph.14565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
Plants release complex volatile blends after separate attack by herbivores and pathogens, which play many roles in interactions with other organisms. Large perennials are often attacked by multiple enemies, but the effect of combined attacks on volatile emission is rarely studied, particularly in trees. We infested Populus nigra trees with a pathogen, the rust fungus Melampsora larici-populina, and Lymantria dispar caterpillars alone and in combination. We investigated poplar volatile emission and its regulation, as well as the behavior of the caterpillars towards volatiles from rust-infected and uninfected trees. Both the rust fungus and the caterpillars alone induced volatile emission from poplar trees. However, the herbivore-induced volatile emission was significantly reduced when trees were under combined attack by the herbivore and the fungus. Herbivory induced terpene synthase transcripts as well as jasmonate concentrations, but these increases were suppressed when the tree was additionally infected with rust. Caterpillars preferred volatiles from rust-infected over uninfected trees. Our results suggest a defense hormone crosstalk upon combined herbivore-pathogen attack in poplar trees which results in lowered emission of herbivore-induced volatiles. This influences the preference of herbivores, and might have other far-reaching consequences for the insect and pathogen communities in natural poplar forests.
Collapse
Affiliation(s)
- Franziska Eberl
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
32
|
Günther J, Irmisch S, Lackus ND, Reichelt M, Gershenzon J, Köllner TG. The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa. BMC PLANT BIOLOGY 2018; 18:251. [PMID: 30348089 PMCID: PMC6196558 DOI: 10.1186/s12870-018-1478-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles. RESULTS A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation. CONCLUSIONS Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.
Collapse
Affiliation(s)
- Jan Günther
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
- Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Nathalie D. Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| |
Collapse
|
33
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
34
|
Liu H, Cao X, Liu X, Xin R, Wang J, Gao J, Wu B, Gao L, Xu C, Zhang B, Grierson D, Chen K. UV-B irradiation differentially regulates terpene synthases and terpene content of peach. PLANT, CELL & ENVIRONMENT 2017; 40:2261-2275. [PMID: 28722114 DOI: 10.1111/pce.13029] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 05/06/2023]
Abstract
Plants generate protective molecules in response to ultraviolet (UV) light. In laboratory experiments, 48 h UV-B irradiation of peach fruits and leaves reduced the flavour-related monoterpene linalool by 60%. No isoprene was detected, but other terpenoids increased significantly, including a threefold accumulation of the sesquiterpene (E,E)-α-farnesene, which was also increased by jasmonic acid treatment. RNA sequencing revealed altered transcript levels for two terpene synthases (TPSs): PpTPS1, a TPS-g subfamily member, decreased by 86% and PpTPS2, a TPS-b subfamily member, increased 80-fold. Heterologous expression in Escherichia coli and transient overexpression in tobacco and peach fruits showed PpTPS1 was localized in plastids and associated with production of linalool, while PpTPS2 was responsible for (E,E)-α-farnesene biosynthesis in the cytoplasm. Candidate regulatory genes for these responses were identified. Commercial peach production in Asia involves fruit bagging to maintain marketable yield and quality. TPS gene expression and volatile terpenoid production in field experiments, using bags transmitting high UV-B radiation, showed similar effects on peach volatiles to those from laboratory experiments. Bags transmitting less UV-B light ameliorated the reduction in the flavour volatile linalool, indicating that flavour components of peach fruits can be modulated by selecting an appropriate source of environmental screening material.
Collapse
Affiliation(s)
- Hongru Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaohong Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Rui Xin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiaojiao Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jie Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Boping Wu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Liuxiao Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
35
|
Lin J, Wang D, Chen X, Köllner TG, Mazarei M, Guo H, Pantalone VR, Arelli P, Stewart CN, Wang N, Chen F. An (E,E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:510-519. [PMID: 27734633 PMCID: PMC5362686 DOI: 10.1111/pbi.12649] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/05/2016] [Indexed: 05/23/2023]
Abstract
Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-α-farnesene. GmAFS is closely related to (E,E)-α-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography-mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-α-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Dan Wang
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Xinlu Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tobias G. Köllner
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Mitra Mazarei
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Hong Guo
- Department of BiochemistryCellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | | | | | | | - Ningning Wang
- Department of Plant Biology and EcologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
36
|
El-Sayed AM, Knight AL, Byers JA, Judd GJR, Suckling DM. Caterpillar-induced plant volatiles attract conspecific adults in nature. Sci Rep 2016; 6:37555. [PMID: 27892474 PMCID: PMC5124949 DOI: 10.1038/srep37555] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022] Open
Abstract
Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles.
Collapse
Affiliation(s)
- Ashraf M El-Sayed
- The New Zealand Institute for Plant &Food Research Limited, Gerald Street, 7608, Lincoln, New Zealand
| | - Alan L Knight
- USDA-ARS, Agricultural Research Service 5230 Konnowac Pass Rd, Wapato, WA, 98951-9651, USA
| | - John A Byers
- Department of Entomology Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot, Israel
| | - Gary J R Judd
- Agriculture and Agri-Food Canada 4200 Highway 97 Box 5000, Summerland, British Columbia V0H 1Z0, Canada
| | - David M Suckling
- The New Zealand Institute for Plant &Food Research Limited, Gerald Street, 7608, Lincoln, New Zealand.,School of Biological Sciences, University of Auckland Tamaki Campus, Building 733, Auckland, New Zealand
| |
Collapse
|
37
|
Luck K, Jirschitzka J, Irmisch S, Huber M, Gershenzon J, Köllner TG. CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species. BMC PLANT BIOLOGY 2016; 16:215. [PMID: 27716065 PMCID: PMC5050915 DOI: 10.1186/s12870-016-0910-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/27/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. RESULTS In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. CONCLUSIONS The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi-volatile nitrogenous defence compounds in E. coca and E. fischeri.
Collapse
Affiliation(s)
- Katrin Luck
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Jan Jirschitzka
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
- Present address: Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, D-52074 Aachen, Germany
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
- Present address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Meret Huber
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| |
Collapse
|
38
|
Li Y, Wang G. Strategies of isoprenoids production in engineered bacteria. J Appl Microbiol 2016; 121:932-40. [DOI: 10.1111/jam.13237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Y. Li
- College of Pharmaceutical and Biological Engineering; Shenyang University of Chemical Technology; Shenyang China
| | - G. Wang
- Key Laboratory of Environmental and Applied Microbiology; Chinese Academy of Sciences; Chengdu China
- Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| |
Collapse
|
39
|
Fang Y, Umasankar Y, Ramasamy RP. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens Bioelectron 2016; 81:39-45. [PMID: 26918616 DOI: 10.1016/j.bios.2016.01.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections.
Collapse
Affiliation(s)
- Yi Fang
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Yogeswaran Umasankar
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
40
|
Wang Q, Jia M, Huh JH, Muchlinski A, Peters RJ, Tholl D. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1761. [PMID: 27933080 PMCID: PMC5122590 DOI: 10.3389/fpls.2016.01761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biological Sciences, Virginia Tech, BlacksburgVA, USA
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, AmesIA, USA
| | - Jung-Hyun Huh
- Department of Biological Sciences, Virginia Tech, BlacksburgVA, USA
| | | | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, AmesIA, USA
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, BlacksburgVA, USA
- *Correspondence: Dorothea Tholl,
| |
Collapse
|
41
|
Irmisch S, Müller AT, Schmidt L, Günther J, Gershenzon J, Köllner TG. One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar. BMC PLANT BIOLOGY 2015; 15:262. [PMID: 26511849 PMCID: PMC4625925 DOI: 10.1186/s12870-015-0647-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/19/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Labdane-related diterpenoids form the largest group among the diterpenes. They fulfill important functions in primary metabolism as essential plant growth hormones and are known to function in secondary metabolism as, for example, phytoalexins. The biosynthesis of labdane-related diterpenes is mediated by the action of class II and class I diterpene synthases. Although terpene synthases have been well investigated in poplar, little is known about diterpene formation in this woody perennial plant species. RESULTS The recently sequenced genome of Populus trichocarpa possesses two putative copalyl diphosphate synthase genes (CPS, class II) and two putative kaurene synthase genes (KS, class I), which most likely arose through a genome duplication and a recent tandem gene duplication, respectively. We showed that the CPS-like gene PtTPS17 encodes an ent-copalyl diphosphate synthase (ent-CPS), while the protein encoded by the putative CPS gene PtTPS18 showed no enzymatic activity. The putative kaurene synthases PtTPS19 and PtTPS20 both accepted ent-copalyl diphosphate (ent-CPP) as substrate. However, despite their high sequence similarity, they produced different diterpene products. While PtTPS19 formed exclusively ent-kaurene, PtTPS20 generated mainly the diterpene alcohol, 16α-hydroxy-ent-kaurane. Using homology-based structure modeling and site-directed mutagenesis, we demonstrated that one amino acid residue determines the different product specificity of PtTPS19 and PtTPS20. A reciprocal exchange of methionine 607 and threonine 607 in the active sites of PtTPS19 and PtTPS20, respectively, led to a complete interconversion of the enzyme product profiles. Gene expression analysis revealed that the diterpene synthase genes characterized showed organ-specific expression with the highest abundance of PtTPS17 and PtTPS20 transcripts in poplar roots. CONCLUSIONS The poplar diterpene synthases PtTPS17, PtTPS19, and PtTPS20 contribute to the production of ent-kaurene and 16α-hydroxy-ent-kaurane in poplar. While ent-kaurene most likely serves as the universal precursor for gibberellins, the function of 16α-hydroxy-ent-kaurane in poplar is not known yet. However, the high expression levels of PtTPS20 and PtTPS17 in poplar roots may indicate an important function of 16α-hydroxy-ent-kaurane in secondary metabolism in this plant organ.
Collapse
Affiliation(s)
- Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.
| | - Andrea T Müller
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.
| | - Lydia Schmidt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.
| | - Jan Günther
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany.
| |
Collapse
|
42
|
Park KC, Withers TM, Suckling DM. Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:33-46. [PMID: 25937382 DOI: 10.1016/j.jinsphys.2015.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Phytophagous insects detect volatile compounds produced by host and non-host plants, using species-specific sets of olfactory receptor neurons (ORNs). To investigate the relationship between the range of host plants and the profile of ORNs, single sensillum recordings were carried out to identify ORNs and corresponding active compounds in female Uraba lugens (Lepidoptera: Nolidae), an oligophagous eucalypt feeder. Based on the response profiles to 39 plant volatile compounds, 13 classes of sensilla containing 40 classes of ORNs were identified in female U. lugens. More than 95% (163 out of 171) of these sensilla contained 16 classes of ORNs with narrow response spectra, and 62.6% (107 out of 171) 18 classes of ORNs with broad response spectra. Among the specialized ORNs, seven classes of ORNs exhibited high specificity to 1,8-cineole, (±)-citronellal, myrcene, (±)-linalool and (E)-β-caryophyllene, major volatiles produced by eucalypts, while nine other classes of ORNs showed highly specialized responses to green leaf volatiles, germacrene D, (E)-β-farnesene and geranyl acetate that are not produced by most eucalypts. We hypothesize that female U. lugens can recognize their host plants by detecting key host volatile compounds, using a set of ORNs tuned to host volatiles, and discriminate them from non-host plants using another set of ORNs specialized for non-host volatiles. The ORNs with broad response spectra may enhance the discrimination between host and non-host plants by adding moderately selective sensitivity. Based on our finding, it is suggested that phytophagous insects use the combinational input from both host-specific and non-host specific ORNs for locating their host plants, and the electrophysiological characterization of ORN profiles would be useful in predicting the range of host plants in phytophagous insects.
Collapse
Affiliation(s)
- Kye Chung Park
- The New Zealand Institute for Plant & Food Research, PB 4704, Christchurch 8140, New Zealand.
| | | | - David Maxwell Suckling
- The New Zealand Institute for Plant & Food Research, PB 4704, Christchurch 8140, New Zealand.
| |
Collapse
|
43
|
Abstract
Background Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. Results The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Conclusions Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1598-x) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Liu J, Xu Y, Zhang Z, Wei J. Hydrogen peroxide promotes programmed cell death and salicylic acid accumulation during the induced production of sesquiterpenes in cultured cell suspensions of Aquilaria sinensis. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:337-346. [PMID: 32480678 DOI: 10.1071/fp14189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/07/2014] [Indexed: 06/11/2023]
Abstract
Aquilaria sinensis (Lour.) Gilg produces a highly valuable agarwood characterised by a diverse array of sesquiterpenes and chromone derivatives that can protect wounded trees against potential herbivores and pathogens. A defensive reaction on the part of the plant has been proposed as the key reason for agarwood formation, but the issue of whether programmed cell death (PCD), an important process of plant immune responding, is involved in agarwood formation, still needs to be clarified. In this study, treatment of cultured cell suspensions with hydrogen peroxide (H2O2) induced the production of sesquiterpenes due to endogenous accumulation of salicylic acid (SA) and elevations in the expression of sesquiterpene biosynthetic genes. Moreover, PCD was stimulated by H2O2 in cultured cell suspensions of A. sinensis due to the induction of caspase activity, upregulated expression of metacaspases and cytochrome c, and SA accumulation. Our findings demonstrate for the first time that H2O2 stimulates PCD, SA accumulation and sesquiterpene production in cultured cell suspensions of A. sinensis. Furthermore, results from this study provide a valuable insight into investigations of the potential interactions between sesquiterpene synthesis and PCD during agarwood formation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yanhong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
45
|
Irmisch S, Clavijo McCormick A, Günther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Köllner TG. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1095-107. [PMID: 25335755 DOI: 10.1111/tpj.12711] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 05/05/2023]
Abstract
Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.
Collapse
Affiliation(s)
- Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Irmisch S, Jiang Y, Chen F, Gershenzon J, Köllner TG. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC PLANT BIOLOGY 2014; 14:270. [PMID: 25303804 PMCID: PMC4197230 DOI: 10.1186/s12870-014-0270-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/01/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND As a response to caterpillar feeding, poplar releases a complex mixture of volatiles which comprises several classes of compounds. Poplar volatiles have been reported to function as signals in plant-insect interactions and intra- and inter-plant communication. Although the volatile blend is dominated by mono- and sesquiterpenes, there is much to be learned about their formation in poplar. RESULTS Here we report the terpene synthase (TPS) gene family of western balsam poplar (Populus trichocarpa) consisting of 38 members. Eleven TPS genes (PtTPS5-15) could be isolated from gypsy moth (Lymantria dispar)-damaged P. trichocarpa leaves and heterologous expression in Escherichia coli revealed TPS activity for ten of the encoded enzymes. Analysis of TPS transcript abundance in herbivore-damaged leaves and undamaged control leaves showed that seven of the genes, PtTPS6, PtTPS7, PtTPS9, PtTPS10, PtTPS12, PtTPS13 and PtTPS15, were significantly upregulated after herbivory. Gypsy moth-feeding on individual leaves of P. trichocarpa trees resulted in induced volatile emission from damaged leaves, but not from undamaged adjacent leaves. Moreover, the concentration of jasmonic acid and its isoleucine conjugates as well as PtTPS6 gene expression were exclusively increased in the damaged leaves, suggesting that no systemic induction occurred within the tree. CONCLUSIONS Our data indicate that the formation of herbivore-induced volatile terpenes in P. trichocarpa is mainly regulated by transcript accumulation of multiple TPS genes and is likely mediated by jasmonates. The specific local emission of volatiles from herbivore-damaged leaves might help herbivore enemies to find their hosts or prey in the tree canopy.
Collapse
Affiliation(s)
- Sandra Irmisch
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Yifan Jiang
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN37996, USA
| | - Feng Chen
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN37996, USA
| | - Jonathan Gershenzon
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Tobias G Köllner
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| |
Collapse
|
47
|
Yue Y, Yu R, Fan Y. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. PLANTA 2014; 240:745-62. [PMID: 25056927 DOI: 10.1007/s00425-014-2127-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/13/2014] [Indexed: 05/20/2023]
Abstract
Hedychium coronarium, a perennial herb belonging to the family Zingiberaceae, is cultivated as a garden plant or cut flower as well as for medicine and aromatic oil. Its flowers emit a fresh and inviting scent, which is mainly because of monoterpenes present in the profile of the floral volatiles. However, fragrance produced as a result of monoterpenes has not been well studied. In the present study, two novel terpene synthase (TPS) genes (HcTPS7 and HcTPS8) were isolated to study the biosynthesis of monoterpenes in H. coronarium. In vitro characterization showed that the recombinant HcTPS7 was capable of generating sabinene as its main product, in addition to nine sub-products from geranyl diphosphate (GPP). Recombinant HcTPS8 almost specifically catalyzed the formation of linalool from GPP, while it converted farnesyl diphosphate (FPP) to α-bergamotene, cis-α-bisabolene, β-farnesene and other ten sesquiterpenes. Subcellular localization experiments revealed that HcTPS7 and HcTPS8 were located in plastids. Real-time PCR analyses showed that HcTPS7 and HcTPS8 genes were highly expressed in petals and sepals, but were almost undetectable in vegetative organs. The changes of their expression levels in petals were positively correlated with the emission patterns of sabinene and linalool, respectively, during flower development. The results indicated that HcTPS7 and HcTPS8 were involved in the biosynthesis of sabinene and linalool in H. coronarium flowers. Results on these two TPSs first characterized from H. coronarium provide new insights into molecular mechanisms of terpene biosynthesis in this species and also lay the basis for biotechnological modification of floral scent profile in Hedychium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China,
| | | | | |
Collapse
|
48
|
Chen H, Li G, Köllner TG, Jia Q, Gershenzon J, Chen F. Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza. BMC PLANT BIOLOGY 2014; 14:239. [PMID: 25224158 PMCID: PMC4172859 DOI: 10.1186/s12870-014-0239-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/03/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Terpenoids constitute the largest class of secondary metabolites made by plants and display vast chemical diversity among and within species. Terpene synthases (TPSs) are the pivotal enzymes for terpenoid biosynthesis that create the basic carbon skeletons of this class. Functional divergence of paralogous and orthologous TPS genes is a major mechanism for the diversification of terpenoid biosynthesis. However, little is known about the evolutionary forces that have shaped the evolution of plant TPS genes leading to terpenoid diversity. RESULTS The orthologs of Oryza Terpene Synthase 1 (OryzaTPS1), a rice terpene synthase gene involved in indirect defense against insects in Oryza sativa, were cloned from six additional Oryza species. In vitro biochemical analysis showed that the enzymes encoded by these OryzaTPS1 genes functioned either as (E)-β-caryophyllene synthases (ECS), or (E)-β-caryophyllene & germacrene A synthases (EGS), or germacrene D & germacrene A synthases (DAS). Because the orthologs of OryzaTPS1 in maize and sorghum function as ECS, the ECS activity was inferred to be ancestral. Molecular evolutionary detected the signature of positive Darwinian selection in five codon substitutions in the evolution from ECS to DAS. Homology-based structure modeling and the biochemical analysis of laboratory-generated protein variants validated the contribution of the five positively selected sites to functional divergence of OryzaTPS1. The changes in the in vitro product spectra of OryzaTPS1 proteins also correlated closely to the changes in in vivo blends of volatile terpenes released from insect-damaged rice plants. CONCLUSIONS In this study, we found that positive Darwinian selection is a driving force for the functional divergence of OryzaTPS1. This finding suggests that the diverged sesquiterpene blend produced by the Oryza species containing DAS may be adaptive, likely in the attraction of the natural enemies of insect herbivores.
Collapse
Affiliation(s)
- Hao Chen
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- />Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guanglin Li
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- />College of Life Sciences, Shaanxi Normal University, Xi’an, 710062 China
| | - Tobias G Köllner
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Qidong Jia
- />Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Jonathan Gershenzon
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Feng Chen
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- />Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
49
|
Clavijo McCormick A, Irmisch S, Reinecke A, Boeckler GA, Veit D, Reichelt M, Hansson BS, Gershenzon J, Köllner TG, Unsicker SB. Herbivore-induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. PLANT, CELL & ENVIRONMENT 2014; 37:1909-23. [PMID: 24471487 DOI: 10.1111/pce.12287] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 05/05/2023]
Abstract
After herbivory, plants release volatile organic compounds from damaged foliage as well as from nearby undamaged leaves that attract herbivore enemies. Little is known about what controls the volatile emission differences between damaged and undamaged tissues and how these affect the orientation of herbivore enemies. We investigated volatile emission from damaged and adjacent undamaged foliage of black poplar (Populus nigra) after herbivory by gypsy moth (Lymantria dispar) caterpillars and determined the compounds mediating the attraction of the gypsy moth parasitoid Glyptapanteles liparidis (Braconidae). Female parasitoids were more attracted to gypsy moth-damaged leaves than to adjacent non-damaged leaves. The most characteristic volatiles of damaged versus neighbouring undamaged leaves included terpenes, green leaf volatiles and nitrogen-containing compounds, such as aldoximes and nitriles. Electrophysiological recordings and olfactometer bioassays demonstrated the importance of nitrogenous volatiles. Under field conditions, parasitic Hymenoptera were more attracted to traps baited with these substances than most other compounds. The differences in volatile emission profiles between damaged and undamaged foliage appear to be regulated by jasmonate signalling and the local activation of volatile biosynthesis. We conclude that characteristic volatiles from damaged black poplar foliage are essential cues enabling parasitoids to find their hosts.
Collapse
|
50
|
Insect attraction to herbivore-induced beech volatiles under different forest management regimes. Oecologia 2014; 176:569-80. [PMID: 25080178 DOI: 10.1007/s00442-014-3025-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Insect herbivore enemies such as parasitoids and predators are important in controlling herbivore pests. From agricultural systems we know that land-use intensification can negatively impact biological control as an important ecosystem service. The aim of our study was to investigate the importance of management regime for natural enemy pressure and biological control possibilities in forests dominated by European beech. We hypothesize that the volatile blend released from herbivore-infested beech trees functions as a signal, attracting parasitoids and herbivore enemies. Furthermore, we hypothesize that forest management regime influences the composition of species attracted by these herbivore-induced beech volatiles. We installed flight-interception traps next to Lymantria dispar caterpillar-infested young beech trees releasing herbivore-induced volatiles and next to non-infested control trees. Significantly more parasitoids were captured next to caterpillar-infested trees compared to non-infested controls, irrespective of forest type. However, the composition of the trophic guilds in the traps did vary in response to forest management regime. While the proportion of chewing insects was highest in non-managed forests, the proportion of sucking insects peaked in forests with low management and of parasitoids in young, highly managed, forest stands. Neither the number of naturally occurring beech saplings nor herbivory levels in the proximity of our experiment affected the abundance and diversity of parasitoids caught. Our data show that herbivore-induced beech volatiles attract herbivore enemies under field conditions. They further suggest that differences in the structural complexity of forests as a consequence of management regime only play a minor role in parasitoid activity and thus in indirect tree defense.
Collapse
|