1
|
Farag MA, Goyal V, Baky MH. Comparative metabolome variation in Brassica juncea different organs from two varieties as analyzed using SPME and GCMS techniques coupled to chemometrics. Sci Rep 2024; 14:19900. [PMID: 39191794 DOI: 10.1038/s41598-024-69865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Indian mustard (Brassica juncea; Brassicaceae) is an edible, oilseeds-yielding crop widely consumed as a food spice owing to its richness in nutrients with several health benefits. The current study aims to dissect the B. juncea metabolome heterogeneity among its different organs including leaf, stem, flower, and seed. Moreover, assessing the metabolome differences between two different varieties RH-725 and RH-761 grown at the same conditions. Gas chromatography-mass spectrometry (GC-MS) post-silylation was used to dissect the composition of nutrient metabolites coupled to multivariate data analysis. Variation in sulphur aglycones was measured using headspace-solid phase-microextraction HS-SPME coupled to GC-MS. A total of 101 nutrient metabolites were identified with the abundance of sugars represented by monosaccharides in all organs, except for seeds which were enriched in disaccharides (sucrose). α-Linolenic acid was detected as a marker fatty acid in leaf from RH-725 at 12.5 µg/mg. Malic acid was detected as a significant variant metabolite between the two varieties as detected in the leaf from the RH-725 variety at ca. 128.2 µg/mg compared to traces in RH-761. 7 Volatile sulphur compounds were detected at comparable levels in RH-725 and RH-761, with 3-butenyl isothiocyanate was the most abundant at 0.8-2 ng/mg.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| |
Collapse
|
2
|
Culhuac EB, Bello M. Evaluation of Urtica dioica Phytochemicals against Therapeutic Targets of Allergic Rhinitis Using Computational Studies. Molecules 2024; 29:1765. [PMID: 38675586 PMCID: PMC11052477 DOI: 10.3390/molecules29081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Allergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like Urtica dioica (UD) are being explored. However, UD's mechanism of action remains unknown. Therefore, to elucidate it, we conducted an in silico evaluation of UD phytochemicals' effects on known therapeutic targets of allergic rhinitis: histamine receptor 1 (HR1), neurokinin 1 receptor (NK1R), cysteinyl leukotriene receptor 1 (CLR1), chemoattractant receptor-homologous molecule expressed on type 2 helper T cells (CRTH2), and bradykinin receptor type 2 (BK2R). The docking analysis identified amentoflavone, alpha-tocotrienol, neoxanthin, and isorhamnetin 3-O-rutinoside as possessing a high affinity for all the receptors. Subsequently, molecular dynamics (MD) simulations were used to analyze the key interactions; the free energy of binding was calculated through Generalized Born and Surface Area Solvation (MMGBSA), and the conformational changes were evaluated. Alpha-tocotrienol exhibited a high affinity while also inducing positive conformational changes across all targets. Amentoflavone primarily affected CRTH2, neoxanthin targeted NK1R, CRTH2, and BK2R, and isorhamnetin-3-O-rutinoside acted on NK1R. These findings suggest UD's potential to treat AR symptoms by inhibiting these targets. Notably, alpha-tocotrienol emerges as a promising multi-target inhibitor. Further in vivo and in vitro studies are needed for validation.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50000, Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| |
Collapse
|
3
|
Basit A, Khan KUR, Rahman AU, Khan M, Ahmad T, Arafat M, Khan KU, Nalinbenjapun S, Sripetthong S, Ovatlarnporn C. UPLC-Q-TOF-MS profiling of Viola stocksii Boiss. and evaluation of aphrodisiac potential and risk factors associated with erectile dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117477. [PMID: 38007166 DOI: 10.1016/j.jep.2023.117477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viola stocksii Boiss. locally known as makhni or makhanr booti, is an important medicinal food plant with multiple therapeutic applications, including erectile dysfunction (ED). It is mixed with butter and used for boosting energy and sexual health in the subcontinent. AIMS OF THE STUDY This study was designed to evaluate the chemical composition, aphrodisiac potential and effect of V. stocksii on the risk factors associated with ED. METHODOLOGY The hydroethanolic extract of V. stocksii (HEEVS) was prepared through the microwave-assisted extraction (MAE) technique. The chemical composition was evaluated using preliminary phytochemical screening and UPLC-Q-TOF-MS analysis. Metals and minerals analysis was performed by an atomic absorption spectrophotometer. The aphrodisiac activity of HEEVS was evaluated using an in vivo aphrodisiac model established in male albino rats and the effect on various sexual parameters such as mount, intromission, ejaculation frequencies and mount, intromission, ejaculation latencies, postejaculatory interval, penile reflexes and serum hormone concentration were analyzed. The effect of HEEVS on various risk factors associated with ED, including prostate cancer (PC), bacterial infections, diabetes and obesity, was evaluated using various in vitro assays. Moreover, four compounds were selected from the UPLC-Q-TOF-MS profile and evaluated for in silico computational analysis against phosphodiesterase-5 (PDE-5) for possible interaction. FINDINGS The phytochemical screening revealed the presence of various secondary metabolites in HEEVS, while 58 compounds were tentatively identified in the UPLC-Q-TOF-MS analysis. Various important minerals and metals such as zinc, calcium, cadmium and magnesium were detected in the atomic absorption spectrometry analysis. The in vivo aphrodisiac evaluation showed a significant (p < 0.05) increase in the mount, intromission and ejaculation frequencies and a decrease in the mount, intromission latencies and post-ejaculatory intervals at a dose of 300 mg/kg. A marked (p < 0.05) increase was observed in the concentration of serum testosterone and luteinizing hormones in HEEVS treated animals with a significant increase in total penile reflexes. The extract displayed significant anti-prostate cancer activity and a potential antibacterial spectrum against E. coli and S. aureus, with MIC50 values of 215.72 μg/mL and 139.05 μg/mL, respectively. Similarly, HEEVS was found active towards pancreatic lipase (67.34 ± 1.03%), α-glucosidase (3.87 ± 0.54 mmol ACAE/g d.w.) and α-amylase (6.98 ± 1.63 mmol ACAE/g d.w.). The in silico docking study presented a potential interaction between the selected compounds and residues of the active site of PDE-5. CONCLUSION This report highlights the aphrodisiac potential of V. stocksii and provides experimental support for its traditional use in ED with an attenuative effect on the risk factors associated with ED. Moreover, the chemical composition displayed the presence of functional phytoconstituents and minerals in HEEVS and paves the way for the isolation of compounds with potent aphrodisiac activity.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Asad Ur Rahman
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Muhammad Khan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Tawseef Ahmad
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Kifayat Ullah Khan
- Quaid-e-Azam College of Pharmacy, Quaid-e-Azam Educational Complex, Sahiwal, Punjab, Pakistan
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| |
Collapse
|
4
|
Shamsi M, Ganji A, Mosayebi G, Amirhoseiny ES, Shohani S, Ghazavi A. Chamomile and Urtica dioica extracts improve immunological and histological alterations associated with polycystic ovarian syndrome in DHEA -induced mice. BMC Complement Med Ther 2023; 23:102. [PMID: 37013510 PMCID: PMC10069098 DOI: 10.1186/s12906-023-03936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND One of the novel mechanisms in the pathogenesis of Polycystic ovary syndrome (PCOS) is low-grade chronic inflammation. Chamomile (Matricaria recutita L.) and Nettle (Urtica dioica), with phytoestrogenic and antioxidant properties, are traditionally used to treat gynecological diseases. This study investigated the immune-modulating effects of these two plants. METHODS Following the induction of PCOS by subcutaneous injection (SC) of Dehydroepiandrosterone (DHEA) in BALB / C mice. Mice were treated in five groups: Sham, PCOS, PCOS + Chamomile, PCOS + Nettle, and PCOS + Chamomile and Nettle for 21 days. Ovarian morphology, blood antioxidant capacity, the abundance of Treg cells, and expression of matrix metalloproteinase-9 (MMP-9), transforming growth factor-ß (TGF-ß), cyclooxygenase-2 genes (COX-2), and tumor necrosis factor-alpha (TNF-α) were measured. RESULTS Folliculogenesis, Cystic follicles, and corpus luteum improved in the treatment groups (P < 0. 05). Treg cells in the DHEA group were significantly reduced compared to the Sham group (P < 0. 01). However, this decrease was not corrected in treatment groups (P > 0. 05). Total serum antioxidant capacity was significantly increased in the treatment group of Nettle and Chamomile + Nettle (P < 0. 05). The expression of MMP9 and TGFβ genes in the PCOS group was significantly higher than the Sham group (P < 0. 05), which the expression of MMP9 was corrected by treatment with Chamomile + Nettle extract (P < 0. 05). CONCLUSION Chamomile and Nettle extract may be an effective supplement in improving the histological and immunological changes of PCOS. However, more research is needed to confirm its effectiveness in humans.
Collapse
Affiliation(s)
- Maryam Shamsi
- MSc in Histology and Embryology, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Ensieh Seif Amirhoseiny
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sepideh Shohani
- Department of Biotechnology and Molecular Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
5
|
Tarasevičienė Ž, Vitkauskaitė M, Paulauskienė A, Černiauskienė J. Wild Stinging Nettle ( Urtica dioica L.) Leaves and Roots Chemical Composition and Phenols Extraction. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020309. [PMID: 36679022 PMCID: PMC9864842 DOI: 10.3390/plants12020309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/26/2023]
Abstract
Stinging nettle (Urtica dioica L.) is an herbaceous plant that grows all over the world and is widely used as an edible and medicinal plant. Overall research results reveal that the chemical content and antioxidant activity of aerial parts and roots of stinging nettle depends on the growing region, soil, meteorological conditions (especially sunshine), collecting time, etc. The chemical composition of stinging nettle growing in Lithuania and the solid-liquid extraction efficiency of leaves and roots using different solvents were analysed. Additionally, we determined leaves phenols extraction efficiency using 96% methanol at different extraction conditions. Research results showed that a higher amount of crude fats, non-nitrogen extractives, and total carotenoids were in leaves, but the amount of crude proteins and ash did not differ significantly compared with roots. A higher amount of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) were detected in roots instead of leaves while saturated fatty acids (SFAs) were in leaves. The extraction results showed that the most effective solvent for total phenols and flavonoids in leaves was 96% methanol, for total phenols in roots was 50% methanol and 50% ethanol for total flavonoids in roots. The most effective temperature for the Urtica dioica L. leaves phenols extraction was 70 °C, while time does not have a significant influence. The present study's findings suggested that concentrated and binary solvents had different effects on the phenol's extraction efficiency from different stinging nettle parts and extraction temperature performed a key role instead of extraction time.
Collapse
|
6
|
Abdel Shakour ZT, El-Akad RH, Elshamy AI, El Gendy AENG, Wessjohann LA, Farag MA. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem 2023; 399:133948. [DOI: 10.1016/j.foodchem.2022.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
7
|
Wu W, Zhang L, Zheng X, Huang Q, Farag MA, Zhu R, Zhao C. Emerging applications of metabolomics in food science and future trends. Food Chem X 2022; 16:100500. [DOI: 10.1016/j.fochx.2022.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
|
8
|
Montoya-Arroyo A, Toro-González C, Sus N, Warner J, Esquivel P, Jiménez VM, Frank J. Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6340-6348. [PMID: 35527679 DOI: 10.1002/jsfa.11985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Local leafy vegetables are gaining attention as affordable sources of micronutrients, including vitamins, pro-vitamin carotenoids and other bioactive compounds. Stinging nettles (Urtica spp.) are used as source of fibers, herbal medicine and food. However, despite the relatively wide geographical spread of Urtica leptophylla on the American continent, little is known about its content of vitamin E congeners and carotenoids. We therefore investigated the particular nutritional potential of different plant structures of wild Costa Rican U. leptophylla by focusing on their vitamin E and carotenoid profiles. RESULTS Young, mature and herbivore-damaged leaves, flowers, stems and petioles were collected and freeze-dried. Vitamin E and carotenoids were determined by high-performance liquid chromatography after liquid/liquid extraction with hexane. α-Tocopherol was the major vitamin E congener in all structures. Flowers had a high content of γ-tocopherol. Herbivore-damaged leaves had higher contents of vitamin E than undamaged leaves. Lutein was the major and β-carotene the second most abundant carotenoid in U. leptophylla. No differences in carotenoid profiles were observed between damaged and undamaged leaves. CONCLUSION The leaves of U. leptophylla had the highest nutritional value of all analyzed structures; therefore, they might represent a potential source of α-tocopherol, lutein and β-carotene. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Jorge Warner
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | - Patricia Esquivel
- School of Food Technology, Universidad de Costa Rica, San Pedro, Costa Rica
| | | | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
The Application of Quantitative Metabolomics for the Taxonomic Differentiation of Birds. BIOLOGY 2022; 11:biology11071089. [PMID: 36101467 PMCID: PMC9312993 DOI: 10.3390/biology11071089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
In the current pilot study, we propose the use of quantitative metabolomics to reconstruct the phylogeny of vertebrates, namely birds. We determined the concentrations of the 67 most abundant metabolites in the eye lenses of the following 14 species from 6 orders of the class Aves (Birds): the Black kite (Milvus migrans), Eurasian magpie (Pica pica), Northern raven (Corvus corax), Eurasian coot (Fulica atra), Godlewski's bunting (Emberiza godlewskii), Great crested grebe (Podiceps cristatus), Great tit (Parus major), Hawfinch (Coccothraustes coccothraustes), Hooded crow (Corvus cornix), House sparrow (Passer domesticus), Rock dove (Columba livia), Rook (Corvus frugilegus), Short-eared owl (Asio flammeus) and Ural owl (Strix uralensis). Further analysis shows that the statistical approaches generally used in metabolomics can be applied for differentiation between species, and the most fruitful results were obtained with hierarchical clustering analysis (HCA). We observed the grouping of conspecific samples independently of the sampling place and date. The HCA tree structure supports the key role of genomics in the formation of the lens metabolome, but it also indicates the influence of the species lifestyle. A combination of genomics-based and metabolomics-based phylogeny could potentially resolve arising issues and yield a more reliable tree of life.
Collapse
|
10
|
Variation in the Content of Bioactive Compounds in Infusions Prepared from Different Parts of Wild Polish Stinging Nettle (Urtica dioica L.). Molecules 2022; 27:molecules27134242. [PMID: 35807487 PMCID: PMC9268169 DOI: 10.3390/molecules27134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Nettle is a common plant that offers many health benefits and is grown all over the world. The content of active compounds in roots, stems, and leaves was determined based on the extraction procedure optimized using the Central Composite Design. Flavonols, phenolic acids, trigonelline, nicotinamide, nicotinic acids, and short-chain organic acids were determined with the use of LC–MS/MS and capillary isotachophoresis. Trigonelline, which was not previously reported in the roots and stems of nettle, was found in all parts of the plant and considerable variations in its content were observed (2.8–108 µg g−1). Furthermore, the Principal Component Analysis taking into account more variables demonstrated differences in the content of bioactive components between roots and aerial parts of nettle.
Collapse
|
11
|
Viotti C, Albrecht K, Amaducci S, Bardos P, Bertheau C, Blaudez D, Bothe L, Cazaux D, Ferrarini A, Govilas J, Gusovius HJ, Jeannin T, Lühr C, Müssig J, Pilla M, Placet V, Puschenreiter M, Tognacchini A, Yung L, Chalot M. Nettle, a Long-Known Fiber Plant with New Perspectives. MATERIALS 2022; 15:ma15124288. [PMID: 35744347 PMCID: PMC9230748 DOI: 10.3390/ma15124288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
The stinging nettle Urticadioica L. is a perennial crop with low fertilizer and pesticide requirements, well adapted to a wide range of environmental conditions. It has been successfully grown in most European climatic zones while also promoting local flora and fauna diversity. The cultivation of nettle could help meet the strong increase in demand for raw materials based on plant fibers as a substitute for artificial fibers in sectors as diverse as the textile and automotive industries. In the present review, we present a historical perspective of selection, harvest, and fiber processing features where the state of the art of nettle varietal selection is detailed. A synthesis of the general knowledge about its biology, adaptability, and genetics constituents, highlighting gaps in our current knowledge on interactions with other organisms, is provided. We further addressed cultivation and processing features, putting a special emphasis on harvesting systems and fiber extraction processes to improve fiber yield and quality. Various uses in industrial processes and notably for the restoration of marginal lands and avenues of future research on this high-value multi-use plant for the global fiber market are described.
Collapse
Affiliation(s)
- Chloé Viotti
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000 Besançon, France; (C.V.); (C.B.)
| | - Katharina Albrecht
- The Biological Materials Group, Department of Biomimetics, HSB—City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany; (K.A.); (L.B.); (J.M.)
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (S.A.); (A.F.); (M.P.)
| | - Paul Bardos
- r3 Environmental Technology Ltd., Earley Gate, Reading RG6 6AT, UK;
| | - Coralie Bertheau
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000 Besançon, France; (C.V.); (C.B.)
| | - Damien Blaudez
- LIEC, CNRS, Université de Lorraine, 54000 Nancy, France; (D.B.); (L.Y.)
| | - Lea Bothe
- The Biological Materials Group, Department of Biomimetics, HSB—City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany; (K.A.); (L.B.); (J.M.)
| | | | - Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (S.A.); (A.F.); (M.P.)
| | - Jason Govilas
- Department of Applied Mechanics, FEMTO-ST Institute, Université Bourgogne Franche-Comté, 25000 Besançon, France; (J.G.); (T.J.); (V.P.)
| | - Hans-Jörg Gusovius
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; (H.-J.G.); (C.L.)
| | - Thomas Jeannin
- Department of Applied Mechanics, FEMTO-ST Institute, Université Bourgogne Franche-Comté, 25000 Besançon, France; (J.G.); (T.J.); (V.P.)
| | - Carsten Lühr
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; (H.-J.G.); (C.L.)
| | - Jörg Müssig
- The Biological Materials Group, Department of Biomimetics, HSB—City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany; (K.A.); (L.B.); (J.M.)
| | - Marcello Pilla
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (S.A.); (A.F.); (M.P.)
| | - Vincent Placet
- Department of Applied Mechanics, FEMTO-ST Institute, Université Bourgogne Franche-Comté, 25000 Besançon, France; (J.G.); (T.J.); (V.P.)
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria; (M.P.); (A.T.)
| | - Alice Tognacchini
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria; (M.P.); (A.T.)
| | - Loïc Yung
- LIEC, CNRS, Université de Lorraine, 54000 Nancy, France; (D.B.); (L.Y.)
| | - Michel Chalot
- UMR Chrono-Environnement, CNRS 6249, Université Bourgogne Franche-Comté, 25000 Besançon, France; (C.V.); (C.B.)
- Faculté des Sciences et Technologies, Université de Lorraine, 54000 Nancy, France
- Correspondence:
| |
Collapse
|
12
|
Bioprospecting the Metabolome of Plant Urtica dioica L.: A Fast Dereplication and Annotation Workflow in Plant Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3710791. [PMID: 35497911 PMCID: PMC9050285 DOI: 10.1155/2022/3710791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
Plants have a pivotal role in ethnopharmacology, and their preparations are in use globally. However, getting down to the structure requires an effective workflow and mostly requires a time-consuming isolation process. Although bioassay-guided approaches are widely popular, they face a massive problem of rediscovery in recent times, especially in plant metabolomics. Mass spectrometry (MS)-based approach incorporated molecular networking via Global Natural Product Social Molecular Networking (GNPS) is considered here for the benefit of the fast screening of secondary metabolites. This study uses direct crude extracts obtained from various parts of the Urtica dioica plant for the characterization of secondary metabolites. The crude extract of the plant initially displayed promising antioxidant and anti-diabetic activities. Then, we employed mass spectrometry-based dereplication to identify the phytochemical components in the extracts. This led to the discovery of 7 unknown and 17 known secondary metabolites, which were further verified with the SIRIUS 4 platform, a computational tool for the annotation of compounds using tandem MS data. On the other hand, chasing the antioxidant activity of methanolic extract of U. dioica leaves, we employed a bioassay-guided isolation approach. With this method, we isolated and characterized compound 13, a known molecule, which possessed strong antioxidant activity without showing much toxicity in the brine shrimp lethality test at the test concentration of 1 mg/mL. With our results, we advocate the MS-based approach as a good starting point for the dereplication of compounds from the complex crude extracts of plants.
Collapse
|
13
|
Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, Kılıç M, Sen S, Acharya K, Nasiri A, Cruz-Martins N, Tsouh Fokou PV, Ydyrys A, Bassygarayev Z, Daştan SD, Alshehri MM, Calina D, Cho WC. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4024331. [PMID: 35251206 PMCID: PMC8894011 DOI: 10.1155/2022/4024331] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12451, Egypt
| | - Rana M. Merghany
- Department of Pharmacognosy, National Research Centre, Giza, Egypt
| | | | - Lubna Azmi
- Hygia Institute of Pharmaceutical Education & Research, Lucknow, U. P. 226001, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, Free State, South Africa
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Mehtap Kılıç
- Department of Pharmacognosy, Lokman Hekim University Faculty of Pharmacy, Ankara 06510, Turkey
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra PRD 4585-116, Portugal
- TOXRUN-oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra 4585-116, Portugal
| | | | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan
| | - Zhandos Bassygarayev
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty 050040, Kazakhstan
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
14
|
Rathinasabapathy T, Sakthivel LP, Komarnytsky S. Plant-Based Support of Respiratory Health during Viral Outbreaks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2064-2076. [PMID: 35147032 DOI: 10.1021/acs.jafc.1c06227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses are linked to major epidemic events that have plagued humans through recorded history and possibly much earlier, ranging from common colds, influenza, and coronavirus infections to measles. However, difficulty in developing effective pharmaceutical solutions to treat infected individuals has hindered efforts to manage and minimize respiratory viral outbreaks and the associated mortality. Here we highlight a series of botanical interventions with different and often overlapping putative mechanisms of action to support the respiratory system, for which the bioactive pharmacophore was suggested and the initial structure-activity relationships have been explored (Bupleurum spp., Glycyrrhiza spp., Andrographis spp.), have been proposed with uncertainty (Echinacea spp., Zingiber spp., Verbascum spp., Marrubium spp.), or remained to be elucidated (Sambucus spp., Urtica spp.). Investigating these metabolites and their botanical sources holds potential to uncover new mediators of the respiratory health outcomes as well as molecular targets for future break-through therapeutic interventions targeting respiratory viral outbreaks.
Collapse
Affiliation(s)
- Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Lakshmana Prabu Sakthivel
- Department of Pharmaceutical Technology, College of Engineering, Anna University BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
15
|
Mamadalieva NZ, Youssef FS, Hussain H, Zengin G, Mollica A, Al Musayeib NM, Ashour ML, Westermann B, Wessjohann LA. Validation of the Antioxidant and Enzyme Inhibitory Potential of Selected Triterpenes Using In Vitro and In Silico Studies, and the Evaluation of Their ADMET Properties. Molecules 2021; 26:molecules26216331. [PMID: 34770739 PMCID: PMC8587851 DOI: 10.3390/molecules26216331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.
Collapse
Affiliation(s)
- Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.H.); (B.W.); (L.A.W.)
- Correspondence:
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (F.S.Y.); (M.L.A.)
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.H.); (B.W.); (L.A.W.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (F.S.Y.); (M.L.A.)
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.H.); (B.W.); (L.A.W.)
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (H.H.); (B.W.); (L.A.W.)
| |
Collapse
|
16
|
Wójcik M, Różyło R, Łysiak G, Kulig R, Cacak‐Pietrzak G. Textural and sensory properties of wheat bread fortified with nettle (
Urtica dioica
L.) produced by the scalded flour method. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Monika Wójcik
- Department of Food Engineering and Machines University of Life Sciences in Lublin Lublin Poland
| | - Renata Różyło
- Department of Food Engineering and Machines University of Life Sciences in Lublin Lublin Poland
| | - Grzegorz Łysiak
- Department of Food Engineering and Machines University of Life Sciences in Lublin Lublin Poland
| | - Ryszard Kulig
- Department of Food Engineering and Machines University of Life Sciences in Lublin Lublin Poland
| | - Grażyna Cacak‐Pietrzak
- Division of Fruits, Vegetables and Cereals Technology Department of Food Technology and Assessment Institute of Food SciencesWarsaw University of Life Sciences Warsaw Poland
| |
Collapse
|
17
|
Khattab AR, Farag MA. Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. Crit Rev Biotechnol 2021; 42:403-430. [PMID: 34266351 DOI: 10.1080/07388551.2021.1940087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endophytic fungi are a kind of fungi that colonizes living plant tissues presenting a myriad of microbial adaptations that have been developed in such a hidden environment. Owing to its large diversity and particular habituation, they present a golden mine for research in the field of drug discovery. Endophytic fungal communities possess unique biocatalytic machinery that furnishes a myriad of complex natural product scaffolds. Xanthone compounds are examples of endophytic secondary metabolic products with pronounced biological activity to include: antioxidant, antimicrobial, anti-inflammatory, antithrombotic, antiulcer, choleretic, diuretic, and monoamine oxidase inhibiting activity.The current review compiles the recent progress made on the microbiological production of xanthones using fungal endophytes obtained from both marine and terrestrial origins, with comparisons being made among both natural resources. The biosynthesis of xanthones in endophytic fungi is outlined along with its decoding enzymes. Biotransformation reactions reported to be carried out using different endophytic microbial models are also outlined for xanthones structural modification purposes and the production of novel molecules.A promising application of novel computational tools is presented as a future direction for the goal of optimizing microbial xanthones production to include establishing metabolic pathway databases and the in silico analysis of microbial interactions. Metagenomics methods and related bioinformatics platforms are highlighted as unexplored tools for the biodiversity analysis of endophytic microbial communities that are difficult to be cultured.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
18
|
Unraveling the ethnopharmacological potential of medicinal plants used in Algerian traditional medicine for urinary diseases. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Fayek NM, Mekky RH, Dias CN, Kropf M, Heiss AG, Wessjohann LA, Farag MA. UPLC-MS Metabolome-Based Seed Classification of 16 Vicia Species: A Prospect for Phyto-Equivalency and Chemotaxonomy of Different Accessions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5252-5266. [PMID: 33877831 DOI: 10.1021/acs.jafc.0c06054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seeds of domesticated Vicia (vetch) species (family Fabaceae-Faboideae) are produced and consumed worldwide for their nutritional value. Seed accessions belonging to 16 different species of Vicia-both domesticated and wild taxa-were subjected to a chemotaxonomic study using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) analyzed by chemometrics. A total of 89 metabolites were observed in the examined Vicia accessions. Seventy-eight out of the 89 detected metabolites were annotated. Metabolites quantified belonged to several classes, viz., flavonoids, procyanidins, prodelphinidins, anthocyanins, stilbenes, dihydrochalcones, phenolic acids, coumarins, alkaloids, jasmonates, fatty acids, terpenoids, and cyanogenics, with flavonoids and fatty acids amounting to the major classes. Flavonoids, fatty acids, and anthocyanins showed up as potential chemotaxonomic markers in Vicia species discrimination. Fatty acids were more enriched in Vicia faba specimens, while the abundance of flavonoids was the highest in Vicia parviflora. Anthocyanins allowed for discrimination between Vicia hirsuta and Vicia sepium. To the best of our knowledge, this is the first report on employing UPLC-MS metabolomics to discern the diversity of metabolites at the intrageneric level among Vicia species.
Collapse
Affiliation(s)
- Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini Street, 11562 Cairo, Egypt
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt
| | - Clarice Noleto Dias
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Matthias Kropf
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Gregor Mendel-Straße 33, 1180 Vienna, Austria
| | - Andreas G Heiss
- Department for Bioarchaeology, Austrian Archaeological Institute (ÖAI), Austrian Academy of Sciences (ÖAW), Franz Klein-Gasse 1, 1190 Vienna, Austria
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle - Saale, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini Street, 11562 Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
20
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
21
|
Shah SS, Qasem MAA, Berni R, Del Casino C, Cai G, Contal S, Ahmad I, Siddiqui KS, Gatti E, Predieri S, Hausman JF, Cambier S, Guerriero G, Aziz MA. Physico-chemical properties and toxicological effects on plant and algal models of carbon nanosheets from a nettle fibre clone. Sci Rep 2021; 11:6945. [PMID: 33767326 PMCID: PMC7994820 DOI: 10.1038/s41598-021-86426-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Carbon nanosheets are two-dimensional nanostructured materials that have applications as energy storage devices, electrochemical sensors, sample supports, filtration membranes, thanks to their high porosity and surface area. Here, for the first time, carbon nanosheets have been prepared from the stems and leaves of a nettle fibre clone, by using a cheap and straight-forward procedure that can be easily scaled up. The nanomaterial shows interesting physical parameters, namely interconnectivity of pores, graphitization, surface area and pore width. These characteristics are similar to those described for the nanomaterials obtained from other fibre crops. However, the advantage of nettle over other plants is its fast growth and easy propagation of homogeneous material using stem cuttings. This last aspect guarantees homogeneity of the starting raw material, a feature that is sought-after to get a nanomaterial with homogeneous and reproducible properties. To evaluate the potential toxic effects if released in the environment, an assessment of the impact on plant reproduction performance and microalgal growth has been carried out by using tobacco pollen cells and the green microalga Pseudokirchneriella subcapitata. No inhibitory effects on pollen germination are recorded, while algal growth inhibition is observed at higher concentrations of leaf carbon nanosheets with lower graphitization degree.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammed Ameen Ahmed Qasem
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Irshad Ahmad
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences (BABS), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edoardo Gatti
- Institute of Bioeconomy (IBE), National Research Council, Via P. Gobetti, 101-I, I-40129, Bologna, Italy
| | - Stefano Predieri
- Institute of Bioeconomy (IBE), National Research Council, Via P. Gobetti, 101-I, I-40129, Bologna, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, 4940, Hautcharage, Luxembourg
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, 4940, Hautcharage, Luxembourg.
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
22
|
Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stinging nettle (Urtica dioica) is a plant well known in traditional medicine for its many beneficial properties, but the lack of standardization regarding the product to offer to consumers limits its diffusion. To this end, drying appears to be a useful technique to offer a low-cost product that can be stored for long time, but the different drying procedures may give rise to end-products of very different quality as nutraceutical and antioxidant compounds. Nettle leaves have been dehydrated employing freeze-drying (FD), oven-drying (OD) or heat pump drying (HPD) and compared with fresh leaves following water extraction to emulate the use by final consumers. Results indicate that the best dehydration technique is HPD, which apparently gives rise to more than a doubling of total phenols and antioxidant activity in the extract compared to the water extract obtained from fresh leaves but a reduction in the level of ascorbic acid of about 39%. In addition, the content of some phenolic compounds is 10 to over a hundred times higher in the extract after HPD than that obtained from fresh samples. This confirms that the dehydration technique should be tuned in relation to the compounds of greatest interest or value.
Collapse
|
23
|
Repajić M, Cegledi E, Zorić Z, Pedisić S, Elez Garofulić I, Radman S, Palčić I, Dragović-Uzelac V. Bioactive Compounds in Wild Nettle ( Urtica dioica L.) Leaves and Stalks: Polyphenols and Pigments upon Seasonal and Habitat Variations. Foods 2021; 10:190. [PMID: 33477689 PMCID: PMC7831946 DOI: 10.3390/foods10010190] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the presence of bioactives in wild nettle leaves and stalks during the phenological stage and in the context of natural habitat diversity. Thus, wild nettle samples collected before flowering, during flowering and after flowering from 14 habitats situated in three different regions (continental, mountain and seaside) were analyzed for low molecular weight polyphenols, carotenoids and chlorophylls using UPLC-MS/MS and HPLC analysis, while the ORAC method was performed for the antioxidant capacity measurement. Statistical analysis showed that, when compared to the stalks, nettle leaves contained significantly higher amounts of analyzed compounds which accumulated in the highest yields before flowering (polyphenols) and at the flowering stage (pigments). Moreover, nettle habitat variations greatly influenced the amounts of analyzed bioactives, where samples from the continental area contained higher levels of polyphenols, while seaside region samples were more abundant with pigments. The levels of ORAC followed the same pattern, being higher in leaves samples collected before and during flowering from the continental habitats. Hence, in order to provide the product's maximum value for consumers' benefit, a multidisciplinary approach is important for the selection of a plant part as well as its phenological stage with the highest accumulation of bioactive compounds.
Collapse
Affiliation(s)
- Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Ena Cegledi
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| | - Sanja Radman
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (E.C.); (Z.Z.); (S.P.); (V.D.-U.)
| |
Collapse
|
24
|
Brahmi-Chendouh N, Piccolella S, Nigro E, Hamri-Zeghichi S, Madani K, Daniele A, Pacifico S. Urtica dioica L. leaf chemical composition: A never-ending disclosure by means of HR-MS/MS techniques. J Pharm Biomed Anal 2021; 195:113892. [PMID: 33445000 DOI: 10.1016/j.jpba.2021.113892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/20/2022]
Abstract
The metabolite profiling of plant extracts always represents an exciting challenge, as the chemical diversity of natural products is still far beyond the researchers' imagination, even focusing on a plant that is thought to have already been broadly investigated. Herein UHPLC-HRMS/MS techniques were applied to an alcoholic crude extract from nettle leaves and proved to be a precious tool for the disclosure of secondary metabolites never found before. Hydroxycinnamic acid derivatives were the most representative constituents, with a 2-caffeoilisocitric acid cyclodimer described for the first time, besides four C-glycosylated flavones, bearing a 3-hydroxy-3-methylglutaryl function. This deep investigation paves the way for the isolation and full characterization of these molecules by means of spectroscopic techniques. Moreover, based on preliminary cytotoxicity evaluation, further research on the use of this nettle extract as a valuable nutraceutical product is encouraged.
Collapse
Affiliation(s)
- Nabila Brahmi-Chendouh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I, 81100, Caserta, Italy; 3BS Laboratory, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I, 81100, Caserta, Italy.
| | - Ersilia Nigro
- CEINGE-Advanced Biotechnologies, Scarl, 80131, Napoli, Italy
| | - Sabrina Hamri-Zeghichi
- 3BS Laboratory, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Khodir Madani
- 3BS Laboratory, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Aurora Daniele
- CEINGE-Advanced Biotechnologies, Scarl, 80131, Napoli, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I, 81100, Caserta, Italy
| |
Collapse
|
25
|
Feiner A, Pitra N, Matthews P, Pillen K, Wessjohann LA, Riewe D. Downy mildew resistance is genetically mediated by prophylactic production of phenylpropanoids in hop. PLANT, CELL & ENVIRONMENT 2021; 44:323-338. [PMID: 33037636 DOI: 10.1111/pce.13906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 05/25/2023]
Abstract
Downy mildew in hop (Humulus lupulus L.) is caused by Pseudoperonospora humuli and generates significant losses in quality and yield. To identify the biochemical processes that confer natural downy mildew resistance (DMR), a metabolome- and genome-wide association study was performed. Inoculation of a high density genotyped F1 hop population (n = 192) with the obligate biotrophic oomycete P. humuli led to variation in both the levels of thousands of specialized metabolites and DMR. We observed that metabolites of almost all major phytochemical classes were induced 48 hr after inoculation. But only a small number of metabolites were found to be correlated with DMR and these were enriched with phenylpropanoids. These metabolites were also correlated with DMR when measured from the non-infected control set. A genome-wide association study revealed co-localization of the major DMR loci and the phenylpropanoid pathway markers indicating that the major contribution to resistance is mediated by these metabolites in a heritable manner. The application of three putative prophylactic phenylpropanoids led to a reduced degree of leaf infection in susceptible genotypes, confirming their protective activity either directly or as precursors of active compounds.
Collapse
Affiliation(s)
- Alexander Feiner
- Plant Science and Breeding, Simon H. Steiner, Hopfen GmbH, Mainburg, Germany
- Deptartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle/Saale, Germany
| | - Nicholi Pitra
- Research and Development, S.S. Steiner, Inc., New York, USA
| | - Paul Matthews
- Research and Development, S.S. Steiner, Inc., New York, USA
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther University (MLU), Halle/Saale, Germany
| | - Ludger A Wessjohann
- Deptartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle/Saale, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Berlin, Germany
| |
Collapse
|
26
|
Cunha AG, Alves Filho EG, Silva LMA, Ribeiro PRV, Rodrigues THS, Brito ESD, Miranda MRAD. Chemical composition of thermally processed coconut water evaluated by GC–MS, UPLC-HRMS, and NMR. Food Chem 2020; 324:126874. [DOI: 10.1016/j.foodchem.2020.126874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/05/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
|
27
|
El-Hawary SS, El-Kammar HA, Farag MA, Saleh DO, El Dine RS. Metabolomic profiling of five Agave leaf taxa via UHPLC/PDA/ESI-MS inrelation to their anti-inflammatory, immunomodulatory and ulceroprotective activities. Steroids 2020; 160:108648. [PMID: 32298660 DOI: 10.1016/j.steroids.2020.108648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Agave plants are popular for their myriad applications in traditional medicine attributed to their reported anti-inflammatory, immunomodulatory, cytotoxic and antifungal activities. The aim of this study was to examine the anti-inflammatory, immunomodulatory and ulceroprotective activity of Agave species in relation to their metabolite fingerprint via a metabolome based ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) approach coupled to chemometrics. The metabolomic differences among five examined Agave leaves viz. Agave americana L., A. americana var. marginata Trel, A. angustifolia Haw. cv. marginata, A. desmettiana Jacobi, A. pygmaea Gentry were determined via a total of 56 annotated metabolites. Identification based on MSn and UV spectra revealed 25 steroidal saponins and sapogenins, 6 flavonoids, 2 homoisoflavonoids, 7 phenolic acids, 6 fatty acids and 3 fatty acid amides, some of which are reported for the first time in Agave. Metabolites heterogeneity was assessed among leaf taxa via multivariate data analyses for samples classification, showing that saponins is the major metabolite contributing to their classification. The carrageenan induced acute inflammatory rat model was used to assess the anti-inflammatory activity of Agave extracts via monitoring of blood cytokine levels. Additionally, their effects on ethanol-induced gastric ulcer in rats were evaluated. A. pygmaea showed the most significant anti-inflammatory and immunomodulatory activity, while A. angustifolia var. marginata possessed the highest ulceroprotective activity, which could be attributable to the high abundance of various saponins and homoisoflavonoids in those taxa.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Cairo 12622, Egypt
| | - Riham Salah El Dine
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
28
|
Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes (Basel) 2020. [DOI: 10.3390/pr8070803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the performance of accelerated solvent extraction (ASE) as a green approach for the recovery of polyphenols and pigments from wild nettle leaves (NL). ASE was operated at different temperatures (20, 50, 80 and 110 °C), static times (5 and 10 min) and cycle numbers (1–4) using ethanol (96%) as an extraction solvent. In order to compare the efficiency of ASE, ultrasound assisted extraction (UAE) at 80 °C for 30 min was performed as a referent. Polyphenol and pigment analyses were carried out by HPLC and antioxidant capacity was assessed by ORAC. Seven polyphenols from subclasses of hydroxycinnamic acids and flavonoids, along with chlorophylls a and b and their derivatives and six carotenoids and their derivatives were identified and quantified. Chlorogenic acid was the most abundant polyphenol and chlorophyll a represented the dominant pigment. ASE conditions at 110 °C/10 min/3 or 4 cycles proved to be the optimal for achieving the highest yields of analyzed compounds. In comparison with UAE, ASE showed better performance in terms of yields and antioxidants recovery, hence delivering extract with 60% higher antioxidant capacity. Finally, the potential of NL as a functional ingredient from natural sources can be successfully accessed by ASE.
Collapse
|
29
|
Holzmeyer L, Hartig AK, Franke K, Brandt W, Muellner-Riehl AN, Wessjohann LA, Schnitzler J. Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proc Natl Acad Sci U S A 2020; 117:12444-12451. [PMID: 32393619 PMCID: PMC7275773 DOI: 10.1073/pnas.1915277117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the phylogenetic and biogeographic patterns of antiinfective compounds from seed plants in one of the most species-rich regions on Earth and identify clades with naturally occurring substances potentially suitable for the development of new pharmaceutical compounds. Specifically, we combine taxonomic and phylogenetic data for >7,500 seed plant species from the flora of Java with >16,500 secondary metabolites and 6,255 georeferenced occurrence records to 1) identify clades in the phylogeny that are characterized by either an overrepresentation ("hot clades") or an underrepresentation ("cold clades") of antiinfective compounds and 2) assess the spatial patterns of plants with antiinfective compounds relative to total plant diversity across the region. Across the flora of Java, we identify 26 "hot clades" with plant species providing a high probability of finding antibiotic constituents. In addition, 24 "cold clades" constitute lineages with low numbers of reported activities but which have the potential to yield novel compounds. Spatial patterns of plant species and metabolite diversity are strongly correlated across Java, indicating that regions of highest species diversity afford the highest potential to discover novel natural products. Our results indicate that the combination of phylogenetic, spatial, and phytochemical information is a useful tool to guide the selection of taxa for efforts aimed at lead compound discovery.
Collapse
Affiliation(s)
- Laura Holzmeyer
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103 Leipzig, Germany
| | - Anne-Kathrin Hartig
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Alexandra N Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103 Leipzig, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| | - Jan Schnitzler
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, D-04103 Leipzig, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
30
|
Shonte TT, Duodu K, de Kock HL. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon 2020; 6:e03938. [PMID: 32478185 PMCID: PMC7248666 DOI: 10.1016/j.heliyon.2020.e03938] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/18/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
Stinging nettles provide low-cost quality nutrition for alleviating malnutrition. Previous research on stinging nettles focused mainly on the nutritional quality of fresh leaves. In this study, the effect of drying method on macronutrients, mineral content, ascorbic acid, β-carotene content and total phenols content and antioxidant activity were investigated. The contribution of fresh, oven dried or freeze dried stinging nettle leaves to the required daily value for the nutrients were also determined. Oven drying of nettle leaves resulted in a higher loss of β-carotene and ascorbic acid content compared to freeze drying. In contrast, the total phenols content and total antioxidant activity were higher in oven dried stinging nettle leaves compared to freeze dried leaves. Overall, freeze dried and oven dried nettle leaves can be considered as a rich source of Ca, Mg and vitamin A; a good source of vitamin C, Fe, and Mn; and a source for Mg and K. Stinging nettle leaves could potentially be used as a cheap natural source of antioxidants and for addressing micronutrient malnutrition.
Collapse
Affiliation(s)
- Tigist T. Shonte
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Wellbeing, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- School of Plant Sciences, College of Agriculture and Environmental Sciences Building, Haramaya University, Dire Dawa 138, Ethiopia
| | - K.G. Duodu
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Wellbeing, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Henriëtte L. de Kock
- Department of Consumer and Food Sciences and Institute for Food, Nutrition and Wellbeing, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
31
|
Wang L, Chen Z, Han B, Wu W, Zhao Q, Wei C, Liu W. Comprehensive analysis of volatile compounds in cold-pressed safflower seed oil from Xinjiang, China. Food Sci Nutr 2020; 8:903-914. [PMID: 32148799 PMCID: PMC7020304 DOI: 10.1002/fsn3.1369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/19/2019] [Accepted: 11/06/2019] [Indexed: 11/07/2022] Open
Abstract
Three varieties of safflower seed oil (SSO) from Xinjiang Autonomous Region, China, were analyzed by headspace solid-phase micro-extraction gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to reveal volatile components. Overall, 67 volatile components were determined and four compounds including isoamyl alcohol, caproic acid, n-pentanal, and heptanal were newly identified in SSO as aroma-active components. Meanwhile, 16 compounds were selected by relative odor activity value (ROAV) to evaluate contributions of single compounds to the overall odor (ROAV > 1), in which nonanal, (Z)-6-nonenal, and (E)-2,4-decadienal were the top three contributed substances (ROAV > 70). The sensory panel was described as eight definition terms (grassy, fruity, almond, mushroom, fatty, sweet, paddy, and overall fragrance). Principal component analysis (PCA) revealed a significant separation of three cultivars with the first principal component (PC-1) and the second principal component (PC-2) expressing 73.9% and 23.1%, respectively. Both PCA and ROAV allowed identifying the compounds positively correlated to sensory evaluation.
Collapse
Affiliation(s)
- Lin Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| | - Zhuo Chen
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of EducationShihezi UniversityShiheziChina
| | - Wenxia Wu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| | - Qiaoling Zhao
- Post‐Doctoral Research Station of Xinjiang Sailimu Modern Agriculture Co.BoleChina
| | - Changqing Wei
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
- Post‐Doctoral Research Station of Xinjiang Sailimu Modern Agriculture Co.BoleChina
| | - Wenyu Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| |
Collapse
|
32
|
Metabolic Profile and Evaluation of Biological Activities of Extracts from the Stems of Cissus trifoliata. Int J Mol Sci 2020; 21:ijms21030930. [PMID: 32023823 PMCID: PMC7037309 DOI: 10.3390/ijms21030930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Cissus trifoliata (L.) L belongs to the Vitaceae family and is an important medicinal plant used in Mexico for the management of infectious diseases and tumors. The present study aimed to evaluate the metabolic profile of the stems of C. trifoliata and to correlate the results with their antibacterial and cytotoxic activities. The hexane extract was analyzed using gas chromatography coupled with mass spectrometry (GC-MS) and the CHCl3-MeOH and aqueous extracts by ultraperformance liquid chromatography quadrupole time of fly mass spectrometry (UPLC-QTOF-MS). The antibacterial activity was determined by broth microdilution and the cytotoxicity was evaluated using MTS cell proliferation assay. Forty-six metabolites were putatively identified from the three extracts. Overall, terpenes, flavonoids and stilbenes characterize the metabolic profile. No antibacterial activity was found in any extract against the fifteen bacteria strains tested (MIC >500 µg/mL). However, high cytotoxic activity (IC50 ≤ 30 µg/mL) was found in the hexane and aqueous extracts against hepatocarcinoma and breast cancer cells (Hep3B, HepG2 and MCF7). This is the first report of the bioactive compounds of C. trifoliata stems and their antibacterial and cytotoxic properties. The metabolic profile rich in anticancer compounds correlate with the cytotoxic activity of the extracts from the stems of C. trifoliata. This study shows the antitumor effects of this plant used in the traditional medicine and justifies further research of its anticancer activity.
Collapse
|
33
|
Robles Arias DM, Cevallos D, Gaoue OG, Fadiman MG, Hindle T. Non-random medicinal plants selection in the Kichwa community of the Ecuadorian Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112220. [PMID: 31494198 DOI: 10.1016/j.jep.2019.112220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The non-random selection of medicinal plants theory, which predicts taxonomical biases in ethnopharmacopeias, indirectly demonstrates that traditional medicinal systems are rational and based in part on the therapeutic efficacy of plants. This theory suggests that because members of a taxonomical group share similar characteristics, some groups will be over-utilized in pharmacopeias, while other groups bereft of therapeutic potential will be under-utilized medicinally. Empirical evidence fo this theory comes from studies that used data collected at the national level which may lead to the overestimation of medicinal plant list given that some parts of the country (e.g., protected areas) can be unavailable for medicinal plant collection. Similarly, because medicinal plant importance and knowledge can be gender-specific and depends on the degree of exposure of a community, failure to account for gender and community experience can limit our understanding of non-random selection of medicinal plants. In this study, we used the negative binomial model and an examination of studentized residuals to demonstrate that a Kichwa community in the Ecuadorian Amazon over-utilized different sets of medicinal plant families depending on the gender of the informants or the experience of the community. We showed that utilizing local data instead of nationwide data reveals new over-utilized families. Seven of the nine most over-utilized medicinal plant families we found were previously reported in different biogeographical regions. The other two families are novel reports. Overall, our study proposes a novel method to uncover the intracultural heterogeneity of traditional knowledge and people non-random selection of medicinal plants at the local level.
Collapse
Affiliation(s)
- Daniela M Robles Arias
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33434, USA.
| | - Daniela Cevallos
- Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Orou G Gaoue
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA; Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin; Department of Geography and Environmenal Sciences, University of Johanesburg, APK Campus, Johanesburg, South Africa
| | - Maria G Fadiman
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33434, USA
| | - Tobin Hindle
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33434, USA
| |
Collapse
|
34
|
Zhang J, Zhang F, Li D, Liu Y, Liu B, Meng X. Characterization of metabolite profiles of white and green spears of asparagus officinalis L. from Caoxian, East China. Food Res Int 2019; 128:108869. [PMID: 31955777 DOI: 10.1016/j.foodres.2019.108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022]
Abstract
China is the largest planting country of asparagus (Asparagus officinalis L.) in the world. Caoxian, as the famous asparagus township in China, enjoys a reputation for producing asparagus with high yield and good quality, due to its unique geological characteristic. In this study, a method of reverse-phase ultraperformance liquid chromatography coupled with electrospray tandem mass spectrometry (RP-UPLC-ESI-MS/MS) was established for profiling metabolites from three segments (tip, mid, and base) of 'Caoxian white and green Asparagus'. A total of 114 metabolites were identified, among them, 43 were found for the first time in this vegetable. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to provide an overview of the metabolite profiles of Caoxian asparagus and to separate different segments of spears. The variables most decisive to discriminate among segments included 9 of the metabolites tentatively identified. This study will help to improve the protection of Caoxian asparagus geographical indication.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Danrui Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuchen Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Pilot National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
35
|
Xu X, Backes A, Legay S, Berni R, Faleri C, Gatti E, Hausman J, Cai G, Guerriero G. Cell wall composition and transcriptomics in stem tissues of stinging nettle ( Urtica dioica L.): Spotlight on a neglected fibre crop. PLANT DIRECT 2019; 3:e00151. [PMID: 31417976 PMCID: PMC6689792 DOI: 10.1002/pld3.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 06/01/2023]
Abstract
Stinging nettle (Urtica dioica L.) produces silky cellulosic fibres, as well as bioactive molecules. To improve the knowledge on nettle and enhance its opportunities of exploitation, a draft transcriptome of the "clone 13" (a fibre clone) is here presented. The transcriptome of whole internodes sampled at the top and middle of the stem is then compared with the core and cortical tissues sampled at the bottom. Young internodes show an enrichment in genes involved in the biosynthesis of phytohormones (auxins and jasmonic acid) and secondary metabolites (flavonoids). The core of internodes collected at the bottom of the stem is enriched in genes partaking in different aspects of secondary cell wall formation (cellulose, hemicellulose, lignin biosynthesis), while the cortical tissues reveal the presence of a C starvation signal probably due to the UDP-glucose demand necessary for the thickening phase of bast fibres. Cell wall analysis indicates a difference in rhamnogalacturonan structure/composition of mature bast fibres, as evidenced by the higher levels of galactose measured, as well as the occurrence of more water-soluble pectins in elongating internodes. The targeted quantification of phenolics shows that the middle internode and the cortical tissues at the bottom have higher contents than top internodes. Ultrastructural analyses reveal the presence of a gelatinous layer in bast fibres with a lamellar structure. The data presented will be an important resource and reference for future molecular studies on a neglected fibre crop.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| | - Aurélie Backes
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
- Present address:
Unité de Recherche Résistance Induite et BioProtection des PlantesUFR Sciences Exactes et NaturellesSFR Condorcet FR CNRS 3417Université de Reims‐Champagne‐ArdenneReims Cedex 2France
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| | - Roberto Berni
- Department of Life SciencesUniversity of SienaSienaItaly
- Trees and Timber Institute‐National Research Council of Italy (CNR‐IVALSA)FollonicaItaly
| | - Claudia Faleri
- Department of Life SciencesUniversity of SienaSienaItaly
| | - Edoardo Gatti
- Institute of Biometeorology (IBIMET)National Research CouncilBolognaItaly
| | - Jean‐Francois Hausman
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| | - Giampiero Cai
- Department of Life SciencesUniversity of SienaSienaItaly
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) DepartmentLuxembourg Institute of Science and Technology (LIST)Esch/AlzetteLuxembourg
| |
Collapse
|
36
|
Esposito S, Bianco A, Russo R, Di Maro A, Isernia C, Pedone PV. Therapeutic Perspectives of Molecules from Urtica dioica Extracts for Cancer Treatment. Molecules 2019; 24:molecules24152753. [PMID: 31362429 PMCID: PMC6695697 DOI: 10.3390/molecules24152753] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.
Collapse
Affiliation(s)
- Sabrina Esposito
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Alessandro Bianco
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
37
|
Rejlová L, Chrtek J, Trávníček P, Lučanová M, Vít P, Urfus T. Polyploid evolution: The ultimate way to grasp the nettle. PLoS One 2019; 14:e0218389. [PMID: 31260474 PMCID: PMC6602185 DOI: 10.1371/journal.pone.0218389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/01/2019] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.
Collapse
Affiliation(s)
- Ludmila Rejlová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jindřich Chrtek
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Vít
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tomáš Urfus
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
38
|
Freitak D, Tammaru T, Sandre S, Meister H, Esperk T. Longer life span is associated with elevated immune activity in a seasonally polyphenic butterfly. J Evol Biol 2019; 32:653-665. [PMID: 30903723 PMCID: PMC6850579 DOI: 10.1111/jeb.13445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Seasonal polyphenism constitutes a specific type of phenotypic plasticity in which short-lived organisms produce different phenotypes in different times of the year. Seasonal generations of such species frequently differ in their overall lifespan and in the values of traits closely related to fitness. Seasonal polyphenisms provide thus excellent, albeit underused model systems for studying trade-offs between life-history traits. Here, we compare immunological parameters between the two generations of the European map butterfly (Araschnia levana), a well-known example of a seasonally polyphenic species. To reveal possible costs of immune defence, we also examine the concurrent differences in several life-history traits. Both in laboratory experiments and in the field, last instar larvae heading towards the diapause (overwintering) had higher levels of both phenoloxidase (PO) activity and lytic activity than directly developing individuals. These results suggest that individuals from the diapausing generation with much longer juvenile (pupal) period invest more in their immune system than those from the short-living directly developing generation. The revealed negative correlation between pupal mass and PO activity may be one of the reasons why, in this species, the diapausing generation has a smaller body size than the directly developing generation. Immunological parameters may thus well mediate trade-offs between body size-related traits.
Collapse
Affiliation(s)
- Dalial Freitak
- Faculty of Biological and Environmental SciencesOrganismal and Evolutionary Biology Research ProgrammeHelsinkiFinland
- Division of ZoologyInstitute of BiologyUniversity of GrazGrazAustria
| | - Toomas Tammaru
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Siiri‐Lii Sandre
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Hendrik Meister
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Toomas Esperk
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
39
|
Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chem 2019; 293:233-246. [PMID: 31151607 DOI: 10.1016/j.foodchem.2019.04.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022]
Abstract
Ziziphus plants are well recognized for their nutritive and medicinal value worldwide, albeit their chemical profile has yet to be fully reported. The secondary metabolites profile of three traditionally used Ziziphus leaf accessions was investigated via ultra-high performance liquid chromatography coupled to photodiode array and electrospray ionization mass detectors (UHPLC/PDA/ESI-MS). A total of 102 metabolites were characterized revealing the first holistic approach onto Ziziphus leaf metabolome and to include the first report of several novel flavonoids and cyclopeptide alkaloids. Fragmentation pattern for cyclopeptide alkaloids was proposed via ESI-MS. Principal component analysis (PCA) revealed close metabolite resemblance among Z. spina-christi and Z. mauritiana leaf specimens found enriched in saponins and distinct from that of Z. jujuba in which quercetin-3-O-(2-pentosyl)-rhamnoside was most abundant. Further, in-vitro antioxidant, anti-inflammatory and antidiabetic assays revealed for Z. spina-christi and Z. mauritiana strong effects compared to Z. jujuba and in correlation with their metabolites repertoire.
Collapse
|
40
|
UPLC-MS metabolome based classification of Lupinus and Lens seeds: A prospect for phyto-equivalency of its different accessions. Food Res Int 2019; 115:379-392. [DOI: 10.1016/j.foodres.2018.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
|
41
|
Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 2018; 9:E309. [PMID: 29925808 PMCID: PMC6027220 DOI: 10.3390/genes9060309] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.
Collapse
Affiliation(s)
- Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - J Armando Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Fabio Apone
- Arterra Biosciences srl/Vitalab srl, via B. Brin 69, 80142 Naples, Italy.
| | - Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ahmad A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Claudio Cantini
- Trees and timber institute-National research council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100 Siena, Italy.
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Khawar Sohail Siddiqui
- Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia.
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 # 130 X 32 y 34, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
42
|
Farag MA, Khattab AR, Ehrlich A, Kropf M, Heiss AG, Wessjohann LA. Gas Chromatography/Mass Spectrometry-Based Metabolite Profiling of Nutrients and Antinutrients in Eight Lens and Lupinus Seeds (Fabaceae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4267-4280. [PMID: 29561614 DOI: 10.1021/acs.jafc.8b00369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lens culinaris and several Lupinus species are two legumes regarded as potential protein resources aside from their richness in phytochemicals. Consequently, characterization of their metabolite composition seems warranted to be considered as a sustainable commercial functional food. This study presents a discriminatory holistic approach for metabolite profiling in accessions of four lentil cultivars and four Lupinus species via gas chromatography/mass spectrometry. A total of 107 metabolites were identified, encompassing organic and amino acids, sugars, and sterols, along with antinutrients, viz., alkaloids and sugar phosphates. Among the examined specimens, four nutritionally valuable accessions ought to be prioritized for future breeding to include Lupinus hispanicus, enriched in organic ( ca. 11.7%) and amino acids ( ca. 5%), and Lupinus angustifolius, rich in sucrose ( ca. 40%), along with two dark-colored lentil cultivars 'verte du Puy' and 'Black Beluga' enriched in peptides. Antinutrient chemicals were observed in Lupinus polyphyllus, owing to its high alkaloid content. Several species-specific markers were also revealed using multivariate data analyses.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy , Cairo University , Kasr el Aini Street , Cairo 11562 , Egypt
- Chemistry Department, School of Sciences and Engineering , The American University in Cairo , New Cairo 11835 , Egypt
| | - Amira R Khattab
- Pharmacognosy Department, Division of Pharmaceutical Sciences, College of Pharmacy , Arab Academy for Science, Technology and Maritime Transport , Post Office Box 1029, Alexandria , Egypt
| | - Anja Ehrlich
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , D-06120 Halle , Germany
| | - Matthias Kropf
- Institute for Integrative Nature Conservation Research , University of Natural Resources and Life Sciences, Vienna (BOKU) , Gregor Mendel-Straße 33 , 1180 Vienna , Austria
| | - Andreas G Heiss
- Department for Bioarchaeology, Austrian Archaeological Institute (ÖAI) , Austrian Academy of Sciences (ÖAW) , 1190 Vienna , Austria
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Weinberg 3 , D-06120 Halle , Germany
| |
Collapse
|
43
|
Malik K, Ahmad M, Zhang G, Rashid N, Zafar M, Sultana S, Shah SN. Traditional plant based medicines used to treat musculoskeletal disorders in Northern Pakistan. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Bonetti G, Tedeschi P, Meca G, Bertelli D, Mañes J, Brandolini V, Maietti A. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products. Food Funct 2018; 7:4222-4230. [PMID: 27713992 DOI: 10.1039/c6fo01096b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves. Nettle leaves are an excellent source of phenolic compounds, principally 3-caffeoylquinic acid (3-CQA), caffeoylmalic acid (CMA) and rutin. The aim of this work was to evaluate the bioaccessibility (BAC), the bioavailability (BAV) and the antioxidant activity of nettle phenolic compounds present in foods and supplements. The BAC of nettle phenolics was evaluated with an in vitro dynamic digestion of real food matrices: the type of food matrix and chemical characteristic affected the kinetics of release and solubilization, with the highest BAC after duodenal digestion. A study of duodenal trans epithelial transport evidenced low bioavailability of native forms of 3-CQA, CMA and rutin. Simulation of colonic metabolism confirmed that phenolic compounds are fermented by gut microflora, confirming the need for further investigations on the impact of phenolic compounds at the large intestine level. Photochemiluminescence assay of the simulated digestion fluids demonstrated that ingestion of Urtica based foods contributes to create an antioxidant environment against superoxide anion radicals in the entire gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Gianpiero Bonetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Paola Tedeschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Davide Bertelli
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Vincenzo Brandolini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Annalisa Maietti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| |
Collapse
|
45
|
Rácz A, Andrić F, Bajusz D, Héberger K. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles. Metabolomics 2018; 14:29. [PMID: 29568246 PMCID: PMC5846857 DOI: 10.1007/s11306-018-1327-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. OBJECTIVES The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. METHODS Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. RESULTS Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. CONCLUSION Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.
Collapse
Affiliation(s)
- Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Filip Andrić
- Department of Analytical Chemistry, University of Belgrade - Faculty of Chemistry, Studentski trg. 12-16, 11000, Belgrade, Serbia.
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
46
|
Skąpska S, Marszałek K, Woźniak Ł, Zawada K, Wawer I. Aronia dietary drinks fortified with selected herbal extracts preserved by thermal pasteurization and high pressure carbon dioxide. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Farag MA, Fekry MI, Al-Hammady MA, Khalil MN, El-Seedi HR, Meyer A, Porzel A, Westphal H, Wessjohann LA. Cytotoxic Effects of Sarcophyton sp. Soft Corals-Is There a Correlation to Their NMR Fingerprints? Mar Drugs 2017; 15:E211. [PMID: 28677625 PMCID: PMC5532653 DOI: 10.3390/md15070211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton, with (ent)sarcophines as major components (17-100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC50 values ranging from 10-60 µg/mL. No obvious correlation between the extracts' IC50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562 Cairo, Egypt.
| | - Mostafa I Fekry
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562 Cairo, Egypt.
| | - Montasser A Al-Hammady
- National Institute of Oceanography and Fisheries, Red Sea Branch, 84511 Hurghada, Egypt.
| | - Mohamed N Khalil
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562 Cairo, Egypt.
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Division of Pharmacognosy, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden.
- Department of Chemistry, Faculty of Science, El-Menoufia University, 32512 Shebin El-Kom, Egypt.
| | - Achim Meyer
- Leibniz Centre for Tropical Marine Research, Fahrenheit Str.6, D-28359 Bremen, Germany.
| | - Andrea Porzel
- Department Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120 Halle (Saale), Germany.
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research, Fahrenheit Str.6, D-28359 Bremen, Germany.
| | - Ludger A Wessjohann
- Department Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120 Halle (Saale), Germany.
| |
Collapse
|
48
|
Carvalho AR, Costa G, Figueirinha A, Liberal J, Prior JAV, Lopes MC, Cruz MT, Batista MT. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities. Food Res Int 2017; 99:485-494. [PMID: 28784509 DOI: 10.1016/j.foodres.2017.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Urtica dioica and other less studied Urtica species (Urticaceae) are often used as a food ingredient. Fifteen hydroxycinnamic acid derivatives and sixteen flavonoids, flavone and flavonol-type glycosides were identified in hydroalcoholic extracts from aerial parts of Urtica dioica L., Urtica urens L. and Urtica membranacea using HPLC-PDA-ESI/MSn. Among them, the 4-caffeoyl-5-p-coumaroylquinic acid and three statin-like 3-hydroxy-3-methylglutaroyl flavone derivatives were identified for the first time in Urtica urens and U. membranacea respectively. Urtica membranacea showed the higher content of flavonoids, mainly luteolin and apigenin C-glycosides, which are almost absent in the other species studied. In vitro, Urtica dioica exhibited greater antioxidant activity but Urtica urens exhibited stronger anti-inflammatory potential. Interestingly, statin-like compounds detected in Urtica membranacea have been associated with hypocholesterolemic activity making this plant interesting for future investigations. None of the extracts were cytotoxic to macrophages and hepatocytes in bioactive concentrations (200 and 350μg/mL), suggesting their safety use in food applications.
Collapse
Affiliation(s)
- Ana Rita Carvalho
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gustavo Costa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Joana Liberal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - João A V Prior
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Celeste Lopes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3004-517 Coimbra, Portugal
| |
Collapse
|
49
|
Francišković M, Gonzalez-Pérez R, Orčić D, Sánchez de Medina F, Martínez-Augustin O, Svirčev E, Simin N, Mimica-Dukić N. Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L. (Stinging Nettle) Extracts. Phytother Res 2017; 31:1183-1191. [PMID: 28544187 DOI: 10.1002/ptr.5836] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
The purpose of this work was to determine the chemical profile of stinging nettle and to provide an insight into the mechanisms by which it ameliorates the immune response. Qualitative and quantitative liquid chromatography tandem mass spectrometry analyses indicated that phenolic acids (5-O-caffeoylquinic acid as dominant) and flavonol glycosides (rutin, isoquercitrin, and kaempferol 3-O-glucoside) are present in the aerial parts, while lignans (secoisolariciresinol, 9,9'-bisacetyl-neo-olivil and their glucosides) were detected in the root. Herb and root extracts expressed selective inhibition toward cyclooxygenase and lipoxygenase branches in human platelets: root extracts were better at inhibiting thromboxane production, while herb extracts were more specific toward inhibition of 12-lipoxygenase pathway. Stinging nettle extracts mildly increased monocyte chemoattractant protein-1 and growth-related oncogene release from nonstimulated intestinal epithelial cells, stimulating MyD88/NF-κB/p38 signaling, hence preserving the epithelial integrity and enhancing intestinal steady-state defense. Additionally, root extract reduced lipopolysaccharide-induced monocyte chemoattractant protein-1/growth-related oncogene secretion and cyclooxygenase-2 expression in intestinal epithelial cells, thus showing the potential protective effect against tissue damage caused by inflammation processes. These observations suggest that stinging nettle is an interesting candidate for the development of phytopharmaceuticals or dietary supplements for cotreatment of various inflammatory diseases, particularly inflammatory bowel diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marina Francišković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Raquel Gonzalez-Pérez
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | - Dejan Orčić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | | | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | - Emilija Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Nataša Simin
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Neda Mimica-Dukić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
50
|
Grosse-Veldmann B, Weigend M. The geometry of gender: hyper-diversification of sexual systems inUrticaL. (Urticaceae). Cladistics 2017; 34:131-150. [DOI: 10.1111/cla.12193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 11/28/2022] Open
Affiliation(s)
- Bernadette Grosse-Veldmann
- Nees-Institut für Biodiversität der Pflanzen; Rheinische Friedrich-Wilhelms-Universität; Meckenheimer Allee 170 D-53115 Bonn Germany
| | - Maximilian Weigend
- Nees-Institut für Biodiversität der Pflanzen; Rheinische Friedrich-Wilhelms-Universität; Meckenheimer Allee 170 D-53115 Bonn Germany
| |
Collapse
|